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Satellite based navigation system integrity monitoring is essential both for liability and safety
critical services. The threats to system integrity are the potential failure modes that could
occur at system, operational and user sensor levels. Research on identification, characteris-

ation and modelling of such failure modes, suggests that failures that grow slowly over time
(e.g. ramp error less than 2 m/s), also referred to as slowly growing errors (SGE) are the most
difficult to detect early. Conventional snapshot algorithms detect SGEs when the test statistic

crosses the threshold usually after relatively long periods of time. A recent concept based on
the average of residuals over time has been found to have a significant weakness. This paper
proposes a ‘‘difference test ’’ algorithm capable of detecting SGEs early. In this method, the

test statistic is the difference between the norm of current residuals and the norm of the
residuals at a previous epoch. The distribution of the test statistic is over-bounded by a
normal distribution whose parameters are derived from two Chi-distributions. Results show

that the new algorithm results in a significant reduction in detection time compared to con-
ventional methods.
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1. INTRODUCTION. Integrity is a measure of trust, which can be placed in
the correctness of information supplied by the total system. Integrity includes the
ability of a system to provide timely and valid warnings to the user. This is vital for
liability and safety critical applications. Integrity risk (loss of integrity) of a navigation
system is defined as the probability that a user will experience a position error (PE)
larger than the alert limit (AL) without an alert being raised within the specified
time-to-alert (TTA) at any instant in time and at any location in the coverage area.
Loss of integrity can happen in three ways (Ochieng, 2003; Tiemeyer, 2002) : an un-
safe condition is not detected, an unsafe condition is detected but the isolation
function removes the wrong satellite, and an unsafe condition is detected but
annunciation takes longer than the TTA.

The integrity of a global navigation satellite system (GNSS) can be monitored at
the independent network level (e.g. the European geostationary navigation overlay
service, EGNOS), system level (e.g. Galileo), and user level. The main approach at the
user sensor level is receiver autonomous integrity monitoring (RAIM). An extension
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of RAIMwhich accommodates the requirement for additional sensors to improve the
performance of a GNSS such as GPS, is referred to as user level autonomous integrity
monitoring (UAIM) (Feng et al 2006a).

Integrity monitoring at the user level can be divided into two parts : determination
of the protection level (PL), and failure detection and exclusion (FDE). The PL is
the upper bound of the positioning error, which is compared against the alert
limit (AL) to determine if an alert should be raised. The FDE algorithm is used
to detect unsafe conditions (including abnormal error in measurements). Once
detected and if the exclusion function is available, then the algorithm excludes the
failed measurement(s) and uses the remaining ones for positioning. If the remaining
measurements cannot meet the minimum requirements (either geometry or number
of visible satellites), an alert is raised because the conditions necessary for the ex-
ecution of the detection function are inadequate (this is usually referred to as RAIM
unavailability).

In general, failure detection algorithms are based on a number of assumptions, the
most important of which is that residual errors in the measurements are normally
distributed. Failure detection consists of three main steps: the construction of a test
statistic ; the characterisation of the test statistic and the determination of a threshold
to reflect the user requirement in terms, for example, of probability of false alert ; and
decision making. One of the key features in the design of any integrity algorithm is its
sensitivity to various types of failure modes. For positioning usingGNSS, a significant
error such as clock jump can be easily detected by a snapshot algorithm, while the
most difficult types of failure to detect are those that grow slowly over time (e.g. clock
drift at less than 2 m/s) (Lee et al 1999). Such failures are of particular concern in
filtering based UAIM because the Kalman filter tends to adapt to them. This results
in the positioning solution being contaminated with the consequence of misleading
information both in terms of accuracy and integrity. For this reason, early detection
of this type of failure is vital.

Previous research on the detection of slowly growing errors (SGEs) has explored
the suitability of the estimation of the mean of the residuals over time from the
innovation of the Kalman Filter (Diesel et al 1995), culminating in the so-called
Extrapolation Method (Lee et al 1999). The process of estimating the mean involves
storing measurements and residuals in buffers for a period of 30 minutes or more and
estimating the mean of residuals over a selected time interval. The test statistic used is
then the sum-squared of the estimated mean residuals which has a chi-square distri-
bution if there is no failure and a non-central chi-square distribution otherwise
(Diesel et al 1995). By taking a relatively long averaging interval, the covariance of
the averaged residual should be small in the absence of failure and large otherwise.
This property, in theory, makes it possible to detect SGEs. However, there is an issue
with the degrees of freedom of the distribution if the number of satellites changes
during the period of time used in the averaging process. In this case, the threshold
determined from the distribution with either the current or an average number of
visible satellites has the potential to result in a higher number of missed detections,
false alerts or both. Any decision based on the threshold for example, does not reflect
accurately the continuity risk (from which the probability of false alert is derived).
Put simply, the averaging technique suffers from the fact that in some instances, the
distributions used to determine the threshold and the test statistic may not match. It
is important that the distribution used to determine the threshold should at least
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overbound the distribution of the test statistic. Given this significant weakness, the
averaging concept is not discussed further in this paper.

The other approach is known as the ratio test which is based on the F distribution
and is normally used to test whether there is a significant difference between two
independent variants. The ratio test may be applicable to the comparison of two
variants, one of which has to be fault-free. If the failure (ramp error) occurs before
the test, the ratio test cannot give a correction decision. Therefore, the ratio test is not
discussed further in this paper.

Given the background above, this paper proposes a ‘‘difference test ’’ algorithm
for the detection of slowly growing errors. A new test statistic is derived from the
difference between the norm of the residuals at the current epoch and a previous
epoch. The distribution that overbounds the test statistic is defined and justified by
simulations. Section 2 of the paper gives background statistical information on over-
bounding. Section 3 develops the ‘‘difference test ’’ method including the methods
proposed for the determination of the test statistic, the distribution and the threshold.
Section 4 looks at the application of the algorithm to early detection. Section 5 pre-
sents and discusses the results. The paper is concluded in Section 6.

2. OVERBOUNDING OF A DISTRIBUTION. The distribution of a test
statistic could be non-regular which cannot be fully described by a typical distri-
bution (e.g. normal, student etc.). Overbounding is to ensure that the probability of
a known distribution is higher than the actual distribution at least for a part of a
distribution such as the tail. There are normally two types of overbounding: the
Probability Density Function (PDF) and Cumulative Distribution Function (CDF)
(DeCleene, 2000; Ober et al 2001). The other techniques of overbounding are
largely based on these e.g. excess-mass functions (Rife et al 2004).

In general, PDF overbounding can be expressed as:

pT(x)>pA(x) 8x 2 (a, b) (1)

where pT (x) is the PDF of a typical distribution, pA(x) is the PDF of the actual
distribution, a and b define the interval. If a=x‘, then pT (x) overbounds pA (x) on
the left tail. If b=‘, then pT (x) overbounds pA (x) on the right tail.

Similarly, in general, CDF overbounding can be expressed as

PT(x)>PA(x) (2)

1xPT(x)>1xPA(x) (3)

where PT (x) is the CDF of a typical distribution, PA (x) is the CDF of the actual
distribution. Expression (2) stands for PT (x) overbounding PA (x) on the left tail
while expression (3) stands for PT(x) overbounding PA(x) on the right tail.

The CDF overbounding and PDF overbounding are correlated. If pA (x) is over-
bounded by pT (x) on the left tail (a=x‘), then PA (x) is overbounded by PT (x) on
the left tail (xs(x‘,b)). If pA (x) is overbounded by pT (x) on the right tail (b=‘),
then PA (x) is overbounded by PT (x) on the right tail (xs(a,‘)).

In GNSS integrity monitoring, the normal distribution is often used to overbound
non-Gaussian distributed errors (e.g. multipath errors). Therefore, appropriate nor-
mal distribution in terms of overbounding is a key research issue. Suppose we have
two normal distributionsN1sN( m1,s1) andN2sN( m2,s2). Three typical scenarios are
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shown in Figures 1a–c where one can bound the other at some intervals. The inter-
section points A and B are the critical points for one distribution to overbound the
other. Figure 1a demonstrates that N2 overbounds N1 in PDF at (x‘,a) and (b,‘)
under the conditions of m1=m2 and s1<s2. This can be referred to as standard devi-
ation overbounding. Figure 1b demonstrates that N2 overbounds N1 in PDF at (a,‘)
under the conditions of m1<m2 and s1=s2. This can be referred to as mean over-
bounding. Figure 1c demonstrates thatN2 overboundsN1 in PDF at (x‘,a) and (b,‘)
under the conditions of m1lm2 and s1<s2.

The critical values a and b can be resolved from the following equation
(Abramowita et al, 1970)
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Figure 1c. Overbounding of different means and different standard deviations.
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N( m2,s2) is used to overbound N( m1,s1) in the tails, with the overbounding K factor
being:

K
<K1 (left tail)

>K2 (right tail)

�
(6)

where K1=
x1xm2

s2
, and K2=

x2xm2

s2
which reflect the overbounding probability.

In the case of s1=s2 (i.e. m=0), the only intersection point is x=x q
p and the

corresponding K factor is :

K=xxm2

s2
: (7)

The analysis above suggests that a normal distribution can be overbounded on the
left tail by another normal distribution with a larger sigma value and a left offset in
the mean. The same is true for overbounding of the right tail by another normal
distribution with a larger sigma value and a right offset in the mean.

3. DIFFERENCE TEST FOR DETECTING SLOWLY GROWING
ERRORS. Failure detection in RAIM is based on statistical consistency checks
using redundant measurements. There are two different RAIM schemes for use with
measurements; snapshot and filtering (Brown, 1996). In the snapshot scheme only
the current redundant measurements are used to check measurement consistency.
In snapshot methods the test statistic is derived from the relationship between
measurements and position given by:

y=Gx+e (8)

where

y is the difference between the actual measured parameter (e.g. pseudorange) and
the predicted parameter based on a nominal user position and clock bias. It is a nr1
vector. n is the number of measurements.
G is the design matrix (i.e. the observation matrix in a local horizontal coordinates
system, e.g. ENU: East-North-Up).
x is the vector of the unknown parameters (i.e. three components of true position
plus a user clock bias).
e=[e1 e2 … en]

T is the measurement error vector caused by receiver noise, wave
propagation, ephemeris etc. The elements of the error vector are assumed to be
independent zero-mean Gaussian random variables with the same variance sm.

The square root of the sum of squared errors (SSE) is taken as a test statistic, which
can be calculated by the least squares or parity methods. The SSE can be obtained
from the residual vector (v) by:

SSE=vTv (9a)

where v=[IxG(GTG)x1GT]e, I is an identity matrix (Feng et al 2006b). In a weighted
mode where each measurement has a different error (s), the SSE is expressed by:

SSE=vTWv (9b)

Where W is the inverse of the measurement covariance matrix. Based on the
assumption that the measurements errors are normally distributed with zero-mean,
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the SSE follows the Chi-square distribution with (nx4) degrees of freedom
(Parkinson et al, 1988). Therefore, the range residual parameter (norm of the re-
sidual),

ffiffiffiffiffiffiffiffiffiffi
SSE

p
, follows a Chi-distribution with (nx4) degrees of freedom.

In the case of filtering methods, the test statistic is derived from the ‘‘ innovation’’
of the Kalman filter as follows:

r=zxHxx (10)

where r is the innovation vector, z is the current measurement vector, H is the ob-
servation matrix, and x_ is the state of the previous epoch. The test statistic is :

T=
ffiffiffiffiffiffiffiffiffiffiffi
rTWr

p
=

ffiffiffiffiffiffiffiffiffiffi
SSE

p
(11)

where W=(HP(x)HT+R)x1, P(x) is the predicted covariance, and R is the measure-
ment noise matrix in the Kalman filter.

Based on the same assumption as snapshot methods for the measurements errors,
the SSE follows a Chi-square distribution with degrees-of-freedom of (n) (Diesel et al,
1995; Lee et al, 1999). Therefore, the range residual parameter (norm of the re-
sidual),

ffiffiffiffiffiffiffiffiffiffi
SSE

p
, follows a Chi-distribution with (n) degrees of freedom. One important

feature is that the statistical distributions of SSE and
ffiffiffiffiffiffiffiffiffiffi
SSE

p
are completely indepen-

dent of the satellite geometry for any (n) based on the assumption above under fault-
free conditions.

Neither the snapshot nor filtering methods are designed for detecting slowly
growing error. The concept proposed based on the mean of the residual to
detect SGEs has been shown in the introduction section to have a fundamental
weakness related to the change of the number of satellites. This section proposes a
new approach based on the difference of the norm of the residuals between two
epochs.

3.1. Test statistic. Normally GPS exhibits long term stability with normal re-
sidual measurement noise. However, in the presence of SGEs, the GPS residuals
exhibit a rate of growth. Therefore, a test statistic based on the difference between the
conventional test statistics at different epochs has the potential to enable the detection
of SGEs (as illustrated in Figure 4). This paper proposes a ‘‘difference test ’’ algor-
ithm to check whether there is a significant difference between the current residuals
and residuals at a previous epoch. This time period depends on the characteristics of
the different failure mode. The test statistic is thus the difference between the two sets
of residuals. In the basic mode, the test statistic can be expressed as:

TDt=
ffiffiffiffiffiffiffiffi
SSEt

sm

q
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SSEtxDt

sm

q
(12a)

In the weighted mode, the test statistic can be expressed as:

TDt=
ffiffiffiffiffiffiffiffiffiffiffi
SSEt

p
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSEtxDt

p
(12b)

where t is current time and Dt is the time interval selected. The corresponding degrees
of freedom are denoted as dof2 and dof1 respectively. sm is the standard deviation
of the measurement error which is a constant value determined with the prior-
knowledge of the measurement characteristics. Any change in the sm value based on
previous information could be contaminated by the failures we are trying to detect.
The test statistic is based on a moving window and always captures the difference
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between the two edges of the window. As described above, the norm of the residual
follows a Chi-distribution. Therefore, the test statistic (TDt) is in fact the difference of
two Chi-distributed variants. In order to determine the threshold, the distribution
of the test statistic must be known or determined.

3.2. Distribution and threshold determination. The mean (m), standard deviation
(s), skewness (c1) and kurtosis (c2) of a Chi-distribution can be expressed as:

m=

ffiffiffi
2

p
C(12(n+1))

C(12n)
(13)

s2=
2 C(12n)C(

1
2n+1)xC2(12(n+1))

� �
C2(12n)

=nxm2 (14)

c1=
m
s3(1x2s2) (15)

c2=
2
s2(1xmsc1xs2)x3 (16)

where C(n)=
R1
0 tnx1extdt is a Gamma function. Therefore, the theoretical mean of

the difference of two Chi-distributed variants can be expressed as:

md=m2xm1=

ffiffiffi
2

p
C(12(dof2+1))

C(12dof2)
x

ffiffiffi
2

p
C(12(dof1+1))

C(12dof1)
(17)

where, dof1 and dof2 are the degrees-of-freedom of two Chi-distributions respectively.
The variance of the difference of two Chi-distributed variants can be expressed
through error propagation as:

s2
d=s2

1+s2
2 (18)

where s1
2 and s2

2 are the value of expression (14) with (n) equal to dof1 and dof2
respectively.

The variance of the difference of two Chi-distributions converges from 0.3634
(dof=1) to 0.5 as a result of increasing degrees of freedom. Therefore, the variance of
the test statistic (TDt) converges to 1.0 as a result of increasing both dof1 and dof2. The
minimum value is 0.7268 if both dof1 and dof2 take the value of 1.

Skewness is a measure of the asymmetry of the probability distribution. Roughly
speaking, a distribution has a positive skew (right-skewed) if the right (higher value)
tail is longer that the left tail and a negative skew (left-skewed) if the left (lower value)
tail is longer than the right tail. The value of the skewness is zero for normal distri-
bution where the probability distribution is symmetrical. The skewness of the distri-
bution of the test statistic (TDt) is a function of the two degrees of freedom (dof2, dof1
and dof2xdof1).

Kurtosis is the degree of peakedness of a distribution. For the normal distribution,
the kurtosis is 0. It is difficult to figure out the analytical solution in terms of kurtosis
for the distribution of the test statistic (TDt). However, it can be approximated by an
empirical expression using simulation based studies.

3.2.1. Simulation based analysis. This section relies on the assumption of nor-
mally distributed GPS residual errors and a conventional Chi-distributed test statistic
to attempt to figure out the distribution for the new test statistic based on the
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difference between two variants of Chi-distribution. Hence the simulation presented
is purely mathematical and scalable, and does not need to be based on GPS data.

A number of Monte Carlo simulations were carried out to develop the distribution.
The simulations were based on 100 000 samples each of Chi-distribution for the dif-
ference (dof2xdof1) of two sets of degrees-of-freedom ranging from 1 to 20. Figure 2a
shows the residual of the mean of the simulated test statistic compared to the
theoretical value ( md, expression 17). The values are very small with a minimum of
x0.0092 and a maximum of 0.0086. The colour scheme (also in Figures 2b, 2c and 2e)
emphasises the variation in three dimensions between the two sets of degrees-of-
freedom and the parameter under investigation. Figure 2b shows the standard devi-
ation (the square root of variance) of the simulated test statistic. It demonstrates that
the standard deviation increases with both dof2 and dof1 with a minimum of 0.8506
and a maximum of 0.9982 both within the upper bound of 1. This increase is expected
due to properties of measurement noise addressed in expressions (14) and (18).

Figure 2c shows the skewness of the simulated test statistic samples. Skewness is
strongly related to the value of dof2xdof1with aminimumofx0.1974 and amaximum
of 0.2047. The larger the absolute value of (dof2xdof1) the larger the skewness, and
vice versa, while the sign determines whether the distribution is left or right skewed.
The absolute value of the skewness tends to be large when either dof1 or dof2 has a
small value (i.e. less than 5). The maximum value of the skewness is 0.0748 and the
minimum value is x0.0671 when dof2o5 and dof1o5 as shown in Figure 2d. In
general, the skewness is close to that of the normal distribution.

Figure 2e shows the kurtosis of the simulated test statistic samples. There is no
significant offset to the normal distribution. The figure suggests that the kurtosis has a
characteristic that is inverse to the standard deviation (see Figure 2b).

3.2.2. Determination of the distribution for detection. Based on the analysis of
the mean, the standard deviation, the skewness, and the kurtosis, the distribution of
the test statistic (TDt) can be approximated by a normal distribution N( md,sd) if the
value of skewness is zero. If the skewness is considered, N( md,sd) overbounds the
right tail if the skewness is negative, and overbounds the left tail if the skewness is
positive as shown in Figure 3a. Therefore, the test statistic can be overbounded by a
normal distribution N( md,1) if the value of skewness is close to zero where (dof2x
dof1) is small in value. This reflects actual GNSS positioning in most environments
where the number of visible satellites is around seven with a small possibility of
significant deviation in the short term.

To have a general and conservative expression of the normal distribution that
overbounds the test statistic, the skewness is used for the determination of the mean
value while the standard deviation is taken to be 1 since all the values of sd are less
than one. Hence, the proposed mean value is determined as:

mD=mdxc1d (19)

Where md is the theoretical mean, c1d=((c12)
1
3x(c11)

1
3)sd=2 is the conservative offset

factor with c12 and c11 being the skewness corresponding to dof2 and dof1 respectively.
The offset applied to the mean value ensures that the absolute value of mD is always
larger than md while keeping the sign the same as that of md. Therefore, the test
statistic is overbounded by both the mean and standard deviation. A decision
threshold can then be determined from the normal distribution N( mD,1) by taking
account of the required navigation performance (RNP), specifically, the integrity and
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continuity risk from which the probability of missed detection (PMD) and the prob-
ability of false alert (PFA) can be derived. (Note that RNP is a concept endorsed by
the International Civil Aviation Organisation (ICAO), and is a statement of the
navigation performance necessary for operation within a defined airspace) (Ochieng
et al, 2003).

Figure 2a. The residual of mean. Figure 2b. The standard deviation.

Figure 2c. The skewness.

Dof 1 = 1

Dof 1 = 5

Dof 1 = 10

Dof 1 = 20

Dof 1 = 15

Dof 1 > 4
Dof 2 > 4

Figure 2d. The relation of skewness and

dof2xdof1.

Figure 2e. The kurtosis.
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The relationship between threshold T and PFA, is (Feng et al, 2006b) :

PFA=
Z1

T

f xð Þ dx (20)

where f(x) is the probability density function of normal distribution in the fault-free
case. The threshold can be calculated for a known PFA.

3.3. Early detection and identification of slowly growing error. One important
factor in the test statistic constructed in section 3.1 is the time interval Dt. The choice
of time interval depends on the rate of error growth and the length of the data buffer
designed. Obviously, the slower the error growth rate, the longer the time interval
required to detect the error.

To detect and identify SGEs, a multiple window scheme is developed below where
a number of test statistics (e.g. three in Figure 4, TDt1, TDt2, TDti) are used for different
time intervals (Dt1, Dt2, Dti). For each test statistic, a threshold can be derived from
the distribution defined in section 3.2 (i.e. (THDt1,THDt2,THDti)). Figure 4 demon-
strates the three test statistics case.

The scenarios for failure detection are as follows:

’ If TDt3>THDt3, while TDt2<THDt2 and TDt1<THDt1, a very slow ramp error is
detected;

’ If TDt3>THDt3, and TDt2>THDt2 while TDt1<THDt1, a slow ramp error is de-
tected;

’ If all the test statistics are larger than the corresponding thresholds, a relatively
fast growing error is detected;

’ If all the test statistics are less than the corresponding thresholds, no growing
error is detected.

This difference test can be used to detect a failure significantly earlier compared to
the conventional methods. Results demonstrate that it is able to detect a SGE about
20 seconds earlier than the conventional method as shown in Figure 6. This is crucial
for safety critical applications such as aviation where the time-to-alert ranges from
5 minutes for the En-route phase of flight to 6 seconds for Category I precision
approach with even more stringent requirements expected for Category II and
Category III (ICAO, 2006).

Skewness =0.2047
Dof 1=20
Dof 2=1

left tail
overbounding

),( ddN σµ

62.3−=dµ
93.0=dσ

Figure 3a. Distribution case 1.

Skewness =-0.0247
Dof 1=11
Dof 2=20

),( ddN σµ

)1 ,( dN µ
 overbounding

both tails

17.1=dµ
9924.0=dσ

right tail
overbounding

Figure 3b. Distribution case 2.
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Further reduction in the time taken to detect a failure can be achieved by applying
the difference test to a number of sequential epochs. This is based on the hypothesis
that if there is no failure, the test statistics are independent for sequential epochs.
Therefore, for a given threshold, the joint probability of false alert is :

PFA=PFA1rPFA2r . . .rPFAn (21)

where PFA is the joint probability of false alert which reflects the user defined RNP,
PFAi (i=1 … n) are the probabilities of false alert for each sequential epoch. If the
values of PFAi are taken to be the same, the following equation holds:

PFA1=PFA2= . . .=PFAn=(PFA)
1
n (22)

Figure 5 illustrates early detection where n=3. The single epoch detection requires
a large threshold (TH2) to reflect the RNP (e.g.1r10x6/sample false alert), while
detection based on three sequential epochs requires a small threshold (TH1 for
1r10x2/sample false alert) to reflect the same RNP parameters. If a measurement is
faulty, the above hypothesis is breached. A failure is claimed if all the three sequential
epochs detect a failure instead of waiting until the test statistic is large enough to
exceed the single epoch threshold TH2.

The maximum number of sequential epochs is based on the K factor using the
algorithm in section 2 and the parameters determined in this section above. The

Figure 4. Formations of multiple test statistics.
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Figure 5. Early detection scheme.
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corresponding probability of false alert is the maximum value to be taken as PFAi for
each sequential epoch. Therefore

nmax=floor( log (PFA)= log (PFAi)) (23)

where floor(x) means rounding to the nearest lower integer. The nmax is therefore used
to determine the actual PFAi from expression (22). Another benefit is that the scheme
can give the confidence level at the first early detection point (e.g. 97.85% at point 1)
and subsequent detection points (e.g. 99.95% at point 2).

4. RESULTS. Trial data (pseudorange measurements) contaminated by a si-
mulated slowly growing error are used to verify the proposed methods. The trial
was carried out near Aberporth, United Kingdom on 13 August 2005. The posi-
tioning algorithm uses a Kalman filter.

To demonstrate the performance of the algorithms, different time intervals for the
‘‘difference test ’’ and different ramp errors are applied to PRN 21 at the 1500th
second from epoch 0. The required probability of false alert is 3.333r10x7/sample.
Figure 6 shows the test statistic (difference test) at a time interval of 360 seconds for a
ramp error of 0.2 m/s. The conventional test statistic is also shown in the figure. The
thresholds for the ‘‘difference test ’’ are the same if the differences in the number of
visible satellites are the same, and vice versa. The comparison of the conventional
method and the difference test shows that the latter is able to detect the failure sig-
nificantly earlier than the former.

Figure 7 shows the test statistic (difference test) at time intervals of 120, 240, and
360 seconds for a ramp error of 0.2 m/s. It compares the conventional method with
the difference test implementing the new early detection scheme. The algorithm with
the shortest time interval (120 s) is not sensitive to this error (test 1 in the figure).
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Figure 6. Comparison of the conventional method and the difference test.
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On the other hand the algorithm with the longer time intervals (i.e. 240 s and 360 s) is
sensitive to this error (test 2 and test 3 in the figure), and can detect the failure much
earlier (about 180 s) than the conventional method.

Figure 8 shows the test statistic (difference test) at time intervals of 300, 600, and
900 seconds for a ramp error of 0.2 m/s. All the three tests are able to detect the failure
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Figure 7. Comparison of the conventional method and the difference test with the early detection

scheme.
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much earlier than the conventional methods. In comparison with the results shown in
Figure 7, it is clear that the algorithm proposed is sensitive to the time interval used.

Figure 9 shows the test statistic (difference test) at time intervals of 300, 600, and
900 seconds for a ramp error of 0.05 m/s. Only the algorithm with the longest time
interval (test 3) is able to detect the error earlier than the conventional method. The
algorithm with a medium time interval is at the critical point where the test statistic is
around the threshold (test 2). The algorithm with the shortest time interval does not
detect the error. In comparison with the results shown in Figure 8, it is clear that the
algorithm is sensitive to the rate of the ramp as well as emphasising the need for a
good understanding of failure modes of integrity.

Table 1 presents the key quantities used in the comparison of the conventional
method and the difference test approach. This table also shows the detectability in
relation to time interval and failure mode (in terms of rate of ramp).

5. DISCUSSIONS AND CONCLUSIONS. The results in section 4 dem-
onstrate the efficiency and sensitivity of the new algorithms in the early detection of
the most difficult type of failure, the slowly growing errors. The length of the time
interval used is the key factor that affects the sensitivity of the algorithm in terms of
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Figure 9. Comparison at different rates of error growing.

Table 1. Comparison of results.

Figure Error rate Time interval Earlier Detection

6 0.2 m/s 360 s About 20 s

7 0.2 m/s 120 s 240 s 360 s About 200 s by last two

8 0.2 m/s 300 s 600 s 900 s About 200 s by all three

9 0.05 m/s 300 s 600 s 900 s About 700 s by last one
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the minimum ramp error and the initialization time (i.e. the time it takes to start to
execute a RAIM function). The multiple time interval algorithm can deal with the
sensitivity issues completely and is also able to identify the ramp at least at a quali-
tative level (fast or slow).

The main contribution of this paper is the new ‘‘difference test ’’ RAIM algorithm
and the development of the distribution of the new test statistic, used to calculate the
threshold. A slowly growing error detection algorithm is proposed based on the
‘‘difference test ’’ with multiple time intervals. The ‘‘difference test ’’ can detect a
potential failure significantly earlier than conventional methods. It can be enhanced
by the proposed early detection scheme to enable a further gain in the reduction in the
time taken to detect a failure.

In terms of overall integrity monitoring, the first task is the characterisation of
various failure modes, followed by implementation of appropriate algorithms. In
this, a minimum configuration might involve the use of the difference test algorithm
with carefully selected ‘‘differencing’’ intervals together with conventional methods
in order to detect failures of different characteristics. Care should be exercised in the
cases of variable rate or intermittent SGEs, with an example being multipath, which
has a cyclic behaviour. In such cases the performance of the proposed algorithm will
depend not only on the characteristics of the failure modes and the length of the time
interval, but also the number of intervals.
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