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77 GHz offset reflectarray for FOD detection

on airport runways
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In designing a Foreign Object Debris (FOD) detection system on airport runways, this paper deals with the performance of a
77 GHz reflectarray antenna (RA). Debris may be very small and have low radar cross section (RCS), leading to design a high
gain primary-fed offset RA. To minimize the aperture blockage, the main radiation lobe is in the specular direction. The
antenna has a maximum gain of 40 dBi and aperture efficiency of 50% over the frequency band 76-77 GHz. First measure-
ments using a 77 GHz radar module were carried out on pavement.

Keywords: Antenna Design, Modelling and Measurements, Radar and Homeland Security

Received 8 June 2011; Revised 1 October 2011

. INTRODUCTION

The purpose of this joint French-Japanese work is to design a
detection system for debris or Foreign Object Debris (FOD)
on airport runways [1-5].

The fold topic became of interest with the Concorde acci-
dent in 2000. Companies started to develop systems that are
actually on international airports like Vancouver and
Heathrow [1], Singapore [2], and Boston [3]. Except for [2],
the companies have chosen to include a millimeter wave
radar in this set-up. The Tarsier developed by QinetiQ oper-
ates with a 94 GHz radar, whereas FODetect (Xsight and
Thales) operates with a 77 GHz radar.

The project includes as well the design and fabrication of
a high gain antenna (LEAT, France) as the development of a
millimeter-wave front-end (ENRI, Japan). Measurements
campaigns are carried out jointly. The complete system is
composed of the high-gain antenna and a radar module,
working in W-band between 76 and 77 GHz. The antenna
is a printed reflectarray antenna (RA), generally used for
millimeter wave radar applications because of its excellent
trade-off between high directivity and low loss, low
profile, and low cost. Nevertheless, a primary source from
center generates a masking effect called “aperture block-
age”, which decreases the antenna efficiency. To avoid this
effect, the reflectarray is designed with an offset feed with
a main radiation beam of the RA in the specular direction,
for specular radiation minimization purpose. The side lobe
level is a pertinent parameter for this system as debris can
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be close to each other with a high radar cross section
(RCS) dynamic range. Therefore, a low RCS FOD detected
in the main beam could be hidden by a higher RCS FOD
detected in a side lobe. A primary feed with a prolate radi-
ation pattern modifies the signal in such a way that 99% of
the power is within the main lobe. As a consequence, the
secondary lobes are greatly reduced and the overall noise
level accordingly. Section II describes the antenna design
and Section III deals with the antenna measurements,
while Section IV presents the results from our measurement
campaign.

I. ANTENNA SPECIFICATIONS
AND MODELIZATION

In 2009, from a preliminary study, a 35 dBi gain circularly
polarized reflectarray has been developed [5]. Elementary
cells were designed to achieve linear to circular polarization
conversion. This configuration has the main advantage to sim-
plify considerably the antenna implementation. Although
radar tests were conclusive for small distances [5], the gain
of the antenna was not sufficient to detect —20 dBsm target
at 46 m as recommended by the FAA advisory circular for
this application [6]. Furthermore, the use of a circular polar-
ization did not show any greater interest compared to linear
polarization for this application. For that reason, a second
antenna with 40 dBi gain and linear polarization was designed.
Moreover, in the perspective of the future 76-81 GHz radar
module developed by the ENRI the antenna is designed for
this band. In consequence, the design frequency of the
antenna is 78.5 GHz. Nevertheless, only 76-77 GHz results
are presented here (for concision purpose) because the
whole radar system used for measurement presented in this
paper is operating in this band.
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(a)

Fig. 1. (a) Scheme of the offset reflectarray. (b) Scheme of an elementary cell.

A) 27° offset reflectarray

As for every quasi-optical antenna, RA has to compensate for
the phase delay of the spherical incident wave coming from
the primary feed. In RAs, the phase compensation is obtained
by adjusting patch dimensions. Patches are placed on the flat
surface of a back-metallized substrate (Fig. 1) [7].

ko(Rij — ;7o) — Yy = 2N (1)
where Rij is the distance between the feed and the patch (i, j),
rij is the distance between the patch (7, j) and the RA center, r,
is the direction of the main beam, k, is the wave number, and
Yij is the phase that has to be reflected by the patch (i, j) for
delay compensation.

Equation (1) describes the phase compensation for a
focused beam. It is possible to adjust main antenna parameters
such as directivity, radiation pattern shape or number of
beams with proper optimization. Moreover, RAs with feed
from center have a high aperture blockage that decreases the
overall aperture efficiency. Therefore, an offset primary feed
at 27° has been chosen. Previous studies have shown that
elementary cells radiate also in the specular direction [8]. In

our case, a high lobe should appear at 6§ = —27°. To solve
this problem, the radiation direction of the focused beam is
chosen in the specular direction, ie. §= —27°. Figure 1

shows the antenna geometry.
Moreover, a primary source with a prolate radiation
pattern is used to increase the total aperture efficiency [9, 10].

B) Prolate horn

The field radiated by a reflectarray is proportional to the
Fourier transform of the tangential electrical field in the aper-
ture, i.e. the Fourier transform of the radiation pattern of the
primary feed. The influence of the latter on the RA radiated far
field can be compared to the effect of a window in signal pro-
cessing. Therefore, a prolate function is chosen for the radi-
ation pattern of the primary feed. The prolate window
modifies the signal in such a way that the main lobe contains
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99% of the power. As a consequence, the secondary lobes are
greatly reduced such as the overall noise level. The aperture
efficiency is improved. The template of the prolate window
can be approached with enough accuracy by a Kaiser
window. The coefficient 8 enables to adjust the level of the
primary feed radiation pattern at the offset angle of 27°. We
have chosen to design the horn for having —20dB at 27°,
which corresponds to 8= 5. Simulations were conducted
using SRSRD software, developed by France Telecom
Orange Labs dedicated to axisymmetric antennas [11].

Numerical results in the E, H, and 45°-planes are shown in
Fig. 2. The results obtained agree well with theory over +27°
in the E, H, and 45°-plane.

. MEASUREMENTS

The reflectarray is composed of elementary cells with rec-
tangular patches etched on a 254 wm Duroid substrate (e, =
2.2). The cell lattice is A/2. Diameter and focal length to diam-
eter ratio (f/D) are of 160 mm and 1.125, respectively.
Elementary cells are simulated using Ansoft HESS with the
Floquet port method, which allows the simulation of a
single cell within an infinite array. Reflection phase is obtained

-10

(¥

=30

-

Normalized amplitude (dBi)

'
i

-90 -60 =30 0 30 (1] a0

6 angle (degrees)

Fig. 2. Simulated radiation pattern and template of the Prolate primary feed at
77 GHz.
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Fig. 3. (a) Phase versus width and length. (b) Phase versus frequency. (c) Phase versus frequency and incidence.

by variation of the width and the length of the rectangular
patch. Then 340° phase excursion is achieved at 77 GHz as
described in Fig. 3(a). As it is not possible to simulate large
R.A. (here we have 40A) with HFSS and home-made
program based on an equivalent aperture method is developed
at the LEAT for radiation pattern calculation purposes. Due to
the approximations that have to be done results are expecting
to be accurate within the main lobe only.

Several studies are conducted on the reflectarray cells. First
the phase behavior versus patch dimension is determined
(Fig. 3(a)). From these results it is possible to simulate the
gain loss due to the fabrication errors (450 pm) with our

Normalized amplitude (dB)
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program. They have been estimated to be 0.7 dB at 77 GHz.
Moreover, the reflected phase variation of the cell over fre-
quency has been simulated. In a first step under normal inci-
dent for several patches dimensions (Fig. 3(b)), then for
different incidences (Fig. 3(c)). One observes a linear variation.

The reflectarray has been fabricated and measured at LEAT.
It is aligned by stand tilted at 27° in elevation to measure the
main lobe in the # = o° direction. Measurements are shown
in Fig. 4 over the bandwidth of interest.

The 3 dB aperture is 1.7° and secondary lobes remain
inferior to 20 dB. The relatively high radiation level between
—60° and —15° is due to the fixture that masks the
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Fig. 4. Measured radiation patterns at 77 GHz.
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Fig. 5. View of the full system.

transmitting antenna during E-plane measurement. The
antenna gain value is ranging between 38 dBi at 76 GHZ and
is above 40 dBi after 76.5 GHz. It corresponds to an aperture
efficiency varying between 30 and 50% that are state-of-the-art
values in the W-band [12, 13]. As expected it rises near the
central frequency and goes up to 70% at 78 GHz, which is to
our best knowledge one of the highest value for the RA.
Figure 5 shows the detection system, used during the measure-
ment campaign in Japan. It is composed of the offset reflectar-
ray, the frequency modulated continuous wave (FM-CW)
radar module and another stand made at ENRI was used
instead of the one used in the anechoic chamber.

The antenna gain has been measured again with this stand
and its value was ranging between 36 and 36.5 dBi between
76.25 and 76.75 GHz. This 2.5 dB discrepancy is due to a misa-
lignment between the primary source phase center and the
reflectarray surface. A new stand has been fabricated and pre-
liminary results have shown that the 40 dBi gain value has
been again obtained. It should be sufficient for detecting —20
dBsm objects, but the extended bandwidth of the system up to
8o GHz will also improve the detection since the antenna gain
is ranging between 40 and 42 dBi in the upper frequency band.

V. RADAR MEASUREMENT

The monostatic FM-CW radar has been developed at the
ENRIL It is composed of a Ku band driver circuit (12.3-
13.3 GHz) and a radar module. The module is compact
(33 x 35 x 20 mm?), without connections and waveguides,
and lightweight (180 g) without antenna.

Fig. 6. Targets and the RCS numerical simulations.
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Tests are conducted between 76 and 77 GHz, over a
500 MHz bandwidth. To avoid parasitic detections caused
by near objects taken from the side lobes, we have seen that
particular attention has been paid to the side lobes levels of
the antenna (<20 dB SLL). The emitting power is less than
10 dBm according to the specifications for external measure-
ment requested by the Japanese Administration.
Measurements were conducted on pavement at ENRI site in
November and December 2010, respectively. Although,
several FOD systems already exist, there is no detailed evalu-
ation of expected performances, except for the FAA circular of
2009 [6]. It describes relevant test object for FOD application.
A target of —20 dBsm has to be detected up to 46 m for a
system made with distributed radar modules on the runway.
To evaluate the sensitivity and the detection capability of
the radar, four standard targets were chosen:

e Three metallic cylinders’ monostatic RCS have been calcu-
lated analytically [14] from o, —10 to —20 dBsm.
e A corner reflector (28 dBsm) was employed.

Each cylinder has the same dimensions in diameter and
height: cylinder C1 with 134.5 mm, C2 with 62.4 mm, and
C3 with 29.0 mm. RCS values corresponding to an incidence
at 0° and receivers placed 360° around the targets were simu-
lated using Finite Element Boundary Integral (FE-BI) new
module of HFSS [15]. Simulations have been carried out
between 76 and 81 GHz in the perspective of the future
large bandwidth front-end that is under development at the
ENRI. Since there is no significant variation over the band-
width of interest, Fig. 6 shows the simulation results at
78.5 GHz, which corresponds to the center of the frequency
band. One observes that the maximum RCS value for each
cylinder is not in the monostatic configuration (6= o0°).
Therefore, it would be interesting to investigate using multi-
static radar in the future for detection improvement.

Figure 7 shows a view of the four targets placed on pave-
ment at ENRI and Fig. 8 represents a 60° scanning radar
image obtained with a 0.12° angular step. The rotation of
the whole radar (Front-end + antenna) is carried out in the
xOz-plane with a motor placed under the antenna. The
height of the whole system is 30 cm.

The four targets are detected at 10 m together with several
elements of the environment. Indeed, metallic fences, long the
pavement ENRI, are detected along tens of meters. We note
the high reflection of the corner reflector on the right side,
which masks the closest objects due to the longitudinal
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Fig. 7. Scene scanned by the radar.

Fig. 8. Radar image with objects placed at 10 m from the radar.

resolution limitation (30 cm). Moreover, the —20 dBsm cylin-
der is detected up to 40 m.

V. CONCLUSION

An offset RA with 40 dBi gain at 77 GHz has been designed,
fabricated and measured at LEAT anechoic chamber.
Unfortunately, due to the distance separating LEAT and
ENRI, the foreseen stand made at ENRI for assembling the
FM-CW radar module and the RA was not enough accurate
and lead to a 2.5 dB discrepancy in the antenna gain. A
measurement campaign was carried out jointly in December
2010 with this configuration. Although, first results are con-
clusive for the radar detection capabilities, the level is not suf-
ficient for detecting a —20 dBsm cylinder at 46 m.
Fortunately, with a new stand, the 40 dBi antenna gain
value has been obtained. Moreover, a new FM-CW module
is under construction with an operating frequency bandwidth
ranging between 76 and 81 GHz. With this configuration, we
can take advantage of the best antenna gain value around
78 GHz. Finally, RCS simulation results have shown that mul-
tistatic measurements should improve the detection, but this
set-up faces some important difficulties due to synchroniza-
tion between the different receivers in the W-band.
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