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The boundary conditions at a liquid–gas interface can be modified by the presence of
pollutants. This can in turn affect the stability of the associated flow. We consider this
issue in the case of a simple open cylindrical cavity flow where a liquid is set in motion
by the rotation of the bottom. The problem is addressed using an experimental set-up,
a linear stability code and direct numerical simulation. A robust mismatch between
numerical and experimental predictions of the onset of instability is found. We model
the possible effect of unidentified pollutants at the interface using an advection–diffusion
equation and a closure equation linking the surface tension to the superficial pollutant
concentration. The chosen closure is inspired by studies of free-surface flows with
surfactants. Numerical stability analysis reveals that the base flow and its linear stability
threshold are strongly affected by the addition of pollutants. Pollutants tend to decrease
the critical Reynolds number; however, the nonlinear dynamics is less rich than without
pollutants. For sufficiently high pollution levels, the most unstable mode belongs to a
different family, in agreement with experimental findings.

Key words: rotating flows

1. Introduction

Fluid flow simulations rely on a mathematical formulation associating given governing
equations with specific boundary conditions. The choice for the boundary conditions is
sometimes not trivial, in particular in the presence of a liquid–gas interface. Beyond the
difficulties stemming from a deformable interface, it appears that, in practice, the correct
boundary conditions are not well known even for a perfectly flat interface. The classical
boundary condition considered in textbooks is commonly deduced from the balance of
tangential stresses at the interface. For a gas–liquid interface, where the dynamic viscosity
of the gas is negligible with respect to that of the liquid, this leads to a ‘free slip’
condition, which is simple to implement in simulation codes. Unfortunately this ideal
boundary condition is not necessarily representative of realistic experiments, even for
liquids as common as plain water. Contamination by pollutants present in the ambient air
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can influence the rheology of the interface and drastically impact the effective boundary
conditions (Lopez & Hirsa 2000; Martín & Vega 2006). Such modifications can deeply
alter the flow and, as a consequence, the numerical predictions with a free-surface
condition are no longer representative of the true physical flow. Considering how difficult it
is to experimentally ensure that a gas–liquid interface is free from any chemical pollution,
it is crucial to know how to model the interface, without necessarily knowing all the
physical properties in detail. Such issues arise for instance in flow where Marangoni
effects (modifications of the surface tension due to, for example, temperature effects) may
interfere with and impact the flow dynamics. The simplified phenomenology of surface
pollutants assumes that, although the precise chemical composition of the pollutants is
in essence unknown, their qualitative effect is to reduce the effective surface tension
(Ponce-Torres & Vega 2016). This suggests an effect akin to that of insoluble surfactants
added on the free surface. In several studies of free-surface flow with controlled amounts
of surfactants (Lopez & Hirsa 2000; Hirsa, Lopez & Miraghaie 2001), the amount of
pollutants is supposed so small that they are confined to a Langmuir monolayer located at
the interface. We assume therefore for simplicity that pollutants do not penetrate the bulk
of the flow. Advected by the local velocity field tangent to the interface, the pollutants
cluster at some given locations, their accumulation being only resisted by weak diffusion.
The resulting inhomogeneity of the concentration field at the interface induces a local
change in the surface tension. The gradients of effective surface tension lead to additional
stresses that modify the global stress balance.

In this investigation we choose a flow case feasible in the laboratory as well as in
numerical simulations, where such ideas can be tested. In particular, we focus on a simple
flow likely to develop instability modes via a classical Hopf bifurcation scenario. The
selected most unstable mode, its growth rate and the associated onset Reynolds number
serve as quantitative indicators of how reliable a given set of boundary conditions are.
The flow consists of a cylindrical cavity partially filled with liquid, in most cases water.
The top of the cavity is open while its bottom rotates at constant angular velocity. The
sidewalls do not rotate and are fixed in the laboratory frame. For simplicity, we restrict
ourselves to the parameter regime where the fluid interface remains approximately flat
even as the instability develops and saturates. A sketch of the experimental set-up can be
found in figure 1. The two main parameters for this flow are the geometric aspect ratio
G = H/R, where H is the undisturbed liquid height and the inner cylinder radius R, and
the Reynolds number Re = ΩR2/ν where Ω is the rotation rate and ν is the kinematic
viscosity. This flow has been previously studied both numerically and experimentally. The
earliest publication we found about this configuration is a numerical investigation of the
base flow for an aspect ratio G between 0.1 and 1 (Hyun 1985). Under the assumption that
the flow remains axisymmetric, the transition to unsteadiness has been studied numerically
for G = 2 by Daube (1991) and the transition point was found near Re = 2975. Evidence
for an instability breaking the axisymmetry of the base flow was given only later. In Young,
Sheen & Hwu (1995), no visualisation of the pattern was shown; however, laser Doppler
velocity measurements revealed the growth of an instability near Re = 2000 for a G = 2
geometry. This is consistent with Re = 1910, the value found in a numerical simulation
by Lopez et al. (2004). The first experimental visualisations of non-axisymmetry were
performed by Hirsa, Lopez & Miraghaie (2002b) and Lopez et al. (2004) in the same
geometry, and compared with numerical results for G = 2 and G = 1/4 in Lopez et al.
(2004). For the larger aspect ratio (G = 2), numerical predictions and experimental results
tend to agree, yet for the shallower configuration, mismatches in critical Reynolds number
and azimuthal wavenumber m were reported. In particular, the wavenumber selection
was described in these works as sensitive to the presence of surface contaminants.
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FIGURE 1. Sketch of the axisymmetric base flow for small aspect ratio G = H/R.

Among recent publications, the experimental work by Poncet & Chauve (2007) surveys
many aspect ratios ranging from G = 0.0179 to 0.107. Larger aspect ratios G from 0.3 to 4
have been studied numerically as well (Iwatsu 2004; Serre, Tuliszka-Sznitko & Bontoux
2004; Cogan, Ryan & Sheard 2011). For higher rotation rates, a different regime takes
over, with strong deformations of the interface and sometimes mode switching (Suzuki,
Iima & Hayase 2006; Tasaka & Iima 2009). Polygonal patterns at the deformed interface
have been reported by Vatistas, Wang & Lin (1992), Jansson et al. (2006), Iga et al. (2014)
and modelled by Tophøj et al. (2013).

In the present investigation, we revisit the primary instability mechanism using a joint
experimental and numerical approach. We focus on the primary instability in the case
of an approximately flat interface. For small enough angular velocities the centrifugal
acceleration remains much smaller than gravity and the curvature of the fluid interface can
be indeed neglected in the small Froude number hypothesis. The main aspect ratio under
scrutiny corresponds to G = 1/14. As shown in table 1, the experimentally determined
thresholds are lower by least 75 % than those of Poncet & Chauve (2007). The various
possible reasons for this discrepancy have been reviewed in our experimental set-up with
great care, among them residual vibrations, lack of axisymmetry of the cavity, finite
curvature of the free surface, presence of a meniscus, ionisation of the water. In all
cases these hypotheses were ruled out as quantitatively insignificant. Note that quantitative
discrepancies with experimental measurements have been also already reported earlier for
this flow for low G. In Kahouadji, Martin Witkowski & Le Quéré (2010), the stability
thresholds in Re determined by linear-stability analysis (LSA) were compared with Poncet
and Chauve’s experimental estimates for varying values of G. In both studies the threshold
value Rec increases with decreasing G. The agreement between numerics and experiments
is very satisfying; however, it deteriorates for G ≤ 0.07–0.08 (see figure 3a in Kahouadji
et al. 2010), with a mismatch on Rec of 100 % for G ≈ 0.04. Following Lopez and
co-authors, we assign such a mismatch between experiments and linear stability analysis to
the unavoidable presence of pollutants at the interface, and hence to the simplistic free-slip
model for the boundary conditions at the liquid interface. The present investigation
is devoted to a quantitative analysis of the influence of these pollutants, via a simple
phenomenological model, on the linear stability threshold of this flow.

The outline of the paper is as follows. In § 2, we give a brief description of the flow
and its primary instability. We detail the experimental methods as well as the numerical
methods for the linear and nonlinear stability. Section 3 is devoted to a critical comparison
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Experiment (LDV) Poncet ROSE Sunfluidh

Rec [3160–4230] [14 367–16 420] 17 006 [17 000–17 100]
fm = 5 [Noise–0.764] — 0.709 [0.707–0.699]

TABLE 1. Critical Reynolds number and angular frequency of the pattern for the m = 5
instability for G = 1/14. For Sunfluidh, linear interpolation leads to Rec = 17 010. When
relevant, a lower and an upper bound are given for Rec, with the corresponding values for the
frequency. Experimental results by Poncet & Chauve (2007) are included for comparison.

between experimental and numerical results. In § 4, we introduce a new model for the free
surface where surface pollution is taken into account. Section 5 discusses the possible
simplification of the model in the limit of high surface pollution. The final § 6 contains
a summary of the present investigation together with open questions and perspectives for
future work.

2. Flow set-up and related investigation techniques

2.1. Base flow description
We briefly recall the main features of the base flow as described by Iwatsu (2004) and Yang
et al. (2019). It is axisymmetric with three non-zero velocity components. Its structure for
small aspect ratio G is sketched in figure 1. We use a classical direct cylindrical coordinate
system (r, θ, z), where r is the radial distance, θ the azimuthal angle and z the distance
from the rotating bottom. In the vicinity of the instability threshold, the azimuthal velocity
profile possesses a simple radial structure almost independent of z except in the boundary
layers. In the regimes we focus on, the azimuthal velocity increases with the radial distance
from r = 0 to r ≈ 0.67 − 0.68R, where R is the radius of the set-up, and decreases to
zero as the wall is approached. The latter zone is labelled ‘outer region’. This azimuthal
velocity is driven by the steady rotation of the disc at angular velocity Ω at the bottom
of the cavity. Just above this rotating disc, the fluid is pushed radially outwards towards
the fixed cylindrical end wall in a boundary layer similar to a von Kármán boundary layer.
This generates a recirculation in the meridional plane, confined approximately to the outer
region. For r ≤ 0.5R the flow is in perfect solid body rotation.

Above a given rotation rate, this base flow is known to support an instability breaking
its axisymmetry. Ignoring in a first stage the geometrical and rheological parameters, a
simplistic explanation for this symmetry breaking is as follows: a shear instability, akin to
a Kelvin–Helmholtz instability along a curved streamline, develops where the azimuthal
velocity profile displays the strongest curvature. Given the cylindrical geometry, a direct
analogy with the instability of Stewartson layers in the split disc configuration (Stewartson
1957) has been suggested in order to justify the relative size of the instability region
(Poncet & Chauve 2007). Beyond this simple picture, the bifurcation scenarios leading
to the presence of different non-axisymmetric patterns with a dominating wavenumber
m /= 0 as in figure 2, are not entirely clear from the literature. Lopez et al. (2004) describe
the bifurcation as a standard Hopf bifurcation. Experiments in Poncet & Chauve (2007)
reveal the existence of hysteresis, suggesting a possibility for subcritical bifurcation. In
the present work, we focus on the emergence of a m = 5 mode, the most unstable one
predicted by linear instability theory for the aspect ratio G considered. A competing
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(a) (b) (c)

FIGURE 2. Instability patterns breaking the axisymmetry of the flow. Photograph taken from
above (ink visualisation) in our experimental set-up. Modes m = 3, 4 and 5 obtained for
different aspect ratios and different values of Re above the effective Rec; (a) m = 3, G = 3.5/14,
Re = 2160, (b) m = 4, G = 1.5/14, Re = 5623, (c) m = 5, G = 1/14, Re = 4714.

unstable mode with m = 4, though theoretically expected to appear for parameters where
the mode m = 5 is already unstable, has also been investigated.

2.2. Experimental technique
The main element of the experimental set-up is a cylindrical shaped Plexiglas cavity. Its
internal radius is R = 140.3 ± 0.05 mm, and the thickness of the Plexiglas is 6.8 mm. The
value of R is used to define the Reynolds number Re = ΩR2/ν. The cavity was engineered
from a single block, so that the cylinder and the bottom are monolithic, preventing any risk
of leak. Its bottom is drilled along its axis in order to mount a brass foot that hosts the shaft
of the rotating disc, itself also made of brass. The radius of the disc is Rd = 139.6 mm,
its thickness 8.5 mm and its mass 5 kg. The shaft is held in place with two ball bearings,
and the sealing is insured by a spring-loaded double-lip seal. An aluminium rigid sleeve
coupling, relying on a thrust ball bearing, is used to connect the disc shaft and the motor
reducer unit. The motor used is a direct current motor (Parvex RX320E-R1100) with a
1 : 12 reducer. The rotation speed is controlled using a closed-loop tachometer. Special
attention was paid to minimising the gap between the disc edge and the vertical wall of the
cavity. The liquids used in this experimental investigation are tap water, de-ionised water
and a water–glycerol mixture. As the cavity is not thermo-regulated, the fluid temperature
is monitored continuously, with a digital thermometer that allows it to be known with
an accuracy of 0.1 K. The corresponding kinematic viscosity is then evaluated using
an empirical formula (Cheng 2008). The experimental Reynolds number, based on the
angular velocityΩ , the radius and the kinematic viscosity are hence known within a given
accuracy of the order of a per cent for the range of parameters investigated. The relative
error is expected to increase as the rotation rate decreases.

Flow measurements are made using a laser Doppler velocimetry (LDV) device,
composed of a Dantec Laser linked to a BSAFlow processor. The liquid is seeded with
Dantec 10 micrometre diameter silver coated hollow glass spheres (S-HGS-10). These
are not provided as suspension and thus prevent the introduction of additional surfactant.
We also avoided to premix the particles without any additional solutant. Because of
the cylindrical geometry, as the laser beams are placed for the acquisition of uθ they
undergo a deviation that both shifts the location of the focus and impacts the quantitative
measurements. This is fixed at the post-processing stage using the technical corrections
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(a) (b) (c) (d )

FIGURE 3. Instability growth for a m = 5 mode for a water + Kalliroscope mixture initially
at rest: G = 1/14, Reynolds number Re = 16 550; (a) t = 52 s, (b) t = 60 s, (c) t = 71 s,
(d) t = 99 s.

suggested in Huisman, van Gils & Sun (2012). For visualisations such as in figure 2, the
flow patterns were highlighted by injecting either Kalliroscope or ink into the fluid. The
protocol to find experimentally the critical Reynolds number is to progressively increase
the azimuthal velocity with steps of 0.5 r.p.m. for the water and for the 20 % water–glycerol
mixture, and steps of 1 r.p.m. for the 55 % water–glycerol mixture. After each increase of
the rotation speed, a waiting time of 5–10 min is followed by LDV acquisition performed
over another five minutes duration. This procedure allows the base flow to be almost
established before the instability grows.

2.3. Experimental evidence for m = 5 instability
We describe the experimental instability leading to a steadily rotating m = 5 mode, using
Kalliroscope visualisations or pointwise LDV measurements. The flow is initially at
rest. The angular velocity is directly set to a finite value defining the target Reynolds
number Re, the value used in figure 3 being Re = 16 650. For low enough Reynolds
numbers, the flow remains axisymmetric as in figure 3(a). Above threshold, an annulus
characterised by stronger shear appears around r = 0.7R (figure 3b). An m = 5 mode
emerges (figure 3c) and evolves towards a steadily rotating configuration with 5 co-rotating
vortices (figure 3d). In the time sequence presented, the Reynolds number is well above
the threshold as will be seen later. In such a case, the emergence of the instability
is almost concomitant with that of the base flow, which is here approximately 80 s.
A similar scenario occurs for other values of m, in particular for m = 4 which has been
observed for other nearby values of Re. The vortex pattern rotates with a constant angular
velocity smaller than Ω . The angular frequency f of the pattern can be deduced using
f = 2πfd/(mΩ), where fd is the dimensional frequency obtained experimentally using
pointwise LDV measurements at a location fixed in the laboratory frame. The main
frequency f varies moderately over the range Re = [4230, 16 300]. A Fourier transform
of the time series is shown in figure 4 in the case m = 5 for Re = 4230 and Re = 16 300.
The main frequency and the related harmonics dominate the spectrum.

2.4. Numerical methodology for free-slip interfaces
As a complementary part of this investigation, we have used numerical tools based on
the incompressible Navier–Stokes equations in order to investigate both the linear and
nonlinear aspects of the symmetry-breaking instability. The present section first introduces
the numerical methods used. It also features a comparison with the experimental results
of § 2.3.
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FIGURE 4. Experimental frequency amplitude spectrum of azimuthal velocity component
measured at radius 0.76R and height 0.9H for the saturated m = 5 regime at Re = 4230 and
Re = 16 300. The maximum amplitudes correspond to the non-dimensional frequencies f = 0.76
and f = 0.73, respectively.

2.4.1. Mathematical model
We adopt the point of view of a single-phase flow. The velocity field u(r, θ, z, t) inside

the liquid is governed by the incompressible Navier–Stokes equations in the (non-rotating)
laboratory frame

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u. (2.2)

Equations (2.1)–(2.2) have been non-dimensionalised using the length scale R and the
time scale Ω−1, and the dimensionless fluid density is taken as unity. From here on all the
variables are non-dimensional except when explicitly noted.

The flow obeys no slip at all solid boundaries. This implies

ur = uθ = uz = 0 (2.3)

at the fixed vertical boundary at r = 1, whereas

ur = uz = 0, uθ = r (2.4a,b)

on the rotating disc at z = 0.
The boundary condition at the liquid–gas interface at z = G is classically derived from

the stress balance at the interface. As the viscosity of the air is much smaller than the
water one, we can neglect the gas phase altogether. We first consider the generic free-slip
boundary conditions

∂ur

∂z
= 0,

∂uθ
∂z

= 0, uz = 0 at z = G. (2.5a–c)

A few precautions are necessary to justify the plane interface hypothesis. A numerical
estimation of the height h(r) as a function of the rotation speed is possible for the steady
base flow. This is achieved using the variation of the numerical code ROSE with coordinate
transformations used in Yang et al. (2020). Two sets of parameters typical of the present
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range of interest have been considered. The first set is a least favourable parameter case
(G = 1/14, Ω = 0.95 rad s−1), i.e. Re = 18 620 and Fr = (Ω2R)/g = 0.013 where g is
the gravity. In this case, the total height variation from the centre to the periphery is
Δh = h(r = 1)− h(r = 0) = 6.8 % of the undisturbed fluid height. The second set is for
the rotation rate at which the instability is first detected (Re ∼ 3000), Ω = 0.15 rad s−1

and Fr = 3.34 × 10−4, Δh is less than 0.2 %. Such small values, respectively 0.68 and
0.017 mm (too small to be measured experimentally for the latter), justify the flat interface
hypothesis considered in the numerical part.

As in all mesh-based numerical methods, the singularities of the velocity field occurring
at both corners (r = 1, z = 0) and (r = 1, z = G) are smoothed out in practice by the
finite mesh without the need, as for spectral methods, for regularising functions (Serre &
Bontoux 2007) or singular splitting (Duguet, Scott & Le Penven 2005). This is consistent
with the ‘natural’ regularisation occurring in the experiment in the presence of a very thin
gap.

2.4.2. Linear stability analysis
In order to determine the critical Reynolds number Rec for the onset of instability, we

use an in-house linear stability solver named ROSE, based on a finite difference method
in r and z. The technique as well as the equations written in cylindrical coordinates are
found in Kahouadji, Houchens & Martin Witkowski (2011). The steady axisymmetric
base flow is first determined by solving (2.1) and (2.2) together with the associated
boundary conditions using a Newton–Raphson solver. The steady solution is solved for
in an (ω,ψ, uθ , c) formulation, where

ω = ∂ur

∂z
− ∂uz

∂r
, ur = 1

r
∂ψ

∂z
, uz = −1

r
∂ψ

∂r
. (2.6a–c)

The Newton–Raphson solver allows for additional scalar fields c(r, z) such as temperature
or concentration, as further discussed in § 4.

Let (U,P) represent the velocity-pressure field for such a steady axisymmetric solution
of (2.2), and let (u∗, p∗) be a small-amplitude perturbation to (U,P). The dynamics of the
perturbation is governed by the linearised stability equations

∇ · u∗ = 0, (2.7)

∂u∗

∂t
+ (U · ∇)u∗ + (u∗ · ∇)U = −∇p∗ + 1

Re
∇2u∗. (2.8)

It is associated with Dirichlet boundary conditions u∗ = 0 on all solid boundaries
together with a boundary condition on u∗ at the interface similar to that for u in (2.5). The
velocity field and the pressure field are decomposed using a complex ansatz of the form
eλt+i mθ , as will be detailed in § 4.2. The neutral curve corresponds to parameter values
where the real part Re(λ) = 0, and it is identified in practice using a one-dimensional
secant method. All meshes used are Cartesian in the meridional plane (O, r, z). For
G = 1/14 the mesh consists of 701 × 101 grid points.

2.4.3. Direct numerical simulation
For the nonlinear validation of the stability thresholds we have used the direct numerical

simulation (DNS) code Sunfluidh developed at LIMSI for incompressible flows. It is
based on a projection method to ensure a divergence-free velocity field. The equations are
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discretised on a staggered structured non-uniform grid using a finite volume approach with
a second-order centred scheme in space. A second-order backward Euler differentiation is
used for time discretisation. Details can be found in Yang et al. (2020). The interface
condition is as in (2.3) and (2.4). The code offers the possibility to enforce a given
rotational symmetry Rm characterised by a fundamental azimuthal wavenumber m ≥ 0,
such that every velocity field verifies

(Rmu)(r, θ, z) = u
(

r, θ + 2π

m
, z

)
= u(r, θ, z) (m /= 0), (2.9)

or axisymmetry for m = 0. If m /= 0 the simulation only needs to be carried out over
an angular sector 0 ≤ θ ≤ 2π/m with azimuthal periodicity. For the simulations without
symmetry imposed, we have used a mesh consisting of 180 × 180 × 64 cells in r, θ and z,
respectively.

3. Critical comparison of the different approaches

3.1. Comparison between the numerical methods
For identical parameters, we report excellent agreement between the base flows computed
by the two methods for all Re. Whereas the base flow can be converged for all Re using
the Newton method, it is only accessible for Re < Rec using time stepping. However, since
the base flow is apparently the only axisymmetric solution of the system, it is also found
using DNS for all Re by simply imposing m = 0 (two-dimensional axisymmetric case)
and stepping forward in time. The value of Rec for m = 5 is first identified by LSA using a
secant method. In the DNS code, the procedure used to identify Rec is different; above and
below Rec, an arbitrary perturbation of finite but small amplitude is applied to the system
after an initial transient, with the R5 symmetry imposed or not. This impulse response
leads to either exponential decay towards the base flow, or exponential growth towards a
nonlinear regime at large times. A linear interpolation of these rates leads to an evaluation
of the critical threshold Rec. Both approaches agree quantitatively very well regarding
the prediction of Rec for m = 5 since the relative error is close to 0.3 % (see table 1).
Interestingly, this comparison, as well as the lack of unstable impulse response for Re <
Rec (even for larger-amplitude impulses), both suggest that the instability is supercritical
and not subcritical, at least for a clean interface obeying the boundary condition (2.5). Note
that the ROSE computation in table 1 was performed using a 701 × 101 grid. Numerical
comparison with Kahouadji et al. (2010) confirms that this resolution is sufficient for an
estimation of Rec with an accuracy of less than one per cent. Two additional computations
were performed using different meshes. The Rec was estimated to 17 032 with a 351 × 51
grid, and to 16 992 with a 1401 × 201 grid. The maximum variation of Rec is less than
0.16 % compared to the value in table 1.

3.2. Mean flow structure
Since both numerical approaches yield a truly similar base flow solution, a comparison
with the experimental base flow measured using LDV would be relevant at this point. As
we shall see, measurements below Rec turn out to be experimentally difficult. Another
comparison, which is easier to perform, concerns the mean velocity profiles obtained for
Re > Rec by either temporal or spatial average. Such a comparison is displayed in figure 5.
For the eigenmodes computed using ROSE, their average is by construction zero. Hence,
only the base flow obtained by LSA is included in figure 5, whereas the spatial average is
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FIGURE 5. Velocity profiles of uθ (r) below the free surface (z = 0.8G) for G = 1/14 and
Re = 18 620. Comparison between the base flow, spatially averaged DNS and the temporal
average for LDV (experiment). LDV acquisition timespan is much larger than the instability
period.

taken for the DNS data and the time average for experimental LDV data. A common value
of Re = 18 620 is chosen for the comparison. Although the agreement is satisfactory, a
noticeable overshoot appears around r ≈ 0.67 in all numerical azimuthal velocity profiles,
with no equivalent in LDV measurements despite sufficient measurement accuracy. The
same mismatch, presence of the overshoot area in numerics, but not in experiments,
was also reported for comparable parameters in Yang et al. (2019). The computations
performed on different meshes all display this overshoot, which rules out a numerical
artefact.

3.3. Threshold detection
The most dramatic mismatch between numerics and experiments concerns the critical
Reynolds number. While both numerical simulations agree on a critical Reynolds number
of approximately 17 000 (see table 1), LDV measurements display persistent oscillations
in the azimuthal velocity field for Re as low as 4200, with a normalised frequency
f5 = 0.76, indicative of the presence of the m = 5 mode. This upper bound on the
value of Rec is smaller by a factor of 4 than the previous experimental estimates by
Poncet & Chauve (2007). These values can be found in table 1. The discrepancies
are robust; although the exact same spin-up protocol as Poncet & Chauve (2007) was
observed, the respective ranges of Rec differ. We note that the threshold detection by
Poncet & Chauve (2007) is based on Kalliroscope visualisations. Kalliroscope appears
in our set-up as a poor diagnostic for Rec for this flow case; the threshold detection is
erratic and protocol dependent. Indeed the estimation of Rec fluctuates between 6200
to 9300. At times, Kalliroscope is even unable to detect the instability, even well above
the value of Rec predicted numerically. The use of ink for visualisation, and LDV for
quantitative measurements, both confirm that the thresholds detected with Kalliroscope
are over-evaluated. The saturated mode is displayed in figure 2 at a value of Re
approximately 4 times lower than the theoretical threshold Re(LSA)

c . Its spatial structure
is directly comparable to that of the saturated flow above Re(LSA)

c displayed in figure 3(d).
On the one hand, there is perfect numerical agreement between LSA and DNS

about the estimation of Rec, on the other hand, there is a troubling match with
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Lopez et al. Experiment Experiment ROSE ROSE
Water 55 % glycerol 20 % glycerol

m 3 3 3 3 2
Rec 2000 [1850–2160] [1875–2520] 4690 3480

TABLE 2. Critical Reynolds number for G = 1/4. Comparison between experiments by Lopez
et al. (2004), present experiments and LSA. The percentage of glycerol indicated is a weight
percentage.

Poncet & Chauve (2007) at odds with the experimental/numerical discrepancy we report.
We have hence carried out an exhaustive investigation of the possible reasons for
such a discrepancy by focusing on experimental imperfections. A classical reason for
discrepancies in rotating machines is the presence of mechanical noise that could force an
instability by direct or parametric resonance. The experimental displacement of the disc
surface was measured using a pair of LK-G10 sensors, and their associated LK-GD500
controller. Displacements were evaluated to approximately 10−4 m, with a mean frequency
corresponding to the disc rotation, yet no link with the pattern frequency was found. This
does not suggest any obvious experimental flaw in our experimental methodology.

Eventually, in order to confirm our experimental approach, we switch temporarily to
a different geometry with G = 1/4 where a direct and favourable comparison with the
experimental results of Lopez et al. (2004) can be made. For these parameters there is also
a robust mismatch between experiments and numerics; LSA predicts the most unstable
mode m = 2 with Rec = 3500, whereas Lopez’s experiments at Re = 2000 show a mode
m = 3, predicted using LSA to be unstable only for Re ≥ 4600. We have then conducted
our own experiments with two different mixtures of water with 20 % and 55 % glycerol.
The motivation for these two different mixtures is to allow for a wider span of rotation
speeds; using water the instability would have occurred for rotation speed below 1 r.p.m.
where the signal-to-noise ratio in the LDV degrades. In both cases the mode m = 3 is
detected, either using ink or LDV, for Re = 2160 in the 55 % glycerol fluid (see figure 2a)
and Re = 2520 in the 20 % glycerol fluid. All the results are gathered in table 2. This side
study confirms, in good agreement with Lopez et al. (2004) that numerics overestimate
the experimental thresholds in Re. The discrepancy reported here for G = 1/14 has hence
a robust physical origin, which the rest of this paper is devoted to.

3.4. Nonlinear dynamics
The mismatch between numerics and experiments for G = 1/14 is even more dramatic
further above Rec. Although DNS initially displays an azimuthal wavenumber m = 5 close
to Rec (see figure 6a at Re = 17 100), the instability pattern evolves towards m = 7 as
Re is pushed to 18 620, less than 9 % above Rec. Poncet & Chauve (2007) have also
reported an evolution of the modal content of the flow with Re, yet with m decreasing
as Re is increased. A similar decrease of m with Re was also observed qualitatively in our
experiment for Re sufficiently higher than Rec. However, the wavenumber m = 5 remains
experimentally stable from Re = 4200 to at least Re = 18 620. The frequency spectrum
is shown in figure 7(a) for Re = 18 620. Given such a mismatch, larger values of Re
were not investigated, neither experimentally nor numerically. Differences in the nonlinear
dynamics for Re = 18 620 also emerge in velocity measurements; while experimental
time series display a single frequency, the signals from DNS display a broader spectrum
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FIGURE 6. DNS axial vorticity fluctuation for the free-surface condition, Re = 17 100 slightly
above Rec (a), and Re = 18 620 (b). With the increase of Re, the mode m = 5 selected at Rec
evolves into a modulated m = 7 pattern.
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FIGURE 7. Comparison of frequency amplitude spectra for uθ (t) measured at r = 0.76,
z = 0.8G, for the saturated m = 5 regime at Re = 18 620. (a) Experimental data, maximum
peak at f = 4.15. (b) DNS with free-surface condition, same parameters. The frequencies are
not normalised by the azimuthal wavenumber.

and richer dynamics, see figure 7. In addition to the mismatch in the modal behaviour
between experiments and DNS, the vorticity patterns (figures 6a and 6b) do not match
the experimental (figures 2 and 3d) very convincingly. This raises doubts about whether
the mode predicted in the numerics does indeed correspond to the structure observed
experimentally.

3.5. Limitations of the clean interface hypothesis
Lopez et al. (2004) have suggested that mismatches in critical Reynolds numbers between
theoretical and experimental predictions arise due to the presence of pollutants at the
interface. The main idea is that the pollutants change the boundary condition at the
interface. One can draw a parallel with the evolution from free slip to no slip examined by
Peaudecerf et al. (2017) in a channel flow with superhydrophobic surfaces, in presence of
carefully added surfactants. As it is nearly impossible, in standard laboratory conditions,
to achieve an experiment with a perfectly clean interface at all times, it is necessary to
take additional effects into account in order to properly model the behaviour of the fluid at
a realistic liquid–gas interface. Previous publications with a similar experimental set-up,
in which the adsorption of pollutants at the interface was carefully controlled, already
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demonstrated the crucial influence of pollution of the base flow (Hirsa et al. 2001; Hirsa,
Lopez & Miraghaie 2002a). There, pollutants were assimilated to a monolayer of vitamin
K1, considered as a surfactant, yet any insoluble (or weakly soluble) surfactant would have
a similar effect.

In the next section, we model explicitly the presence of pollutants at the interface in the
Navier–Stokes equations and investigate its qualitative as well as quantitative influence on
the linear stability of the flow.

4. Modelling of interface pollution

4.1. Modification of the effective surface tension
The present modelling of the pollution at the interface is directly inspired by the modelling
in Hirsa et al. (2001) and Kwan, Park & Shen (2010). Let cd(r, θ, t) be the dimensional
instantaneous concentration of the pollutants at the interface, the closure equation between
the surface tension σ and cd reads

σ = σ0

(
1 − α

2σ0
c2

d

)
, (4.1)

where σ0 is the reference surface tension of the solvent (for water, σ0 = 72.8 mN m−1); α
is a dimensional constant coming from the Taylor expansion around cd = 0 of the model
in Kwan et al. (2010), and depends from the chemical species of the pollutant. Equation
(4.1) is non-dimensionalised as

σ̄ = 1 − αC2
0

2σ0
c2, (4.2)

where σ̄ = σ/σ0 and c = cd/C0. Here, C0 represents the average mass concentration of
pollutant at the interface, such as

C0 = 1
πR2

∫ 2π

0

∫ R

0
cd(r, θ, t)r dr dθ. (4.3)

Since the ambient pollution is undetermined, the value of the α coefficient is unknown.
Thus (4.2) is modified as follows

σ̄ = 1 − βCa
2

c2, (4.4)

where Ca = μΩR/σ0 is a capillary number, μ is the dynamic viscosity and β is a new
non-dimensional control parameter defined by

β = αC2
0

μΩR
. (4.5)

Note that β can be linked to a Marangoni number, based on C0 and the diffusion Ds such
that Ma = (αC2

0R)/(Dsμ), and to the Péclet number Pes = ΩR2/Ds so that β = Ma/Pes.
We assume that pollutants are advected by the velocity field of the fluid while diffusing

with a simple non-dimensional diffusion coefficient Ds. Moreover, we assume that no
transport occurs from the surface to the bulk of the flow, so that the bulk concentration
can be neglected (Bandi et al. 2017). In practice, β is limited by chemistry considerations;
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high values of β correspond to a highly polluted surface. Under these conditions, diffusion
into the bulk becomes possible. Starting from the Boussinesq–Scriven surface fluid model
for a Newtonian fluid–gas interface (Scriven 1960), and under the hypothesis of negligible
surface dilatational viscosity and surface shear viscosity (Hirsa et al. 2001), the boundary
conditions can be written as

∂ur

∂z
= 1

Ca
∂σ̄

∂r
,

∂uθ
∂z

= 1
Ca

1
r
∂σ̄

∂θ
, uz = 0. (4.6a–c)

Using (4.4) and the expression of β, (4.6) can hence be rewritten

∂ur

∂z
= −βc

∂c
∂r
,

∂uθ
∂z

= −βc
1
r
∂c
∂θ
, uz = 0. (4.7a–c)

The introduction of β allows for a simpler study since it is the only input parameter for
the LSA.

4.2. Modelling of pollutant concentration
When all pollutants stay at the interface z = G, their concentration c(r, θ, t) obeys a
superficial advection–diffusion equation of the form

∂c
∂t

+ ∇s · (cus)+ c(∇s · n)(u · n) = 1
Pes Δ

sc, (4.8)

where ∇s represents the gradient operator in the directions tangent to the interface, ∇s

represents the gradient operator in the directions tangent to the interface and Δs is the
associated Laplacian (Stone 1990). In (4.8), the original velocity field u is split into a
normal component (u · n)n and the resulting tangential component us = u − (u · n)n. In
the simple case where n = ez, (4.8) reduces to

∂c
∂t

+ ∇s · (cus) = 1
Pes Δ

sc. (4.9)

We consider a decomposition into base flow and perturbation, where the perturbation
is written using a complex ansatz of the form eλt+i mθ , such that ur = Ur + u∗

r eλt+i mθ ,
uθ = Uθ + i u∗

θ eλt+i mθ and c = C + c∗ eλt+i mθ . For the steady axisymmetric base flow
characterised by the velocity field U and the concentration field C, (4.9) becomes

1
r
∂rCUs

r

∂r
− 1

Pes

(
∂2C
∂r2

+ 1
r
∂C
∂r

)
= 0. (4.10)

By subtracting (4.10) from (4.9), the equation for the disturbance concentration (u, c)
reads

−λc∗ = 1
r

(
∂rCu∗

r

∂r
+ ∂rUrc∗

∂r

)
+ i mUθc∗

r
− mCu∗

θ

r
− 1

Pes

(
∂2c∗

∂r2
+ 1

r
∂c∗

∂r
− m2c∗

r2

)
.

(4.11)

The diffusion coefficient Ds for the pollutants is usually one or two orders of magnitude
smaller than the kinematic viscosity and thus, in the present case, superficial diffusion
effects remain small with respect to advection effects.
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FIGURE 8. Evolution of the streamfunction ψ for the base flow with increasing concentration
β, Re = 18 620 and G = 1/14. The same contour values are chosen for all cases. Negatives
and positives contours use different scales to highlight the weak recirculation bubble. Negatives
contour values (dashed): four equispaced levels in [ψmin − ψmin/5]. Positives contour values:
(solid lines): nine values equispaced levels in [ψmax/10 − ψmax ]. Zero contour level (solid
black lines). ψmin = −8.1 × 10−5 and ψmax = 2.3 × 10−3; (a) β = 0, (b) β = 0.1, (c) β = 0.2,
(d) β = 0.5.

The constraint (4.3) reads in non-dimensional form

1
π

∫ 2π

0

∫ 1

0
c(r, θ, t)r dr dθ = 1, (4.12)

and reduces for the steady axisymmetric base flow to

2
∫ 1

0
C(r)r dr = 1. (4.13)

For the base flow, axisymmetry implies ∂C/∂r = 0 at the axis. The constraint (4.13) also
imposes a zero mass flux at r = 1. For the perturbation field c∗, the boundary conditions
depend on the value of the azimuthal wavenumber m (Kahouadji et al. 2011). For m ≥ 1
(the case of interest), c∗ = 0 is imposed at the axis and ∂c∗/∂r = 0 at the outer wall. All
superscripts ∗ are from here on dropped for simplicity.

4.3. Structure of the modified base flow
As demonstrated in Lopez & Chen (1998), the presence of a surfactant layer at the interface
modifies the structure of the base flow. However, the potential influence on its linear
stability has not been investigated yet. In this subsection, we study the influence of the
pollution concentration β, modelled using the surfactant law (4.1), on the base flow for
G = 1/14 and Re = 18 620. Increasing β causes a small but monotonic decrease of the
length of the meridional recirculation, see figure 8. This is accompanied by the progressive
disappearance of the overshoot in Uθ , evident in figure 9. This observation is directly
consistent with the experimental measurements, in which no overshoot has been found for
z = 0.8G.
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FIGURE 9. Evolution of the azimuthal velocity Uθ for the base flow for increasing β, Re =
18 620 and G = 1/14. 21 equispaced levels in [0–1]. Translucent red patches represent overshoot
areas, i.e. locations where Uθ ≥ 1.01 r; (a) β = 0, (b) β = 0.1, (c) β = 0.2, (d) β = 0.5.

4.4. Linear instability thresholds for G = 1/14
The present model is based on four independent non-dimensional parameters G, Re, Pes

and β. We have investigated quantitatively the influence of β on the instability thresholds
Rec for m = 4 and 5, with G fixed to 1/14 except when noted. The numerical resolution is
unchanged compared to the pollution-free case. The Péclet number, although in principle
larger, is hence limited to Pe = 103 in order to prevent steeper gradients and numerical
issues. The focus on m = 4 and 5 mirrors the modal selection predicted for the reference
case β = 0, and is also consistent with experimental findings at onset.

The neutral curves Rec(β) obtained as β is varied are shown in figure 10, where neutral
modes m = 4 and 5 appear as squares and five-pointed stars, respectively. The neutral
curves have been determined by identifying the parameters where Re(λ) = 0 using a
secant method. In some intervals of β the curve Rec(β) happens to be multi-valued, see
e.g. β = 0.3 for m = 4; several thresholds can be found for this value of β, although no
trivial physical interpretation has been found. In such cases, the code was modified to
determine the critical value of β for a given value of Re. Note that the influence of the
numerical resolution on Rec for β = 5 has been verified using the same numerical grids
as for β = 0 (351 × 51 and 1401 × 201), with variations below 0.58 %.

The most striking result in figure 10 is the dramatic drop in Rec occurring at β ≈ 0.48
for m = 4 and β ≈ 0.14 for m = 5. The asymptotic value of Rec predicted for large β
and approached for β as small as 0.2, is also below 3000 in much closer agreement
with experimental estimations (shown as the blue stripe in figure 10) than the numerical
prediction with β = 0. These results suggest that a minute amount of surfactants can
dramatically impact the flow stability, while additional pollution does not worsen the
phenomenon further. In other words the effect of pollution is almost binary; either the
interface is perfectly clean and the stability of the flow obeys the classical prediction from
§ 3, or it is not and the stability characteristics of the flow are of a fully different kind. This
scenario is consistent with the experimental reproducibility of Rec.

For the mode m = 5, a sharp change of slope is evident for Rec = 17 259, β = 0.14.
This marks the presence of a codimension-two point, where two different marginal curves
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FIGURE 10. Neutral curve Rec(β) estimated from LSA for G = 1/14 and for the modes m =
4 (squares) and m = 5 (stars). The blue stripe corresponds to the experimental value of Rec,
independent of the model based on β. The thickness of the stripe is based on lower and upper
bounds for Rec from table 1. The inset figure represents in semi-log coordinates the continuation
of the curves for β ∈ [3:100].

for two different modes m = 5 intersect in a double Hopf bifurcation; on each side of
the corresponding value of β, these are not the same family of eigenmodes that go
unstable first, despite a common azimuthal wavenumber m. The crossing of eigenvalues
is confirmed in figure 11 where the pair of eigenvalues is displayed on each side of the
crossing. In each case, the branch taking over for larger β does apparently not extend
down to β = 0; it corresponds to a new instability not found in the clean interface case.
The computation of the branches beyond the codimension-two point was performed by
a restriction of the number of eigenvalues computed around a shift. This shift was set
equal to the angular frequency of the most unstable eigenvalue for the previous couple of
parameters (Rec, β). The evolution of the two leading eigenvalues as functions of both β
and Re is detailed in figure 12(a). The least stable eigenvalue for the ‘clean’ case β = 0
is labelled ‘Cm’, where m = 5, whereas the least stable eigenvalue for the ‘dirty’ case
β � 1 is simply labelled ‘Dm’. From figure 12(a) it appears that the trajectories of the
eigenvalues C5 and D5 in the complex plane, for variations of Re and β, follow different
routes; C5 becomes destabilised by increasing Re but stabilised by increasing β, whereas
D5 is destabilised by both increasing β and increasing Re.

In the case m = 4, an equivalent codimension-two point can be identified in figures 10
and 11, at Rec = 18 869, β = 0.17. For this mode, the drop in Rec is more dramatic than
for m = 5, and does not occur immediately after the codimension-two point. Instead, the
new branch (in green in figure 10) continues to increase until at Rec = 20 951, β = 0.48
where it turns back. Again the trajectory of the corresponding eigenvalues C4 and D4 is
documented in figure 12(b). The trajectories of C4 in the complex plane are similar to those
of C5. However, the scenario for D4 differs from that for D5; an increase in Re stabilises
the corresponding eigenmode whereas an increase in β destabilises it.

Interestingly, the asymptotic value of Rec for m = 4 as well as the corresponding value
of β at which the lowest values of Rec(β) are reached, seem to match that for m = 5.
This suggests that the value of Rec does not, for large β, depend on the value of m, at
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FIGURE 11. Zoom on codimension-two points of figure 10 in the (β, Rec) plane, for G = 1/14,
m = 4 and m = 5.
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FIGURE 12. Evolution of the eigenvalues associated with the most dangerous modes (‘clean’
mode C and ‘dirty’ mode D) as a function of Re and β for G = 1/14; (a) m = 5 and (b) m = 4.
The two evolutions start at Re = 15 000 and β = 0. The C and D eigenvalues follow the lines
indicated by the red arrows as Re is increased from 15 000 to 17 200 while β = 0. The eigenvalues
evolve with varying β (at constant Re = 15 000, blue arrows) with equally spaced steps from 0
to 0.18 for m = 5, and from 0 to 0.5 for m = 4.

least for this value of G. Preliminary computations for G = 1/4 have not confirmed this
observation. A parametric study of Rec as a function of both G and m would shed light on
this question, but this lies outside the present scope.

The evolution of the angular frequency of the pattern at Re = Rec is displayed in
figure 13 for both m = 4 and 5 as β is varied. Direct comparison of this figure with
figure 10 shows that each jump to a new branch corresponds to a discontinuity in angular
frequency. Again, the quantitative match with the experimental angular frequency is much
more satisfying at finite β than around β = 0. For large β, the data approach the blue
stripe in figure 13 within 1 % or less.
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FIGURE 13. Angular frequency of the pattern −Im(λ)/m at Re = Rec(β) for G = 1/14,
obtained using LSA for the modes m = 4 (squares) and m = 5 (stars). The blue line corresponds
to the experimental value obtained using LDV (cf. table 1). The inset figure represents in
semi-log coordinates the continuation of the curves for β ∈ [3 : 100].
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FIGURE 14. Vorticity ωz(r, θ) at the fluid interface (normalised by its maximum) for the least
stable eigenmode m = 5 at Re = 18 620; (a) β = 0, (b) β = 5.

Visualisations in physical space of the different modal families for a common
wavenumber m are displayed in figure 14. From figures 10 and 13 it is now clear that
these two eigenmodes correspond to two different modal families. For the β = 0 case the
marginal eigenmode corresponds to the one found in Kahouadji et al. (2011).

Closer to the codimension-two point, the representation of ωz as in figure 14 does not
highlight the discrepancies between the two modes. However, the differences between
them stand out again when representing the perturbation kinetic energy in a meridional
plane (cf. figure 15); for the dirty mode the kinetic energy is much more localised close
to r ≈ 0.7 than for the clean mode. As for the eigenfrequencies, the variations in angular
frequency are less dramatic than those in Rec, nevertheless angular frequencies predicted
for large β are in much better agreement with experimental values than the ones predicted
for β = 0.
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FIGURE 15. Meridional sections of local kinetic energy of the eigenmodes (normalised by its
maximum) for the clean branch (a) and the dirty branch (b) at the codimension-two point (Re =
17 259, β = 0.14). The ten isolines are equispaced between 0 (dark blue) and 1 (bright yellow).
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FIGURE 16. Comparison of several fields of the base flow at the interface, for a few values of β,
at Re = 18 620. (a) Radial velocity Ur, (b) azimuthal velocity Uθ , (c) pollutant concentration C,
(d) azimuthal vorticity ωθ . The results for the frozen surface condition are also included.

In order to evaluate the amount of pollution needed to switch from one family of
branches to another, owing to (4.4), it is possible to estimate the variation of the surface
tension at some point on the neutral curve. For instance, at onset β = 1, Rec = 2241 (see
figure 10), the non-dimensional concentration variation for C is O(1), consistently with
the finding in figure 16(c) (even if the value of Re is smaller, the concentration jump is the
same. The main effect of decreasing Re is to soften the slope). Equation (4.4) reduces to
σ̄ = 1 − Ca so that the capillary number is now a direct measure of the variation of surface
tension. For the regime of interest with water, Ca = 10−3, so that the surface tension
varies by less than 1 %, which is indeed small and nevertheless leads to a large change
in Rec.

All the results above support the numerical prediction for finite β (non-clean interface)
being consistent, both regarding the base flow and its marginally unstable eigenmodes,
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with the experimental findings, whereas the clean interface (β = 0) hypothesis
is not.

5. Frozen interface condition

5.1. Search for a simpler parameter-free interface condition
The results from the previous section have shown that a simple surface pollution model
can capture qualitatively and quantitatively well the main features of the instability under
investigation without any description of the physical processes related to the surface
contamination. While it is possible to make the model quantitatively closer to the real
case by adding more parameters, we search in this section for an even simpler model
for the interfacial conditions. In particular, we would ideally like to have an analytically
simple boundary condition for the velocity at the liquid–gas interface that is parameter
free and does not request simulating additional concentration fields. This would make the
implementation of such a model easy to achieve in practice in existing numerical codes,
without depending on the precise (and usually unknown) details on the adsorption at the
interface. The results of § 4 suggest the presence of a well-established asymptotic regime
for large β, and the synthetic interfacial condition sought for is requested to match the
large β limit. Several authors have already reported that the presence of pollutants is
not compatible with the traditional hypothesis of free slip at the interface (Magnaudet
& Eames 2000; Hirsa et al. 2002b; Martín & Vega 2006; Peaudecerf et al. 2017; Rastello,
Marié & Lance 2017). In particular, whereas in our flow case the larger azimuthal velocity
remains weakly affected by pollutants, the radial component of the velocity is severely
diminished, making the hypothesis of vanishing ur at the interface plausible (Spohn &
Daube 1991; Lopez & Hirsa 2000). This is achieved in the numerical codes by changing
the free-slip boundary conditions at the interface from (2.5) into

ur = 0,
∂uθ
∂z

= 0, uz = 0 at z = G. (5.1a–c)

The prime advantage of such an interfacial condition is its simplicity; as requested it
is parameter free, chemistry free, it does not request coupling with an equation for the
concentration and it does not rely on any closure for the effective surface tension. In the
following, we assess numerically whether imposing this interfacial condition Ur = 0 for
the base flow is a satisfying hypothesis.

5.2. Base flow
We estimate first how much the ‘frozen’ condition (5.1) is consistent with large values
of β by assessing the spatial structure of the base flow. Note that ‘frozen’ refers here to
the no-slip condition at the interface in contrast to free slip, and not to the fact that the
interface is not allowed to deform. Figure 16 shows various radial profiles at the interface
for the base flow, as β is increased beyond the values shown previously. Values of β up to
102 or 104 have been considered in order to monitor the dependence of the base flow on
β. Figure 16(a,b) displays the radial and the azimuthal velocity components, respectively
Ur(r) and Uθ (r) evaluated at z = G. The length of the radial interval where the radial
velocity Ur is non-zero decreases with increasing β, and the minimum value of Ur also
approaches zero, suggesting absolute convergence to a homogeneous Ur = 0 profile. This
justifies, for β large enough, Ur = 0 as an interfacial boundary condition, in agreement
with previous experimental observations.
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FIGURE 17. Comparison of ψ between β = 5 and the frozen surface condition at Re = 18 620
(computed with ROSE). Iso-contour levels as in figure 8; (a) β = 5, (b) frozen surface.
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FIGURE 18. Meridional (r, z) cut for β = 5 and the frozen surface condition for Re = 18 620
(computed with ROSE). Iso-contour levels as in figure 9; (a) β = 5, (b) frozen surface.

The major difference in the concentration curves (16c) is the non-zero concentration of
pollutants, observed for every radial position when β � 5. For smaller values of β, the
concentration is advected towards the axis by the meridional recirculation, allowing for
a small clean area to remain close to the outer wall. This leads to completely different
vorticity profiles at the interface; for smaller values of β the vorticity is gathered around
the radial position where the drop of concentration occurs. However, for β ≈ 5 and above,
the vorticity is stretched over a larger radial range, and converges to the frozen interface
case. Interestingly, despite the fact that Ur is not exactly zero at the interface, all base flow
profiles between β = 5 and the frozen surface condition appear identical, as is visually
clear from figures 17 and 18.

5.3. Nonlinear dynamics
The condition (5.1) is here explicitly imposed in the nonlinear DNS calculations too. The
simulation has been conducted with the same spatial resolution as in § 2. The newly
computed instability pattern is shown in figure 19 past the initial transient. Without
imposing any rotational symmetry, we see that, above Rec, the most unstable mode
emerges with an azimuthal wavenumber m = 5. Compared with simulations based on
free slip (see figure 7b), the present nonlinear regime is much more predictable; this
m = 5 mode persists for the whole observation time of up to t = 1400 time units) and
the frequency spectrum remains limited to multiples of the fundamental frequency. The
comparison between the numerical and experimental pointwise spectra is displayed in
figure 20 for the same value of Re, and deserves to be compared with figure 7. From
such a cross-comparison, it is a non-ambiguous fact that the frozen condition leads to
a much better spectral reproduction of the experimental flow. In addition, although such
comments are subjective, we report that the aspect of the pattern in figure 19 is visually
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FIGURE 19. Axial vorticity of the fluctuations at the interface, DNS with frozen condition
ur = 0 at the interface for Re = 18 620.
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FIGURE 20. Comparison of amplitude spectra of uθ measured at (r = 0.76, z = 0.8G):
experimental data (blue) versus DNS for the frozen surface condition (orange), Re = 18 620.

closer to the experimental one than those of figure 6(b) for the free-surface condition.
More quantitatively, the approximate radius range where the axial vorticity fluctuations
are concentrated in figure 19 is [0.59–0.91], while in figure 6(a) they are limited to
[0.64–0.72]. From figure 3(d) we can estimate the width of this annular stripe in the
experiment as [0.62–0.92]. Interestingly, the spatial structure of the linear eigenmodes
(see e.g. figure 14) differs strongly from the structure of the nonlinearly saturated flow,
which indicates that the role of the nonlinear terms goes beyond the sole saturation effects.
This subsection confirms that the instability pattern with a frozen surface is much closer
to the experimental pattern than the pattern from the free-surface simulation.

5.4. Critical Reynolds number and least stable mode
We observe in figure 10 that Rec(β) hardly evolves once β is large enough (larger than
e.g. 5). This behaviour is confirmed for larger β, where the increase in Rec remains limited.
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β m = 4 m = 5

5 3139 2934
100 3632 3330

TABLE 3. Critical Reynolds number estimated by LSA for G = 1/14.

u∗ free u∗ frozen

U free 17 006 18 959
U frozen 2776 10 555

TABLE 4. Value of Rec for m = 5 and four sets of boundary conditions for the couple (U , u∗).

The instability pattern appears similar to those shown in figure 14, which suggests that
the most unstable mode of the frozen condition again belongs to an unstable branch
different from the ‘clean’ unstable mode identified with the free-slip condition. Since
the base flows for either large β or for the frozen interface condition have a very
similar structure, we expect, for the frozen surface condition, a critical Reynolds number
quantitatively comparable to those reported in table 3. However, it appears that for this new
condition, LSA predicts Rec = Rec5 = 10 555 for m = 5, confirming DNS (Rec = 10 584).
While this represents a drop of 39 % compared to the original critical Reynolds number
for the free-surface condition (Rec = 17 006), it is still well above the experimental value
by a factor of approximately 3. Similarly, using the same frozen condition, the threshold
for the mode m = 4 at Rec4 = 11 152 and remains very close to Rec5.

5.5. Conclusions on the frozen surface condition
The nonlinear dynamics captured in DNS using the frozen surface condition is in
excellent qualitative match with experimental measurements both from the point of view
of the dynamics and the modal content of the saturated flow. This is again confirmed by
the good agreement between the amplitude spectra shown in figure 20. The base flow with
the frozen surface condition is hardly distinguishable from the base flow obtained using the
pollutant model for β ≥ 5. Nevertheless, once again, the comparison of the values of Rec
is not favourable, as for the frozen surface Rec is 260 % (10 555 vs 2934) higher than for
β = 5, which discredits the frozen condition as a direct substitute to the free-slip condition.
This negative conclusion is further confirmed for G = 1/4 (the value considered by Lopez
et al. 2004), where the most unstable mode remains poorly representative of experimental
visualisations and Rec is pushed even further up. These quick tests reveal how sensitive
the instability threshold is to the choice of boundary conditions.

The quantitative discrepancy in Rec can eventually be resolved by introducing a new
boundary condition of a mixed type. Whereas the hypothesis of vanishing Ur is satisfying
for the steady base flow and large enough values of β (see § 5.2), it is not justified for
time-dependent perturbations. We suggest separating the velocity field u into its base flow
component U and its perturbations u∗ and applying a different set of boundary conditions
to U and u∗. The situation is summed up in table 4, where the four possible combinations
of boundary conditions are considered and Rec has been re-computed using ROSE for each
case. Consistently with the previous arguments, we focus on the mixed-type boundary
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FIGURE 21. Vorticity ωz(r, θ) at the fluid interface (normalised by its maximum) for the least
stable eigenmode m = 5 at Re = 18 620. (a) Frozen surface, (b) mixed condition. The mixed
condition corresponds to a frozen surface condition for the base flow, and free-surface condition
for the perturbation field.

condition where the base flow obeys a frozen condition whereas the perturbation obeys
the free-slip condition. The value of Rec is now 2776, much lower than the fully frozen
threshold value of 10 555. The quantitative mismatch is now reduced down to 6 % (2779
vs 2934) and 31 % (2779 vs 4230) compared to β = 5 and experimental Rec, respectively,
while the spatial structure (see figures 14 and 21 for the eigenmodes) is compatible with
the frozen case.

6. Discussions and perspectives

The hydrodynamic instability occurring inside a fixed, cylindrical cavity with a rotating
bottom has been investigated for a small form factor depth/radius G = 1/14. The selection
of a least stable mode with azimuthal wavenumber m = 5, predicted by linear instability
analysis, is verified experimentally, as well as numerically using DNS assuming no stress
at the liquid interface. Using water – the most widespread liquid – as the experimental
fluid, a robust quantitative and qualitative mismatch is evidenced between our experiments
and our numerics. The mismatch concerns the presence of an overshoot in the azimuthal
velocity profile and, crucially, the value of Rec for the development of the instability is
overestimated in the numerics by a factor of more than 4. Regarding the mismatch between
our experimental estimation of Rec and the literature, the use of Kalliroscope as a marker
(used precisely for the identification of instability thresholds) is our best suspect to explain
the discrepancy. The results obtained here using LDV, quantitatively safer, demonstrate
that thresholds formerly deduced from visualisation using markers, are over-evaluated.
The linear and nonlinear numerical approaches, however, report a robust threshold Rec,
that still differs strongly from the experimental one. After a cautious search for possible
experimental flaws, the standard free-slip interface condition (σ = cst, h = cst, free-slip
interface) used in the simulations emerged as the most credible source of mismatch, in
line with former investigations by Spohn & Daube (1991) and Hirsa et al. (2002a); in
experiments, such an ideal interfacial condition cannot be matched due to residual ambient
air pollution. The inevitable presence of pollutants at the interface modifies the surface
tension of the flow and, as a consequence, impacts the velocity field of the base flow and
shifts the instability threshold. A pollution model has been implemented into the linear
stability solver, based on a modification of the effective surface tension by the presence of
a superficial concentration of unknown pollutants. Using a quadratic closure between the
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tension surface and the superficial pollutant concentration inspired by surfactant studies
yields results quantitatively consistent with experiments; for sufficiently large value of β
(the parameter that pilots the surface contamination), Rec drops by more than 80 % and
the mismatch on Rec goes down approximately from 400 % to 30 %.

Interestingly, the instability mode selected for finite pollutant concentrations does not
belong to the same modal families as predicted by linear stability theory in the clean
interface case; new branches of ‘dirty’ modes destabilise for small yet finite concentration
levels and take over as least stable modes. The corresponding eigenmodes are very
stable for clean interface conditions and have not been identified before. In terms of
bifurcations, the robust mismatch in Rec, angular frequency and flow structure between
numerics and experiments can hence be explained, at least for the case of the modes
m = 4 and 5 investigated here, as a jump from one modal family to another one as the
contamination of the surface increases. The spatial structure of the base flow is also more
consistent with LDV measurements; the meridional recirculation length is reduced and
the overshoot in azimuthal velocity vanishes. For β � 5, the flow at the interface verifies
an approximate no-slip condition for the radial velocity component. As a consequence,
in an effort to deliver a simpler parameter-free model boundary condition for unclean
liquid/gas interfaces, the ‘frozen condition’ ur = 0 was also simulated. Whereas it displays
better qualitative agreement as well as simpler nonlinear dynamics consistent now with
experiments, at least for low G, the threshold value Rec remains too high compared to
experiments. This new quantitative mismatch is eventually resolved once and for all by
considering an interfacial boundary condition of a mixed type; frozen for the steady base
flow and free slip for the unsteady perturbations.

Interfacial experiments involving water have long had the reputation of being ‘difficult’
in the sense that Marangoni effects linked with variations of the surface tension are hard to
tame. The present hypothesis of a modification of the surface tension by pollution effects
is one such illustration. The surprising effect of this pollution is, despite relatively small
modifications of the structure of the base flow, an important quantitative impact on the
stability thresholds. Besides, not only does the instability mode change its growth rate,
it also belongs to another family of destabilised modes compared to the clean interface
case. From such a simple conclusion it is tempting to critically revisit the discrepancies
between experimental studies and to deduce that higher values of Rec (as reported in
Poncet & Chauve 2007) are linked to a cleaner interface due to different experimental
conditions. While this is a priori possible (and very difficult to assess rigorously), it
does not remove the caveat that Kalliroscope visualisations are not reliable in terms of
measurements. Besides an interaction of the marker itself with the solvent cannot be
excluded for high Kalliroscope concentrations. We are hence not in a position to conclude
about the values reported by various teams using Kalliroscope or other markers, and
encourage instead the use of non-intrusive techniques such as LDV for more reliable
estimations. Other experimental improvements could here be useful, such as measuring
simultaneously several velocity components, including smaller components such as the
axial one and the radial component near the interface. This could allow for a critical
evaluation of the model interfacial condition suggested in § 5.

While the present study is essentially a proof of concept that the stability characteristics
of a given flow case depend heavily on the surface pollution, the simplicity of the
analytical model in § 4 must be kept in mind. The advantage of such a simple model
is a straightforward identification of the mechanisms altering the spatial structure of the
base flow. The main difficulty lies in the mathematical parametrisation of a chemically
complex phenomenon. Adsorption of pollutants by the interface is an unsteady process
that depends on the precise chemical composition of the ambient particles in the air and
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of the exact properties of the liquid. None of these hypotheses have been included in
the present model, resulting in a simple law parametrised by one unique real parameter
β and unable to cope with different chemical compositions and solubility effects.
Further chemical complications can occur for increased concentration levels, notably bulk
diffusion (necessitating a volumetric model rather than a superficial one) and later the
formation of micelles inside the bulk of the fluid. Ideally, the modelling of pollution effects
should be compared with an experimental set-up where the superficial concentration of
each pollutant can be quantitatively controlled and properly modelled. It is not excluded
that each different pollutant contributes differently to the final surface tension rather than
all obeying the quadratic law of equation (4.1).

Finally, the present set-up is still academically simple in the sense that no deformation
of the interface needs to be considered at such low rotation rates. A first way to incorporate
more realistic effects is to consider the possibility for small deformations of the interface
coupled with oscillations within the fluid. This situation might lead to the existence of
additional families of eigenmodes and even richer dynamics. While this is technically
much more involved, especially on the numerical side (see e.g. Yang et al. 2020),
one can wonder whether pollution effects can also affect the thresholds in the large
deformation regime investigated by many others (Vatistas, Abderrahmane & Siddiqui
2008; Tophøj et al. 2013) also in the presence of additional surfactants (Jansson et al.
2006). These regimes involve not only finite deformations of the fluid interface but also
partial dewetting, which makes the dynamics of the concentration field more complex by
involving moving triple contact lines. Eventually, it will be interesting to see how the trend
evidenced in the present study (the decrease of Rec by ambient pollution despite a calmer
nonlinear regime) can be extended to other unstable flow configurations.

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche under the
ANR ETAE Project no. ANR-16-CE08-0011. HPC resources from GENCI-IDRIS (grant
no. 2017-2a10308) are also acknowledged. The authors thank I. Delbende, F. Gallaire,
W. Herreman, F. Lusseyran, W. Yang for fruitful discussions, the technical team CTEMO
at LIMSI, as well as F. Moisy and M. Rabaud for their help on the experimental facility.

Declaration of interests

The authors report no conflict of interest.

REFERENCES

BANDI, M. M., AKELLA, V. S., SINGH, D. K., SINGH, R. S. & MANDRE, S. 2017 Hydrodynamic
signatures of stationary Marangoni-driven surfactant transport. Phys. Rev. Lett. 119 (26), 264501.

CHENG, N. S. 2008 Formula for the viscosity of a glycerol-water mixture. Ind. Engng Chem. Res. 47 (9),
3285–3288.

COGAN, S. J., RYAN, K. & SHEARD, G. J. 2011 Symmetry breaking and instability mechanisms in
medium depth torsionally open cylinder flows. J. Fluid Mech. 672, 521–544.

DAUBE, O. 1991 Numerical simulation of axisymmetric vortex breakdown in a closed cylinder. In
Vortex Dynamics and Vortex Methods (ed. C. R. Anderson & C. Greengard), Lectures in Applied
Mathematics, vol. 28, pp. 131–152. American Mathematical Society.

DUGUET, Y., SCOTT, J. F. & LE PENVEN, L. 2005 Instability inside a rotating gas cylinder subject to
axial periodic strain. Phys. Fluids 17 (11), 114103.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.473


900 A42-28 A. Faugaret, Y. Duguet, Y. Fraigneau and L. Martin Witkowski

HIRSA, A. H., LOPEZ, J. M. & MIRAGHAIE, R. 2001 Measurement and computation of hydrodynamic
coupling at an air/water interface with an insoluble monolayer. J. Fluid Mech. 443, 271–292.

HIRSA, A. H., LOPEZ, J. M. & MIRAGHAIE, R. 2002a Determination of surface shear viscosity via
deep-channel flow with inertia. J. Fluid Mech. 470, 135–149.

HIRSA, A. H., LOPEZ, J. M. & MIRAGHAIE, R. 2002b Symmetry breaking to a rotating wave in a
lid-driven cylinder with a free surface: experimental observation. Phys. Fluids 14 (6), 29–32.

HUISMAN, S. G., VAN GILS, D. P. M. & SUN, C. 2012 Applying laser Doppler anemometry inside a
Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids
36, 115–119.

HYUN, J. M. 1985 Flow in an open tank with a free surface driven by the spinning bottom. J. Fluids Engng
107 (4), 495–499.

IGA, K., YOKOTA, S., WATANABE, S., IKEDA, T., NIINO, H. & MISAWA, N. 2014 Various phenomena
on a water vortex in a cylindrical tank over a rotating bottom. Fluid Dyn. Res. 46 (3),
031409.

IWATSU, R. 2004 Analysis of flows in a cylindrical container with rotating bottom and top underformable
free surface. JSME Intl J. 47 (3), 549–556.

JANSSON, T. R. N., HASPANG, M. P., JENSEN, K. H., HERSEN, P. & BOHR, T. 2006 Polygons on a
rotating fluid surface. Phys. Rev. Lett. 96 (17), 174502.

KAHOUADJI, L., HOUCHENS, B. C. & MARTIN WITKOWSKI, L. 2011 Thermocapillary instabilities in a
laterally heated liquid bridge with end wall rotation. Phys. Fluids 23 (10), 104104.

KAHOUADJI, L., MARTIN WITKOWSKI, L. & LE QUÉRÉ, P. 2010 Seuils de stabilité pour un écoulement
à surface libre engendré dans une cavité cylindrique tournante à petit rapport de forme. Mécanique
et Industries 11 (5), 339–344.

KWAN, Y. Y., PARK, J. & SHEN, J. 2010 A mathematical and numerical study of incompressible flows
with a surfactant monolayer. Discrete Continuous Dyn. Syst. 28 (1), 181–197.

LOPEZ, J. M. & CHEN, J. 1998 Coupling between a viscoelastic gas/liquid interface and swirling vortex
flow. J. Fluids Engng 120 (4), 655–661.

LOPEZ, J. M. & HIRSA, A. 2000 Surfactant-influenced gas-liquid interfaces: nonlinear equation of state
and finite surface viscosities. J. Colloid Interface Sci. 229 (2), 575–583.

LOPEZ, J. M., MARQUES, F., HIRSA, A. H. & MIRAGHAIE, R. 2004 Symmetry breaking in free-surface
cylinder flows. J. Fluid Mech. 502, 99–126.

MAGNAUDET, J. & EAMES, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous
flows. Annu. Rev. Fluid Mech. 32 (1), 659–708.

MARTÍN, E. & VEGA, J. M. 2006 The effect of surface contamination on the drift instability of standing
Faraday waves. J. Fluid Mech. 546, 203–225.

PEAUDECERF, F. J., LANDEL, J. R., GOLDSTEIN, R. E. & LUZZATTO-FEGIZ, P. 2017 Traces of
surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl Acad.
Sci. 114 (28), 7254–7259.

PONCE-TORRES, A. & VEGA, E. J. 2016 The effects of ambient impurities on the surface tension. EPJ
Web Conf. 114, 02098.

PONCET, S. & CHAUVE, M. P. 2007 Shear-layer instability in a rotating system. J. Flow Visual. Image
Process. 14 (1), 85–105.

RASTELLO, M., MARIÉ, J. L. & LANCE, M. 2017 Clean versus contaminated bubbles in a solid-body
rotating flow. J. Fluid Mech. 831, 592–617.

SCRIVEN, L. E. 1960 Dynamics of a fluid interface: equation of motion for Newtonian surface fluids.
Chem. Engng Sci. 12 (2), 98–108.

SERRE, E. & BONTOUX, P. 2007 Vortex breakdown in a cylinder with a rotating bottom and a flat
stress-free surface. Intl J. Heat Fluid Flow 28 (2), 229–248.

SERRE, E., TULISZKA-SZNITKO, E. & BONTOUX, P. 2004 Coupled numerical and theoretical study of
the flow transition between a rotating and a stationary disk. Phys. Fluids 16 (3), 688–706.

SPOHN, A. & DAUBE, O. 1991 Recirculating flows in a cylindrical tank. In Proceedings of the 5th
International Conference on Computational Methods and Experimental Measurement (ed. A. Sousa,
C. A. Brebbia & G. M. Carlomagno), pp. 155–166. Elsevier.

STEWARTSON, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 17–26.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.473


Influence of interface pollution 900 A42-29

STONE, H. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant
transport along a deforming surface. Phys. Fluids 2 (1), 111–112.

SUZUKI, T., IIMA, M. & HAYASE, Y. 2006 Surface switching of rotating fluid in a cylinder. Phys. Fluids
18 (10), 101701.

TASAKA, Y. & IIMA, M. 2009 Flow transitions in the surface switching of rotating fluid. J. Fluid Mech.
636, 475–484.

TOPHØJ, L., MOUGEL, J., BOHR, T. & FABRE, D. 2013 Rotating polygon instability of a swirling free
surface flow. Phys. Rev. Lett. 110 (19), 194502.

VATISTAS, G. H., ABDERRAHMANE, H. A. & SIDDIQUI, M. H. K. 2008 Experimental confirmation of
Kelvin’s equilibria. Phys. Rev. Lett. 100 (17), 174503.

VATISTAS, G. H., WANG, J. & LIN, S. 1992 Experiments on waves induced in the hollow core of vortices.
Exp. Fluids 13 (6), 377–385.

YANG, W., DELBENDE, I., FRAIGNEAU, Y. & MARTIN WITKOWSKI, L. 2019 Axisymmetric rotating
flow with free surface in a cylindrical tank. J. Fluid Mech. 861, 796–814.

YANG, W., DELBENDE, I., FRAIGNEAU, Y. & MARTIN WITKOWSKI, L. 2020 Large axisymmetric
surface deformation and dewetting in the flow above a rotating disk in a cylindrical tank: spin-up
and permanent regimes. Phys. Rev. Fluids 5 (4), 044801.

YOUNG, D. L., SHEEN, H. J. & HWU, T. Y. 1995 Period-doubling route to chaos for a swirling flow in an
open cylindrical container with a rotating disk. Exp. Fluids 18 (5), 389–396.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.473

	1. Introduction
	2. Flow set-up and related investigation techniques
	2.1. Base flow description
	2.2. Experimental technique
	2.3. Experimental evidence for m=5 instability
	2.4. Numerical methodology for free-slip interfaces
	2.4.1. Mathematical model
	2.4.2. Linear stability analysis
	2.4.3. Direct numerical simulation


	3. Critical comparison of the different approaches
	3.1. Comparison between the numerical methods
	3.2. Mean flow structure
	3.3. Threshold detection
	3.4. Nonlinear dynamics
	3.5. Limitations of the clean interface hypothesis

	4. Modelling of interface pollution
	4.1. Modification of the effective surface tension
	4.2. Modelling of pollutant concentration
	4.3. Structure of the modified base flow
	4.4. Linear instability thresholds for G=1/14

	5. Frozen interface condition
	5.1. Search for a simpler parameter-free interface condition
	5.2. Base flow
	5.3. Nonlinear dynamics
	5.4. Critical Reynolds number and least stable mode
	5.5. Conclusions on the frozen surface condition

	6. Discussions and perspectives
	References

