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The prominence of nulls in reconnection theory is due to the expected singular current
density and the indeterminacy of field lines at a magnetic null. Electron inertia changes
the implications of both features. Magnetic field lines are distinguishable only when their
distance of closest approach exceeds a distance Δd. Electron inertia ensures Δd � c/ωpe.
The lines that lie within a magnetic flux tube of radius Δd at the place where the field
strength B is strongest are fundamentally indistinguishable. If the tube, somewhere along
its length, encloses a point where B = 0 vanishes, then distinguishable lines come no
closer to the null than ≈ (a2c/ωpe)

1/3, where a is a characteristic spatial scale of the
magnetic field. The behaviour of the magnetic field lines in the presence of nulls is studied
for a dipole embedded in a spatially constant magnetic field. In addition to the implications
of distinguishability, a constraint on the current density at a null is obtained, and the time
required for thin current sheets to arise is derived.
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1. Introduction
1.1. Magnetic reconnection

Magnetic nulls have long been prominent in the theory of magnetic reconnection. The
traditional reasons for their importance are the indeterminacy of field lines at a null and
the formation of a singular current density along field lines that intercept a null (Craig &
Effenberger 2014).

Magnetic field lines have their closest approach at the thinnest locations of flux tubes and
can be separated by great distances at other places along the lines. Resistivity or electron
inertia need only make magnetic field lines indistinguishable across the thinnest parts
of flux tubes to produce reconnection (Boozer 2020). Field line indistinguishability is
equivalent to the breaking of the frozen-in condition of field lines.

Recognition of the importance of locations of the closet approach of magnetic field
lines is particularly great for understanding the role of nulls. Electron inertia sets a
minimum distance over which magnetic field lines are distinguishable, Δd � c/ωpe;
plasma resistivity can make Δd even larger. Electron inertia produces magnetic flux
tubes of indistinguishable lines when the tube has a radius of Δd anywhere along its
length. Since magnetic flux is constant along a magnetic flux tube, the spatial extent of
a magnetic flux tube that passes near a null becomes spatially extended. Regions of field
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line indistinguishability are not determined by regions near nulls, but essentially where the
field strength B has a maximum along each tube.

Magnetic nulls are points where magnetic field lines of different topologies come
arbitrarily close to one another, which can and will be studied by placing a sphere of
infinitesimal radius about each null. But, the regions over which magnetic field lines are
fundamentally indistinguishable in an evolution are determined by the Δd scale compared
with the size of flux tubes far from the nulls.

The subtlety of magnetic nulls, topology and the Δd scale of indistinguishability will be
studied in what may be the simplest well-defined, but common situation, the interaction of
a magnetic dipole with a constant magnetic field. Dipoles have a singularity, but in nature
dipole fields, such as the dipole field of the Earth, are enclosed within what is essentially
a spherical object. This will be assumed, and the topological properties of the magnetic
field will be studied by field line mappings between the sphere that encloses the dipole,
infinitesimal spheres around the nulls and a distant sphere on which the uniform magnetic
field is dominant.

A caveat on terminology: in astrophysics, a magnetic flux tube can imply that the
magnetic field is far stronger within the tube than without. Magnetic flux tubes are too
important for understanding magnetic fields that vary smoothly in space to allow this
implication to impede thought. Here, a magnetic flux tube is defined by a region enclosed
by the magnetic field lines that pass through a closed curve, such as a circle.

1.2. Brief history of nulls
The study of magnetic nulls has historically been motivated by the study of Earth’s
magnetosphere. Magnetic reconnection at magnetic nulls was posited as the driving force
for convection in the Earth’s magnetosphere (Dungey 1961).

In 1963, Dungey (1963) proposed a simple model for the formation of magnetic
structures of vanishing strength: that of a magnetic dipole immersed in a uniform field
antiparallel to the magnetic dipole moment. This symmetric configuration produces a line
of vanishing magnetic field strength, or a line null.

In 1973, Cowley (1973) considered the effect of a non-symmetric configuration: a
magnetic dipole immersed in a uniform magnetic field oriented at an angle ζ with respect
to the magnetic dipole moment. This configuration produces two magnetic point nulls,
three-dimensional points at which the magnetic field strength vanishes, and illustrates
well the general principle that a line null breaks into well-separated point nulls in the
presence of an arbitrarily small perturbation. Cowley’s work formed the underpinnings of
null research such as the spine–fan structure of the magnetic field near a null. Stern (1973)
also independently considered the effect of non-symmetric configurations in 1972.

The works of Dungey, Cowley and Stern have formed the basis for magnetic null
research to the present day. More recent considerations include the motion of null points
(Murphy, Parnell & Haynes 2015), the development of analytic solutions of steady-state
reconnection (Craig & Fabling 1996; Galsgaard & Pontin 2011) and their role in particle
acceleration (Dalla & Browning 2005; Boozer 2019b).

Nulls have been observed both in Earth’s magnetosphere (Xiao et al. 2006) and in the
solar corona (O’Flannagain et al. 2018).

We will use a simplified model of the Earth’s magnetosphere interacting with the solar
wind in order to study properties of magnetic nulls.

1.3. Magnetic nulls
In this section we describe well known results of nulls, (Dungey 1963; Cowley 1973;
Parnell et al. 1996).
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Magnetic nulls are three-dimensional points where the magnetic field strength vanishes.
A first-order Taylor expansion of a general divergence-free field around a point null has
the form (Parnell et al. 1996; Boozer 2019a)

B(x) = M · x + μ0

2
j0 × x, (1.1)

where

M = Bn

2a

⎡
⎢⎣

(Qn + 1) 0 0
0 −(Qn − 1) 0
0 0 −2

⎤
⎥⎦ . (1.2)

When a is the radius of the dipole sphere, Bn has a value equal to the typical field strength
on that sphere. The three diagonal elements are dimensionless numbers such that the
trace must be zero, since the magnetic field is divergence free. Here Qn is a coefficient
describing the topological structure of the null spine–fan and j0 is the current density at
the null. Section 4.1 will show that the Lorentz force associated with the current j0 has
a curl when |Qn| is not equal to unity, which means the force cannot be balanced by the
gradient of a scalar pressure.

Magnetic fields given in (1.1) with j = 0 form the typical spine–fan structure of a null.
The spine-fan. The spine–fan structure is either of type A: field lines coming in along the
spine, a cylindrical column of magnetic field lines, and out along the fan, a plane of field
lines. Or it is of type B: in along the fan and out along the spine.

When j0 = 0, Qn describes the flow strength of field lines in the fan plane. As Qn → 0,
field lines travel at an equal rate in both directions of the fan plane. When Qn → 1, field
lines travel increasingly unidirectionally in the fan plane. For Qn = 1, the fan collapses
into a column of flux, forming a ‘spine–spine’ structure; Qn = 1 occurs when the uniform
field points only in the −ẑ direction. In this case, a line null forms around the equator of
the dipole sphere with radius aN = 3

√
μ/Bc. An overall multiplying factor can be removed

and placed in front of the matrix. The largest coefficient in absolute value can be set equal
to −2 by an appropriate choice of the constant in front of the matrix and the coordinates
can be chosen so that is the z-directed component. The other two components must add
up to +2. This can always be achieved by making the larger of the two equal Qn + 1 and
make it the x-directed component with 1 ≥ Qn ≥ 0 and the other component, which must
be y-directed, equal to 2 − (Qn + 1).

In ideal theory, a singular current density with a finite total current will generically arise
there during an evolution (Craig & Effenberger 2014). But, as noted in Boozer (2014), it is
difficult to concentrate a current in a narrow region across indistinguishable magnetic field
lines, as would be required to have an singular current density with a finite total current.
Section 4.1 shows that a thin current sheet can develop along field lines that pass near the
nulls, but a long time is required for it to develop.

1.4. Features of magnetic nulls in interacting dipolar fields
Sections 2 and 3 examine Cowley’s original model through the lens of surface mappings
and magnetic flux tubes. A thought experiment involving electron inertia effects is used to
describe fundamental features missed in the literature.

2. Model

In nature, magnetic dipoles arise embedded in some medium. An example is the Earth,
which can be taken to be a magnetic dipole embedded in a sphere. A purely dipolar
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FIGURE 1. Magnetic dipole (blue arrow) embedded in a spherical shell (black line) placed in a
uniform background magnetic field oriented at angle ζ (orange lines).

(b)(a)

FIGURE 2. Example fields for (a) ζ = 0 and (b) ζ = π. Lines shown are magnetic field lines;
different colours denote topological type as described in figure 3. The sphere is the dipole sphere,
the red Xs are the locations of the magnetic nulls. Note that for ζ = π there is actually an
equatorial line null connecting the two point nulls shown.

magnetic field has a singularity at the location of the dipole, which when included makes
field line descriptions confusing. Thus, we consider a magnetic dipole embedded in a
sphere of radius a placed into a uniform background magnetic field oriented at an angle ζ ,
see Figures 1 and 2. The theory is of general importance in magnetic fields that have nulls.
One example is a simplified static model of the interactions between the Earth’s magnetic
field and the solar wind.

The sphere serves to (i) provide a distinction between field lines of different topological
types on the surface of the dipole sphere and (ii) eliminate the magnetic singularity located
at the dipole moment. Field lines are not tracked below the surface of the dipole sphere.

For a dipole with a magnetic moment md = mdẑ, the magnetic field in spherical
coordinates is

Bd = μ

r3
(2 cos θ r̂ + sin θ θ̂), (2.1)
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where μ ≡ (μ0/4π)md. The constant field is Bc = Bc(cos ζ ẑ + sin ζ x̂), or in spherical
coordinates,

Bc = Bc(cos ζ cos θ + sin ζ sin θ cos ϕ)r̂

− Bc(cos ζ sin θ − sin ζ cos θ cos ϕ)θ̂

− Bc sin ζ sin ϕϕ̂. (2.2)

Nulls form where Bd = −Bc.
For reference, the Cartesian–spherical transformation equations are

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ.

⎫⎪⎬
⎪⎭ (2.3)

Field lines may have different topologies. Topological type is determined by the
boundary conditions of a field line integrated forwards and backwards. In this system
there are four topological types. Field lines: (i) start and end on the surface of the sphere;
(ii) start on the sphere and end up infinitely far away; (iii) begin infinitely far away and
land on the sphere; (iv) never touch the surface of the sphere, see figure 3(a).

This idea of special field line mappings associated with the magnetic nulls is related to
the idea of the magnetic skeleton (Priest, Bungey & Titov 1997).

2.1. Topological features
2.1.1. A magnetic surface

The y = 0 plane is a magnetic surface since the magnetic field normal to that surface,
Bϕ , is zero. Any field line which starts in the y = 0 plane remains in it. This plane provides
a convenient description of the entire system which requires only two dimensions, see
figure 3. The two point-nulls that arise when a dipole lies in a uniform field lie in this
plane.Within the magnetic surface, four field lines characterize the topological properties
of the entire three-dimensional system, figure 3(a). Lines 1 and 3 comprise the null spine
as they travel out from the dipole sphere to nulls 1 and 2, then become fan lines as they
pass through the null. These lines outline a separatrix in the field far away from the null
which distinguishes ∞,−∞ and ∞–surface mappings. Lines 2 and 4 go into the null fan
as they travel out from the dipole sphere to the nulls and then become the null spine in the
far-field and also act as a separatrix between ∞,−∞ and ∞–surface mappings.

As we shall see in § 2.1.2 figure 4(a–c), these four field lines on the magnetic surface
provide a characteristic description of the separatrices arising in this system.

2.1.2. Mappings on four different spheres
The system may be considered a mapping between four spherical surfaces: (i) the dipole

sphere of radius aD, (ii) and (iii) two spheres of radius aN � aD placed about each null;
and (iv) a spherical shell centred about the magnetic dipole with radius a∞ 	 aD. For our
study, a∞ 	 aD 	 aN and a∞ is large enough that B(a∞, θ, φ) ≈ Bc(a∞, θ, φ).

In figure 4 we use the sinusoidal map projection,

x′ = ϕ sin θ, y′ = θ, (2.4a,b)

in order to eliminate the appearance of degenerate points on the sphere (i.e. (θ1, φ1) =
(π/2, 2π) and (θ2, φ2) = (π/3, 2π)). The null sphere coordinate system (x′, y′) has been
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(b)

(a)

FIGURE 3. Field lines in the magnetic surface y = 0. The magnetic nulls lie in this plane and
accordingly so does each topological type. The characteristic field lines (lines 1, 2, 3 and 4) map
out the separatrices of the system. In panel (b) the nulls are zoomed-in to show the characteristic
field line paths near the null.

rotated from Cartesian coordinates (x, y, z) such that the rotated spherical coordinate
system (θ ′, ϕ′) aligns the z-axis along the spine away from the dipole sphere and has been
projected into the sinusoidal map.

(a) Dipole sphere: figure 4(a). The dipole sphere has field lines of three topological types
(figure 4a). Along the change in topological type as θ : 0 → π lies two separatrices: the
region between the blue and green types, or green and red types. A fundamental property
of magnetic nulls is that two field lines that lie arbitrarily close to each other at one point in
space may end up arbitrarily far away from each other if they pass near a null. Equivalently,
field lines which approach the separatrix infinitesimally will pass closer and closer to one
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(b)(a) (c)

FIGURE 4. The characteristic field lines 1 and 2 map from the dipole sphere to land on the null
sphere and travel along the sphere at a constant azimuthal angle until leaving the sphere to travel
to the far-sphere. The characteristic field lines 3 and 4 follow the same path idea, but in reverse.
(a) Null Sphere: each different topological type are present near the nulls. Along the black dotted
line, Br = 0. (b) Far Sphere: notice the two red regions are in fact continuous due to periodicity
in φ. Along the black lines, Br = 0. (c) Dipole Sphere. Along the black dotted line, Br = 0.

of the respective nulls. The dipole separatrices account for half of the flux of each null,
with the other half coming from the far-sphere separatrices.

(b) Far sphere: figure 4(c). The far sphere also contains three topological types, however,
the surface–surface field lines are now ∞–∞ field lines. The far-sphere separatrix
additionally maps directly into the magnetic nulls.

(c) Null spheres: figure 4(b). There are two null spheres in our model, however, they
differ only in magnetic field sign and are symmetric.

The null sphere acts as a separator of topological types: all four topological types are
observed on a sphere placed about a null, figure 4(b). The black dashed lines denote
the angles along which Br = 0 and provide a definition for the spine and fan regions of
the null-sphere. The fan region is a ribbon of flux and so is centred about θ = π/2. The
spine region is a thin column of flux along a single pole through the sphere and so does
not map out a continuous region along the null sphere but rather two distinct pieces. If θ0
is the angle at which Br = 0 ∀ϕ, then |θ − π/2| > θ0 is a spine point and |θ − π/2| < θ0
is a fan point; see § 2.2 for more discussion.

The fan of a null is populated by field lines which lie along one separatrix for y �= 0.
At y = 0, that separatrix is populated by a field line from the other null’s spine. The same
interpretation is true for the other null, with the caveat that the field line directions will all
reverse for the other null.

The null sphere is the intersection of surfaces dividing volumes in space composed of
field lines of single topological type.

First we consider only far-sphere separatrix contributions to the null sphere. The
separatrices of the far-sphere map out a closed surface on either side of which field lines
are either of ∞–∞ type or ∞–dipole sphere/dipole sphere–∞ type. The separatrix maps
into either the spine or fan of the null, depending on which null is being considered. The
flux contribution to this null is not the complete surface but rather a complete surface
without a single line lying in the symmetry plane. This missing contribution of flux is
attached to the other null – it is the spine of the other null.

In conclusion, the null sphere is the meeting point between separator surfaces. The four
characteristic field lines divide these surfaces in the symmetry plane.

The flux passing through a sphere placed about a null is fundamentally tied to the
flux passing through the dipole separatrix. This will lead to a clear argument against the
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FIGURE 5. Field line structure near a magnetic null. Points near but not on the spine or fan trace
out paths reminiscent of the spine–fan structure albeit at a greater distance from the null. The
quadrupole term Qn describes the field line flow along the fan: as Qn → 1 the fan flux collapses
to a spine-like structure, causing the overall spine–fan structure to resemble a cross.

relevance of magnetic null points themselves to reconnection processes. Instead, a large
volume, defined by the distinguishability distance Δd, that includes the null, determines
reconnection properties.

2.2. Sphere about a null
Here we discuss a null-characterizing structure: a sphere of radius r placed about a
null, see figure 5. The flux through this sphere is invariant to the current j0 whereas
the spine–fan structure varies with j0. Note that j0 is not invariant in an arbitrary ideal
magnetic evolution – it may change to preserve topological properties of the field (Parnell
et al. 1996; Boozer 2019a). Restrictions on such an evolution may be found in Hornig &
Schindler (1996). For more discussion on currents related to nulls, see § 4.1.

In the next section, we will see that this interpretation provides insight through a
frozen-flux argument.

2.2.1. Null sphere flux
The flux passing through a sphere about the null is the radial flux as measured from a

null-centred frame. Assuming j = 0 in the representation for the near-null magnetic field
(1.1), we have

Br = r
Bn

2a
((1 − 3 cos2 θ) + Qn sin2 θ (1 − 2 sin2 ϕ)); (2.5)

the spine–fan separatrix may be found by solving Br = 0, yielding

θ = tan−1

(√
3

1 + Qn(1 − 2 sin2 ϕ)

)
. (2.6)

We now consider the flux passing through the null sphere. As we have shown previously,
the flux through the null sphere is tied to the separatrices of the far sphere and the
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dipole sphere. For reasons which will be clarified later, we restrict our attention to the
flux relationship between the dipole sphere and the null sphere.

By placing a sphere of radius aN about the null (figure 5) we may relate the flux from
the separatrix to the flux at the null.

It is useful to define spatial parameters and to assume the spine–fan structures have a
finite size. The fan is a plane of flux passing into the null – call its width δF. The spine is
a cylindrical column of flux – call its radius rS. Notice that δF, rS are not arbitrary length
scales, rather they are set by the minimum length scale of distinguishability of the system.
In this system, this occurs at the dipole separatrix.

Let us say field lines pass into the null along the fan and out of the null along the
spine. The flux passing through the surface of the sphere scales with r, (2.5). We choose
to suppress terms varying with θ , φ as we are only interested in flux scaling, that is,
Br(aN, θ, ϕ) ∼ r.

Thus, the flux passing into the sphere about the null from the fan is

ΦF = Br(aN, θ, ϕ)(2πaNδF) ∼ a2
NδF. (2.7)

The flux passing out of the null along the spine is

ΦS = Br(aN, θ, ϕ)(πr2
S) ∼ aNr2

S. (2.8)

The flux contribution of a single topological type to the null sphere is vanishing, ΦF =
−ΦS. Suppressing signs, we find aNr2

S ∼ a2
NδF or

rS ∼
√

aNδF. (2.9)

We now consider the flux relation between the null fan of one topological type and the
flux of the dipole separatrix. Necessarily, ΦF = ΦSep where ΦSep is the flux contribution
from one dipole separatrix to the null fan. Remembering the radius of our dipole sphere is
a, we have

ΦSep = B(x)2πaδS ∝ a2δS, (2.10)

where δS is the width of the dipole separatrix. On the dipole separatrix, B(x) ≈ Bd(x) ∝ a.
Equating ΦSep = ΦS, we have 2πaδS = 4πa2

NBr. Since Br ∼ r close to the null, choose
r = a so we have scaling as

aN = 3
√

δsa2. (2.11)

Notice that we are only talking about flux contributions from one dipole separatrix to one
null fan, and subsequently one null spine.

Thus, the smallest distance in this system is δS, the dipole separatrix width. In particular,
choosing aN small enough such that the lowest-order terms in its Taylor expansion
dominates, we require a dipole separatrix of width δS = a3

N/a2.
We do not consider the relation between the null and far sphere fluxes here. The field

strength in the far field will not impose a smaller relevant length scale since the constant
field strength is weaker than the field strength on the dipole separatrices.

3. Field properties
3.1. Variation of null properties with ζ

3.1.1. Null location
Nulls are points in space which satisfy Bd = −Bc. Nulls lie at a distance an ∼ 3

√
μ/Bc,

with the θ coordinate determined numerically. Along the y = 0 plane, Bϕ = 0 and so
ϕ = 0 for all nulls regardless of ζ , see § 2.1.1.
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(b)(a)

FIGURE 6. (a) Spine–fan for Qn = 0. The spine–fan takes on its usual form: a column of field
lines form the spine and a plane of field lines form the fan. (b) Spine–fan for Qn = 1. Here the
spine widens into a constant-radius column of field lines while the fan collapses into another
column perpendicular to the spine.

If μ/a3 < Bc, the nulls lie within the dipole sphere which has radius a = aD. This is not
relevant to the discussion of nulls given in this paper. In this paper, μ/a3 > Bc strictly.

At ζ = 0, the nulls lie at the poles of the dipole sphere: θ = 0,π. At ζ = π, a line
null is formed about the equator of the dipole sphere. The line null in coordinate form
may be expressed θ = π/2, ϕ ∈ [0, 2π]. Any magnetic perturbation away from the ζ =
π configuration collapses the line null into two point nulls, a well known topological
property of nulls. For any angle 0 < ζ < π, the null continuously travels between these
two extremes along the y = 0 plane.

3.1.2. Spine–fan variation with ζ

The spine–fan structure (see (1.1)) varies with the background magnetic field angle ζ .
Specifically, Qn = Qn(ζ ) and the spine–fan structure rotates with ζ , see figures 6 and 7.
Here Qn was calculated using least squares. The topological change occurs with Qn and
may be described by the two limiting cases: ζ = 0 and ζ = π. For ζ = 0, Qn = 0 and so
the spine–fan structure is similar to that pictured in figure 5; the fan is a plane of field
lines and the spine is a column of field lines. As ζ → π, Qn → 1 and the fan becomes
strongly unidirectional along one axis, collapsing the fan into a spine-like structure. At
ζ = π the spine–fan structure converts into a spine–spine structure, two poles of magnetic
field lines, while simultaneously a line null forms along the dipole sphere’s equator; the
spine–fan collapses, forming a two-dimensional null.

3.2. Field line distinguishability
Magnetic reconnection is fundamentally a loss of field line distinguishability. Ideal
evolutions assume field line resolution is perfect, or a breaking of the frozen-in condition.
This breakdown may come from any physical effect limiting field line distinguishability
over a length scale Δd, such as resistivity. From Boozer (2019a) we know a universal
physical effect, electron inertia, provides the minimal limit of field line distinguishability,
the electron skin depth c/ωpe. We may typically say that Δd > c/ωpe; the electron skin
depth breaks the frozen-in condition even when resistivity is neglected.
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(b)(a)

FIGURE 7. (a) Rotation of spine orientation with ζ . Here ϕ is measured with respect to ẑ,
(b) Quadrupole term Qn(ζ ) which describes different topologies of the spine–fan structure.

Boozer finds the field line evolution equation with electron inertia effects is

∂

∂t

(
B − ∇ ×

(
∇ ×

(
c

ωpe
B
)))

= ∇ × (u × B), (3.1)

where c/ωpe is the well known electron skin depth. Here u is the magnetic field line
velocity; using u instead of the plasma flow velocity simplifies the discussion. If the
electron skin depth is constant, the equation reduces to

∂

∂t

(
B −

(
c

ωpe

)2

∇2B

)
= ∇ × (u × B). (3.2)

Thus, in any evolving magnetic field with spatial variation, the limit of field line
distinguishability is the electron skin depth, c/ωpe. Again we stress that the field must be
evolving; without any temporal variation in the field there is no loss of field line identity.
Only in an evolution does field line topology preservation have meaning.

3.2.1. Application to nulls in interacting dipolar fields
We have shown that Ohm’s law with electron inertia effects, a statement that the electron

mass is finite, reveals a fundamental limit of field line distinguishability – the electron skin
depth.

Further, we have shown that the smallest length scale in our system is the dipole
separatrix width δS which has the relation

3
√

a2δS 	 aN . (3.3)

Combined, we may consider the case where δS = c/ωpe.
During an evolution, field lines that lie within Δd of a separatrix are indistinguishable

and will reconnect in any evolution. Thus, 3
√

a2(c/ωpe) 	 aN and we may state the global
spine–fan structure of magnetic nulls is enveloped by a surface below which all field lines
are indistinguishable in an evolution.
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More generally, all separatrices in this system become fuzzy below the electron skin
depth.

4. Constraints on the current
4.1. Current density at a null

The general expression for the magnetic field near a null, (1), includes the current density
j0 at the null. A remarkable feature of this general form is that it requires that j0 = 0 unless
Qn = ±1 or the plasma exerts a force with a non-zero curl at the null. Note that Qn can
always be made to lie in [0, 1] by a choice of coordinates about the null.

The sum of the force exerted by the plasma and the Lorentz force f L ≡ j × B exerted
by the magnetic field must vanish everywhere. Since both j and B are divergence free,
a vector identity implies the curl of the Lorentz force ∇ × f L = B · ∇j − j · ∇B. This
general expression coupled with (1) for B near the null requires that at the null

∇ × f L = −j0 · M, (4.1)

where M is the matrix given in (2). The curl of the Lorentz force vanishes only if (1 +
Qn)j0 · x̂ = 0, (1 − Qn)j0 · ŷ = 0 and j0 · ẑ = 0.

If Qn ∈ [0, 1] by choice of coordinates then the only way to obtain a curl-free force is to
have Qn = 1 and the current j0 in the ŷ direction. Figure 6(b) shows the ŷ direction when
Qn = 1.

The force from scalar plasma pressure is curl free; only the curl of the plasma
inertial-force, ρ(∂v/∂t + v · ∇v), is always available to balance ∇ × f L.

4.2. Development of a current along B
The magnetic field lines that pass through the two separatrices of the dipole sphere pass
through the null and represent locations of topology changes in the magnetic field lines.
Field lines that lie closer to the separatrix than Δd � c/ωpe are indistinguishable and they
spread apart as they approach a null. This and the constraint on the current density at the
null, § 4.1, makes an extremely large current density improbable at the separatrix.

At important set of magnetic field lines exit the dipole sphere close to one separatrix
and re-enter close to the other but pass far enough away from the separatrices to be
distinguishable. In the limit as plasma resistivity goes to zero, the topology-conserving
properties of the ideal magnetic evolution equation should cause large current densities
to be produced along these magnetic field lines if the strength or the orientation of the
spatially uniform field is changed. A sufficiently long time after the change is made these
current densities should be essentially constant along the magnetic field lines. The reason
is that the j is divergence free, which can be written as

B · ∇ j||
B

= B · ∇ ×
(

f L

B2

)
, (4.2)

so any variation of a singular j||/B along a field line must be balanced by a singular Lorentz
force. The natural time for j||/B to relax to a constant value is given by the balance between
the Lorentz force and the plasma inertial force, which implies the relaxation requires a
transit time of the shear-Alfvén wave (Boozer & Elder 2020).
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(b)(a)

FIGURE 8. Plots of (a) P(ϕ, ζ ) and (b) τA/τC where τA was computed for δ/a = 10−15 and τC
is a characteristic Alfvén transit time defined as the ratio of the dipole radius a to the average
field strength on the dipole sphere for ζ = 0, τC = a/Bavg = 4a/(2μ/a3 + Bc) where Bavg =
〈B〉|r=a = ∮

B · da/4πa2 on the dipole sphere surface when ζ = 0.

When a change in the external field is made that would produce a topology change
of field lines that pass near the separatrix, a shear Alfvén wave must transit from
one intersection of the perturbed field line with the dipole sphere to the other for the
appropriate j||/B current to be established to conserve topology. This is analogous to the
proof of Hahm and Kulsrud in Section III of their 1985 paper (Hahm & Kulsrud 1985), that
in an ideal evolution the current density increases only linearly in time near a resonantly
perturbed rational surface although current density must become singular in the infinite
time limit (Boozer 2010). A linear increase in j|| in time due to this Alfvén relaxation effect
is too slow to explain the fast breaking of magnetic surfaces observed during tokamak
disruptions through a reconnection directly caused by ηj||. A linear increase of the current
density in time was also found in Boozer & Elder (2020) for a smoothly driven ideal
evolution.

The time can be estimated for a shielding current to flow in a sufficiently narrow channel
δ near the separatrices on the dipole sphere that resistive diffusion becomes important. The
magnetic Reynolds number Rm is the ratio of the time scale for resistive diffusion to the
time scale for the ideal evolution. Let jc ≡ Bavg/(μ0a) be a characteristic current density
and with Bavg defined in the caption to figure 8. Resistive diffusion competes with the
ideal evolution when the evolving current density reaches j ∼ jcRm. The current density
required to maintain the magnetic field line connections by flowing within a distance δ of
the separatrix on the dipole sphere is j = jca/δ. This is in analogy to the result of Hahm
& Kulsrud (1985) for a resonantly perturbed rational surface. As will be shown, an Alfvén
transit time, τA ∝ 1/δP is required for a parallel current to develop within a distance δ
of a separatrix, where P is a power given in figure 8(a). Consequently, the time required
for a sufficiently intense current density to arise for resistive diffusion to compete with the
ideal evolution in the neighbourhood of the separatrix is ∼ τcR1/P

m , where the characteristic
Alfvén time is τc ≡ a/Bavg. When Rm 	 1 this time can be too long for direct resistive
diffusion to compete with c/ωpe or with the exponential enhancement of the effect or
resistivity on reconnection, which is illustrated in Boozer & Elder (2020).
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Figure 8(a) illustrates the behaviour of the Alfvén transit time τA along magnetic field
lines that intercept the dipole sphere within a distance δ of a separatrix,

τA =
∫

ds
|B(x)| ∼ c0

δP
. (4.3)

This is the definition of the Alfvén transit time assuming a constant density. Note that τA
exhibits power-law dependence on distance from the separatrix with the strength of the
power law depending on ϕ and the orientation of the uniform background field ζ . When
P = 1 the separation from the separatrix, δ, τA scales as τA ∝ 1/δ, which is the scaling
found by Hahm and Kulsrud as a resonantly perturbed rational surface is approached. In
general, τA ∝ 1/δP.

Figure 8(b) is the Alfvén transit time for each point launched δ = 10−15 away from the
dipole separatrix, in other words the closest possible to the dipole separatrix that numerical
accuracy allows.

On the symmetry plane (ϕ = 0,±π), P and τA reach a minimum value. Notice for ζ =
π, every ϕ angle is a symmetry plane and so the P, τA values converge to their values
otherwise found on the symmetry plane. However, for ζ → 0 the dipole separatrix is closer
to the poles of the dipole and consequently pass near to the opposite null. Thus P and τA
are greater than their typical values when ζ → 0. The behaviour on the symmetry plane is
an open research question here. One final caveat is that the fit to the δ dependence may not
be a power law on the symmetry plane, but instead of the form τ

Symm.

A ∼ c0 ln(c1δ/a) + c2;
this may be anticipated by considering (4.3) analytically where B is linear about the null
and an arbitrary axis’ rotation allows for ds → dx and B(X ) → B(x).

To obtain the power law dependence of τA, values of δ/a between 10−15 and 10−1 were
used.

A comment on the effect of numerical accuracy in this calculation: field line trajectories
are evaluated by integrating dX/dl = B(X ) where X is a position in space. Both near
the null, and near remnants of the line null which forms when ζ = π have vanishing and
near-vanishing field strength, respectively. In these regions, |B| → 0 and as a result is
subject to numerical inaccuracy. This is further complicated in that the quantities used
to evaluate τA as we are again dealing with quantities not much greater than numerical
accuracy. As a result, integration of τA is subtle.

5. Discussion

We have reproduced the classic null-generating model of Cowley with additional
considerations of (i) mappings between four characteristic spheres of the system,
(ii) separatrices of the system, (iii) flux considerations through a sphere placed about
a null and (iv) the fundamental and ubiquitous effect on field line distinguishability of
electron inertia. Additionally we have documented the change of the spine–fan variation
with uniform background field angle ζ .

By considering the system as a mapping between the dipole sphere, null spheres and
far-sphere combined with the concept of topological type fundamental to magnetic nulls,
we find the separatrices of each sphere are tied to each of the others through the null
sphere. Flux conservation relates the areas through which flux passes at the dipole and
far-sphere separatrices to the flux passing through a sphere of radius aN placed about
a null. In concert with the limit of field line distinguishability, the electron skin depth
c/ωpe, we may conclude that the areal constraint at the dipole and far-sphere separatrices
implies that magnetic nulls and their spine–fan structures are globally enclosed by a
volume within which magnetic field lines are indistinguishable. Thus, we conclude that the
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importance of magnetic nulls is in (i) its ability to bring field lines of different topological
type close, allowing field lines of different boundary conditions to pass near one another
and (ii) the spine–fan structure of magnetic nulls which through (i) can lead to separator
surfaces which support large currents. The width of the current channel is affected by the
(a2c/ωp)

1/3 limit on distinguishability.
However, since electrons are the lightest current carrier, c/ωpe effects are always present.

This effect has a relaxing effect on magnetic topologies and current singularities.
In an ideal theory, a point null can be approached infinitesimally and provide singular

current densities. If, instead, we account for field line distinguishability due to electron
skin depth, there exists a volume of field line indistinguishability which envelops both the
null and its global spine–fan structure. Field lines do not retain their connections within
this surface. Electron inertia effects smooth out any sharpness in the magnetic field which
would yield singular currents as well as render obsolete the loss of field line identity at
the point where B = 0. Instead, it is the magnetic structures formed to satisfy ∇ · B = 0
at the point where B = 0 which make the null relevant.

Finite spatial resolution in a numerical simulation has a similar effect as Δd on field
line distinguishability. Indeed, Pariat, Antiochos & DeVore (2009) obtained magnetic
reconnection in an otherwise ideal simulation due to the finite grid. Olshevsky, Lapenta &
Markidis (2013) included electron inertia in their simulations of multinull reconnections
and found the narrowest current channels were broader than c/ωpe.

In an ideal model field lines will only be distinguishable up to numerical accuracy.
Numerical inaccuracies provide a mechanism for reconnection just as Δd limits field line
distinguishability. On any shorter length scale, field line identity is lost.

The effect of a quadrupole term has been considered but not included in this work. The
higher-order term breaks the magnetic surface, which is the y = 0 plane, but otherwise
does not change the fundamental properties of the system when the quadrupole term is
too weak compared with the dipole term to produce additional nulls outside of the dipole
sphere. This is a topic of continuing study.

Another consideration is the effect of the dipole sphere and far sphere’s boundary
conditions. For example, a perfectly conducting boundary condition would allow current
to flow along field lines attached to the dipole sphere. If the boundary condition were
insulating, a steady current could not flow along the field lines and the topology of the
field lines would break on an Alfvénic time scale (Boozer 2012).

When the dipole sphere is a perfect conductor surrounded by a plasma with a sufficiently
low resistivity η that the magnetic Reynolds number is enormous for a characteristic
evolution time, Rm 	 1, it takes a very long time for shielding currents to concentrate
sufficiently close to field lines that pass near the dipole–sphere separatrices for direct
resistive diffusion to be relevant. As Rm goes to infinity, non-ideal effects of electron inertia
on the c/ωpe scale and of exponential enhancement of resistivity, as illustrated in Boozer
& Elder (2020), dominate.
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