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The combined effect of internal and external intermittency on the statistical properties of
small-scale turbulence is investigated in temporally evolving, planar turbulent jet flows
at different Reynolds numbers using highly resolved direct numerical simulations. In
turbulent jet flows, the phenomenon of external intermittency originates from a sharp layer,
known as the turbulent/non-turbulent interface, that separates the turbulent core from the
surrounding irrotational fluid. First, it is shown that low-order and higher-order structure
functions in both the core and the shear layer of the jet satisfy complete self-preservation,
which means that structure functions are invariant with time and collapse over the entire
range of scales, regardless of the set of length and velocity scales used for normalization.
Next, the impact of external intermittency on small-scale turbulence is studied along the
cross-wise direction by the self-similarity of structure functions. It is shown that structure
functions exhibit from the centre toward the edge of the flow a growing departure from
self-similarity and the prediction of classical scaling theories. By analysing statistics
conditioned on the turbulent portion of the jet, it is demonstrated that this departure is
primarily due to external intermittency and the associated similarity-breaking effect.
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1. Introduction

Fully developed fluid turbulence is characterized by strong spatio-temporal fluctuations
over a wide range of different scales. Specific predictions of the statistical structure of
turbulence have been provided by Kolmogorov’s similarity theory (Kolmogorov 1941a,b).
Under the condition of sufficiently large Reynolds numbers, Kolmogorov hypothesized
that the small-scale motion decouples from the large scales and is independent of the
boundary or initial conditions of the flow. The central element of Kolmogorov’s scaling
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theory is the velocity increment

�ui = ui(x + r, t) − ui(x, t), (1.1)

which describes velocity fluctuations between two points separated by the vector
r. The statistical moments of the velocity increments are known as structure
functions. Kolmogorov (1941b) postulated that the entire distribution function of �ui
depends for small scales only on the kinematic viscosity ν and the mean energy
dissipation rate 〈ε〉. Based on a universality hypothesis, Kolmogorov derived two
independent solutions for structure functions in the dissipative and the inertial ranges
(Kolmogorov 1941a). Kolmogorov’s scaling theory from 1941 is henceforth referred to
as K41.

While Kolmogorov’s K41 scaling theory has been confirmed to be generally valid
for low-order statistics of many turbulent flows, there are numerous experimental and
numerical studies that have reported substantial deviations for higher-order statistics, see
for example Frisch (1995) and Sreenivasan & Antonia (1997) and references therein. These
deviations, known as anomalous scaling, occur even when the condition of sufficiently
high Reynolds number is met and have their origin primarily in a phenomenon referred
to as internal intermittency (Nelkin 1994). Internal intermittency describes a stochastic
process, which exhibits very strong fluctuations that occur more frequently than predicted
by a Gaussian distribution. These strong fluctuations are non-universal, which invalidates
Kolmogorov’s self-similarity hypotheses (Landau & Lifshitz 1963). Internal intermittency
is created by the nonlinear dynamics of the vortex stretching mechanism and occurs
predominantly at the small scales of any turbulent flow.

The concept of self-similarity has been established since the seminal work of Townsend
(1951) as an important tool that is less restrictive than universality. Townsend (1951)
postulated that turbulent flows approach a self-similarity solution when the large-scale
structures in the near field break down and eventually develop an equilibrium state. It
is now widely accepted that most turbulent shear flows reach a state in the far field in
which certain low-order statistics become self-similar and are determined by a single set
of characteristic length and velocity scales (Thiesset, Antonia & Djenidi 2014a; Djenidi
et al. 2017). Self-similarity solutions are in general not universal, but depend on the initial
or boundary conditions of the specific flow (George 2009). Moreover, many flows do
not satisfy complete self-similarity for the entire range of scales (Meldi & Sagaut 2013).
The term partial self-similarity refers to flows in which self-similarity is valid only for a
restricted range of scales (Saffman 1967).

There are numerous studies that have approached turbulent flows from a self-similarity
perspective. The first self-similarity study by von Kármán & Howarth (1938) presented
solutions of correlation functions in decaying grid turbulence. The analysis of von Kármán
& Howarth (1938) was extended by George (1992) and Speziale & Bernard (1992), where
it was shown that self-similarity implies a power-law decay of the mean turbulent energy
〈k〉. Later, Gonzalez & Fall (1998) noted that complete self-similarity requires that 〈k〉 ∝
t−1, which in turn implies that the turbulent Reynolds number stays constant during the
evolution of the flow. Some flows exhibit complete self-similarity in the far field, such
as the turbulent round jet (Thiesset et al. 2014a) or the wake behind a circular cylinder
(Tang et al. 2016). Complete self-similarity was also observed at the centreplane of a
temporally evolving planar jet (Sadeghi, Oberlack & Gauding 2018), which is the flow
considered in this study. In the context of structure functions, most self-similarity studies
have been devoted to the centre of the jet (Pearson & Antonia 2001; Sadeghi, Lavoie &
Pollard 2015).
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However, the situation is more precarious and it is of interest to investigate whether
self-similarity is restricted to the centreplane or if it is valid across the entire flow,
particularly when considering self-similarity of higher-order structure functions. Turbulent
jet flows are exposed to a complex phenomenon that is commonly referred to as external
intermittency (Townsend 1949). External intermittency is the result of the manifestation
of two different parts of the flow: the first is the fully developed turbulent core, and
the second is the non-turbulent outer field, which is associated with negligible vorticity
fluctuations (da Silva et al. 2014). These two adjacent regions are divided by a sharp,
highly contorted layer; the so-called turbulent/non-turbulent interface (TNTI). The TNTI
leads to the appearance of alternating flow structures when the outer irrotational fluid
is mixed with highly turbulent fluid (Westerweel et al. 2009). The TNTI has a finite
thickness of typically 10 to 15 Kolmogorov lengths (Silva, Zecchetto & da Silva 2018).
The outer-most layer of the TNTI is the so-called irrotational boundary (IB), which is
easily detectable, and therefore used in this work to distinguish between turbulent and
non-turbulent regions (da Silva & Pereira 2008; van Reeuwijk & Holzner 2014; Krug et al.
2017a,b). By analysing a variety of different free shear flows, Kuznetsov, Praskovsky &
Sabelnikov (1992) showed that external intermittency can have an impact on the entire flow
and, at least for flows at laboratory scale, can break small-scale universality. In particular,
Mi & Antonia (2001) demonstrated that external intermittency can change the inertial
subrange scaling exponents of structure functions and energy spectra in turbulent round
jets. These observations give rise to the question of whether and how external and internal
intermittency are coupled.

The objective of this paper is to study the combined impact of internal and external
intermittency on small-scale turbulence in turbulent temporally evolving planar jet flows.
The analysis is based on the self-similarity of low-order and higher-order velocity
structure functions at different cross-wise positions in the jet flow. Specifically, the
scaling of higher-order structure functions has unveiled intrinsic scale-sensitive features
of intermittency (Kraichnan 1974; Anselmet et al. 1984). Recently, Yasuda & Vassilicos
(2018) evaluated the impact of large-scale fluctuations on small-scale turbulence by the
scale-by-scale energy budget equation, and Chien, Blum & Voth (2013) observed that
the signature of large-scale fluctuations can be recovered in the scaling laws of structure
functions.

The remainder of the paper is structured as follows. First, we introduce in § 2 the
direct numerical simulation (DNS) of the turbulent jet flows on which the analysis is
based. In § 3, we systematically study structure functions of different orders from the
self-similarity and self-preservation perspective. The analysis is carried out at different
locations in the jet (such as the centreplane and the shear layer) and for different Reynolds
numbers. Constraints that structure functions must satisfy under the condition of complete
self-preservation are derived. Afterwards, we investigate in § 4 the impact of external
intermittency on the self-similarity of structure functions at different scales. Of particular
interest is the question of whether and how internal and external intermittency are coupled.
A conclusion is given in § 5.

2. Data-set description

2.1. Problem formulation
The subsequent analysis is based on data of highly resolved DNSs of temporally evolving
planar jet flows at different Reynolds numbers. The DNS solves the incompressible
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Navier–Stokes equations in non-dimensional form, given by

∂Uk

∂xk
= 0,

∂Uj

∂t
+ Uk

∂Uj

∂xk
= − ∂P

∂xj
+ 1

Re0

∂2Uj

∂xk∂xk
, j = 1, 2, 3,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where U denotes the velocity vector with components (U1, U2, U3)
ᵀ in the streamwise,

spanwise and cross-wise directions, respectively, and P is the pressure. The corresponding
fluctuating fields will be denoted by u = (u1, u2, u3)

ᵀ and p. The dependent variables are
functions of space x = (x1, x2, x3)

ᵀ and time t. Further, Einstein’s summation convention
is used, which implies summation over indices appearing twice. All quantities are
non-dimensionalized by the initial centreplane mean velocity U0 and the initial jet
thickness H0. The jet thickness H0 is defined as the distance over which the mean velocity
profile decreases to half of its centreplane value. Without loss of generality, H0 and U0 are
set to unity. The initial Reynolds number is defined as

Re0 = U0H0

ν
, (2.2)

with ν being the kinematic viscosity. Four different jet flows with Re0 chosen as 1000,
2000, 5000 and 10 000 are studied in this paper.

The DNS was carried out on the supercomputer JUQUEEN (Stephan & Docter 2015)
with the in-house solver psOpen (Gauding et al. 2014, 2019; Hunger, Gauding & Hasse
2016; Sadeghi et al. 2018). In order to obtain a high accuracy, spatial derivatives are
computed by a sixth-order Padé scheme with spectral-like accuracy (Lele 1992). Temporal
integration is performed by a low storage, stability-preserving fourth-order Runge–Kutta
scheme. The Poisson equation is efficiently solved in spectral space by employing a
Helmholtz equation (Mellado et al. 2010; Mellado & Ansorge 2012). To reduce aliasing
errors, the nonlinear terms are formulated in skew-symmetric form (Erlebacher et al.
1990), and additionally, a sixth-order compact filter is applied.

The rectangular computational domain has periodic boundary conditions in the
streamwise and spanwise directions (denoted by x1 and x2), and free-slip boundary
conditions in cross-wise direction (denoted by x3). The jet flow is statistically
homogeneous in the (x1, x2)-planes, and the jet grows with time t in the cross-wise
direction x3. Statistics are computed over (x1, x2)-planes and depend only on time and the
cross-wise coordinate x3. Furthermore, statistical symmetry with respect to the midplane is
exploited to improve the quality of statistical quantities. Ensemble averages computed over
these planes are denoted by angular brackets. The statistical quality of ensemble averages
is discussed in Appendix A.

The governing equations are solved in a computational domain of size L1/H0 = 20,
L2/H0 = 20 and L3/H0 = 12, discretized on a mesh with up to 5376 × 5376 × 2688
grid points. The size of the computational domain is sufficiently large compared with
the integral scales, firstly, to avoid confinement effects when the thickness of the jet
increases with time, and secondly, to improve the quality of statistical quantities. A
uniform equidistant mesh is used for the inner part of the domain, while the outer part
is increasingly coarsened toward the boundaries. The grid width is chosen such that it
is everywhere smaller than the Kolmogorov length scale. This feature of the DNS is
especially important for the accurate evaluation of higher-order statistics in the dissipative
range (Watanabe & Gotoh 2007).

919 A41-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.399


Self-similarity of turbulent jet flows

Case Grid Re0 Reλ h1/2

A 1536 × 1536 × 768 1000 35 1.17
B 2048 × 2048 × 1024 2000 51 1.16
C 3072 × 3072 × 1536 5000 74 1.15
D 5376 × 5376 × 2688 10 000 107 1.16

Table 1. Characteristic properties of four different jet flows (denoted by cases A–D) at time t = 23.3 with
Reynolds numbers Re0 between 1000 and 10 000. Here, Reλ refers to the Taylor-based Reynolds number at the
centreplane.

t h1/2 Uc Reλ 〈k〉 × 102 〈ε〉 × 103

D1 13.2 0.86 0.57 105.2 2.87 4.98
D2 15.5 0.93 0.52 105.8 2.39 3.40
D3 18.0 1.00 0.48 105.6 2.02 2.43
D4 20.6 1.06 0.45 107.1 1.76 1.80
D5 23.3 1.16 0.42 107.4 1.57 1.39

Table 2. Characteristic properties of case D (Re0 = 10 000) at the centreplane at five different times (denoted
by D1–D5) displayed in figure 1.

An appropriate initialization of the DNS is necessary. Following da Silva & Pereira
(2008), the initial velocity profile is composed of two mirrored hyperbolic-tangent mean
profiles and perturbed by broadband random Gaussian fluctuations that follow a prescribed
energy spectrum. The turbulent intensity u′/U0, with u′ being the root mean square of
the velocity, equals approximately 2 % to facilitate a rapid transition to fully developed
turbulence.

2.2. Characteristic properties of the DNS
The turbulent jet flows used in this study are now briefly characterized. The analysis is
carried out for four different jet Reynolds numbers between 1000 and 10 000 (denoted by
cases A to D). The case D with the highest Reynolds number is taken as reference case,
which is additionally studied at five different times (denoted by D1 to D5). The analysis
is conducted in the far field of the jet for t between t = 13.2 and t = 23.3. Characteristic
parameters of the DNS are summarized in tables 1 and 2.

In the remainder of this section, we present the temporal evolution of different statistics
at the centreplane. Figure 1 displays for case D the evolution of the mean kinetic energy
〈k〉 = 〈u2

i 〉/2 and the mean dissipation rate 〈ε〉 = 2ν〈S2
ij〉, with

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.3)

being the strain-rate tensor. It can be observed that 〈k〉 and 〈ε〉 reveal a power-law
decay with scaling exponents close to −1 and −2, respectively, which is consistent
with analytical solutions for complete self-similarity (Gonzalez & Fall 1998; Sadeghi
et al. 2018). To proceed further, let uk = (ν〈ε〉)1/4 denote the Kolmogorov velocity
and u′ = (2〈k〉/3)1/2 the root mean square of the velocity. From these velocity scales,
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〈k〉
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D (Re0 = 10 000)

C (Re0 = 5000)
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(a) (b)

Figure 1. (a) Temporal evolution of the mean turbulent kinetic energy 〈k〉 as well as the mean energy
dissipation rate 〈ε〉 at the centreplane for case D. The black dashed lines indicate a power-law decay with
t−1 and t−2, respectively. (b) Temporal evolution of the Taylor micro-scale-based Reynolds number Reλ for
cases A–D. The circles specify different times (D1–D5) that are used for the self-preservation analysis. The
squares represented additional data used to study the variation of the jet Reynolds number Re0.

the Taylor-scale Reynolds number

Reλ =
√

15
u′2

u2
k

(2.4)

can be built. The Taylor-scale Reynolds number approaches approximately a constant
value, which is between 35 and 107 for the four different simulations considered. In
Appendix B, we demonstrate that a constant Reynolds number is a necessary condition
for the self-similarity of jet flows.

With a constant Reynolds number, all length and velocity scales follow exactly the same
scaling during the decay. Figure 2 shows the temporal evolution of the jet half-width
h1/2 (defined as the distance from the centreplane over which the mean streamwise
velocity decreases to the half of the centreplane value Uc), the Taylor micro-scale λ =
(15νu′2/〈ε〉)1/2, the Kolmogorov length scale η = (ν3/〈ε〉)1/4 as well as the velocity
scales Uc, u′ and uk. It can be observed that the length scales increase as t1/2, and at
the same time, the velocity scales decrease as t−1/2. Also, the outer scales h1/2 and Uc
follow the same scaling laws, see Appendix B for the derivation.

3. Self-similarity and self-preservation of planar jet flows

We start the analysis by introducing the nth-order velocity structure function as

Sn = 〈�un
1〉, (3.1)

where �u1 = u1(x + re1, t) − u1(x, t) is the longitudinal velocity increment in
streamwise direction, r is the separation distance between the two points considered and
e1 is a unit vector in the streamwise direction. In order to explore conditions under which
Sn admits self-similarity, we introduce the functional form

Sn(r; t, x̂3, Re0) = un
ref (t, x̂3, Re0)fn(r̂), (3.2)

which is built with a characteristic velocity scale uref and a non-dimensional,
order-dependent shape function fn. Essentially, (3.2) introduces a separation of variables,
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t
3 5 10 20 30

t
3 5 10 20 30

(b)(a)

10−3

10−2

10−1

100

101

h1/2 λ η

10−3

10−2

10−1

100

Uc u′ uk

Figure 2. (a) Temporal evolution of the length scales h1/2, λ and η (a), where the dashed lines indicate the
self-similarity solution with t1/2, and (b) temporal evolution of the velocity scales Uc, u′ and uk, where the
dashed lines represent the self-similarity solution with t−1/2. The circles indicate different times that are used
for the further analysis. Data presented for case D.

where only the shape function fn, and not the prefactor uref , depends on the normalized
separation distance r̂, defined as r̂ = r/Lref (t) with Lref (t) being a characteristic length
scale. Equation (3.2) is a function of additional external parameters, namely the time t,
the jet Reynolds number Re0 and the cross-wise position x̂3 = x3/h1/2(t). It should be
noted that (3.2) postulates the existence of a single set of characteristic length and velocity
scales. The validity of this assumption is discussed in the next section.

Different special cases can be deduced from (3.2). The case of self-similarity with
respect to time will be referred to as self-preservation. Complete self-preservation occurs
when the normalized structure functions Sn(r; t, x̂3, Re0)/un

ref (t, x̂3, Re0) collapse at fixed
x̂3 and Re0 over the entire r space for any time t. In a similar fashion, self-similarity with
respect to the cross-wise position x̂3 and the Reynolds number Re0 can be defined.

In what follows, we derive analytical constraints for the self-preservation of structure
functions of any even order without using any ad hoc assumptions. After that, the
self-similarity and self-preservation of structure functions is systematically tested by
varying the arguments of (3.2). Also, we would like to mention that, unlike Kolmogorov’s
K41 theory, the self-similarity and self-preservation analysis does not require a high
Reynolds number (Antonia et al. 2003).

3.1. Analytical similarity solutions of structure functions
Analytical solutions of structure functions exist in the asymptotic small-scale and
large-scale limits and can be used to derive conditions for self-similarity and
self-preservation. In the small-scale limit, a Taylor series expansion of 〈�u2n

1 〉 gives

〈�u2n
1 〉 =

〈(
∂u1

∂x1

)2n
〉

r2n + O(r2n+2), (3.3)

where the series is truncated after the first non-negative term. Normalizing (3.3) with the
Kolmogorov scales gives the expression

〈�u2n
1 〉

u2n
k

= F<
2nRε

15n

(
r
η

)2n

. (3.4)
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The right-hand side of (3.4) depends on two external parameters, F<
2n and Rε, as well

as the universal shape function (r/η)2n. The first external parameter in (3.4) is the
non-dimensional moment of the streamwise velocity gradient

F<
2n =

〈(
∂u1

∂x1

)2n
〉

〈(
∂u1

∂x1

)2
〉n , (3.5)

which quantifies intermittent fluctuations of the velocity gradient field (Frisch 1995;
Sreenivasan & Antonia 1997). The second parameter

Rε = 15ν

〈ε〉

〈(
∂u1

∂x1

)2
〉

(3.6)

quantifies the departure from small-scale isotropy and equals unity under local isotropy.
Equation (3.4) is an exact generalization of Kolmogorov’s first scaling hypothesis
(Kolmogorov 1941b) to anisotropic turbulence with internal intermittency (Boschung et al.
2016). Alternatively, structure functions can be normalized with the Taylor scales u′ and λ,
which gives with (3.3) the expression

〈�u2n
1 〉

u′2n = F<
2nRε

( r
λ

)2n
. (3.7)

Essentially, (3.4) and (3.7) are analytical solutions for 〈�u2n
1 〉 in the dissipative range that

account for both anisotropy and intermittency. Independent of the chosen set of length and
velocity scales, self-preservation of structure functions at the small scales requires that the
product of F<

2n and Rε is invariant with time (note that F<
2 equals unity, and hence the

constancy of Rε is sufficient for the second order).
Analytical solutions for structure functions also exist in the large-scale limit. In

statistically homogeneous turbulence, structure functions become independent of the
separation distance when r is larger than the integral length scale. The limiting value can
be obtained from the binomial theorem and equals

〈�u2n
1 〉 =

2n∑
k=0

(
2n
k

)
(−1)k〈u2n−k

1 〉〈uk
1〉. (3.8)

To proceed, we exploit the fact that all odd moments of u1 vanish at the centreplane due to
symmetry. In that case, (3.8) simplifies to

〈�u2n
1 〉 =

n∑
k=0

(2n)!
(2k)!(2n − 2k)!

〈u2n−2k
1 〉〈u2k

1 〉. (3.9)

By introducing the non-dimensional moments of the velocity fluctuations

F>
2n = 〈u2n

1 〉
〈u2

1〉n
. (3.10)
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Equation (3.9) can be rewritten as

〈�u2n
1 〉 = 〈u2

1〉n
n∑

k=0

(2n)!
(2k)!(2n − 2k)!

F>
2n−2kF>

2k=〈u2
1〉nC2n, (3.11)

where the prefactor C2n relates the large-scale limit of any order structure function to the
variance 〈u2

1〉. For instance, from (3.11) we find that 〈�u2
1〉 approaches 2〈u2

1〉, and 〈�u4
1〉

approaches 2(F>
4 + 3)〈u2

1〉2. Further, we introduce a large-scale anisotropy parameter Ru
as

〈u2
1〉 = Ruu′2, (3.12)

which equals unity for isotropic turbulence. With these definitions, the large-scale limit of
〈�u2n

1 〉 becomes, after normalization with the Kolmogorov scales,

〈�u2n
1 〉

u2n
k

= 15−n/2C2nRn
uRen
λ, (3.13)

and after normalization with the Taylor scales

〈�u2n
1 〉

u′2n = C2nRn
u. (3.14)

Self-preservation of the structure functions at the large scales requires hence the constancy
of the right-hand sides of (3.13) and (3.14).

The analysis presented provides certain constraints for self-preservation that structure
functions of different order must satisfy. For second-order structure functions, the only
requirement for self-preservation is the constancy of the anisotropy factors Ru and Rε

during the evolution of the jet as F<
2 and F>

2 equal unity by definition, see (3.4), (3.7),
(3.13) and (3.14). An important consequence is that isotropy is not required for the validity
of self-preservation and any anisotropy that is present in the flow must persist indefinitely.
In other words, a return to isotropy is not consistent with self-preservation. The persistence
of anisotropy has been also postulated in the context of self-similarity of turbulent wakes
by Thiesset, Danaila & Antonia (2013b).

Knowing that the anisotropy factors Ru and Rε must stay constant for self-preservation,
the analysis provides additional constraints for higher-order structure functions. More
specifically, (3.4), (3.7), (3.13) and (3.14) require that the non-dimensional moments F<

2n
and F>

2n remain constant for self-preservation. This condition is valid for any even order.
It should be noted that the constancy of the flatness factors can be also inferred from the
constancy of the Reynolds number (Schumacher et al. 2014) in completely self-preserving
flows.

Table 3 lists for case D the aforementioned parameters at the centreplane during the
evolution of the jet. The flatness factor F>

4 is close to 2.9, which indicates that velocity
fluctuations in the core of the jet follow approximately a Gaussian distribution. The flatness
of the velocity gradients F<

4 is close to 6, which reflects departures from Gaussianity due
to intermittency. Table 3 shows that the anisotropy factors Ru and Rε also stay nearly
constant during the decay of the jet. Small-scale isotropy is fulfilled within less than two
per cent deviation, while the departure from large-scale isotropy reaches approximately ten
per cent. Furthermore, table 3 shows that the skewness of the velocity fluctuations, defined
as Su = 〈u3

1〉/〈u2
1〉3/2, remains close to zero at the centreplane, as required by symmetry.
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D1 D2 D3 D4 D5

F<
4 6.068 5.910 6.057 5.919 5.883

F>
4 2.872 2.837 2.918 2.875 2.889

Su 0.040 0.031 0.024 −0.020 −0.024
Rε 0.997 0.989 0.991 0.984 0.987
Ru 1.074 1.110 1.071 1.090 1.099

Table 3. Temporal evolution of different quantities at the centreplane of case D, i.e. the velocity gradient
flatness F<

4 , the flatness of the velocity fluctuations F>
4 , the skewness of the velocity fluctuations Su =

〈u3
1〉/〈u2

1〉3/2 as well as the anisotropy coefficients Rε and Ru, characterizing the small- and large-scale
anisotropy, respectively.

3.2. Self-preservation of structure functions at the centreplane
Let us now examine whether structure functions are self-preserving at the centreplane. The
analysis is conducted for the even-order longitudinal structure functions up to the sixth
order. Higher-order structure functions are of interest because they provide information
about intermittency (Pearson & Antonia 2001). The characteristic scales uref and Lref are
chosen as (1) the Kolmogorov scales uk and η, (2) the Taylor scales u′ and λ and (3) the
outer scales Uc and h1/2. Once the jet flow has reached a constant Reynolds number, the
inner scales (Kolmogorov or Taylor scales) should be exchangeable with the outer scales
(Uc and h1/2). This assertion is tested now using the DNS data.

Figure 3 shows f2(r̂), f4(r̂) and f6(r̂) at the centreplane (x̂3 = 0) for Re0 = 10 000 at
five different times (D1–D5). It can be seen that the normalized structure functions admit
complete self-preservation, which means that the normalized structure functions collapse
for any time t over the entire r space. Hence, complete self-preservation is valid regardless
of the order and the chosen set of reference scales. It should be mentioned that complete
self-preservation of second-order structure functions has also been reported by Tang et al.
(2016) and Thiesset et al. (2014a) at the centre of round jets.

Complete self-preservation is a direct consequence of the constant centreplane Reynolds
number. At a constant Reynolds number, the ratio between large-scale and small-scale
quantities remains unchanged with time and any set of length and velocity scales can be
chosen as reference scales. In that case, self-preservation of structure functions is not only
valid for the second order but valid for any higher order.

3.3. Self-preservation of structure functions in the shear region
At the centre of the jet, turbulence statistics are close to those observed in homogeneous
isotropic decaying turbulence (Antonia et al. 2003; Sinhuber, Bodenschatz & Bewley
2015). In this section, we examine whether structure functions still admit complete
self-preservation away from the centre of the jet, where turbulence is affected by a mean
shear or inhomogeneity and anisotropy effects (Casciola et al. 2003; Thiesset et al. 2014b).

To this end, we examine the self-preservation of the normalized structure functions
in the shear layer of the jet at the position x3 = h1/2. At this position, the mean shear
∂〈U1〉/∂x3 is close to its maximum. Figure 4 presents for case D the corresponding
structure functions up to the sixth order after normalization with the Kolmogorov scales
(1), the Taylor scales (2) and the outer scales (3). Again, a perfect collapse can be observed
over the entire range of scales for each order, regardless of the chosen set of scales
for normalization. Hence, by comparison with figure 3, we can conclude that complete
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Figure 3. Self-preservation of even-order structure functions up to the sixth order at the centre of the jet
(x̂3 = 0). The structure functions are normalized by the Kolmogorov scales (1), the Taylor scales (2) and the
outer scales (3) and presented at different times (D1–D5).

self-preservation of structure functions is not limited to the core of the jet, but also valid
in the shear layer.

3.4. Impact of the initial conditions on the self-similarity of structure functions
In the spirit of Kolmogorov’s similarity theory, it is of interest to study the influence
of a variation of the jet Reynolds number Re0 on the self-similarity of the structure
functions. To this end, we examine whether the normalized structure functions
Sn(r̂; t, x̂3, Re0)/un

ref (t, x̂3, Re0) collapse over the entire r space when the jet Reynolds
number Re0 is changed and the other parameters are kept constant. To answer this question,
we examine different jet flows with variations of the Reynolds number Re0 between 1000
and 10 000, cf. table 1.

Figure 5 presents the second-order structure functions for these different jet Reynolds
numbers at the centreplane. As expected, the structure functions do not satisfy
self-similarity over the entire range of scales, neither after normalization with the
Kolmogorov scales nor with the Taylor scales. Instead, the collapse with the Kolmogorov
scales is restricted to the dissipative range, while the Taylor scales lead to a collapse only
in the dissipative range and at the large scales, but not at intermediate scales. This finding
confirms the standard understanding of turbulence that, in general, and specifically at low
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Figure 4. Self-preservation of even-order structure functions up to the sixth order at the edge of the jet at
x3 = h1/2. At this position, the mean shear ∂〈U1〉/∂x3 is close to its maximum. The structure functions are
normalized by the Kolmogorov scales (1), the Taylor scales (2) and the outer scales (3) and presented at different
times (D1–D5).
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Figure 5. Normalized second-order structure functions at the centreplane for different Reynolds numbers
between 1000 and 10 000. The structure functions are normalized by Kolmogorov scales (a) and Taylor
scales (b).
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Self-similarity of turbulent jet flows

to moderate Reynolds numbers, structure functions do not feature universality over the
entire range of scales (Pearson & Antonia 2001). Moreover, figure 5 supports the claim that
a constant turbulent Reynolds number is a necessary condition for complete self-similarity
or self-preservation of structure functions.

It is important to note that by virtue of self-preservation, the results presented are
invariant with time once the far field of the jet is reached.

4. The effect of external intermittency

In this section, we examine whether structure functions Sn(r; x̂3, t, Re0) admit
self-similarity when the cross-wise position x̂3 = x3/h1/2 is varied and discuss which role
external intermittency plays.

4.1. The TNTI
External intermittency can be evaluated by the intermittency – or indicator – function Γ ,
defined as

Γ (x, t) = H(ω2(x, t) − ω2
0), (4.1)

where H is the Heaviside function, ω2 is the enstrophy and ω2
0 is a threshold value of the

enstrophy that defines the position of the IB. The intermittency factor

γ (x3, t) = 〈Γ (x, t)〉, (4.2)

quantifies the probability that the flow at a certain cross-wise position x3 is turbulent
(Townsend 1949). Since the IB is a singular surface, the flow field can be partitioned
into two states, either turbulent if ω2 > ω2

0, or non-turbulent in any other case. With this
definition, any conventionally averaged quantity 〈Ψ 〉 can be decomposed as

〈Ψ 〉 = γ 〈Ψ 〉t + (1 − γ )〈Ψ 〉n, (4.3)

where 〈Ψ 〉t and 〈Ψ 〉n indicate conditional averages that consider either turbulent and
non-turbulent events, respectively (Mellado, Wang & Peters 2009). With the binary
indicator function Γ , the conditional averages are defined as

〈Ψ 〉t = 〈Γ Ψ 〉 and 〈Ψ 〉n = 〈(1 − Γ )Ψ 〉. (4.4a,b)

It is now widely accepted that the IB can be defined by an appropriate threshold of
the enstrophy (Bisset, Hunt & Rogers 2002; Holzner et al. 2008; da Silva & Pereira
2008; da Silva et al. 2014; Silva et al. 2018; Watanabe, da Silva & Nagata 2019). The
threshold value ω2

0 is systematically obtained from the probability density function (p.d.f.)
of log10(ω

2/ω̂2). Following Krug et al. (2017a), the local enstrophy field is normalized by
ω̂2, defined as

ω̂2 =

∫ ∞

−∞
〈ω2〉2 dx3∫ ∞

−∞
〈ω2〉 dx3

, (4.5)

to remove the time dependence from the threshold criterion. Figure 6(a) displays the p.d.f.
of log10(ω

2/ω̂2) at different times. In flows exposed to external intermittency, the p.d.f.
exhibits a bimodal shape, where the two peaks that represent turbulent and non-turbulent
regions are clearly separated by several orders of magnitude. In this work, we chose a
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Figure 6. (a) The p.d.f. of log10(ω
2/ω̂2) at different times for case D. The dashed vertical line indicates the

threshold log10(ω
2
0/ω̂

2) = −3.4. (b) Variation of the intermittency factor γ with the cross-wise coordinate x̂3
at different times (D1–D5) and jet Reynolds numbers Re0 between 1000 and 10 000 (inset).

1.0 × 10–6 1.0 × 10–4 1.0 × 10–2 1.0 × 1021.0

Figure 7. Visualization of the enstrophy field ω2/ω̂2 for case D5 in a (x1, x3)-plane. The black contour line
represents the IB defined by the enstrophy criterion log10(ω

2
0/ω̂

2) = −3.4.

threshold log10(ω
2
0/ω̂

2) = −3.4 for all cases. The enstrophy sharply increases across the
TNTI, which makes the position of the IB reasonably insensitive regarding the exact
threshold value (Krug et al. 2017b; Elsinga & da Silva 2019). The visualization of the
enstrophy field and the IB in figure 7 indicates that the threshold is suitably chosen to
distinguish between turbulent and non-turbulent regions. Furthermore, the sensitivity of
the reported results with respect to the value of the threshold is examined in Appendix A.

Figure 6(b) shows the variation of the intermittency factor γ with the cross-wise
coordinate x̂3 for different time steps and Reynolds numbers. At the centre, there is an
almost fully turbulent region with γ close to unity that extends up to x̂3 ≈ 0.5. At the
edge of the flow, a steep decrease of γ is visible. It originates from an alternating flow
structure, when the outer fluid with low vorticity is mixed with highly turbulent fluid from
the core region of the jet. A visualization of this flow structure is shown in Appendix C.
It is also worth mentioning that γ is approximately self-preserving and independent of the
Reynolds number when plotted as a function of x̂3.

In the next section, the intermittency structure function is introduced to evaluate the
morphology of the IB at different scales.
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4.2. Intermittency structure function
In turbulent flows exposed to external intermittency, there are three different possibilities
for the distribution of the ending points x and x + re1 of the velocity increments �u1 =
u1(x + re1, t) − u1(x, t) along a straight line. More precisely, both points can be either
located within the turbulent or within the non-turbulent regime or one point may be in
the turbulent and the other point in the non-turbulent regime. Kuznetsov et al. (1992)
predicted the corresponding probabilities as γtt = γ − 1

2 DΓ,IB, γnn = 1 − γ − 1
2 DΓ,IB

and γnt = DΓ,IB, where

DΓ,IB(r; x3, t) = 〈(Γ (x + re1, t) − Γ (x, t))2〉 (4.6)

is the intermittency structure function. The probabilities satisfy the identity

γtt + γnn + γnt = 1. (4.7)

The ratio
γtt

γ
= 1 − DΓ,IB

2γ
(4.8)

measures the conditional probability that one point of the increment

�Γ = Γ (x + re1, t) − Γ (x, t) (4.9)

is in the turbulent regime given that the other point is also in a turbulent regime. In
other words, DΓ,IB provides scale-sensitive information regarding the structure of the
IB. Figure 8(a) shows γtt/γ at different cross-wise positions x̂3 varying between the
centreplane and x̂3 = 1.59 for case D5 as a representative case. It can be observed that in
the proximity of the centreplane (i.e. for 0 ≤ x̂3 ≤ 0.58), γtt/γ is close to unity and nearly
independent of the separation distance r, which reflects the fact that the core region of the
jet is fully turbulent. Toward the edge of the jet, γtt/γ equals unity only for r → 0, and
decreases quickly at larger separation distances. This decrease comes from the alternation
between turbulent and non-turbulent fluid and represents external intermittency.

To proceed further, we introduce the one-dimensional random telegraphic signal ΓT as
a model for the intermittency function Γ . The telegraphic signal ΓT alternates randomly
between 0 (non-turbulent) and 1 (turbulent) and the corresponding probabilities are
defined as p(ΓT = 0) = 1 − γ and p(ΓT = 1) = γ . Thiesset et al. (2020) showed that
the random telegraphic signal has an analytical structure function, i.e.

DΓ,T(r) = 2γ (1 − γ )[1 − e−r/LT ], (4.10)

where LT is a characteristics length scale

LT = 2γ (1 − γ )

[
lim
r→0

DΓ,T(r)
r

]−1

, (4.11)

which is related to the probability for a transition from 0 to 1 and vice versa (Fitzhugh
1983). The small-scale limit of the random telegraphic signal equals

lim
r→0

DΓ,T(r) = 2γ (1 − γ )
r
LT

+ O(r2), (4.12)

which signifies that DΓ,T is proportional to r when the separation distance is small
compared with LT . It is important to note that (4.12) is fundamentally different from the
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Figure 8. (a) Conditional probability γtt/γ at different cross-wise positions x̂3 (as indicated in the legend, x̂3 =
0 represents the centreplane). (b) Comparison of the structure function DΓ,T of a random telegraphic function
(green dashed lines) with the intermittency structure function DΓ,IB, shown for two different cross-wise
positions x̂3 (solid red and blue lines). The black dashed lines indicate the analytical small-scale and large-scale
limits. Data for case D5.

small-scale limit of velocity structure functions where 〈�u2
1〉 ∝ r2 applies. The different

scaling is related to the fact that the velocity is a continuous field, while the intermittency
function Γ (x, t) possesses discontinuities.

It is of interest to compare the analytical structure function of the random telegraphic
signal DΓ,T with the intermittency structure function DΓ,IB of the turbulent jet. The
intermittency structure function DΓ,IB is presented in figure 8(b) for two different
cross-wise positions, normalized similar to (4.11) by the characteristic length scale

LIB = 2γ (1 − γ )

[
lim
r→0

DΓ,IB(r; x3)

r

]−1

, (4.13)

and the large-scale limit 2γ (1 − γ ). Figure 8(b) reveals a perfect collapse between the
DNS data and the random telegraphic function in the small-scale and large-scale limits.
For intermediate scales, there is a growing discrepancy between DΓ,T and DΓ,IB with
increasing distance from the centreplane. This difference is due to the fact that the
morphology of the IB is not fully random, but instead determined by the dynamics of
turbulence.

Let us now use the intermittency structure function to further examine the structure of
the IB. Following Debye & Bueche (1949) and Debye, Anderson & Brumberger (1957),
the small-scale limit of DΓ,IB can be expressed as

lim
r→0

DΓ,IB

r
=

〈∣∣∣∣∂Γ

∂x1

∣∣∣∣〉 , (4.14)

where the jump frequency

Σ =
〈∣∣∣∣∂Γ

∂x1

∣∣∣∣〉 = nIB

L1
, (4.15)

quantifies the number of alternations nIB between turbulent and non-turbulent fluid
(and vice versa) per length L1 along a straight line in the streamwise direction.
Figure 9(a) shows the jump frequency Σ as a function of the cross-wise coordinate x̂3 at
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Figure 9. Jump frequency Σ as a function of the cross-wise position x3 at different times (a) and
self-preservation of Σ after normalization with the jet half-width h1/2 (b). Data for case D.
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Figure 10. Jump frequency Σ as a function of the cross-wise position x3/h1/2 for different jet Reynolds
numbers Re0 between 1000 and 10 000 (a). The jump frequency becomes approximately independent of Re0
when rescaled by h1/2 and Reα

0 , where α is found empirically to be close to −0.4 (b).

different times. It can be observed that Σ is characterized by a single distinct maximum,
which identifies the position where the IB is most corrugated. With the spreading of
the jet, the maximum decreases and moves outwards in cross-wise direction. After
normalization with the half-width h1/2, Σ admits a self-preserving shape, see figure 9(b).
The consequence of self-preservation is that

nIB

L1
∝ h−1

1/2, (4.16)

which means that the surface of the IB is smoothed as the jet spreads. This observation is
consistent with the growth of the characteristic length scales during the self-similar decay
of the jet.

Finally, the dependence of the jump frequency Σ on the jet Reynolds Re0 is of interest.
As shown in figure 10, the location of the maximum of Σ remains at approximately
x3/h1/2 = 1.4 despite a variation of Re0 by one decade between 1000 and 10 000. However,
the value of the maximum clearly increases with the Reynolds number. This increase
originates from smaller turbulent length scales that create a more contorted IB at higher
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Figure 11. Normalized even-order velocity structure functions up to the sixth order at different cross-wise
positions x̂3 from the centreplane (red) up to x̂3 = 1.59 (blue). The structure functions are normalized by the
Kolmogorov scales uk and η. For clarity, the fourth-order structure functions and the sixth-order structure
functions are shifted upwards by two and four decades, respectively. Data for case D5.

Reynolds numbers. The shape of the jump frequency Σh1/2 becomes approximately
Reynolds number independent when rescaled with the jet Reynolds number Reα

0 , where
α is found empirically to be close to −0.4.

4.3. Self-similarity of structure functions along the cross-wise direction
The strong variation of the jump frequency Σ along the cross-wise direction raises
the question whether structure functions can admit self-similarity when varying the
cross-wise location x̂3 while keeping Re0 and t constant. Figure 11 shows the normalized
second, fourth- and sixth-order velocity structure functions fn(r̂, x̂3) at different cross-wise
positions between the centreplane and x̂3 = 1.59. The structure functions are normalized
by the Kolmogorov scales η and uk. For the second order, there is reasonable support for
self-similarity with respect to x̂3, since an adequate collapse of structure functions can
be observed. As expected, the collapse is perfect for the smallest scales, where structure
functions obey the classical Kolmogorov scaling 〈�u2

1〉/u2
k ∝ (r/η)2. At the largest scales,

self-similarity still holds with good accuracy despite finite Reynolds number effects.
However, the situation is different for the self-similarity of higher-order structure

functions. From figure 11, it is evident that the fourth-order and sixth-order structure
functions reveal a non-collapsing and clearly non-self-similar arrangement over the entire
range of scales. This finding is in line with the standard paradigm that higher-order
statistics are non-universal and highly sensitive to different effects, such as intermittency
but also finite Reynolds number effects and the associated coupling to the boundary
conditions of the flow. But keeping in mind that higher-order structure functions admit
complete self-preservation at the centreplane and in the shear layer at fixed x̂3 (cf. § 3),
this finding requires further explanation. The objective of the remainder of the paper is to
show that external intermittency plays an important role for the lack of self-similarity of
higher-order structure functions.

To visualize the physical mechanism behind the break down of self-similarity, we
present in figure 12 the intermittency function Γ and the square of the longitudinal
velocity gradient (∂u1/∂x1)

2 at different cross-wise positions x̂3 along a straight line in the
streamwise direction x1. At the centreplane, the jet is fully turbulent and large excursions
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Figure 12. Intermittency function Γ (a) and the square of the longitudinal velocity gradient (∂u1/∂x1)
2

(b) at different cross-wise positions x3 along a straight line in the streamwise direction x1. The
signals are shifted upwards for clarity. Data for case D5 at different cross-wise positions x̂3 equal to
0.0, 0.29, 0.58, 0.87, 1.15, 1.44 and 1.59 (from bottom to top).

from the mean value of (∂u1/∂x1)
2 occur, which is characteristic of a signal with internal

intermittency. These excursions originate from thin, confined layers that are of the order of
a few Kolmogorov length scales. Toward the edge of the jet flow, the nature of turbulence
changes drastically when external intermittency comes into play. The principal feature of
external intermittency is that it imposes external information on the signal. This external
information can be quantified statistically at the large scales by the intermittency factor γ

(ratio between turbulent and non-turbulent regimes) and at the small scales by the jump
frequency Σ (frequency of the alternation between turbulent and non-turbulent regimes).
Both quantities depend on the morphology of the IB with the consequence that turbulence
is not self-similar along the x̂3 direction. This assertion is now supported by a statistical
analysis.

Following Frisch (1995), we define a turbulent signal to be intermittent when it features
strong activity only during a fraction of time (or space). To quantify intermittency at
different scales, we introduce the relation between structure functions and the p.d.f. of
velocity increments P(�u1; r, x3),

〈�un
1〉 =

∫ ∞

−∞
�un

1P(�u1; r, x3) d(�u1). (4.17)

Equation (4.17) highlights that higher-order moments provide information about the far
tails of the p.d.f. which makes them a suitable tool for the study of intermittency. The
shape of the distribution P(�u1; r, x3) can be quantified by the flatness factors

F<
4 =

〈(
∂u1

∂x1

)4
〉

〈(
∂u1

∂x1

)2
〉2 , (4.18)

and

F>
4 = 〈u4

1〉
〈u2

1〉2
, (4.19)
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Figure 13. Flatness factor of the velocity gradients F<
4 and the velocity fluctuations F>

4 as a function of the
intermittency factor γ at (a) different times (cases D1–D5) and (b) different jet Reynolds numbers (cases A–D).
The black dashed line represents the flatness factor of a Gaussian distribution.
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Figure 14. (a) Conditional flatness factors F<
4 |t and F>

4 |t (solid lines) are approximately independent of
the intermittency factor γ . The flatness factors F<

4 and F>
4 (dashed lines) are shown for comparison. (b)

Dependence of F<
4 |t on the jet Reynolds number. The black dashed line represents the flatness factor of a

Gaussian distribution.

which represent intermittency at the small scales and large scales, respectively. From the
dependence of the velocity gradient flatness F<

4 on the external intermittency factor γ , the
inter-scale coupling of turbulence can be analysed. Figure 13(a) shows that F<

4 increases
from a centreplane value close to 6 to a value close to 30 when γ equals 0.2. This
dependence clearly demonstrates that external intermittency can have a striking impact
on the small scales (represented by F<

4 ), and that the small scales do not decouple from
the large scales (represented by γ ). Internal intermittency can be ruled out as the reason
for the increase of F<

4 because the turbulent Reynolds number moderately decays toward
the edge of the jet. Also, the velocity fluctuation flatness F>

4 increases across the jet from
approximately 3 at the centreplane to 10 at γ = 0.2. This means that the assumption of
Gaussianity for the velocity fluctuations is valid in the core but not at the edge of the flow.
It is also worth noting that the dependence of the flatness factors F<

4 and F>
4 on γ appears

to be self-preserving.
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Self-similarity of turbulent jet flows

In figure 13(b), we present the effect of the jet Reynolds number Re0 on the flatness
factors. It can be seen that the flatness factor of the velocity gradients F<

4 increases notably
with Reynolds number, but its variation with γ is approximately the same for all Reynolds
numbers. Based on the concept of scale separation, F<

4 should gradually become less
sensitive to external intermittency as the Reynolds number increases. However, this trend
is not supported by figure 13(b). An explanation for this observation could be the relatively
low Reynolds numbers of the simulations at hand for which no sufficient decoupling
between small and large scales exists (Mydlarski & Warhaft 1996). Moreover, figure 13(b)
indicates that the flatness factor of the velocity fluctuations F>

4 depends only weakly on
the jet Reynolds number Re0.

In order to further understand the impact of external intermittency on turbulence, we
define conditional flatness factors

F<
4 |t =

〈
Γ

(
∂u1

∂x1

)4
〉

〈
Γ

(
∂u1

∂x1

)2
〉2 , (4.20)

and

F>
4 |t = 〈Γ u4

1〉
〈Γ u2

1〉2
, (4.21)

that consider only the turbulent portion of the jet. Turbulent and non-turbulent regions
are distinguished by the intermittency function Γ (x). Unlike the conventional flatness
factors F<

4 and F>
4 , figure 14 shows that the conditional flatness factors F<

4 |t and F>
4 |t are

virtually constant and significantly less sensitive to variations of γ . This finding is valid
independently of the jet Reynolds number and originates from strong turbulent transport
that leads in a statistical sense to a rapid homogenization of fully turbulent regions. A rapid
homogenization of turbulent regions in free shear flows was already speculated by Corrsin
& Kistler (1955) and later confirmed by Mellado et al. (2009).

Thus far, we have not explained the mechanism behind the inter-scale coupling related
to external intermittency. To do this, it is meaningful to study the p.d.f. of the velocity
gradients at different cross-wise positions. When the p.d.f. of the velocity gradients is
known, the flatness factor F<

4 can be obtained by

F<
4 =

∫ ∞

−∞
z4P̃(z) dz, (4.22)

where z = (∂u1/∂x1)/σ , P̃(z) = σP(z) is the normalized velocity gradient p.d.f., and
σ = 〈(∂u1/∂x1)

2〉1/2 is the standard deviation. In figure 15(a), we present the evolution
of P̃(z) along the x̂3 direction for case D5. At the centreplane, P̃(z) is non-Gaussian
and has stretched exponential tails, but principally, the shape is very similar to p.d.f.s
known for homogeneous isotropic turbulence (Gotoh, Fukayama & Nakano 2002). From
the centreplane to the edge, the tails of P̃(z) become increasingly stretched, which is a
characteristic footprint of increasing intermittency. In particular, the far tails represent very
large velocity gradients that partly stem from the thin interfacial layer between turbulent
and non-turbulent fluid (Elsinga & da Silva 2019). At the same time, a distinct peak
emerges around ∂u1/∂x1 = 0. This peak originates from non-turbulent regions outside
of the turbulent envelope where velocity gradients are close to zero. The combination of
these effects has two consequences: firstly, the self-similarity of P̃(z) is destroyed, and
secondly, the flatness factor F<

4 increases toward the edge of the jet. It is now of interest to
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Figure 15. Conventional (a) and conditional (b) p.d.f. of the velocity gradients ∂u1/∂x1 at different cross-wise
positions x̂3 as indicated in the legend. The black dashed line indicates a normal distribution. The curves
are normalized by the standard deviation σ = 〈(∂u1/∂x1)

2〉1/2 and the conditional standard deviation σt =
〈(Γ ∂u1/∂x1)

2〉1/2, respectively. Data for case D5.

compare the results with the conditional p.d.f. that accounts only for the turbulent portion
of the flow. The normalized conditional p.d.f. is defined as P̃(z |Γ = 1) = σtP(z |Γ = 1),
with σt = 〈(Γ ∂u1/∂x1)

2〉1/2 being the conditional standard deviation. Figure 15(b) reveals
that P̃(z|Γ = 1) recovers self-similarity, with the exception of the very far tails. Based on
this comparison, we can conclude that external intermittency is the relevant mechanism
that destroys self-similarity along the cross-wise direction.

Finally, we revisit the self-similarity of velocity structure functions. Motivated by the
previous discussion, a conditional structure function

Sn,tt = 〈Γ (x + e1r)Γ (x)(u1(x + e1r) − u1(x))n〉 (4.23)

is defined for which both ending points are restricted to the turbulent portion of the jet.
Sabelnikov et al. (2019) defined structure functions in a similar fashion to distinguish
in non-premixed flames between burnt and unburnt regions. Figure 16 presents the
normalized conditional structure functions Sn,tt up to the sixth order at different x̂3
positions. The structure functions are normalized by conditional Kolmogorov scales
that account only the turbulent portion of the flow, i.e. uk,t = (ν〈Γ ε〉)1/4 and ηt =
(ν3/〈Γ ε〉)1/4. Compared with the conventional structure functions Sn shown in figure 11,
the conditional structure functions Sn,tt reveal a significantly improved collapse up to a
length scale of r/ηt ≈ 100, which corresponds approximately to the middle of the inertial
subrange. This observation signifies that turbulent regions smaller than this length scale
homogenize rapidly across the jet.

4.4. Scaling exponents of structure functions
Let us now examine the connection between the inertial range scaling exponents of
structure functions and external intermittency. Kolmogorov (1941b) introduced the idea of
a scale separation, where under the condition of very large Reynolds numbers an inertial
subrange exists, i.e. η � r � lt, in which the pth-order velocity structure function obeys
a scaling law, i.e.

Sp = 〈|�u1|p〉 ∝ rξp, (4.24)
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Figure 16. Normalized conditional structure functions Sn,tt up to the sixth order at different cross-wise
positions x̂3, where both ending points are located inside the turbulent envelope, see (4.23). The structure
functions are normalized by the conditional Kolmogorov scales uk,t = (ν〈Γ ε〉)1/4 and ηt = (ν3/〈Γ ε〉)1/4.
Similar to figure 11, the fourth-order structure functions and the sixth-order structure functions are shifted
upwards by two and four decades, respectively. Data for case D5.

with the scaling exponents ξp. Different from Kolmogorov’s definition, the absolute value
of the velocity increment in (4.24) permits the evaluation of even and uneven moments.
The Kolmogorov K41 theory predicts the scaling exponents from dimensional grounds as

ξp = p
3
. (4.25)

However, numerous experimental and numerical studies have provided strong evidence
for anomalous scaling, which refers to a departure from the analytical scaling law, i.e.
ξp < p/3 for p > 2 (Anselmet et al. 1984; Maurer, Tabeling & Zocchi 1994; Watanabe
& Gotoh 2007; Iyer, Sreenivasan & Yeung 2020). This departure has been explained by
internal intermittency, which arises from strong spatio-temporal fluctuations of the energy
dissipation rate ε. There is now conclusive evidence that internal intermittency breaks the
scale invariance and self-similarity of turbulence (see for example Kolmogorov (1962),
Kraichnan (1974) and Lawson et al. (2019)). However, an even more pronounced deviation
from Kolmogorov’s K41 prediction is expected for shear flows that are exposed to external
intermittency. Therefore, the dependence of the inertial subrange scaling exponents ξp on
the cross-wise position x̂3 and the external intermittency factor γ is of interest.

Due to the moderate Reynolds number of the jet flows on hand, a well-developed inertial
subrange does not exist (Thiesset, Antonia & Danaila 2013a). For this reason, the scaling
exponents ξp are determined by the so-called extended self-similarity (ESS) framework
(Benzi et al. 1993, 1995). Instead of evaluating the scaling exponents directly via (4.24),
a relative scaling exponent, ξp/ξ2, is obtained by plotting the pth-order structure function
against the second-order structure function. Following this procedure, the relative scaling
exponents are defined as

ξp

ξ2
= d log Sp(r; x3)

d log S2(r; x3)
. (4.26)

The practical effect of the ESS approach is the increase of the width of the so-called
restricted scaling range, which makes it possible to obtain reliable scaling exponents in
flows with moderate Reynolds numbers. In general, the scaling exponents of structure
functions depend to some degree on the Reynolds number, unless the Reynolds number is
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Figure 17. (a) Relative scaling exponents ξp/ξ2 obtained by ESS up to the sixth order for different cross-wise
positions x̂3 as indicated in the legend for case D5. For comparison Kolmogorov’s K41 solution (solid line) as
well as the p-model (dashed line) are shown. (b) Dependence of the relative scaling exponents ξp/ξ2 on the
intermittency factor γ at different times and for p increasing from 3 to 6 (from the bottom to the top). The black
dashed lines are obtained by a least-square fit and are shown as a visual guide.

very large (Pearson & Antonia 2001; Tang et al. 2017). By defining the scaling exponents in
(4.26) relative to S2, this Reynolds number dependence is masked. Here, we take advantage
of this feature, because the variation of the Reynolds number across the jet can be ruled
out as the reason for variations of the relative scaling exponents.

The scaling exponents ξp/ξ2 obtained by ESS are shown in figure 17(a) up to the sixth
order for different cross-wise positions. For comparison, we display Kolmogorov’s K41
prediction and the p-model developed by Meneveau & Sreenivasan (1991), i.e.

ξp = 1 − ln2(0.7n/3 + 0.3n/3). (4.27)

The p-model is based on a multi-fractal approach and is known to be able to predict
the inertial subrange scaling exponents of homogeneous isotropic turbulence with very
good accuracy (Sreenivasan & Antonia 1997). Figure 17(a) shows that the relative scaling
exponents at the centreplane depart increasingly from Kolmogorov’s K41 prediction with
increasing order, but are consistent with the prediction from the p-model. Hence, the
relative scaling exponents at the centreplane reflect the effect of internal intermittency but
are hardly affected by large-scale effects. However, the situation is very different toward
the edge of the flow. Figure 17(a) shows that the relative scaling exponents ξp/ξ2 fall
below the centreplane scaling exponents with increasing distance from the centreplane.
This effect becomes more pronounced with increasing order and eventually destroys the
self-similarity of higher-order structure functions in the restricted scaling range.

In the next step, we provide evidence that the pronounced anomalous scaling of
structure functions can be attributed to external intermittency. Figure 17(b) presents the
relative scaling exponents ξp/ξ2 as a function of the external intermittency factor γ at
different times. As anticipated, the relative scaling exponents decrease with decreasing
γ , and the rate of this decrease increases with the order p. From these findings, we can
conclude that external fluctuations amplify the break down of small-scale similarity, which
in turn manifests itself in a pronounced departure from Kolmogorov’s K41 prediction.
Interestingly enough, the variation of the scaling exponents ξp/ξ2 with γ is approximately
self-preserving.

These observations mandate a further explanation. Watanabe et al. (2019) showed that
the dynamics of the energy cascade at the TNTI is very complex and demonstrated that
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turbulence at the TNTI is very far from equilibrium. The scale-by-scale budget analysis in
the vicinity of the TNTI by Watanabe, da Silva & Nagata (2020) and Zhou & Vassilicos
(2020) further revealed that the direction of the inter-scale transport depends on the local
kinematics of the velocity field at the TNTI. In particular, Zhou & Vassilicos (2020)
showed that the most intense inter-scale transport occurs when the TNTI is furthest
away from the centre of the jet. These spatial variations of the inter-scale transport may
contribute to the observed amplified departure of the scaling exponents from the K41
prediction.

4.5. The correlation of the dissipation rate
Since the famous remark by Landau & Lifshitz (1963), it is known that the intermittent
fluctuations of the dissipation rate play an important role in the failure of analytical
scaling relations of higher-order structure functions. Following Landau’s remark, Obukhov
(1962) proposed to replace the mean dissipation in Kolmogorov’s K41 scaling theory by
a coarse-grained dissipation εr that is spatially averaged over a sphere of radius r. In
anisotropic turbulence, εr is usually defined by a one-dimensional surrogate as

εr = 1
r

∫ x+re1

x
ε(̃x) d̃x. (4.28)

To address Landau’s remark, Kolmogorov (1962) presented the so-called refined similarity
hypothesis, which is a quantitative theory that accounts for intermittency. Provided that an
inertial subrange exists, the central assumption of this theory is the scaling of 〈ε2

r 〉, i.e.

〈ε2
r 〉 ∝ 〈ε2〉(r/lt)−μ (4.29)

that defines the intermittency exponent μ. Most experiments reported values for μ between
0.15 and 0.25 (Nelkin 1994). Note that in the absence of intermittency, the exponent
μ tends to zero. By making the assumption that εr obeys a log-normal distribution,
Kolmogorov (1962) linked the scaling exponent of structure function to the intermittency
exponent, i.e. ξp = μp(3 − p)/18. For p < 10, Kolmogorov’s log-normal assumption
provides satisfactory agreement with experiments (Frisch 1995).

Despite the relatively low Reynolds number of the flow at hand, it is instructive to study
how 〈ε2

r 〉 depends on the cross-wise position x̂3. Nelkin (1994) showed that the two-point
correlation of the dissipation rate is related to 〈ε2

r 〉, i.e.

Rε(r, x3) = 〈ε(x)ε(x + re1)〉 = 1
2

d2〈ε2
r 〉

dr2 , (4.30)

which follows from (4.28) and homogeneity in the streamwise direction. In what
follows, we focus on the two-point correlation function, because it allows us to define
a conditional average similar to (4.23). The two-point correlation function Rε is presented
in figure 18(a) for different cross-wise positions x̂3 for case D5. Normalization with
〈ε2〉 yields a perfect collapse of the correlation functions in the dissipative range. For
larger scales at approximately r/η > 10, the different correlation functions begin to depart
and approach a plateau in the large-scale limit, whose value clearly depends on x̂3.
The consequence of this observation is the fact that there is a range of scales between
10 < r/η < 100, for which the slope of Rε becomes significantly steeper from the centre
to the edge. In other words, the intermittency exponent μ increases from the centre toward
the edge of the jet. This observation is consistent with the amplified anomalous scaling of
structure functions shown in figure 17.
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Figure 18. Normalized correlation function of the dissipation Rε = 〈ε(x)ε(x + re1)〉 (a) and normalized
conditional correlation function Rε,tt = 〈Γ (x)Γ (x + re1)ε(x)ε(x + re1)〉 (b) for different cross-wise
positions x̂3. Data are shown for case D5.

In order to study the effect of external intermittency, we define the conditional
correlation function of the dissipation rate as

Rε,tt(r, x3) = 〈Γ (x)Γ (x + re1)ε(x)ε(x + re1)〉, (4.31)

where, similar to the conditional structure function defined by (4.23), both points x + re1
and x are restricted to the turbulent portion of the jet. The conditional correlation function
Rε,tt is shown in figure 18(b) and reveals, compared with Rε, an improved collapse.
In particular, the slope in the range 10 < r/η < 100 hardly depends on the cross-wise
position. This result is consistent with the collapse of the conditional structure function
Sn,tt/un

k,t shown in figure 16.

5. Summary and discussion

After decades of research, the concept of self-similarity of structure functions in
turbulent jet flows is still considered very elusive. The reason is the existence of strong
spatio-temporal fluctuations that occur over a wide range of different scales and usually
invalidate self-similarity approaches. In turbulent jet flows, these fluctuations originate
not only from internal intermittency but also from external intermittency. Specifically, it
is unclear if and how internal and external intermittency are coupled.

In the first step, we demonstrated that velocity structure functions satisfy complete
self-preservation at the centre and in the shear layer of jet flows. We showed that
self-preservation is not limited to low-order structure functions, but also valid for higher
orders. By studying asymptotic solutions of structure functions, we derived necessary
conditions for self-preservation in the small-scale and large-scale limits. We showed
that a constant, but not necessarily very high Reynolds number is required for complete
self-preservation. The analysis also revealed that isotropy is not required for complete
self-preservation to be valid. Instead, the analysis showed that any anisotropy that is
present in the flow must persist indefinitely.

In the next step, we studied the self-similarity of structure functions at different
cross-wise positions. The edge of a jet is characterized by the IB, which in turn is
associated with the phenomenon of external intermittency. For the study of external
intermittency, we defined the intermittency structure function, which quantifies the
morphology of the IB at different scales.
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Self-similarity of turbulent jet flows

The analysis revealed that Kolmogorov’s K41 theory provides suitable self-similarity
scales for second-order velocity structure functions at any cross-wise position, despite
the presence of finite Reynolds number effects such as shear, inhomogeneity or external
intermittency. However, the analysis also demonstrated that external intermittency has
a similarity-breaking effect on higher-order structure functions. The similarity-breaking
effect becomes more pronounced with increasing order and has its origin in a combination
of the occurrence of strong velocity gradients and the alternating flow structure of
turbulent and non-turbulent fluid.

Further evidence for the self-similarity-breaking effect of external intermittency was
provided by representing statistics as a function of the intermittency factor γ . An important
result is the increase of the flatness factor of the velocity gradients as the impact of external
intermittency increases. This finding clearly indicates that the large scales (represented
by the external intermittency factor) are coupled to the small scales (represented by the
velocity gradient flatness) of the flow. Similar conclusions were drawn for the inertial
range scaling exponents of structure functions, which exhibit a pronounced departure from
Kolmogorov’s K41 prediction toward the edge of the flow. In particular, the data provide
no evidence that the effect of external intermittency on small-scale turbulence weakens as
the Reynolds number increases.

The reported results are significant for mixing models and combustion models,
which require a characteristic turbulence time scale. This time scale is usually built on
dimensional grounds with the mean turbulent energy 〈k〉 and the mean energy dissipation
rate 〈ε〉. In turbulent flows that are subject to strong intermittency, such a time scale may
not be appropriate. Instead, the characteristic time scale should account for the increased
intermittency toward the edge of the flow. Such a time scale can be built for example from
the higher-order moments of the velocity fluctuations 〈kn〉 and the energy dissipation rate
〈εn〉. By analysing structure functions across the jet, we demonstrated that higher-order
statistics conditioned on fully turbulent regions inside the turbulent envelope are largely
independent of external intermittency and recover self-similarity at small and intermediate
scales. As zonal models, for example based on gradient trajectories (Mellado et al. 2009;
Gauding et al. 2017; Denker et al. 2020; Gauding et al. 2021), have recently gained
relevance for mixing and combustion models, this result has a direct application.
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Appendix A. Statistical convergence of higher-order statistics and suitability of the
threshold criterion for the detection of the IB

Higher-order moments are strongly influenced by rare but very intense events. For this
reason, the statistical convergence is demanding and requires averaging over a sufficient
large ensemble. Following Meneveau & Marusic (2013) and de Silva et al. (2017), we
verify the convergence of the higher-order moments by the pre-multiplied p.d.f.s of the
energy dissipation rate and the turbulent energy. The non-dimensional moments of the
energy dissipation rate 〈εn〉/〈ε〉n can be obtained by integrating the pre-multiplied p.d.f.,
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Figure 19. (a) Pre-multiplied p.d.f. of the energy dissipation rate to obtain the non-dimensional third-order
moment, defined as 〈ε3〉/〈ε〉3 = ∫ ∞

0 ε̃3P̃(ε̃) dε̃, with P̃(ε̃) = 〈ε〉P(ε/〈ε〉). (b) The pre-multiplied p.d.f. of the
turbulent energy k is defined in a similar fashion. The curves are shown for different cross-wise positions x̂3 as
indicated in the legend. Data for case D5.

i.e.
〈εn〉
〈ε〉n =

∫ ∞

0
ε̃nP̃(ε̃) dε̃, (A1)

with the normalized p.d.f. being defined as P̃(ε̃) = 〈ε〉P(ε/〈ε〉). The integral quantity of
(A1) is shown for the third order in figure 19(a) for different cross-wise positions x̂3. It
can be seen that the integral under the curve is well approximated by the data available,
indicating satisfactory statistical convergence of the third-order moment (note that the
third-order moment of the dissipation rate is related to the sixth-order moment of structure
functions in the small-scale limit). Statistical convergence is more challenging toward the
edge of the jet due to external intermittency, which is clearly visible in the pre-multiplied
p.d.f. by large excursions from the mean. It is remarkable that ε attains for the most outward
position x̂3 = 1.59 values as large as 100 times the mean value 〈ε〉.

To examine the statistical convergence at the large scales, we define in a similar fashion
the non-dimensional moments of the turbulent energy k, i.e.

〈kn〉
〈k〉n =

∫ ∞

0
k̃nP̃(k̃) dk̃, (A2)

with P̃(k̃) = 〈k〉P(k/〈k〉). Similarly, the integral quantity of (A2) is shown for the
third order in figure 19(b) for different cross-wise positions x̂3. Satisfactory statistical
convergence of the pre-multiplied p.d.f. can be observed.

Structure functions are scale-sensitive statistics and especially for higher orders, their
convergence needs to be carefully examined. The situation is even more challenging for
conditional structure functions Sn,tt, where the number of events that contribute to the
ensemble average decreases continuously from the centre to the edge of the jet (see
(4.23)). We verify the statistical convergence by comparing structure functions that are
computed over a single (x1, x2)-plane with structure functions that are computed over two
(x1, x2)-planes by exploiting symmetry with respect to the midplane. Figure 20(a) shows
the conditional structure functions Sn,tt up to the sixth order for x̂3 = 1.59. Overall, a
satisfactory statistical quality can be observed. Small differences are limited to the largest
scales.
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10−3 10−2 10−1 100 101
10−14

10−10

10−6

10−2

n = 6

n = 4

n = 2

r

S n,
tt

10−3 10−2 10−1 100 101
10−14

10−10

10−6

10−2

n = 6

n = 4

n = 2

r

–3.4

–4.4

–5.4

–6.4

log10(ω2
0/ω̂2)

Figure 20. (a) Illustration of the statistical quality of conditional structure functions Sn,tt up to the sixth order
at the position x̂3 = 1.59 for case D5. The solid blue lines represent an ensemble average that exploits symmetry
with respect to the midplane, while the dashed red lines represent an ensemble average that is computed
over a single (x1, x2) plane. (b) Dependence of the conditional structure functions Sn,tt on the value of the
threshold log10(ω

2
0/ω̂

2) that determines the IB at the position x̂3 = 1.59 for case D5 (see § 4.1). For reasons of
comparability, the structure functions are not normalized.

Furthermore, it is necessary to examine how the conditional structure functions Sn,tt
depend on the threshold of the enstrophy that determines the position of the IB.
Figure 20(b) shows Sn,tt up to the sixth order at the position x̂3 = 1.59 for different
thresholds log10(ω

2
0/ω̂

2) between −6.4 and −3.4 (see § 4.1). It can be observed that the
conditional structure functions Sn,tt hardly depend on the threshold, despite a variation of
the threshold value by three orders of magnitude. Consequently, the results presented are
essentially independent of the chosen threshold value.

Appendix B. Self-similarity analysis of the temporally evolving planar jet

We apply the self-similarity theory of Townsend (1949) to the temporally evolving planar
jet flow. The starting point is the Reynolds-averaged streamwise momentum balance,
formulated at the centreplane

∂〈U1〉
∂t

= − ∂

∂x3
〈u1u3〉 + ν

∂2〈U1〉
∂x2

3
. (B1)

Self-preservation of the independent variables of (B1) is assumed, which leads to the
following functional relations:

〈U1〉 = Uref (t)f (x̂3) and 〈u1u3〉 = U2
ref (t)g(x̂3), (B2a,b)

where Uref is a reference velocity scale that depends only on time t, while g and f are
non-dimensional functions that depend on the normalized transverse coordinate x̂3 =
x3/Lref , where Lref is a reference length scale.

Using (B2a,b) in (B1) gives, after rearranging,[
L2

ref

νUref

dUref

dt̂

]
f (x̂3) −

[
Lref

ν

dLref

dt̂

]
x̂3f ′(x̂3) = −

[
Uref Lref

ν

]
g(x̂3) + f ′′(x̂3), (B3)
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Figure 21. Mean streamwise velocity profile normalized with the mean centreplane velocity Uc and the jet
half-width h1/2 at different times (D1–D5) indicated in figure 1.

where the prime denotes derivatives with respect to x̂3 and t̂ = t/tref . The reference
time tref = H0/U0 is built with the initial jet thickness H0 and the initial jet centreplane
velocity U0. Self-preservation requires that the prefactors in the square brackets of (B3)
are constant, i.e.

L2
ref

νUref

dUref

dt
= c1, (B4)

Lref

ν

dLref

dt
= c2, (B5)

Uref Lref

ν
= c3. (B6)

The constants c1, c2 and c3 are invariant with time, but may still depend on the initial
conditions. This also signifies that different independent self-similarity solutions may
exist for different Reynolds numbers. Notwithstanding, the opportunity created by this
development lies in the fact that we can analyse dynamical constraints of the governing
equations that follow from self-preservation. Specifically, we demonstrate in the following
that the temporal evolution of the characteristic velocity and time scales can be determined
unambiguously under the condition of self-preservation.

Integrating (B5) reveals the time dependence of the characteristic length scale Lref to be(
Lref

L0

)2

= 2c2

Re0
(t̂ − t̂0), (B7)

where t̂0 is the virtual origin in time. Integrating (B4) gives the temporal evolution of the
characteristic velocity, i.e.

Uref

U0
= Au(t̂ − t̂0)n, (B8)

where the scaling exponent equals n = c1/(2c2) and Au is a non-dimensional constant.
Self-preservation of the mean velocity profile 〈U1〉 in conjunction with continuity dictates
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1.0 × 10–6 1.0 × 10–4 1.0 × 10–2 1.0 × 1021.0

(b)

(a)

Figure 22. Two-dimensional (x1, x2)-plane of the normalized enstrophy ω2/ω̂2 at the centreplane (a) and at
x̂3 = 1.59 (b) for case D5. The colour map is scaled logarithmically and increases in the order black (lowest
value), blue, white (highest value). The yellow contour lines indicate the IB, defined by the enstrophy criterion
as log10(ω

2
0/ω̂

2) = −3.4. Note that 50 % of the computational domain is shown.

that the scaling exponent n equals −1/2. Using (B7) and (B8) in (B6) gives

c3 = Uref Lref

ν
= const., (B9)

which implies that the jet Reynolds number

ReL = Uref Lref

ν
(B10)

must stay constant for self-preservation to hold.
At this stage of the analysis the reference scales Uref and Lref have not yet been

specified. Figure 21 reveals that the mean velocity profiles 〈U1〉 admit self-preservation
after normalization with the centreplane velocity Uc and the jet half-width h1/2. Thus, Uc
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and h1/2 constitute a possible set of self-similarity variables. However, in § 3.2 we show
that other sets of length and velocity scales are equally suitable as reference scales.

Appendix C. Visualization of internal and external intermittency

In this section, we present the normalized enstrophy field ω2/ω̂2 in two different
(x1, x2)-planes to visualize the effect of intermittency, cf. figure 22. At the centreplane,
the flow is fully turbulent and a high level of internal intermittency is visible. At the edge
of the flow at x̂3 = 1.59, the structure of the enstrophy field is very different and external
intermittency is represented by the alternation between non-turbulent regions in black and
highly turbulent regions in blue. Both regions are separated by the IB, which is displayed in
yellow. The ratio between the blue area and the black area equals the intermittency factor
γ . It is clearly visible that the intermittency factor is close to unity at the centreplane,
while it is significantly lower than unity at x̂3 = 1.59.
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