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Extension of monotone operators and
Lipschitz maps invariant for a group
of isometries
Giulia Cavagnari , Giuseppe Savaré , and Giacomo Enrico Sodini

Abstract. We study monotone operators in reflexive Banach spaces that are invariant with respect
to a group of suitable isometric isomorphisms, and we show that they always admit a maximal
extension which preserves the same invariance. A similar result applies to Lipschitz maps in
Hilbert spaces, thus providing an invariant version of Kirszbraun–Valentine extension theorem.
We then provide a relevant application to the case of monotone operators in Lp-spaces of random
variables which are invariant with respect to measure-preserving isomorphisms, proving that
they always admit maximal dissipative extensions which are still invariant by measure-preserving
isomorphisms. We also show that such operators are law invariant, a much stronger property
which is also inherited by their resolvents, the Moreau–Yosida approximations, and the associated
semigroup of contractions. These results combine explicit representation formulae for the maximal
extension of a monotone operator based on self-dual Lagrangians and a refined study of measure-
preserving maps in standard Borel spaces endowed with a nonatomic measure, with applications to
the approximation of arbitrary couplings between measures by sequences of maps.

1 Introduction

The theory of maximal monotone operators A ∶ X⇉ X∗ in Hilbert and reflexive
Banach spaces provides a very powerful framework to solve nonlinear equations (see,
e.g., the review [11]). We recall that an operator A ⊂ X ×X∗ (which we identify with
its graph) is said to be monotone if

⟨v −w , x − y⟩ ≥ 0 for any (x , v), (y, w) ∈ A,

while A is said to be maximal monotone if every proper extension of A fails to be
monotone.
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In the Hilbertian case, the theory can also be applied to differential inclusions of
the form

d
dt

x(t) ∈ −Ax(t), x(0) = x0(1.1)

driven by a maximal monotone operator A and to prove the generation of a semigroup
of contractions (see, e.g., [6, 13]).

The notion of maximality of the (multivalued) operator A plays a crucial role,
since by the Minty–Browder theorem it is equivalent to the solvability of the resolvent
equation

J(x) + τAx ∋ y,(1.2)

where J is the duality map fromX toX∗ [6, Theorem 2.2]. In the Hilbertian framework,
the solution to (1.2) corresponds to the solvability of the Implicit Euler Scheme
associated with (1.1) and provides a general condition for the existence of a solution
to (1.1). In this respect, an essential tool is the well-known fact that every monotone
operator A admits a maximal extension [13, 18], whose domain is contained in the
closed convex hull of the domain of A.

Motivated by the study of operators in Bochner-Lp spaces X = Lp(Ω,B,P;X)
(here (Ω,B) is a standard Borel space endowed with a nonatomic probability measure
P and X is a reflexive and separable Banach space) which are invariant by measure-
preserving transformations of Ω, in this paper we address the general problem of
finding maximal extensions of monotone operators which are invariant by a group
G of suitable transformations of X ×X∗. More precisely, let us consider a group
G of linear isomorphisms acting on X ×X∗ whose elements U = (U , U ′) preserve
the duality pairing and the norms in X ×X∗, i.e., for every (U , U ′) ∈ G and every
z = (x , v) ∈ X ×X∗, we have

⟨U ′v , Ux⟩ = ⟨v , x⟩, ∣Ux∣ = ∣x∣, ∣U ′v∣∗ = ∣v∣∗ .(1.3)

Given a monotone operator A ⊂ X ×X∗ which is G-invariant, i.e.,

(x , v) ∈ A, (U , U ′) ∈ G ⇒ (Ux , U ′v) ∈ A,(1.4)

we will prove (see Theorem 2.5) that there exists a maximal extension Â of A
preserving the G-invariance; we will also find Â so that its proper domain D(Â) does
not exceed the closed convex hull of D(A).

Since it is not clear how to adapt to this context the classical proof based on
the Debrunner–Flor and Zorn lemma (see, e.g., [13, Theorem 2.1 and Corollary 2.1,
Chapter II]), we will use the powerful explicit construction of [8]. This is based on
kernel averages of convex functionals and on the characterization of monotone and
maximal monotone operators via suitable convex Lagrangians on X ×X∗, a deep
theory started with the seminal paper [19] (where the so-called Fitzpatrick’s function is
introduced for the first time) and further developed in a more recent series of relevant
contributions (see, e.g., [14, 22, 24–26, 35] and the references therein).

The advantage of this direct approach is that it provides an explicit formula for the
extension of A which behaves quite well with respect to the action of the group G. As
an intermediate step, which can be relevant also in other applications independently
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Properties of invariant Lipschitz maps and dissipative operators 151

of G-invariance, we will also show (Theorem 2.3) how to modify the construction of
[8] in order to confine the domain of the extension Â to the closed convex hull of D(A)
(see also [9, Theorem 2.13] for a partial result in this direction).

As a byproduct, we can adapt the same strategy of [9] to prove a version of the
Kirszbraun–Valentine extension theorem (see [23, 33, 34]) for G-invariant Lipschitz
maps in Hilbert spaces (Theorem 2.11): it states that every L-Lipschitz map f ∶ D →H

defined in a subset D of an Hilbert space H, whose graph is invariant with respect to
the action of a group G of isometries of H, can be extended to an L-Lipschitz function
f̂ ∶H →H which is G-invariant as well. The basic idea here still goes back to Minty:
the graphs of nonexpansive maps in Hilbert spaces are in one-to-one correspondence
with graphs of monotone maps via the Cayley transformation T ∶H ×H →H ×H
defined as

T(y, w) ∶= 1√
2
(y −w , y +w).(1.5)

It is worth noticing that such a correspondence allowed the authors of [28] to use
for the first time the Fitzpatrick’s function to prove the Kirszbraun–Valentine theorem
(see [23, 33, 34]), which states that every 1-Lipschitz continuous map can be extended
to the whole H (see also [7] where this approach is improved in order to obtain an
extension with an optimal range). The same correspondence, together with the explicit
construction of a maximal extension of a monotone operator A in [8], is used in [9]
to provide the first constructive proof of the Kirszbraun–Valentine theorem.

We will also provide in the Appendix an alternative proof based on another more
recent explicit formula for such kind of extension given by [5] (see also [4]).

These results, besides being interesting by themselves, find interesting applications
in the case when X is the Lp-space of random variables

X = Lp(Ω,B,P;X), X∗ = Lp∗(Ω,B,P;X∗), p, p∗ ∈ (1,+∞), 1
p
+ 1

p∗
= 1,(1.6)

over a space of parametrizations (Ω,B,P), where (Ω,B) is a standard Borel space,
P is a nonatomic probability measure, and X is a separable and reflexive Banach
space, while G is a group of isomorphisms generated by measure-preserving maps,
i.e., B −B measurable maps g ∶ Ω → Ω which are essentially injective and such that
g♯P = P, where g♯P denotes the push-forward of P by g. Every measure-preserving
isomorphism g induces an element Ug of G whose action on (X , X′) ∈ X ×X∗ is
simply given by Ug(X , X′) = (X ○ g , X′ ○ g).

The interest for invariance by measure-preserving isomorphisms in X ×X∗ is
justified by its link with the stronger property of law invariance: a set A ⊂ X ×X∗ is law
invariant if whenever (X , X′) ∈ A, then A also contains all the pairs (Y , Y ′) ∈ X ×X∗
with the same law of (X , X′), i.e., (Y , Y ′)♯P = (X , X′)♯P. It is clear that law invariant
subsets of X ×X∗ are also invariant by measure-preserving isomorphisms; using
the results of [12], we will show that the converse implication holds for closed sets:
therefore, for closed sets, these two properties are in fact equivalent. Since the graph
of a maximal monotone operator is closed, we obtain that a monotone operator in
X ×X∗ whose graph is invariant by the action of measure-preserving isomorphisms
admits a maximal monotone extension which is law invariant (Theorem 4.4).
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This framework is exploited in Section 3 (where we study the approximation of
transport maps and plans by various classes of measure-preserving isomorphisms)
and Section 4.

The Hilbertian setting when p = p∗ = 2 and X is an Hilbert space (so that X =
L2(Ω,B,P;X) is a Hilbert space as well that can be identified with its dual X∗)
provides an important case, which we will further exploit in [17]. It turns out that
maximal dissipative operators B on L2(Ω,B,P;X), invariant by measure-preserving
isomorphisms, are the Hilbertian counterparts of maximal totally dissipative oper-
ators on the Wasserstein space P2(X) of laws, where P2(X) denotes the space of
Borel probability measures with finite second moment endowed with the so-called
Kantorovich–Rubinstein–Wasserstein distance W2. The results obtained in Section
4 in the framework (1.6) are used in [17] to develop a well-posedness theory for
dissipative evolution equations in the metric space (P2(X), W2), together with a
Lagrangian characterization for the solution of the corresponding Cauchy problem.

Besides the direct application of the general invariance extension result provided
in Section 2, in Section 4, we also analyze further properties of Lipschitz functions
and maximal dissipative operators on X = L2(Ω,B,P;X), which are invariant by
measure-preserving isomorphisms. In particular, we prove that the effect of a Lipschitz
invariant map L ∶ X→ X on an element X ∈ X can always be represented as

LX(w) = l(X(w), X♯P) for a.e. ω ∈ Ω ,

where l ∶ S(X) → X is a (uniquely determined) continuous map defined in

S(X) ∶= {(x , μ) ∈ X ×P2(X) ∶ x ∈ supp(μ)}

whose sections l(⋅, μ) are Lipschitz as well, for every μ ∈ P2(X).
An important application of these results concerns the resolvent operator, the

Moreau–Yosida approximation, and the semigroup associated with a maximal dis-
sipative invariant operator B in L2(Ω,B,P;X), for which we obtain new relevant
representation formulae (Theorem 4.12).

The above structural characterizations rely on various approximation properties
for couplings between probability measures in terms of maps and measure-preserving
transformations. We collect them in Section 3, with the aim to present many important
results available in the literature (cf. [12, 16, 21, 27]) in a unified framework and (in
some cases) a slightly more general setting adapted to Section 4.

2 Extension of monotone operators and Lipschitz maps invariant
by a group of isometries

Let X be a reflexive Banach space with norm ∣ ⋅ ∣, and let X∗ be its dual endowed with
the dual norm ∣ ⋅ ∣∗.

We denote by c ∶ X∗ ×X→ R, the duality pairing ⟨⋅, ⋅⟩ between X∗ and X and by Z
the product space X ×X∗ with dual Z∗ ∶= X∗ ×X.

A (multivalued) operator A ∶ X⇉ X∗ (which we identify with its graph, a subset of
X ×X∗) is monotone if it satisfies

⟨v −w , x − y⟩ ≥ 0 for every (x , v), (y, w) ∈ A.(2.1)
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The proper domain D(A) ⊂ X of A is just the projection on the first component of (the
graph of) A. A monotone operator A is maximal if any monotone operator in X ×X∗
containing A coincides with A.

In order to address the extension problem of monotone operators A ⊂ X ×X∗
invariant by the action of a group of isometric isomorphisms, it is crucial to have
some explicit formula providing a maximal extension of A. In this respect, the
characterization of monotone and maximal monotone operators by means of suitable
“contact sets” of convex functionals inX ×X∗ , started with the seminal paper [19] and
further developed in a more recent series of relevant contributions (see, e.g., [14, 22,
24–26, 35] and the references therein), and the kernel averaging operation developed
by [8] provide extremely powerful tools, that we are going to quickly recall in the
next section. We will also show how to slightly improve this construction in order
to obtain an explicit formula providing a maximal extension of A whose domain is
contained in the closed convex hull of D(A). In this connection, we mention that the
existence of a maximal extension of A with the desired abovementioned optimality for
the domain can be deduced by [7], thanks to the correspondence revealed by Minty
between monotone operators and firmly nonexpansive mappings. Indeed, [7] uses the
Fitzpatrick function to prove the Kirszbraun–Valentine extension theorem for firmly
nonexpansive mappings with optimal range localization. However, part of the proof
still relies on Zorn’s lemma and it is not entirely constructive.

2.1 Maximal extensions of monotone operators by self-dual Lagrangians

Following the presentation of [8, 26], given a set A ⊂ X ×X∗ and its indicator function
IA, we consider the proper function cA ∶ X∗ ×X→ (−∞,+∞] defined as

cA(v , x) ∶= c(v , x) + IA(x , v) =
⎧⎪⎪⎨⎪⎪⎩

⟨v , x⟩, if (x , v) ∈ A,
+∞, else.

Notice that cA has an affine minorant if A is monotone, in the sense that

cA(v , x) ≥ ⟨v0 , x⟩ + ⟨v , x0⟩ − ⟨v0 , x0⟩ for every (v , x) ∈ X∗ ×X,

where (x0 , v0) ∈ A is an arbitrary given point.
Recalling that the convex conjugate g∗ ∶ Z∗ → (−∞,+∞] of a proper function g ∶

Z→ (−∞,+∞] with an affine minorant is defined as

g∗(v , x) ∶= sup
(x0 ,v0)∈Z

{⟨v0 , x⟩ + ⟨v , x0⟩ − g(x0 , v0)} , (v , x) ∈ X∗ ×X,

with an analogous definition in the case of a function h ∶ Z∗ → (−∞,+∞], we can
introduce the Fitzpatrick function fA ∶ Z→ (−∞,+∞] and the convex l.s.c. relaxation
pA ∶ Z∗ → (−∞,+∞] of cA:

fA ∶= c∗A, pA ∶= f∗A = c∗∗A .(2.2)

It will be often useful to switch the order of the components of elements in X ×X∗:
we will denote by s ∶ X ×X∗ → X∗ ×X the switch map

s(x , v) ∶= (v , x).(2.3)
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If g is any function defined in X ×X∗ (resp. in X∗ ×X), we set g⊺ ∶= g ○ s (resp. g⊺ ∶=
g ○ s−1). In particular, c⊺ is the duality pairing between X and X∗.

We collect in the following statement some useful properties.

Theorem 2.1 (Representation of monotone operators)
(1) If f ∶ Z→ (−∞,+∞] is a convex l.s.c. function satisfying f ≥ c⊺, then

the contact set A f ∶= {(x , v) ∈ Z ∶ f (x , v) = ⟨v , x⟩} is monotone, f ∗ ≥ f⊺A f
,(2.4)

and

A f ⊂ T f ∶= {(x , v) ∈ Z ∶ (v , x) ∈ ∂ f (x , v)},(2.5)

where ∂ f denotes the subdifferential of f. An analogous statement holds for g ∶ Z∗ →
(−∞,+∞] satisfying g ≥ c, by setting Ag ∶= Ag⊺ .

(2) If A is monotone, then

f⊺A ≤ pA ≤ cA;(2.6)

pA ≥ c; pA = c on A,(2.7)

i.e., A ⊂ ApA .
(3) If A is a monotone operator and f ∶ Z→ (−∞,+∞] is a convex l.s.c. function

satisfying c⊺ ≤ f ≤ p⊺A, then the contact set A f is a monotone extension of A.
(4) If A ⊂ X ×X∗ is maximal monotone, then fA ≥ c⊺. Conversely, if A is monotone and

fA ≥ c⊺, then

Â ∶= {z ∈ Z ∶ fA(z) = c⊺(z)} = {z ∈ Z ∶ pA(z) = c(z)}(2.8)

provides a maximal monotone extension of A.
(5) If f ∶ Z→ (−∞,+∞] is a convex l.s.c. function satisfying f ≥ c⊺, then A f is

maximal monotone if and only if f ∗ ≥ c and in this case A f = A( f ∗)⊺ .
(6) If f ∶ Z→ (−∞,+∞] is a convex l.s.c. function satisfying the self-duality property

f ∗ = f ⊺ ,(2.9)

then f ≥ c⊺ and the contact set A f is maximal monotone.

Proof We give a few references and sketches for the proof.
(1) The inclusion in (2.5) follows by [19, Theorem 2.4] and shows in particular that

A f is monotone since T f is monotone by [19, Proposition 2.2]. Clearly, f ⊺ ≤ cA f so
that, passing to the conjugates, the reverse inequality follows.

(2) The result in (2.6) is [26, Proposition 4(c)], while (2.7) is [26, Proposition 4(f)].
(3) This follows by (1) and (2).
(4) The first implication follows by [26, Theorem 5]. The second implication follows

by [26, Theorem 6] choosing g ∶= fA and [14, Theorem 3.1].
(5) The first part of the sentence is [26, Theorem 6], while the equality A f = A( f ∗)⊺

can be found, e.g., in [14, Theorem 3.1].
(6) This is contained in the statement and in the proof of [8, Fact 5.6]. ∎
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The previous result suggests a strategy (cf. Theorem 2.2 below) to construct a
maximal extension of a given monotone operator A starting from a convex and l.s.c.
function f ∶ Z→ (−∞,+∞] satisfying

fA ≤ f ≤ p⊺A in Z.(2.10)

Using the kernel average introduced in [8], one obtains a self-dual Lagrangian R f
which satisfies fA ≤ R f ≤ p⊺A, so that the contact set of R f is a maximal monotone
extension of A. We introduce a function

ψ ∶ Z→ [0,+∞) satisfying the symmetry and self-duality condition ψ = ψ∨ = (ψ∗)⊺ ,
(2.11)

where ψ∨(z) ∶= ψ(−z) for every z ∈ Z. The assumption in (2.11), in particular, implies
that

ψ is continuous, convex, and ψ(0) = ψ∗(0) = 0,(2.12)

since

0 ≤ ψ(0) = ψ⊺(0) = ψ∗(0) = − inf ψ ≤ 0.

A typical example is given by

ψ(x , v) ∶= 1
p
∣x∣p + 1

p∗
∣v∣p

∗

∗ where p, p∗ ∈ (1,+∞) are given conjugate exponents.

(2.13)

The following result is an immediate consequence of [8, Fact 5.6, Theorem 5.7, and
Remark 5.8].

Theorem 2.2 (Kernel averages and maximal monotone extensions [8]) Let A ⊂
X ×X∗ be a monotone operator, and let fA ∶= c∗A, pA ∶= c∗∗A be defined as above and
ψ ∶ Z→ [0,+∞) a self-dual function as in (2.11). Let f ∶ Z→ (−∞,+∞] be a lower
semicontinuous and convex function satisfying (2.10).
(1) The function R f ∶ Z→ (−∞,+∞] defined as

R f (x , v) ∶= min
(x ,v)= 1

2 (x1+x2 ,v1+v2)
{ 1

2
f (x1 , v1) +

1
2

f ∗(v2 , x2) +
1
4

ψ(x1 − x2 , v1 − v2)}
(2.14)

is self-dual and satisfies the bound (2.10), i.e., fA ≤ R f ≤ p⊺A.
(2) The operator Ã defined as the contact set of R f

Ã ∶= {(x , v) ∈ Z ∶ R f (x , v) = ⟨v , x⟩}(2.15)

is a maximal monotone extension of A.

We want to show that, for a suitable choice of f as in the previous theorem, we
can produce a maximal monotone extension of A with domain included in D ∶=
co (D(A)). We claim that such f can be defined as

f (x , v) ∶= fA(x , v) + IC(x , v), (x , v) ∈ X ×X∗ , C ∶= D ×X∗ ,(2.16)
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where IC is the indicator function of C = D ×X∗, i.e., IC(x , v) = 0 if x ∈ D and
IC(x , v) = +∞ if x ∉ D.

Theorem 2.3 (A maximal monotone extension with minimal domain) Let A ⊂ X ×
X∗ be a monotone operator, and let f ∶ Z→ (−∞,+∞] be as in (2.16). The following
hold:
(1) f is a l.s.c. and convex function such that fA ≤ f ≤ p⊺A.
(2) D( f ) ⊂ C = D ×X∗ and D( f ∗) ⊂ s(C) = X∗ × D.
(3) Defining R f as in (2.14) and its contact set Ã as in (2.15), D(R f ) ⊂ C = D ×X∗ and

Ã provides a maximal extension of A with domain D(Ã) ⊂ D.

Proof (1) It is clear that f is convex and lower semicontinuous and f ≥ fA. On the
other hand, f ⊺ ≤ cA by (2.6) and since IC = 0 on A. It follows that f ⊺ ≤ c∗∗A = pA.

(2) It is clear from the definition of f that f (x , v) = +∞ if x ∉ D. Let us compute the
conjugate f ∗ of f : by the Fenchel–Rockafellar duality theorem (see, e.g., [29, Theorem
16.4]), we have that

f ∗ = (fA + IC)∗ = cl(f∗A ◻ I∗C) = cl(pA ◻ I∗C),

where cl denotes the lower semicontinuous envelope of a given function (i.e., cl(h)
is the largest lower semicontinuous function staying below h) and ◻ denotes the inf-
convolution (or epigraphical sum) of two functions: if k, j ∶ Z∗ → (−∞,+∞], then
k ◻ j is defined as

(k ◻ j)(z) ∶= inf
z1 ,z2∈Z∗ ,z1+z2=z

k(z1) + j(z2), z ∈ Z∗ .

Since IC(x , v) = ID(x), we can easily compute its dual for every z = (v , x) ∈ X∗ ×X

I∗C(v , x) = sup
(x0 ,v0)∈X∗×X

⟨v , x0⟩ + ⟨v0 , x⟩ − ID(x0) = sup
x0∈D ,v0∈X∗

⟨v0 , x⟩ + ⟨v , x0⟩

= I0(x) + σD(v),

where I0 is the indicator function of the singleton {0} and σD is the support function
of D defined by

σD(v) ∶= sup
x0∈D
⟨v , x0⟩, v ∈ X∗ .

We thus have

(pA ◻ I∗C)(v , x) = inf
x1+x2=x ,v1+v2=v

pA(v1 , x1) + I0(x2) + σD(v2)

= inf
v1+v2=v

pA(v1 , x) + σD(v2).

Since pA = c∗∗A and cA(v , x) = +∞, if x /∈ D, we deduce that pA(v , x) = +∞ if x /∈ D,
D(pA ◻ I∗C) ⊂ s(C) = X∗ × D, and therefore that D( f ∗) ⊂ cl(X∗ × D) = X∗ × D.

(3) By the first claim and Theorem 2.2 with f as in (2.16), we obtain that Ã
is a maximal monotone extension of A. We only need to check that D(Ã) ⊂ D =
co (D(A)). Since it is clear from the definition of contact set that D(Ã) ⊂ πX(D(R f )),
it is sufficient to check that D(R f ) ⊂ C.
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Let (x , v) ∈ D(R f ), then by (2.14) we can find x1 , x2 ∈ X and v1 , v2 ∈ X∗ such that
(x , v) = 1

2 (x1 + x2 , v1 + v2) and (x1 , v1) ∈ D( f ), (v2 , x2) ∈ D( f ∗): in particular, x1 , x2
belong to the convex set D by (2) and therefore x ∈ D as well. ∎

2.2 Extension of monotone operators invariant w.r.t. the action of a group of
linear isomorphisms of X ×X∗

We will now focus on operators which are invariant with respect to a group G of
bounded linear isomorphisms of Z of the form U = (U , U ′) ∶ Z→ Z. For every z =
(x , v) ∈ Z, we thus have

U(z) = (Ux , U ′v)(2.17)

and we assume that all the maps U ∈ G satisfy the following properties:

c⊺(Uz) = c⊺(z), ψ(Uz) = ψ(z) for every z ∈ Z(2.18)

for a fixed self-dual function ψ ∶ Z→ [0,+∞) as in (2.11). Notice that the first identity
in (2.18) implies

⟨U ′v , Ux⟩ = ⟨v , x⟩ for every (x , v) ∈ Z(2.19)

so that U∗ ○U ′ (resp. (U ′)∗ ○U) is the identity in X∗ (resp. in X), i.e., U ′ = (U∗)−1 =
(U−1)∗ is the transpose inverse of U.

Given U = (U , U ′) ∈ G, we define as usual U⊺ ∶= s ○U ○ s−1 = (U ′ , U) ∶ Z∗ → Z∗

observing that U⊺ coincides with the inverse transpose of U with respect to the duality
paring between z∗ = (v∗ , x∗) ∈ Z∗ and z = (x , v) ∈ Z given by

⟨z∗ , z⟩ = ⟨v∗ , x⟩ + ⟨v , x∗⟩ = c(v∗ , x) + c⊺(x∗ , v),
since

⟨U⊺z∗ ,Uz⟩ = ⟨(U ′v∗ , Ux∗), (Ux , U ′v)⟩ = ⟨U ′v∗ , Ux⟩ + ⟨U ′v , Ux∗⟩ = ⟨v∗ , x⟩ + ⟨v , x∗⟩
= ⟨z∗ , z⟩.

In particular, we have the formula

⟨U⊺z∗ , z⟩ = ⟨z∗ ,U−1z⟩ for every z ∈ Z, z∗ ∈ Z∗ , U ∈ G.(2.20)

Definition 2.1 [G-invariance] We say that a set A ⊂ X ×X∗ is G-invariant if UA ⊂ A
for everyU ∈ G (i.e., (Ux , U ′v) ∈ A for every (x , v) ∈ A and (U , U ′) ∈ G). A function g
defined inX ×X∗ (resp. inX∗ ×X) is said to beG-invariant if g ○U = g (resp. g ○U⊺ =
g) for every U ∈ G. A function h ∶ X→ X∗ is G-invariant if its graph is G-invariant as
a subset of X ×X∗.

The following simple result clarifies the relation betweenG-invariance of monotone
operators and G-invariance of the corresponding Lagrangian functions.

Proposition 2.4
(1) If f ∶ Z→ (−∞,+∞] is G-invariant, then f ∗ is G-invariant.
(2) If A ⊂ X ×X∗ is a G-invariant monotone operator, then the functions cA, fA, pA

defined in Section 2.1 are G-invariant.
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(3) If f ∶ Z→ (−∞,+∞] is a G-invariant, l.s.c., and convex function satisfying f ≥ c⊺,
then the contact set A f defined as in (2.4) is G-invariant.

(4) If f ∶ Z→ (−∞,+∞] is G-invariant, then the kernel average R f defined as in (2.14)
is G-invariant as well.

Proof (1) We simply have, for every U ∈ G,

f ∗(U⊺z∗) = sup
z∈Z
{⟨U⊺z∗ , z⟩ − f (z)} = sup

z∈Z
{⟨z∗ ,U−1z⟩ − f (z)}

= sup
z∈Z
{⟨z∗ ,U−1z⟩ − f (U−1z)} = sup

z̃∈Z
{⟨z∗ , z̃⟩ − f (z̃)} = f ∗(z∗),

where we applied (2.20), the fact that U−1 ∈ G, the G-invariance of f, and the fact that
{z̃ = U−1z ∶ z ∈ Z} = Z.

(2) One immediately sees that cA isG invariant thanks to theG-invariance of A and
(2.18). The invariance of fA and of pA then follows by the previous claim.

(3) If z = (x , v) ∈ A f , we know that f (z) = c⊺(z). Since f is G-invariant, (2.18)
yields, for every U ∈ G,

f (Uz) = f (z) = c⊺(z) = c⊺(Uz)

so that Uz ∈ A f .
(4) We first observe that the function

P(z1 , z2) ∶=
1
2

f (z1) +
1
2

f ∗(s(z2)) +
1
4

ψ(z1 − z2)

satisfies

P(Uz1 ,Uz2) = P(z1 , z2),(2.21)

thanks to the invariance of f, the invariance of f ∗ from claim (1), and the invariance
property of ψ stated in (2.18).

Since U is a linear isomorphism, we also have

z = 1
2

z1 +
1
2

z2 ⇔ Uz = 1
2
Uz1 +

1
2
Uz2 .

Combining the above identities, we immediately get R f (Uz) = R f (z). ∎

We can now obtain our main result.

Theorem 2.5 (G-invariant maximal monotone extensions) Let A ⊂ X ×X∗ be a
G-invariant monotone operator with D ∶= co (D(A)) . Then the function f given by
(2.16) isG-invariant and, defining R f as in (2.14) and its contact set Ã as in (2.15), then Ã
is aG-invariant maximal monotone extension of A with domain included in co (D(A)).

Proof Let us first observe that C′ ∶= D(A) ×X∗ is G-invariant, thanks to the invari-
ance of A. Since every element of G is linear, also co(C′) is G-invariant. Eventually,
since every element of G is continuous, C ∶= cl(co(C′)) is G-invariant as well.

By claim (2) of Proposition 2.4, we deduce that the function f given by (2.16)
is G-invariant. The invariance of Ã then follows by applying Claims (4) and (3)
of Proposition 2.4, recalling that R f ≥ c⊺ by Theorem 2.1(6). We conclude by
Theorem 2.3. ∎
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2.3 Extension of invariant dissipative operators in Hilbert spaces

We now quickly apply the results of the previous Section 2.2 to the particular case of
dissipative operators in Hilbert spaces. We adopt the dissipative viewpoint in view of
applications to differential equations, but clearly all our statements apply to monotone
operators as well. The main reference is [13].

We consider a Hilbert space H with norm ∣ ⋅ ∣, scalar product ⟨⋅, ⋅⟩, and dual H∗
which we identify with H. A multivalued operator B ⊂H ×H is dissipative if the
operator

A = −B ∶= {(x ,−v) ∶ (x , v) ∈ B}(2.22)

is monotone. More generally, B is said to be λ-dissipative (λ ∈ R) if

⟨v −w , x − y⟩ ≤ λ∣x − y∣2 for every (x , v), (y, w) ∈ B.(2.23)

Remark 2.6 (λ-transformation) Denoting by i(⋅) the identity function on H, it
is easy to check that B is λ-dissipative if and only if Bλ ∶= B − λi is dissipative, or,
equivalently, −Bλ = λi − B is monotone. Notice that D(B) = D(Bλ) = D(−Bλ).

We say that a λ-dissipative operator B is maximal if B is maximal w.r.t. inclusion
in the class of λ-dissipative operators or, equivalently, if −Bλ is a maximal monotone
operator.

If B ⊂H ×H is a λ-dissipative operator, a maximal λ-dissipative extension of B is
any set C ⊂H ×H such that B ⊂ C and C is maximal λ-dissipative.

As an immediate application of Theorem 2.5, we obtain an important result for
dissipative operators which are invariant with respect to the action of a group G of
isometries.

Theorem 2.7 (Extension of invariant λ-dissipative operators) Let GH be a group of
linear isometries of H, and let G ∶= {(U , U) ∶ U ∈ GH} be the induced group of linear
isometries in H ×H. Let B ⊂H ×H be a λ-dissipative operator which is G-invariant
(as a subset of H ×H). Then there exists a maximal λ-dissipative extension B̂ of B with
D(B̂) ⊂ co (D(B)) which is G-invariant as well.

Proof We can choose the self-dual kernel

ψ(x , v) ∶= 1
2
∣x∣2 + 1

2
∣v∣2 ,

and we immediately get that G satisfies (2.18). The statement is then an immediate
application of Theorem 2.5 to the G-invariant monotone operator A ∶= −Bλ . ∎
Remark 2.8 If B is a G-invariant λ-dissipative operator which is maximal (with
respect to inclusion) in the collection of G-invariant λ-dissipative operators, then B is
maximal λ-dissipative.

We now derive a few more properties concerning the resolvent, the Yosida regular-
ization and the minimal selection of a maximal λ-dissipative andG-invariant operator
B ⊂H ×H. For references on the corresponding definitions and properties, we refer
to [13], where the theory is developed in detail for the case λ = 0. If λ ≠ 0, analogous
statements can be obtained and we refer the interested reader to [17, Appendix A].
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In the following, we use the notation λ+ ∶= λ ∨ 0 and we set 1/λ+ = +∞ if λ+ = 0.
We denote by Bx ≡ B(x) ∶= {v ∈H ∶ (x , v) ∈ B} the sections of B, with x ∈H.

Recall that for every 0 < τ < 1/λ+, the resolvent Jτ ∶= (i − τB)−1 of B is a (1 − λτ)−1-
Lipschitz map defined on the whole H. The minimal selection B○ ∶ D(B) →H of B is
also characterized by

B○x = lim
τ↓0

Jτx − x
τ

.

The Yosida approximation of B is defined by Bτ ∶= Jτ−i
τ . For every 0 < τ < 1/λ+, Bτ is

maximal λ
1−λτ -dissipative and 2−λτ

τ(1−λτ) -Lipschitz continuous.
Moreover (cf. [13, Proposition 2.6] or [17, Appendix A]), the following hold:

if x ∈ D(B), (1 − λτ)∣Bτx∣ ↑ ∣B○x∣, as τ ↓ 0,(2.24)

if x ∉ D(B), ∣Bτx∣ → +∞, as τ ↓ 0.(2.25)

Since B is a maximal λ-dissipative operator, there exists a semigroup of eλt-
Lipschitz transformations (S t)t≥0 with S t ∶ D(B) → D(B) s.t. for every x0 ∈ D(B) the
curve t ↦ S t x0 is included in D(B) and it is the unique locally Lipschitz continuous
solution of the differential inclusion

⎧⎪⎪⎨⎪⎪⎩

ẋt ∈ Bxt , a.e. t > 0,
x∣t=0 = x0 .

(2.26)

We also have

lim
h↓0

S t+h x0 − S t x0

h
= B○(S t x0), for every x0 ∈ D(B) and every t ≥ 0(2.27)

and

S t x = lim
n→+∞

(J t/n)n x , x ∈ D(B), t ≥ 0.(2.28)

Proposition 2.9 (Invariance of resolvents, Yosida regularizations, semigroups, and
minimal selections) Let B ⊂H ×H be a maximal λ-dissipative operator which is
G-invariant. Then, for every 0 < τ < 1/λ+ , t ≥ 0, the operators Jτ , Bτ , S t , B○ are
G-invariant.

Proof The identities Jτ(Ux) = U(Jτx) and B○(Ux) = U(B○x) come from the
G-invariance of B and the uniqueness property of the resolvent operator. The expo-
nential formula (cf. (2.28))

S t x = lim
n→∞
(J t/n)n(x)

yields the G-invariance of S t . ∎

2.4 Extension of invariant Lipschitz maps in Hilbert spaces

We conclude this general discussion concerningG-invariant sets and maps addressing
the problem of the global extension of a G-invariant Lipschitz map defined in a subset
of a separable Hilbert space H.
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As in Theorem 2.7, we consider a group GH of isometric isomorphisms of H
inducing the group G ∶= {(U , U) ∶ U ∈ GH} in H ×H.

In addition to Definition 2.1, we also give the following definition.

Definition 2.2 [GH-invariance for H-valued maps] We say that a function f ∶ D →
H, where D ⊂H, is GH-invariant if its graph is G-invariant:

for every x ∈ D, we have Ux ∈ D and f (Ux) = U f (x), for every U ∈ GH .(2.29)

The Kirszbraun–Valentine theorem [23, 34] states that every Lipschitz function f ∶
D →H defined in a subset D of H with Lipschitz constant L ≥ 0 admits a Lipschitz
extension F ∶H →H whose Lipschitz constant coincides with L. We want to prove
that it is possible to find such an extension preserving G-invariance.

Our starting point is the following well-known fact, going back to Minty (see also
[1]). We introduce the isometric Cayley transforms T , T−1 ∶H ×H →H ×H

T(y, w) ∶= 1√
2
(y −w , y +w), T−1(x , v) ∶= 1√

2
(x + v ,−x + v).(2.30)

Lemma 2.10 (Lipschitz and monotone graphs) Let F , A be two subsets of H ×H such
that A = T(F). The following two properties are equivalent:
(1) F is the graph of a nonexpansive map f defined on the set D given by

D ∶= π1(F) = {y ∈H ∶ (y, w) ∈ F for some w ∈H};

(2) A is monotone.
Moreover, assuming that A is monotone, the following hold:

(i) A is maximal monotone if and only if D =H.
(ii) A is G-invariant if and only if F is G-invariant (or, equivalently, f is GH-invariant).

(iii) If A′ is a monotone extension of A and f ′ ∶ D′ →H is the nonexpansive map
associated with F ′ ∶= T−1(A′), then D′ ∶= π1(F ′) ⊃ D and f ′ is an extension of f .

Proof Let us take a pair of elements (x i , v i) = T(y i , w i) ∈ A, i = 1, 2; we have y i =
1√
2 (x i + v i), w i = 1√

2 (−x i + v i) so that

2∣y1 − y2∣2 = ∣x1 + v1 − (x2 + v2)∣2 = ∣x1 − x2∣2 + ∣v1 − v2∣2 + 2⟨x1 − x2 , v1 − v2⟩,
(2.31)

2∣w1 −w2∣2 = ∣ − x1 + v1 − (−x2 + v2)∣2 = ∣x1 − x2∣2 + ∣v1 − v2∣2 − 2⟨x1 − x2 , v1 − v2⟩,
(2.32)

and then

∣w1 −w2∣2 ≤ ∣y1 − y2∣2 ⇔ ⟨x1 − x2 , v1 − v2⟩ ≥ 0.(2.33)

This proves the first statement.
Concerning (i), it is sufficient to recall that the domain D of f coincides with the

image of h(A)where h(x , v) ∶= 1√
2 (x + v) and we know that A is maximal monotone

if and only if such an image coincides with H (cf. [13, Proposition 2.2(ii)]).
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The second property (ii) is an immediate consequence of the invertibility of T and
of the linearity of the transformations of G so that for every U = (U , U) ∈ G, we have
T ○U = U ○ T .

Let us eventually consider claim (iii): we clearly have F ′ = T−1(A′) ⊃ T−1(A) = F
and therefore D′ = π1(F ′) ⊃ π1(F) = D. On the other hand, since both F ′ and F are
the graph of a nonexpansive map, F ′ ∩ (D ×H) = F ∩ (D ×H) and therefore the
restriction of f ′ to D coincides with f. ∎

We can now state our result concerning the extension of G-invariant Lipschitz
maps.

Theorem 2.11 (Extension of G-invariant Lipschitz maps) Let us suppose that f ∶ D →
H is L-Lipschitz and GH-invariant according to (2.29). Then there exists a L-Lipschitz
map f̂ ∶H →H extending f which is GH-invariant as well.

Proof Up to a rescaling, it is not restrictive to assume that L = 1 so that f is
nonexpansive.

Let F ⊂H ×H be the graph of f, and let A ∶= T(F). By Lemma 2.10, we know that
A is a monotone G-invariant operator

We can now apply Theorem 2.7 to find a maximal monotone extension Â of A
which is still G-invariant.

Setting F̂ ∶= T−1(Â), we can eventually apply Lemma 2.10 to obtain that F̂ is the
graph of a nonexpansive map f̂ ∶ D̂ →H. Moreover, Claim (i) shows that D̂ =H so
that f̂ is globally defined, Claim (ii) shows that f̂ is GH-invariant, and Claim (iii)
ensures that f̂ is an extension of f. ∎

3 Borel partitions and almost optimal couplings

In this section, we collect some useful results concerning Borel isomorphisms and par-
titions of standard Borel spaces. These results, besides being interesting by themselves,
will also turn out to be useful in Section 4, where we will deal with a particular group
of isometric isomorphisms on Banach spaces of Lp-type.

We start by fixing the fundamental definitions and notations involved in the
statements of the main theorems of this section, which are presented in Section
3.2. These results concern the approximation of arbitrary couplings between prob-
ability measures by couplings which are concentrated on maps, through the action
of measure-preserving transformations. In particular, Corollary 3.15 concerns the
approximation of bistochastic measures by the graph of measure-preserving maps and
it is written here in the general context of a standard Borel space (Ω,B) endowed with
a nonatomic probability measure P. This result relies on the analogous property stated
for the d-dimensional Lebesgue measure in [12, Theorem 1.1]. In the same spirit of
Corollary 3.15, Corollary 3.16 provides an approximation result for the law of a pair of
measurable random variables defined on (Ω,B,P) with values in a pair of separable
Banach spaces. A consequence of this result is the key lemma [15, Lemma 6.4] (cf.
also [16, Lemma 5.23, p. 379]), which states that if X and Y are random variables with
the same law, then X can be approximated by Y through the action of a sequence
of measure-preserving transformations. Finally, we reported a fundamental result in

https://doi.org/10.4153/S0008414X23000846 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000846


Properties of invariant Lipschitz maps and dissipative operators 163

Optimal Transportation Theory, concerning the equivalence between the Monge and
the Kantorovich formulations (see [27, Theorem B]). This is the content of Proposition
3.18 where the result is written using the language of random variables (cf. also [21,
Lemma 3.13]), so as to be easily recalled in Section 4.

In order to introduce all the technical tools used to state and prove all these
properties, in Section 3.1, we list some well-known facts about standard Borel spaces.

Definition 3.1 (Standard Borel spaces and nonatomic measures) A standard Borel
space (Ω,B) is a measurable space that is isomorphic (as a measure space) to a Polish
space. Equivalently, there exists a Polish topology τ on Ω such that the Borel sigma
algebra generated by τ coincides with B. We say that a positive finite measure m on
(Ω,B) is nonatomic (also called atomless or diffuse) if m({ω}) = 0 for every ω ∈ Ω
(notice that {ω} ∈ B since it is compact in any Polish topology on Ω).

We notice that, being (Ω,B) standard Borel,m is nonatomic if and only if for every
B ∈ B with m(B) > 0, there exists B′ ∈ B, B′ ⊂ B, such that 0 < m(B′) < m(B).

Definition 3.2 (Partitions) If (Ω,B) is a standard Borel space and N ∈ N, a family
of subsets PN = {ΩN ,k}k∈IN ⊂ B, where IN ∶= {0, . . . , N − 1}, is called an N-partition
of (Ω,B) if

⋃
k∈IN

ΩN ,k = Ω, ΩN ,k ∩ΩN ,h = ∅ if h, k ∈ IN , h ≠ k.

If (Ω,B) is a standard Borel space endowed with a nonatomic, positive finite
measure m, we denote by S(Ω,B,m) the class of B-B-measurable maps g ∶ Ω → Ω
which are essentially injective and measure-preserving, meaning that there exists a
full m-measure set Ω0 ∈ B such that g is injective on Ω0 and g♯m = m, where g♯m is
the push forward of m through g. We recall that, if X and Y are Polish spaces, f ∶ X → Y
is a Borel map, and μ is a nonnegative and finite measure on X, then f♯μ is defined by

∫
Y

φ d( f♯μ) = ∫
X

φ ○ f dμ(3.1)

for every φ ∶ Y → R bounded (or nonnegative) Borel function.
If A ⊂ B is a sigma algebra on Ω, we denote by S(Ω,B,m;A) the subset of

S(Ω,B,m) of A −A measurable maps. Finally, Sym(IN) denotes the set of permu-
tations of IN , i.e., bijective maps σ ∶ IN → IN .

We consider the partial order on N given by

m ≺ n ⇔ m ∣ n,(3.2)

where m ∣ n means that n/m ∈ N. We write m ≺∤ n if m ≺ n and m ≠ n.

Definition 3.3 (Segmentations) Let (Ω,B) be a standard Borel space endowed with
a nonatomic, positive finite measure m, and let N ⊂ N be an unbounded directed set
w.r.t. ≺. We say that a collection of partitions (PN)N∈N of Ω, with corresponding
sigma algebras BN ∶= σ(PN), is an N-segmentation of (Ω,B,m) if:
(1) PN = {ΩN ,k}k∈IN is an N-partition of (Ω,B) for every N ∈N,
(2) m(ΩN ,k) = m(Ω)/N for every k ∈ IN and every N ∈N,
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(3) if M ∣ N = KM, then ⋃K−1
k=0 ΩN ,mK+k = ΩM ,m , m ∈ IM ,

(4) σ ({BN ∣ N ∈N}) = B.
In this case, we call (Ω,B,m, (PN)N∈N) an N-refined standard Borel measure space.

Remark 3.1 It is clear that BM ⊂ BN if and only if M ∣ N .

Example 3.2 The canonical example of N-refined standard Borel measure space is

([0, 1),B([0, 1)), λc , (IN)N∈N),

where λc is the one-dimensional Lebesgue measure restricted to [0, 1) and weighted
by a constant c > 0 and IN = (IN ,k)k∈IN with IN ,k ∶= [k/N , (k + 1)/N), k ∈ IN and N ∈
N.

3.1 Technical tools on standard Borel spaces and measure-preserving
isomorphisms

We start with the following fundamental result that follows by, e.g., [30, Theorem 9,
Chapter 15].

Theorem 3.3 (Isomorphisms of standard Borel spaces) Let (Ω,B) and (Ω′ ,B′ , )
be standard Borel spaces endowed with nonatomic, positive finite measures m and
m′, respectively, such that m(Ω) = m′(Ω′). Then there exist two measurable functions
φ ∶ Ω → Ω′ and ψ ∶ Ω′ → Ω such that

ψ ○ φ = iΩm − a.e. in Ω, φ ○ ψ = iΩ′m
′ − a.e. in Ω′ , φ♯m = m′ , ψ♯m′ = m.

(3.3)

Corollary 3.4 Let (Ω,B) be a standard Borel space endowed with a nonatomic,
positive finite measure m, and let (Ω′ ,B′) be a standard Borel space. Then, for every
nonatomic, positive measure μ on (Ω′ ,B′) such that μ(Ω′) = m(Ω), there exists a
measurable map X ∶ Ω → Ω′ such that X♯m = μ.

Lemma 3.5 (Existence of N-segmentations) For any standard Borel space (Ω,B)
endowed with a nonatomic, positive finite measure m and any unbounded directed set
N ⊂ N w.r.t. ≺, there exists an N-segmentation of (Ω,B,m).

Proof Let ([0, 1),B([0, 1)), λc , (IN)N∈N) be the N-refined standard Borel space
of Example 3.2 with c = m(Ω). Since ([0, 1),B([0, 1))) is a standard Borel space
endowed with the nonatomic, positive finite measure λc such that m(Ω) = λc([0, 1)),
by Theorem 3.3, we can find measurable maps φ ∶ [0, 1) → Ω, ψ ∶ Ω → [0, 1) and two
subsets Ω0 ∈ B, U ∈ B([0, 1)) such that m(Ω0) = λc(U) = 0, φ ○ ψ = iΩ/Ω0 , ψ ○ φ =
i[0,1)/U , φ♯λc = m and ψ♯m = λc . We can thus define

ΩN ,0 = φ(IN ,0/U) ∪Ω0 , ΩN ,k = φ(IN ,k/U), k ∈ IN/{0}, N ∈N.

Setting PN ∶= {ΩN ,k}k∈IN for every N ∈N, it is easy to check that (PN)N∈N is a N-
segmentation of (Ω,B,m). ∎

Definition 3.4 (Compatible partitions) If (Ω,B) and (Ω′ ,B′) are standard Borel
spaces endowed with nonatomic, positive finite measures m and m′, respectively, such
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that m(Ω) = m′(Ω′) and PN = {ΩN ,k}k∈IN and P′N = {Ω′N ,k}k∈IN are N-partitions
of (Ω,B) and (Ω′ ,B′), respectively, we say that PN and P′N are m −m′ compatible if

m(ΩN ,k) = m′(Ω′N ,k) ∀k ∈ IN .

Lemma 3.6 (Isomorphisms preserving compatible partitions) Let (Ω,B) and
(Ω′ ,B′) be standard Borel spaces endowed with nonatomic, positive finite measures
m and m′, respectively, such that m(Ω) = m′(Ω′), and let PN = {ΩN ,k}k∈IN and
P′N = {Ω′N ,k}k∈IN be two m −m′ compatible N-partitions of (Ω,B) and (Ω′ ,B′),
respectively, for some N ∈ N. Then there exist two functions φ ∶ Ω → Ω′ and ψ ∶ Ω′ → Ω
such that:
(1) φ is B-B′ measurable and σ(PN)-σ(P′N)measurable;
(2) ψ is B′-B measurable and σ(P′N)-σ(PN)measurable;
(3) for every k ∈ IN , it holds

φ(ΩN ,k) ⊂ Ω′N ,k , ψ(Ω′N ,k) ⊂ ΩN ,k ;(3.4)

(4) for every I ⊂ IN , it holds

ψI ○ φI = iΩImI − a.e. in ΩI ,
φI ○ ψI = iΩ′Im

′
I − a.e. in Ω′I ,

(φI)♯mI = m′I ,
(ψI)♯m′I = mI ,

where the subscript I denotes the restriction to ∪k∈I ΩN ,k or ∪k∈I Ω′N ,k .

Proof Applying Theorem 3.3 to the standard Borel spaces (Ω{k},B{k}) and
(Ω′{k} ,B

′
{k}) endowed, respectively, with the nonatomic, positive finite measures

m{k} and m′{k} for every k ∈ IN , we obtain the existence of measurable functions
φk , ψk satisfying (3.3) for each couple ΩN ,k , Ω′N ,k . It is then enough to define

φ(ω) ∶= φk(ω) if ω ∈ ΩN ,k , ψ(ω′) ∶= ψk(ω′) if ω′ ∈ Ω′N ,k .

Notice that (3.4) is satisfied by construction. ∎

Corollary 3.7 (Lifting permutations to isomorphisms) Let (Ω,B,m) be a standard
Borel space endowed with a nonatomic, positive finite measure m, and let PN =
{ΩN ,k}k∈IN be an N-partition of (Ω,B) for some N ∈ N such thatm(ΩN ,k) = m(Ω)/N
for every k ∈ IN . If σ ∈ Sym(IN), there exists a measure-preserving isomorphism g ∈
S(Ω,B,m; σ(PN)) such that

(gk)♯m∣ΩN ,k = m∣ΩN ,σ(k) ∀k ∈ IN ,

where gk is the restriction of g to ΩN ,k .

Proof It is enough to apply Lemma 3.6 to the standard Borel spaces (Ω,B) and
(Ω′ ,B′)=(Ω,B) endowed with the nonatomic, positive finite measures m and m′ =
m, respectively, with the N-partitions PN and P′N = {ΩN ,σ(k)}k∈IN , respectively. ∎

Corollary 3.8 Let (Ω,B) be a standard Borel space endowed with a nonatomic,
positive finite measure m, and let Ω0 , Ω1 ∈ B be such that m(Ω0) = m(Ω1) > 0 and
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Ω0 ∩Ω1 = ∅. Then there exists a measure-preserving isomorphism g ∈ S(Ω,B,m) such
that

(g0)♯m∣Ω0 = m∣Ω1 , (g1)♯m∣Ω1 = m∣Ω0 , g(ω) = ω in Ω/(Ω0 ∪Ω1),

where gi is the restriction of g to Ωk , k = 0, 1.

Proof Applying Corollary 3.7 to the standard Borel space (Ω0 ∪Ω1 ,B∣Ω0∪Ω1)
endowed with the nonatomic, positive finite measure m∣Ω0∪Ω1 with the 2-Borel
partition P2 = {Ωk}k=0,1 and σ sending 0 to 1, we obtain the existence of a measure-
preserving isomorphism g̃ ∈ S(Ω0 ∪Ω1 ,B∣Ω0∪Ω1 ,m∣Ω0∪Ω1) such that

(g̃0)♯m∣Ω0 = m∣Ω1 , (g̃1)♯m∣Ω1 = m∣Ω0 ,

where g̃ i is the restriction of g̃ to Ωk , k = 0, 1. It is then enough to define g ∶ Ω → Ω as

g(ω) =
⎧⎪⎪⎨⎪⎪⎩

g̃(ω), if ω ∈ Ω0 ∪Ω1 ,
ω, if ω ∈ Ω/(Ω0 ∪Ω1). ∎

The next result is a particular case of Doob’s Martingale Convergence Theorem for
Banach-valued maps (see [32, Theorem 6.1.12]). We recall that a filtration on (Ω,B)
is a sequence (Fn)n∈N of sub-sigma algebras of B such that Fn ⊂ Fn+1.

Theorem 3.9 Let (Ω,B) be a standard Borel space endowed with a nonatomic, positive
finite measure m, let (Fn)n∈N be a filtration on (Ω,B) such that σ ({Fn ∣ n ∈ N}) = B,
let X be a separable Banach space, and let p ∈ [1,∞). Then, given X ∈ Lp(Ω,B,m;X),
the X-valued martingale

Xn ∶= Em [X ∣ Fn] , n ∈ N,

satisfies

lim
n→+∞

Xn = X(3.5)

both m-a.e. and in Lp(Ω,B,m;X).

In general, the collection of sigma algebras (BN)N∈N associated with a segmenta-
tion according to Definition 3.3 is not a filtration since it fails to be ordered by inclusion
(recall Remark 3.1). However, it is always possible to extract from (BN)N∈N a filtration
still satisfying item (4) in Definition 3.3. More precisely, we have the following result.

Lemma 3.10 (Cofinal filtrations) Let N ⊂ N be an unbounded directed subset w.r.t. ≺.
Then there exists a totally ordered cofinal sequence (bn)n ⊂N satisfying:
• bn ≺∤ bn+1 for every n ∈ N,
• for every N ∈ N, there exists n ∈ N such that N ∣ bn .
In particular, for every N-refined standard Borel measure space (Ω,B,m, (PN)N∈N),
it holds that (Bbn)n∈N is a filtration on (Ω,B),

for every N ∈N, there exists n ∈ N such that BN ⊂ Bbn ,(3.6)

and σ ({Bbn ∣ n ∈ N}) = B.
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For every p ∈ [1,+∞) and every separable Banach space X, we thus have that

⋃
N∈N

Lp(Ω,BN ,m;X) is dense in Lp(Ω,B,m;X).(3.7)

Proof Since N is unbounded and directed, for every finite subset M ⊂N, the
quantity

succ(M) ∶=min{N ∈N ∣ M ≺∤ N ∀M ∈M}
is well defined. Let (an)n ⊂ N be an enumeration of N and consider the following
sequence defined by induction

b0 = a0 , bn+1 = succ ({an+1 , bn}) , n ∈ N.

Then bn ≺∤ bn+1 for every n ∈ N and (3.6) holds for (bn)n and any N-refined standard
Borel measure space (Ω,B,m, (PN)N∈N). ∎

In the next lemma, we show that, given two distinct points ω, ω′′, they can always
be separated by some partition PN for N ∈N sufficiently large.

Lemma 3.11 (Separation property) Let (Ω,B,m, (PN)N∈N) be an N-refined stan-
dard Borel measure space. Then there exists Ω0 ∈ B with m(Ω0) = 0 such that for every
ω′ , ω′′ ∈ Ω/Ω0, ω′ ≠ ω′′, there exists M ∈N such that for every N ∈N, M ∣ N, there
exist k′ , k′′ ∈ IN , k′ ≠ k′′ with ω′ ∈ ΩN ,k′ and ω′′ ∈ ΩN ,k′′ .

Proof Let (bn)n ⊂N be a totally ordered cofinal sequence as in Lemma 3.10, and
let τ be a Polish topology on Ω such that B coincides with the Borel sigma algebra
generated by τ. By [10, Proposition 6.5.4], there exists a countable family F of τ-
continuous functions f ∶ Ω → [0, 1] separating the points of Ω, meaning that for
every ω′ , ω′′ ∈ Ω, ω′ ≠ ω′′, there exists f ∈ F such that f (ω′) ≠ f (ω′′). Since F ⊂
L2(Ω,B,m;R), by Theorem 3.9 with Fn ∶= Bbn , for every f ∈ F, there exists an m-
negligible set Ω f such that

lim
n→+∞

Em [ f ∣ σ (Pbn)] (ω) = f (ω) ∀ω ∈ Ω/Ω f .

Let Ω0 ∶= ∪ f ∈FΩ f , and let ω′ , ω′′ ∈ Ω/Ω0, ω′ ≠ ω′′. We can find f ∈ F such that
f (ω′) ≠ f (ω′′). Thus, there exists M = bm ∈N such that

Em [ f ∣ σ (PM)] (ω′) ≠ Em [ f ∣ σ (PM)] (ω′′).
Since Em [ f ∣ σ (PM)] is constant on every ΩM ,k , k ∈ IM , we conclude that the points
ω′ and ω′′ belong to different elements of PM , and therefore they also belong to
different elements of PN for every N ∈N multiple of M. ∎
Proposition 3.12 (Segmentation preserving isomorphisms) Let
(Ω,B,m, (PN)N∈N) and (Ω′ ,B′ ,m′ , (P′N)N∈N) be N-refined standard Borel
measure spaces such that m(Ω) = m′(Ω′). Then there exist two measurable functions
φ ∶ Ω → Ω′ and ψ ∶ Ω′ → Ω such that for every N ∈N and every I ⊂ IN , it holds

ψI ○ φI = iΩImI − a.e. in ΩI , φI ○ ψI = iΩ′I m
′
I − a.e. in Ω′I ,

(φI)♯mI = m′I , (ψI)♯m′I = mI ,

where the subscript I denotes the restriction to ∪k∈I ΩN ,k or ∪k∈I Ω′N ,k .
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Proof By Lemma 3.10, it is enough to prove the statement in case N = (bn)n ,
where (bn)n ⊂ N is strictly ≺-increasing sequence and (Ω′ ,B′ ,m′ , (P′N)N∈N) is
([0, 1),B([0, 1)), λc , (IN)N∈N) as in Example 3.2 with c = m(Ω). By Lemma 3.6,
we can find for every n ∈ N two measurable maps φn ∶ Ω → [0, 1) and ψn ∶ [0, 1) →
Ω satisfying the thesis of Lemma 3.6 for the standard Borel spaces (Ω,B) and
([0, 1),B([0, 1)) endowed with nonatomic, positive, and finite measures m and λc ,
respectively, and them − λc compatible bn-partitions of (Ω,B) and ([0, 1),B([0, 1)))
given by Pbn and Ibn , where we recall from Example 3.2 that Ibn = (Ibn ,k)k∈Ibn

with Ibn ,k = [k/bn , (k + 1)/bn). Since ∑n b−1
n < +∞, for every ω ∈ Ω, the sequence

(φn(ω))n ⊂ [0, 1) is Cauchy, hence converges. We thus have the existence of a mea-
surable map φ ∶ Ω → [0, 1) such that

φ(ω) = lim
n

φn(ω) ∀ω ∈ Ω.

If n ∈ N, k ∈ Ibn , and ξ ∈ Cb(Ibn ,k), then

∫
Ibn ,k

ξ dφ♯m = ∫
Ωbn ,k

ξ(φ(ω))dm(ω) = lim
m ∫Ωbn ,k

ξ(φm(ω))dm(ω)

= lim
m ∫Ibn ,k

ξ dλc = ∫
Ibn ,k

ξ dλc ,

since for m sufficiently large (φm)♯m∣Ωbn ,k = λc ∣Ibn ,k by Lemma 3.6. This shows that
φ♯m∣Ωbn ,k = λc ∣Ibn ,k for every k ∈ Ibn and every n ∈ N. To conclude, it is enough to show
that φ is m-essentially injective. Let Ω0 ⊂ Ω be the m-negligible subset of Ω given by
Lemma 3.11, and let Ω1 ∶= φ−1(J), where

J ∶= {k/bn ∣ k ∈ Ibn , n ∈ N} ⊂ [0, 1).

Since λc(J) = 0, then m(Ω1) = 0; let ω′ , ω′′ ∈ Ω/(Ω0 ∪Ω1). Then there exists M ∈ N
such that ω′ and ω′′ belong to different elements of Pbn for every n ≥ M. By (3.4)
and Lemma 3.11, we can find k′ , k′′ ∈ IbM with k ≠ k′ such that φn(ω′) ∈ IbM ,k′ and
φn(ω′′) ∈ IbM ,k′′ for every n ≥ M. Thus, φ(ω′) ∈ IbM ,k′ and φ(ω′) ∈ IbM ,k′′ ; however,
since

IbM ,k′ ∩ IbM ,k′′ ⊂ J ,

it must be that φ(ω′) ≠ φ(ω′′). ∎

3.2 Approximation of couplings by using measure-preserving isomorphisms

If X is a Polish space, we denote by P(X) the space of Borel probability measures on
X which is endowed with the weak (or narrow) topology: a sequence (μn)n ⊂ P(X)
converges to μ ∈ P(X) if

lim
n ∫X

φ dμn = ∫
X

φ dμ

for every φ ∶ X → R continuous and bounded. In this case, we write μn → μ in P(X).
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If X , Y are Polish spaces and (μ, ν) ∈ P(X) ×P(Y), we define the set of admissible
transport plans

Γ(μ, ν) ∶= {γ ∈ P(X × Y) ∣ π1
♯γ = μ , π2

♯γ = ν} ,(3.8)

where π i , i = 1, 2, denotes the projection on the ith component and we call π i
♯γ the ith

marginal of γ.

Definition 3.5 (Wasserstein spaces) Let X be a separable Banach space, μ ∈ P(X),
and p ≥ 1. We define the space

Pp(X) ∶= {μ ∈ P(X) ∣ ∫
X
∣x∣p dμ(x) < +∞}.(3.9)

Given μ, ν ∈ Pp(X), we define the Lp-Wasserstein distance Wp by

W p
p (μ, ν) ∶= inf {∫

X×X
∣x − y∣p dγ(x , y) ∣ γ ∈ Γ(μ, ν)} .(3.10)

We denote by Γo(μ, ν) the (nonempty, compact, and convex) subset of admissible
plans in Γ(μ, ν) realizing the infimum in (3.10).

We recall that (Pp(X), Wp) is a complete and separable metric space. Moreover,
if (μn)n∈N ⊂ Pp(X) and μ ∈ Pp(X), the following holds (see [3, Proposition 7.1.5 and
Lemma 5.1.7]):

μn → μ in Pp(X), as n → +∞ ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

μn → μ in P(X),
∫X ∣x∣p dμn → ∫X ∣x∣p dμ,

as n → +∞.

(3.11)

We refer, e.g., to [3, Chapter 7] for a more comprehensive introduction to Wasserstein
distances.

The following result is an application of [12, Theorem 1.1]. We will use the following
notation: if X1 and X2 are sets and X1 ∶ X1 → X1, X2 ∶ X2 → X2, we denote by X1 ⊗ X2 ∶
X1 ×X2 → X1 ×X2 the map (x1 , x2) ↦ (X1(x1), X2(x2)).

Theorem 3.13 (Approximation of bistochastic couplings) Let (Ω,B,P, (PN)N∈N) be
a N-refined standard Borel probability space. Then, for every γ ∈ Γ(P,P), there exist a
totally ordered strictly increasing sequence (Nn)n ⊂N and maps gn ∈ S(Ω,B,P;BNn)
such that, for every separable Banach spaces Z,Z′ and every Z ∈ L0(Ω,B,P;Z), Z′ ∈
L0(Ω,B,P;Z′), it holds

(Z ⊗ Z′)♯(iΩ , gn)♯P→ (Z ⊗ Z′)♯γ in P(Z × Z′).(3.12)

Proof By Lemma 3.10, it is not restrictive to assume that N = (bn)n for a totally
ordered strictly increasing sequence (bn)n , n ∈ N. We divide the proof in several steps.

(1) Let ([0, 1),B([0, 1)), λ1 , (IN)N∈N) be the N-refined standard Borel probability
space of Example 3.2 with c = 1. Then, for every γ ∈ Γ(λ1 , λ1), there exist a strictly
increasing sequence (Nn)n ⊂ N and maps gn ∈ S([0, 1),B([0, 1)), λ1; σ(IbNn

)) such
that

(i[0,1) , gn)♯λ1 → γ in P([0, 1) × [0, 1)).

https://doi.org/10.4153/S0008414X23000846 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000846


170 G. Cavagnari, G. Savaré, and G. E. Sodini

Let L̄ be the one-dimensional Lebesgue measure restricted to [0, 1], and let γ ∈
Γ(λ1 , λ1). Let μ ∈ P([0, 1] × [0, 1]) be an extension of γ to [0, 1] × [0, 1] such that
μ ∈ Γ(L̄, L̄). In [12, Theorem 1.1], it is proven that it is possible to find a strictly
increasing sequence (Nn)n ⊂ N and maps ( fn)n ⊂ S([0, 1],B([0, 1]), L̄) such that for
every n ∈ N, there exists σn ∈ Sym(I2Nn ) such that

fn(x) = x − xNn ,k + xNn ,σn(k) , x ∈ I2Nn ,k , k ∈ I2Nn ,(3.13)

with xm , j being the center of I2m , j , and satisfying

(i[0,1] , fn)♯L̄→ μ in P([0, 1] × [0, 1]).(3.14)

If we call gn the restriction of fn to [0, 1), n ∈ N, we get that gn ∈
S([0, 1),B([0, 1)), λ1; σ(IbNn

)) for every n ∈ N and

(i[0,1) , gn)♯λ1 → γ in P([0, 1) × [0, 1)).

This proves the first step only in case bn = 2n . However, it can be easily checked that
the proof of [12, Theorem 1.1] does not depend on the specific choice of the sequence
bn , but it is enough that bn ≺∤ bn+1 for every n ∈ N so that the length of the interval
[k/bn , (k + 1)/bn] goes to 0 faster than 2−n as n → +∞. This concludes the proof of
the first claim.

(2) Let ([0, 1),B([0, 1)), λ1 , (IN)N∈N) be the N-refined standard Borel probability
space of Example 3.2 with c = 1. Then, for every γ ∈ Γ(λ1 , λ1), there exist a strictly
increasing sequence (Nn)n ⊂ N and maps gn ∈ S([0, 1),B([0, 1)), λ1; σ(IbNn

)) such
that, for every separable Banach spaces Z,Z′ and every Z ∈ L0([0, 1),B([0, 1)), λ1;Z),
Z′ ∈ L0([0, 1),B([0, 1)), λ1;Z′), it holds

(Z ⊗ Z′)♯(i[0,1) , gn)♯λ1 → (Z ⊗ Z′)♯γ in P(Z × Z′).

Let γ ∈ Γ(λ1 , λ1), and let (gn)n be the sequence given by claim (1) for γ. Let
Z and Z′ be separable Banach spaces, and let Z ∈ L0([0, 1),B([0, 1)), λ1;Z), Z′ ∈
L0([0, 1),B([0, 1)), λ1;Z′). Observe that for every ε > 0, there exists a compact
set Kε ⊂ [0, 1) such that the restrictions of Z and Z′ to Kε are continuous in
Kε and λ1([0, 1)/Kε) < ε, so that, setting γn ∶= (i[0,1) , gn)♯λ1, n ∈ N, we have that
γn([0, 1)2/K2

ε ) ≤ 2ε for every n ∈ N. By [3, Proposition 5.1.10] and claim (1), (Z ⊗
Z′)♯(i[0,1) , gn)♯λ1 → (Z ⊗ Z′)♯γ in P(Z × Z′).

(3) Conclusion. Let γ ∈ Γ(P,P), and let φ ∶ Ω → [0, 1) and ψ ∶ [0, 1) → Ω be the
maps given by Proposition 3.12 for the N-refined standard Borel probability spaces
(Ω,B,P, (PN)N∈N) and ([0, 1),B([0, 1)), λ1 , (IN)N∈N), where the latter is as in
Example 3.2 with c = 1. If we define γ′ ∶= (φ ⊗ φ)♯γ, we have that γ′ ∈ Γ(λ1 , λ1)
so that we can find a strictly increasing sequence (Nn)n ⊂ N and maps g′n ∈
S([0, 1),B([0, 1)), λ1; σ(IbNn

)) as in step (2). Let us define

gn ∶= ψ ○ g′n ○ φ, n ∈ N.

Then, up to change each gn on a P-negligible set of points, we can assume that gn ∈
S(Ω,B,P;BbNn

). LetZ andZ′ be separable Banach spaces, and let Z ∈ L0(Ω,B,P;Z),
Z′ ∈ L0(Ω,B,P;Z′). If we define Z0 ∶= Z ○ ψ and Z′0 ∶= Z′ ○ ψ, we get that Z0 ∈
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L0([0, 1),B([0, 1)), λ1);Z), Z′0 ∈ L0([0, 1),B([0, 1)), λ1);Z′). By step (2), we thus get

(Z0 ⊗ Z′0)♯(i[0,1) , g′n)♯λ1 → (Z0 ⊗ Z′0)♯γ′ in P(Z × Z′),

which is equivalent to (3.12). ∎

Remark 3.14 In the setting of Theorem 3.13, let φ ∶ Z→ [0,+∞), φ′ ∶ Z′ → [0,+∞)
be Borel functions.

Setting

ψ(z, z′) = φ(z) + φ′(z′), for every (z, z′) ∈ Z × Z′ ,

then we have for every n ∈ N,

∫ ψ d(Z ⊗ Z′)♯(iΩ , gn)♯P = ∫ ψ(Z , Z′ ○ gn)dP = ∫ (φ(Z) + φ′(Z′ ○ gn)) dP

= ∫ φ(Z)dP + ∫ φ′(Z′)dP

= ∫ φ(Z(x1))dγ(x1 , x2) + ∫ φ′(Z′(x2))dγ(x1 , x2)

= ∫ ψ(Z(x1), Z′(x2))dγ(x1 , x2) = ∫ ψ d(Z ⊗ Z′)♯γ.

As a consequence, if Z = Z′ = X for a separable Banach space X and Z , Z′ ∈
Lp(Ω,B,P;X), p ∈ [1,+∞), then the convergence in (3.12) holds in Pp(X2). To prove
this, it suffices to apply (3.11) and choose ψ(z, z′) ∶= ∣z∣pX + ∣z′∣

p
X, z, z′ ∈ X, in the above

identity.

We deduce two important applications.

Corollary 3.15 Let (Ω,B,P, (PN)N∈N) be an N-refined standard Borel probability
space. Then, for every γ ∈ Γ(P,P), there exist a totally ordered strictly increasing
sequence (Nn)n ⊂N and maps gn ∈ S(Ω,B,P;BNn) such that, for every Polish topol-
ogy τ on Ω generating B, it holds

(iΩ , gn)♯P→ γ in P(Ω ×Ω, τ ⊗ τ),

where τ ⊗ τ is the product topology on Ω ×Ω.

Proof By Theorem 3.13 and Remark 3.14, we have the existence of a strictly increasing
sequence (Nn)n ⊂ N and maps gn ∈ S(Ω,B,P;BNn) such that, choosing the separable
Hilbert space R, we get

(φ1 ⊗ φ2)♯(iΩ , gn)♯P→ (φ1 ⊗ φ2)♯γ in P2(R2)

for every φ1 , φ2 ∈ Cb(Ω, τ) ⊂ L2(Ω,B,P;R). Since the range of φ i is bounded and
thus relatively compact, by the P(R2) convergence, we get that

∫
Ω×Ω

h(φ1(ω1), φ2(ω2))dγn(ω1 , ω2) → ∫
Ω×Ω

h(φ1(ω1), φ2(ω2))dγ(ω1 , ω2)
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for every continuous function h ∶ R2 → R where γn = (iΩ , gn)♯P, n ∈ N. Choosing
h(x , y) ∶= x y, we get that

∫
Ω×Ω

φ1(ω1)φ2(ω2)dγn(ω1 , ω2) → ∫
Ω×Ω

φ1(ω1)φ2(ω2)dγ(ω1 , ω2) ∀φ1 , φ2 ∈ Cb(Ω, τ).
(3.15)

Let A ⊂ Cb(Ω, τ) be a unital subalgebra whose induced initial topology on Ω coin-
cides with τ (e.g., the subset of d-Lipschitz continuous and bounded functions for a
complete distance d inducing τ). It is easy to check that

A⊗A ∶= {
n
∑
i=1

φ i
1 ⊗ φ i

2 ∣ (φ i
1)ni=1 , (φ i

2)ni=1 ⊂ A, n ∈ N} ⊂ Cb(Ω ×Ω, τ ⊗ τ)

is a unital subalgebra whose induced initial topology on Ω ×Ω coincides with τ ⊗ τ.
By (3.15), we thus have that

∫
Ω×Ω

φ dγn → ∫Ω×Ω
φ dγ ∀φ ∈ A⊗A.

We conclude by [31, Lemma 2.3]. ∎

The second part of the following corollary represents a sort of extension of the
known result in [15, Lemma 6.4] (cf. also [16, Lemma 5.23, p. 379]) to the class of
pairs (X , Y) of random variables, where X and Y take values on possibly different
separable Banach spaces, with possibly different p-integrability. Whenever the joint
distribution of two pairs (X , Y), (X′ , Y ′) belonging to such a class is equal, we are able
to prove the existence of a sequence of measure-preserving maps giving the desired
strong approximation result for both the components.

Corollary 3.16 Let (Ω,B,P, (PN)N∈N) be an N-refined standard Borel probability
space, let Z and Z′ be separable Banach spaces, and let Z ∈ L0(Ω,B,P;Z), Z′ ∈
L0(Ω,B,P;Z′). Then, for every μ ∈ Γ(Z♯P, Z′♯P), there exist a totally ordered strictly
increasing sequence (Nn)n ⊂N and maps gn ∈ S(Ω,B,P;BNn) such that

(Z , Z′ ○ gn)♯P→ μ in P(Z × Z′).(3.16)

In particular, if X and Y are separable Banach spaces, X , X′ ∈ Lp(Ω,B,P;X), Y , Y ′ ∈
Lq(Ω,B,P;Y), p, q ∈ [1,+∞), and (X , Y)♯P = (X′ , Y ′)♯P, then there exist a totally
ordered strictly increasing sequence (Nn)n ⊂N and maps gn ∈ S(Ω,B,P;BNn) such
that X′ ○ gn → X in Lp(Ω,B,P;X) and Y ′ ○ gn → Y in Lq(Ω,B,P;Y) as n →∞.

Proof Let μ ∶= Z♯P and μ′ ∶= Z′♯P; let us first observe that there exists γ ∈ Γ(P,P)
such that (Z ⊗ Z′)♯γ = μ. In fact, we can disintegrate P w.r.t. Z and μ (see, e.g., [3,
Theorem 5.3.1] for details on the disintegration theorem), obtaining a Borel family
of measures (θz)z∈Z ⊂ P(Ω) such that θz is concentrated on Z−1(z) for μ-a.e. z ∈ Z
and P = ∫ θz dμ(z); similarly, we can also find (θ′z′)z′∈Z′ ⊂ P(Ω) such that θ′z′ is
concentrated on (Z′)−1(z′) for μ′-a.e. z′ ∈ Z′ and P = ∫ θ′z′ dμ′(z′). We can thus
define γ ∶= ∫ (θz ⊗ θ′z′)dμ(z, z′) ∈ P(Ω ×Ω), and it is immediate to check that (Z ⊗
Z′)♯γ = μ since for every function φ1 ∈ Cb(Z), φ2 ∈ Cb(Z′),
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∫ φ1(Z(ω))φ2(Z′(ω′))dγ(ω, ω′)

= ∫ (∫ φ1(Z(ω))φ2(Z′(ω′))dθz(ω)dθ′z′(ω′))dμ(z, z′)

= ∫ ∫ φ1(Z(ω))dθz(ω)∫ φ2(Z′(ω′))dθ′z′(ω′)dμ(z, z′)

= ∫ (φ1(z)φ2(z′))dμ(z, z′).

Notice also that it is enough to verify that (Z , Z′)♯P and γ have the same integral
for every function of the form φ1 ⊗ φ2 as above to conclude that the two measures
coincide (see, e.g., the proof of the above Corollary 3.15). We can then apply (3.12) and
obtain (3.16).

Let us show the last part of the statement: we take Z = Z′ ∶= X ×Y and, by (3.16)
with Z ∶= (X , Y), Z′ ∶= (X′ , Y ′) and μ ∶= (iX×Y , iX×Y)♯(X , Y)♯P, we have that

(X , Y , X′ ○ gn , Y ′ ○ gn)♯P→ μ in P((X ×Y)2).

We thus have that (X , X′ ○ gn)♯P→ (iX , iX)♯X♯P in P(X2). By Remark 3.14 with
ψ((x , y), (x′ , y′)) = ∣x∣pX + ∣x′∣

p
X, x , x ∈ X, y, y′ ∈ Y, we get, also using (3.11), that

(X , X′ ○ gn)♯P→ (iX , iX)♯X♯P inPp(X2). As a consequence (see, e.g., [3, Proposition
7.1.5 and Lemma 5.1.7]), we get

lim
n→∞∫ ∣X − X′ ○ gn ∣p dP = lim

n→∞∫ ∣x − x′∣p d((X , X′ ○ gn)♯P)(x , x′)

= ∫ ∣x − x′∣p d((iX , iX)♯X♯P)(x , x′)

= 0.

The proof for Y and Y ′ is identical. ∎

Remark 3.17 In the same setting of Corollary 3.16 and similarly to Remark 3.14, if
Z = Z′ = X for a separable Banach space X and X , X′ ∈ Lp(Ω,B,P;X), p ∈ [1,+∞),
then (3.11) gives that the convergence in (3.16) holds in Pp(X2),

As a byproduct, we recover the following important result (see, e.g., [21, Lemma
3.13] for a statement in case p = 2 and X = Rd ), which is also related to the equivalence
between the Monge and the Kantorovich formulations of Optimal Transport problems
[2, Theorems 2.1 and 9.3], [27, Theorem B].

Proposition 3.18 Let (Ω,B) be a standard Borel space endowed with a nonatomic
probability measure P, let X be a separable Banach space, and let p ∈ [1,+∞). If μ, ν ∈
Pp(X) and X ∈ Lp(Ω,B,P;X) is s.t. X♯P = μ, then, for every ε > 0, there exists Y ∈
Lp(Ω,B,P;X) s.t. Y♯P = ν and

∣X − Y ∣Lp(ΩB,P;X) ≤Wp(μ, ν) + ε.

Proof Let us consider the N-refined standard Borel probability space
(Ω,B,P, (PN)N∈N) with N = (2k)k∈N; let μ ∈ Γo(μ, ν) and let X′ ∈ Lp(Ω,B,P;X)
be such that X′♯P = ν. By Corollary 3.16 and Remark 3.17, there exist a strictly
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increasing sequence (Nn)n ⊂N and maps gn ∈ S(Ω,B,P;BNn) such that

(X , X′ ○ gn)♯P→ μ in Pp(X2).

We have

lim
n→∞∫ ∣X − X′ ○ gn ∣p dP = lim

n→∞∫ ∣x − y∣p d((X , X′ ○ gn)♯P)(x , y)

= ∫ ∣x − y∣p dμ(x , y) =W p
p (μ, ν).

Thus, given ε > 0, it is always possible to find n ∈ N sufficiently large such that Y ∶=
X′ ○ gn satisfies the thesis. ∎

4 Monotone-dissipative operators and Lipschitz maps in Lp-spaces
invariant by measure-preserving transformations

Let (Ω,B) be a standard Borel space endowed with a nonatomic probability measure
P (see Definition 3.1). We denote by S(Ω) the class of B-B-measurable maps g ∶
Ω → Ω which are essentially injective and measure-preserving, i.e., there exists a full
P-measure set Ω0 ∈ B such that g is injective on Ω0 and g♯P = P. If g ∈ S(Ω), there
exists g−1 ∈ S(Ω) (defined up to a P-negligible set) such that g−1 ○ g = g ○ g−1 = iΩ
P-a.e. in Ω.

Consider two separable Banach spaces X,Y and fix exponents p, q ∈ [1,+∞). We
set

X ∶= Lp(Ω,B,P;X), Y ∶= Lq(Ω,B,P;Y).(4.1)

Notice that for every g ∈ S(Ω), the pullback transformation g∗ ∶ X↦ X sending X to
X ○ g is a linear isometry of X: in particular,

Xn → X strongly in X D⇒ g∗Xn → g∗X strongly in X,(4.2)

Xn → X weakly in X D⇒ g∗Xn → g∗X weakly in X.(4.3)

The aim of this section is to study properties of maps and sets/operators, defined on
these particular spaces, which are invariant by measure-preserving transformations.
We will also apply the results of Section 2 to this particular setting. The interest on
such kinds of properties is made evident by the implications in the study of dissipative
evolutions in Wasserstein spaces via Lagrangian representations (cf. [17]).

Definition 4.1 (Invariant sets and maps) We say that a set B ⊂ X × Y is invariant by
measure-preserving isomorphisms if for every g ∈ S(Ω) it holds

(X , Y) ∈ B D⇒ (g∗X , g∗Y) = (X ○ g , Y ○ g) ∈ B,(4.4)

where, with a slight abuse of notation, we denote with the same symbol g∗ both the
pullback transformation induced by g on X and on Y. A set B ⊂ X × Y is law invariant
if it holds

(X , Y) ∈ B, (X′, Y ′) ∈ X × Y, (X , Y)♯P = (X′ , Y ′)♯P D⇒ (X′ , Y ′) ∈ B.
(4.5)
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A (single valued) operator L ∶ D(L) ⊂ X→ Y is invariant by measure-preserving
isomorphisms (resp. law invariant) if its graph in X × Y is invariant by measure
preserving isomorphisms (resp. law invariant).

It is easy to check that a law invariant set or operator is also invariant by measure-
preserving isomorphisms. It is also immediate to check that an operator L ∶ D(L) ⊂
X→ Y is invariant by measure-preserving isomorphisms if for every g ∈ S(Ω) and
every X ∈ D(L) it holds

X ○ g ∈ D(L), L(X ○ g) = L(X) ○ g .(4.6)

Similarly, L is law invariant if for every X ∈ D(L), X′ ∈ X, Y ′ ∈ Y,

(X , LX)♯P = (X′ , Y ′)♯P D⇒ X′ ∈ D(L), Y ′ = LX′ .(4.7)

Remark 4.1 Notice that, whenY = X∗ are reflexive, p > 1, and q = p∗ is the conjugate
exponent of p, then Y = X∗ and the notion of invariance by measure-preserving
isomorphisms for B ⊂ X × Y coincides with theG-invariance of Definition 2.1,G being
the group of isometric isomorphisms induced by S(Ω) via g∗ ∶ X ×X∗ → X ×X∗ with
g∗(X , V) = (X ○ g , V ○ g) for every (X , V) ∈ X ×X∗ and every g ∈ S(Ω).

Let us denote by ι ∶ X→ Pp(X) the push-forward operator, ι(X) ∶= X♯P (cf. (3.1)).
We frequently use the notation ιX = ι(X). The map ι induces a one-to-one correspon-
dence between subsets in Pp(X) (see (3.9)) and law invariant subsets of X.

As a first result, we show that for closed sets and continuous operators the two
notions of invariance are in fact equivalent.

Proposition 4.2 (Closed sets invariant by m.p.i. are law invariant) If B ⊂ X × Y is
invariant by measure-preserving isomorphisms, then its closure B is also law invariant.
In particular, a closed set ofX × Y is law invariant if and only if it is invariant by measure-
preserving isomorphisms and if L ∶ D(L) ⊂ X→ Y is a continuous operator invariant by
measure-preserving isomorphisms and D(L) is closed, then L is also law invariant.

Proof Let us first observe that if B is invariant by measure-preserving isomorphisms,
then B has the same property, since for every g ∈ S(Ω) the pullback transformation
g∗ is an isometry in X and in Y. Let us now suppose that B is closed and invariant
by measure-preserving isomorphisms, (X , Y) ∈ B, (X′ , Y ′) ∈ X × Y with (X , Y)♯P =
(X′ , Y ′)♯P. We can apply Corollary 3.16 and find a sequence of measure-preserving
isomorphisms gn ∈ S(Ω) such that (X , Y) ○ gn → (X′ , Y ′) in X × Y. Since (X , Y) ○
gn ∈ B and B is closed, we deduce that (X′ , Y ′) ∈ B as well.

The case of continuous operators then follows by the fact that the graph of a
continuous operator is closed. ∎

Remark 4.3 In light of Proposition 4.2, if a subset B ⊂ X × Y (resp. an operator L ∶
D(L) ⊂ X→ Y) is closed (resp. continuous and D(L) is closed), we use the simplified
terminology invariant, whenever B (resp. L) is law invariant or invariant by measure-
preserving isomorphisms, being these two notions equivalent.

As an application of the results in Section 2, we obtain the following extension
results.
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Theorem 4.4 (Maximal extensions of monotone operators invariant by measure-pre-
serving isomorphisms) Let X be a separable and reflexive Banach space, p ∈ (1,∞),
and X ∶= Lp(Ω,B,P;X). If A ⊂ X ×X∗ is a monotone operator invariant by measure-
preserving isomorphisms, then there exists a maximal monotone extension of A which is
invariant by measure-preserving isomorphisms (and therefore also law invariant) whose
domain is contained in co (D(A)) .

Proof The thesis follows by applying Theorem 2.5 and Remark 4.1. Recall also that
if A is maximal monotone, then it is closed (see, e.g., [6, Proposition 2.1]); hence, we
can apply Proposition 4.2. ∎

Theorem 4.5 (Extension of Lipschitz and λ-dissipative invariant graphs) Assume
p = 2, and let X be a separable and Hilbert space. The following hold:

(1) If L ∶ D(L) ⊂ X→ X is an L-Lipschitz function invariant by measure-preserving
isomorphisms, then there exists an L-Lipschitz extension L̂ ∶ X→ X, defined on the
whole X which is invariant by measure-preserving isomorphisms.

(2) If B ⊂ X ×X is a λ-dissipative operator which is invariant by measure-preserving
isomorphisms, then there exists a maximal λ-dissipative extension B̂ of B which is
invariant by measure-preserving isomorphisms (and therefore also law invariant)
whose domain is contained in co (D(B)) .

Proof The assertion is an immediate application of Theorems 2.11 and 2.7, choosing
H ∶= X andGH as the group of isometric isomorphisms induced by S(Ω) via g∗ ∶ X→
X with g∗X = X ○ g for every X ∈ X and every g ∈ S(Ω) (cf. Remark 4.1). Notice that
B is closed being maximal dissipative, hence law invariant by Proposition 4.2. ∎

We conclude this section with some useful representation results for various classes
of law invariant transformations.

Given a set D ⊂ Pp(X), we set

S(X, D) ∶= {(x , μ) ∈ X × D ∶ x ∈ supp(μ)},(4.8)

and we just write S(X) = S(X,Pp(X)). The set S(X) is of Gδ type (see [20, Formula
(4.3)]) so that S(X, D) is a Borel set, if D is Borel.

We state a first result on uniqueness of a representation of a single-valued operator
L ∶ X→ Y by a map from S(X) to Y. We then state existence (and uniqueness) of
such map-representation when L is Lipschitz continuous and invariant, showing also
further properties inherited by such map representation. Finally, we will go back to the
case of (possibly multivalued) maximal λ-dissipative operators in the final Theorem
4.12.

Lemma 4.6 Let L ∶ D(L) → Y be a map defined in D(L) ⊂ X. If f i ∶ S(X, ι(D(L)) →
Y, i = 1, 2, satisfy

• f i(⋅, μ) is continuous for every μ ∈ ι(D(L)),
• for every X ∈ D(L) LX(w) = f i(X(w), X♯P) for a.e. ω ∈ Ω,

then f 1 = f 2.
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Proof Let (x , μ) ∈ S(X, ι(D(L)). Since μ ∈ ι(D(L)), we can find (a representative
of) X ∈ D(L) such that X♯P = μ and a full P-measure set Ω0 ⊂ Ω such that

LX(ω) = f 1(X(ω), X♯P) = f 2(X(ω), X♯P) for every ω ∈ Ω0 .

Since X(Ω0) is dense in supp(μ), we can find (ωn)n ⊂ Ω0 such that X(ωn) → x.
Using the continuity of f i(⋅, μ), we can write the above equality for ω = ωn and then
pass to the limit as n → +∞ obtaining that f 1(x , μ) = f 2(x , μ). ∎

In the following Theorem 4.7, we provide an important structural representation of
invariant Lipschitz maps fromX toY. Similar kinds of problems have been considered
in [16, Proposition 5.36].

Theorem 4.7 (Structure of invariant Lipschitz maps) Let X,Y be separable Banach
spaces, and let X,Y be as in (4.1).
(1) Let L ∶ X→ Y be an L-Lipschitz map, invariant by measure-preserving isomor-

phisms. Then there exists a unique continuous map f L ∶ S(X) → Y such that

for every X ∈ X, LX(ω) = f L(X(ω), X♯P) for a.e. ω ∈ Ω.(4.9)

Moreover, f L(⋅, μ) ∶ supp(μ) → Y is L-Lipschitz.
(2) Let X be a Hilbert space and p = 2, let D(L) ⊂ X, and let L ∶ D(L) → X be an

L-Lipschitz map, invariant by measure-preserving isomorphisms. Then there exists
a unique continuous map f L ∶ S(X, ι(D(L)) → X such that

for every X ∈ D(L), LX(ω) = f L(X(ω), X♯P) for a.e. ω ∈ Ω.(4.10)

Moreover, f L(⋅, μ) ∶ supp(μ) → X is L-Lipschitz.

Proof We prove item (1). Let N ∶= {2n ∣ n ∈ N}, and let (PN)N∈N be an N-
segmentation of (Ω,B,P) as in Definition 3.3, whose existence is granted by Lemma
3.5. Let us define

Bn ∶= σ(P2n), Xn ∶= Lp(Ω,Bn ,P;X), Yn ∶= Lq(Ω,Bn ,P;Y), n ∈ N.

We divide the proof in several steps.
(a) If X ∈ Xm for some m ∈ N, then (there exists a unique representative of) LX (that)

belongs to Ym and

∣LX(ω′) − LX(ω′′)∣Y ≤ L∣X(ω′) − X(ω′′)∣X for every ω′ , ω′′ ∈ Ω.(4.11)

Let Ω′ ⊂ Ω be a full P-measure subset of Ω where both (3.5) and Lemma 3.11 hold for
the Lq(Ω,B,P;Y) function LX.

Let us fix k ∈ Im ∶= {0, . . . , 2m − 1} and show that (a representative of) LX is
constant on Ω′m ,k ∶= Ωm ,k ∩Ω′, where P2m ∶= {Ωm ,k}k∈Im .

Let ω′ , ω′′ ∈ Ω′m ,k with ω′ ≠ ω′′. For every n ∈ N, there exist k(n; ω′), k(n; ω′′) ∈ In
such that ω′ ∈ Ωn ,k(n;ω′) and ω′′ ∈ Ωn ,k(n;ω′′). By Lemma 3.11, we know that for n ∈ N
sufficiently large Ωn ,k(n;ω′), Ωn ,k(n;ω′′) ⊂ Ωm ,k and Ωn ,k(n;ω′) ∩Ωn ,k(n;ω′′) = ∅. Thus,
since P(Ωn ,k(n;ω′)) = P(Ωn ,k(n;ω′′)) = 2−n for every n ∈ N (see Definition 3.3), by
Corollary 3.8, we can find a measure-preserving isomorphism gn ∈ S(Ω) such that

(gn)♯P∣Ωn ,k(n;ω′) = P∣Ωn ,k(n;ω′′)
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and gn is the identity outside Ωn ,k(n;ω′) ∪Ωn ,k(n;ω′′). By (4.6) and by Lipschitz
continuity of L, we have

∣LX ○ gn − LX∣Y ≤ L ∣X ○ gn − X∣X = 0 for every integer n sufficiently large,

since X is constant on the whole Ωm ,k . This implies that

2−n ∫
Ωn ,k(n;ω′)

LX dP = 2−n ∫
Ωn ,k(n;ω′′)

LX dP eventually.

By definition of conditional expectation, this means that

EP [LX ∣ σ (P2n)] (ω′) = EP [LX ∣ σ (P2n)] (ω′′) eventually.

Passing to the limit as n → +∞, we get by (3.5) that LX(ω′) = LX(ω′′). This proves
that LX is P-almost everywhere constant on Ωm ,k ; being k ∈ Im arbitrary, we can
find a representative of LX belonging to Ym . If ω′ , ω′′ ∈ Ω and ω′ ∈ Ωm , i , ω′′ ∈ Ωm , j ,
i , j ∈ Im , we choose as g ∈ S(Ω) a measure-preserving isomorphism induced by the
permutation σ ∈ Sym(Im) that swaps i and j (see Corollary 3.7), so that we get by
Lipschitz continuity of L that

1
2(m−1)/2 ∣LX(ω′) − LX(ω′′)∣Y ≤ L 1

2(m−1)/2 ∣X(ω
′) − X(ω′′)∣X ,

which yields (4.11).
(b) For every X ∈ X, there exists a unique L-Lipschitz map f X ∶ supp(X♯P) → Y such

that LX(ω) = f X(X(ω)) for P-a.e. ω.
Let X ∈ X; setting Xn ∶= E[X∣Bn] ∈ Xn , by Theorem 3.9, we have Xn → X (hence

also LXn → LX). Let us consider two representatives of LX and X, a full measure set
Ω0 ⊂ Ω and a subsequence (Xnk)k s.t. Xnk(ω) → X(ω) and LXnk(ω) → LX(ω) for
every ω ∈ Ω0. By (4.11), we have

∣LXn(ω′) − LXn(ω)∣Y ≤ L∣Xn(ω′) − Xn(ω)∣X for every ω, ω′ ∈ Ω, n ∈ N.

Passing to the limit in the above inequality for every couple (ω, ω′) ∈ Ω2
0, we obtain

that

∣LX(ω′) − LX(ω)∣Y ≤ L∣X(ω′) − X(ω)∣X for every ω, ω′ ∈ Ω0 .

This gives the existence of a (unique) L-Lipschitz function f X ∶ X(Ω0) → Y s.t.
LX(ω) = f X(X(ω)) for every ω ∈ Ω0. Notice that X(Ω0) ⊃ supp(X♯P).

(c) If X , X′ ∈ X with μ = X♯P = X′♯P, then f X = f X′ on supp(μ). In particular, we
can define f L(⋅, μ) ∶= f X(⋅) whenever μ = X♯P.

By hypothesis, we have

(X , LX)♯P = (X′ , LX′)♯P.(4.12)

By the previous claim, the disintegration (see, e.g., [3, Theorem 5.3.1] for details on
the disintegration theorem) of the common measure μ ∶= (X , LX)♯P with respect to
its first marginal μ is given by δ f X(⋅) which should coincide with δ f ′X(⋅) μ-a.e. in X.
Since f X and f X′ are both Lipschitz continuous and coincide μ-a.e., they coincide on
supp(μ).

(d) The map f L is continuous on S(X).
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Let us consider a sequence (xn , μn)n in S(X) converging to (x , μ) ∈ S(X),
and let us prove that there exists an increasing subsequence k ↦ n(k) such that
f L(xn(k) , μn(k)) → f L(x , μ) as k →∞.

By Proposition 3.18, we can find a limit map X ∈ X and a sequence Xn ∈ X
converging to X such that (Xn)♯P = μn , X♯P = μ. Since LXn → LX, we can then
extract a subsequence k ↦ n(k) and find a set of full measure Ω0 ⊂ Ω such that
Xn(k)(ω) → X(ω) and Yn(k)(ω) → Y(ω) as k →∞ for every ω ∈ Ω0, where Yn ∶=
LXn , Y ∶= LX.

Let us fix ε > 0; since x ∈ supp(μ) and X(Ω0) ∩ supp(μ) is dense in supp(μ), we
can find ω ∈ Ω0 such that ∣X(ω) − x∣X ≤ ε. We then obtain

∣ f L(xn(k) , μn(k)) − f L(x , μ)∣Y ≤ ∣ f L(xn(k) , μn(k)) − f L(Xn(k)(ω), μn(k))∣Y
+ ∣ f L(Xn(k)(ω), μn(k)) − f L(X(ω), μ)∣Y
+ ∣ f L(X(ω), μ) − f L(x , μ)∣Y
≤ L∣xn(k) − Xn(k)(ω)∣X + ∣Yn(k)(ω) − Y(ω)∣Y
+ L∣X(ω) − x∣X .

Taking the lim sup as k →∞, we get

lim sup
k→∞

∣ f L(xn(k) , μn(k)) − f L(x , μ)∣Y ≤ 2Lε,

and, since ε > 0 is arbitrary, we obtain the convergence.
We prove item (2): by Theorem 4.5, it is enough to prove the statement in case the

map L is defined on the whole X. We can then apply the previous claim with Y = X
and p = q = 2. ∎

In the particular case, when p = q = 2 and X = Y is a Hilbert space, also λ-
dissipativity (2.23) is inherited from L to its representative map f L .

Proposition 4.8 (λ-dissipative representations) Let us suppose that p = 2, X is a
separable Hilbert space, and L ∶ X→ X is an invariant Lipschitz λ-dissipative operator.
Then, for every μ ∈ P2(X), the map f L(⋅, μ) of Theorem 4.7 is (pointwise) λ-dissipative,
i.e.,

⟨ f L(x , μ) − f L(x
′ , μ), x − x′⟩X ≤ λ∣x − x′∣2 for every x , x′ ∈ supp(μ).(4.13)

Remark 4.9 Recalling Remark 2.6, L ∶ X→ X is an invariant Lipschitz λ-dissipative
operator if and only if its λ-transformation Lλ ∶= L − λiX is an invariant Lipschitz
dissipative operator. Moreover, by applying Theorem 4.7 to both L and Lλ , we can
identify

f Lλ(x , μ) ≡ f L(x , μ) − λx , for every (x , μ) ∈ S(X),

so that both f L and f Lλ satisfy (4.10) with L and Lλ , respectively.

Proof Thanks to Remark 4.9, proving the λ-dissipativity in (4.13) for L is equivalent
to prove the 0-dissipativity result in (4.13) for Lλ .

We keep the same notation of the proof of Theorem 4.7 applied to Lλ . The case
when μ = X♯P, with X ∈ Xm for some m ∈ N, follows as in claim (a) of the proof of
Theorem 4.7: we can assume that Lλ X is constant on every Ωm ,k . If ω′ , ω′′ ∈ Ω and
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ω′ ∈ Ωm , i , ω′′ ∈ Ωm , j , i , j ∈ Im and g ∈ S(Ω) is a measure-preserving isomorphism
induced by the permutation that swaps i and j as in Corollary 3.7, we get

1
2m−1 ⟨L

λ X(ω′) − Lλ X(ω′′), X(ω′) − X(ω′′)⟩X ≤ 0.

We can eventually argue by approximation, as in claim (b) of the proof of Theorem
4.7, and using the representation of Lλ X in terms of f Lλ to get

⟨ f Lλ(x , μ) − f Lλ(x′ , μ), x − x′⟩X ≤ 0 for every x , x′ ∈ supp(μ).(4.14) ∎

Proposition 4.10 (Stability of Lipschitz representations) If Ln , L ∶ X→ Y are
L-Lipschitz invariant maps and D ⊂ X is an invariant closed set, such that

Ln X → LX for every X ∈ D,(4.15)

then setting D̃ ∶= {X♯P ∶ X ∈ D}, we have f Ln
→ f L pointwise in S(X, D̃), where f L is

as in Theorem 4.7.

Proof We fix μ ∈ D̃ and we set f n ∶= f Ln
(⋅, μ) ∶ supp(μ) → Y. We observe that f n

are L-Lipschitz and form a Cauchy sequence in Lq(X, μ;Y): we denote by f̃ its limit.
For every x ∈ supp(μ) and ρ > 0, we can set

f n ,ρ(x) ∶=
1

μ(B(x , ρ)) ∫B(x ,ρ)
f n(u)dμ(u), f ρ(x) ∶=

1
μ(B(x , ρ)) ∫B(x ,ρ)

f̃ (u)dμ(u).
(4.16)

We have f n ,ρ(x) → f ρ(x) for every x ∈ supp(μ) and every ρ > 0. On the other hand,

∣ f n ,ρ(x) − f n(x)∣Y ≤ Lρ,

so that a simple argument using the triangle inequality shows that the sequence
( f n(x))n∈N is Cauchy in Y for every x ∈ supp(μ) and its pointwise limit g(⋅, μ) is
L-Lipschitz and represents L as in (4.10) for every X ∈ D. Arguing as in claim (d) in
the proof of Theorem 4.7 and using the continuity of L, we can eventually deduce that
g is continuous in S(X, D̃). The fact that g = f L comes from Lemma 4.6. ∎

When the maps Ln are not uniformly Lipschitz, we can still obtain a limiting
representation.

Lemma 4.11 Let D ⊂ X and Ln , L ∶ D → Y be maps such that Ln are law invariant,
Ln converge pointwise to L on D as n →∞ and there exist Borel functions f n ∶
S(X, ι(D)) → Y such that

for every n ∈ N and every X ∈ D, Ln X(ω) = f n(X(ω), X♯P) for a.e. ω ∈ Ω.

Then L is law invariant and, for every μ ∈ ι(D), there exists a map f [μ] ∈ Lq(X, μ;Y)
such that, for every X ∈ D, there exists an increasing subsequence k ↦ nk such that

lim
k

f nk
(X(ω), X♯P) = f [X♯P](X(ω)) = LX(ω) for a.e. ω ∈ Ω.

Proof First of all, notice that L is law invariant, being pointwise limit of law invariant
maps. Let μ ∈ ι(D) be fixed. If X ∈ D is such that X♯P = μ, we can find an increasing
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subsequence k ↦ nk such that Lnk X → LX P-a.e. in Ω and define

f X(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

limk→+∞ f nk
(x , μ), if x ∈ E ,

0, else,

where E ⊂ X is the Borel set of points inXwhere limk→+∞ f nk
(x , μ) exists. Let us now

show that f X represents L, i.e.,

LX(ω) = f X(X(ω)) for a.e. ω ∈ Ω.

We know that

for every k ∈ N Lnk X(ω) = f nk
(X(ω), X♯P) for a.e. ω ∈ Ω,

so that, choosing representatives of X, LX, Lnk X, we can find a full P-measure set
Ω0 ⊂ Ω such that

LX(ω) = lim
k→+∞

Lnk X(ω) = lim
k→+∞

f nk
(X(ω), X♯P) for every ω ∈ Ω0 .

Thus, for every ω ∈ Ω0, X(ω) ∈ E and then LX(ω) = fX(X(ω)). If now X′ ∈ D is such
that X′♯P = μ, arguing as in claim (c) of the proof of Theorem 4.7, it is easy to see that
f X = f X′ μ-almost everywhere. ∎

We eventually apply the previous results to (possibly multivalued) maximal λ-
dissipative operators B ⊂ X ×X (with p = q = 2 and X = Y) which are invariant by
measure-preserving isomorphisms. We show that the invariance property is inherited
by the associated resolvent operator, Yosida approximation, minimal selection, and
semigroup which also enjoy a map-representation property.

We denote by ι(D(B)) ∶= {X♯P ∶ X ∈ D(B)} the image in P2(X) of the domain
of B.

Theorem 4.12 (Structure of resolvents, Yosida approximations, and semigroups)
Let X be a separable Hilbert space, and let p = 2. Let B ⊂ X ×X be a maximal
λ-dissipative operator which is invariant by measure-preserving isomorphisms. Then,
for every 0 < τ < 1/λ+ , t ≥ 0, the operators B, Bτ , Jτ , S t , B○ are law invariant. Moreover,
there exist (uniquely defined) continuous maps jτ ∶ S(X) → X, bτ ∶ S(X) → X, and
st ∶ S(X, ι(D(B))) → X such that:
(1) for every μ ∈ P2(X), the map jτ(⋅, μ) ∶ supp(μ) → X is (1 − λτ)−1-Lipschitz con-

tinuous, for 0 < τ < 1/λ+,
(2) for every μ ∈ P2(X), the map bτ(⋅, μ) ∶ supp(μ) → X is 2−λτ

τ(1−λτ) -Lipschitz continu-
ous, for 0 < τ < 1/λ+,

(3) for every μ ∈ ι(D(B)), the map st(⋅, μ) ∶ supp(μ) → X is eλt-Lipschitz continuous,
and

for every X ∈ X, Jτ X(ω) = jτ(X(ω), X♯P)for P − a.e. ω ∈ Ω,(4.17)

for every X ∈ X, Bτ X(ω) = bτ(X(ω), X♯P) for P − a.e. ω ∈ Ω,(4.18)

for every X ∈ D(B), S t X(ω) = st(X(ω), X♯P) for P − a.e. ω ∈ Ω,(4.19)
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together with the invariance and semigroup properties

μ ∈ ι(D(B)) ⇒ st(⋅, μ)♯μ ∈ ι(D(B));
μ ∈ ι(D(B)) ⇒ st(⋅, μ)♯μ ∈ ι(D(B)),

st+h(x , μ) = sh(st(x , μ), s t(⋅, μ)♯μ) for every (x , μ) ∈ S(X, ι(D(B))), t, h ≥ 0.

(4.20)

Finally, for every μ ∈ ι(D(B)), there exists a map b○(⋅, μ) ∈ L2(X, μ;X) such that for
every X ∈ X,

if X♯P = μ, then X ∈ D(B), B○X(ω) = b○(X(ω), μ)for P − a.e. ω ∈ Ω.(4.21)

For every μ ∈ ι(D(B)), the map b○(⋅, μ) is λ-dissipative in a set X0 ⊂ X of full μ-
measure and satisfies

lim
h↓0 ∫ ∣

1
h
(st+h(x , μ) − st(x , μ)) − b○(st(x , μ), s t(⋅, μ)♯μ)∣

2

dμ(x) = 0 t ≥ 0.

(4.22)

Remark 4.13 By Theorem 4.12, a maximal λ-dissipative operator B ⊂ X ×X, λ ∈ R, is
law invariant if and only if it is invariant by measure-preserving isomorphisms. Thanks
to (4.21), also D(B) is law invariant, i.e., if X ∈ D(B) and Y ∈ X is such that Y♯P = X♯P,
then Y ∈ D(B).

Proof First, notice that B is closed being maximal λ-dissipative; hence, it is law
invariant by Proposition 4.2. Recall that Jτ is everywhere defined, (1 − λτ)−1-Lipschitz
continuous for every 0 < τ < 1/λ+ (see Section 2.3) and invariant by measure-
preserving isomorphisms by Proposition 2.9. Fixed 0 < τ < 1/λ+, we can thus apply
Proposition 4.2 and Theorem 4.7(1) and get that Jτ is law invariant together with
property (1) in Theorem 4.12 and (4.17). Similarly, S t is defined on the closed set
D(B), and it is eλt-Lipschitz continuous (cf. Section 2.3) and invariant by measure-
preserving isomorphisms by Proposition 2.9, so that we can apply Proposition 4.2
and Theorem 4.7(1) and get that it is law invariant together with property (3) of
Theorem 4.12 and (4.19). The content of (4.20) immediately follows by the semigroup
and invariance properties of S t (cf. Section 2.3), also using that ι(D(B)) = ι(D(B)).

We now prove (4.21). If X ∈ D(B), we have that Bτ X → B○X as τ ↓ 0; moreover,
Bτ is law invariant, everywhere defined and, for every 0 < τ < 1/λ+, Bτ is λ/(1 − λτ)-
dissipative and 2−λτ

τ(1−λτ) -Lipschitz continuous (cf. Section 2.3). Hence, we can apply
Theorem 4.7(2) and get that B○ is law invariant and that there exists, for every μ ∈
ι(D(B)), a map b○[μ] ≡ b○(⋅, μ) ∈ L2(X, μ;X) such that for every X ∈ D(B),

B○X(ω) =b○[μ](X(ω)) for P − a.e. ω ∈ Ω,(4.23)

there exists τk ↓ 0 s.t. bτk(X(ω), μ) → b○[μ](X(ω)) for P − a.e. ω ∈ Ω,(4.24)

where bτ is the (unique) continuous map that represents Bτ coming from Theorem
4.7(1), 0 < τ < 1/λ+. To complete the proof of (4.21), we have to check that, if μ ∈
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ι(D(B)) and X ∈ X is such that X♯P = μ, then X ∈ D(B). Since μ ∈ ι(D(B)), there
exists Y ∈ D(B) such that Y♯P = X♯P = μ. By (4.18), we have

∣BτY ∣2X = ∫ ∣bτ(Y(ω), μ)∣2dP(ω) = ∫ ∣bτ(x , μ)∣2dμ(x)

= ∫ ∣bτ(X(ω), μ)∣2dP(ω) = ∣Bτ X∣2X .

Hence, since Y ∈ D(B), by (2.24), we have

(1 − λτ)∣Bτ X∣X = (1 − λτ)∣BτY ∣X ↑ ∣B○Y ∣X < +∞, as τ ↓ 0.

Recalling (2.25), we get X ∈ D(B). Finally, (4.22) follows by (2.27) using (4.19) and
(4.21).

It only remains to show that, for every μ ∈ ι(D(B)), the map b○[μ] is λ-dissipative
in a full μ-measure set. To this aim, observe that we can apply Theorem 4.7(1) to Bτ ,
0 < τ < 1/λ+, so that for every μ ∈ P2(X), we have

⟨bτ(y) − bτ(y′), y − y′⟩ ≤ λ
1 − λτ

∣y − y′∣2 for every y, y′ ∈ supp(μ).(4.25)

Let μ ∈ ι(D(B)), and let us consider a representative of X ∈ D(B) such that X♯P =
μ; let τk be a sequence as in (4.24) and let Ω0 be a full P-measure set where the
convergence in (4.24) takes place. If we take y, y′ ∈ X(Ω0) ∩ supp(μ), then we can
find ω, ω′ ∈ Ω0 such that X(ω) = y and X(ω′) = y′ so that, passing to the limit as
k → +∞ in (4.25) written for τ = τk , we get that

⟨b○[μ](y) − b○[μ](y′), y − y′⟩ ≤ λ∣y − y′∣2 for every y, y′ ∈ X(Ω0) ∩ supp(μ).

It is then enough to observe that X(Ω0) ∩ supp(μ) contains a Borel set X0 of full
μ-measure to conclude: in fact, being X(Ω0) a Suslin set, we can find two Borel
sets E0 , E1 such that E0 ⊂ X(Ω0) ⊂ E1 and μ(E1/E0) = 0. Since μ(E1) = X♯P(E1) ≥
P(Ω0) = 1, we conclude that we can take X0 ∶= E0 ∩ supp(μ). ∎

A An alternative proof of the extension theorem for G-invariant
Lipschitz maps

We provide an alternative proof to the extension result for invariant Lipschitz maps
stated in Theorem 2.11. Here, we use a recent and beautiful explicit construction of a
Lipschitz extension provided by [5] (see also [4]) and we show that it preserves the
invariance. We consider a Hilbert space H with norm ∣ ⋅ ∣ and scalar product ⟨⋅, ⋅⟩ as
in Section 2.4.

Recall that if g ∶W → R is a function defined in a Hilbert space W, then its convex
envelope is defined by

co(g)(w) ∶= inf {
N
∑
i=1

α i g(w i) ∶ α i ≥ 0,
N
∑
i=1

α i = 1, w i ∈W,
N
∑
i=1

α iw i = w , N ∈ N} .

(A.1)

If g is locally bounded from above, then also co(g) is locally bounded from above and
it is therefore locally Lipschitz.
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Theorem A.1 [5] Let f ∶ D →H be an L-Lipschitz map defined in D ⊂H. Setting for
every x , y ∈H

g(x , y) ∶= inf
x′∈D
{⟨ f (x′), y⟩ + L

2
∣(x − x′ , y)∣2H×H} +

L
2
∣(x , y)∣2H×H ,

g̃ ∶= co(g),
(A.2)

then g̃ is a convex function of class C1,1 in H ×H and its partial differential with respect
to the second variable in H

F(x) ∶= ∇y g̃(x , 0), x ∈H,(A.3)

is an L-Lipschitz extension of f.

We state our first result concerning the extension of GH-invariant Lipschitz maps.

Theorem A.2 Under the same assumption of Theorem A.1, let us also suppose that f
is GH-invariant according to (2.29). Then F is GH-invariant as well. In particular, any
GH-invariant L-Lipschitz function f ∶ D →H defined in a subset D of H admits a GH-
invariant L-Lipschitz extension F ∶H →H.

Proof We divide the proof in several claims.
Claim 1: the map g isGH-invariant, i.e., g(Ux , U y) = g(x , y) for every (x , y) ∈H ×H
and U ∈ GH .

Every element x′ ∈ D can be written as x′ = Ux′′ with x′′ = U−1x′ ∈ D, so that for
every U ∈ GH and (x , y) ∈H ×H,

g(Ux , U y) = inf
x′∈D
{⟨ f (x′), U y⟩ + L

2
∣(Ux − x′ , U y)∣2H×H} +

L
2
∣(Ux , U y)∣2H×H

= inf
x′′∈D
{⟨ f (Ux′′), U y⟩ + L

2
∣(U(x − x′′), U y)∣2H×H} +

L
2
∣(Ux , U y)∣2H×H

= inf
x′′∈D
{⟨ f (x′′), y⟩ + L

2
∣(x − x′′ , y)∣2H×H} +

L
2
∣(x , y)∣2H×H

= g(x , y),

where we used (2.29) and the isometric character of U to get ⟨ f (Ux′′), U y⟩ =
⟨U f (x′′), U y⟩ = ⟨ f (x′′), y⟩.
Claim 2: the map g̃ ∶= co(g) is GH-invariant as well.

It is sufficient to observe that for every U ∈ GH , N ∈ N, and α i ≥ 0 with∑N
i=1 α i = 1,

a collection {(x i , y i)}N
i=1 ∈ (H ×H)N satisfies ∑N

i=1 α i(x i , y i) = (x , y) if and only if
∑N

i=1 α i(Ux i , U y i) = (Ux , U y). Using (A.1) and the invariance of g, we thus obtain
g̃(Ux , U y) = g̃(x , y) for every x , y ∈H.
Claim 3: the map F ∶= ∇y g̃(⋅, 0) is GH-invariant.

Since we know that g̃ is Frechét differentiable, we observe that z = F(x) if and only
if

g̃(x , y) = g̃(x , 0) + ⟨z, y⟩ + o(∣y∣) as y → 0.

Being g̃ invariant, for every U ∈ GH and x ∈H, the above formula immediately yields
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g̃(Ux , y) = g̃(Ux , UU−1 y) = g̃(x , U−1 y)
= g̃(x , 0) + ⟨z, U−1 y⟩ + o(∣U−1 y∣)
= g̃(Ux , 0) + ⟨Uz, y⟩ + o(∣y∣) as y → 0,

so that F(Ux) = Uz = UF(x). ∎
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