
Probability in the Engineering and Informational Sciences, 33, 2019, 50–63.

doi:10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE
QUICKEST TIME DISTRIBUTION IN DYNAMIC

NETWORKS

CHIN-CHIA JANE

Department of Business Administration, Ling Tung University, Taichung, Taiwan
E-mail: jian2898@gmail.com

YIH-WENN LAIH

Department of Finance, Ling Tung University, Taichung, Taiwan

In dynamic networks, the quickest time is the least possible time required to transmit spec-
ified data from the source to the sink. When arcs in dynamic networks are independently
subjected to failures, the quickest time is a random variable. Although previous studies
have already explored the reliability of the quickest path, this work presents an algorithm
that computes the probability distribution of the quickest time from the viewpoint of the
quickest flow that contains all possible joint and disjoint paths. For moderate dynamic
networks, the proposed algorithm can be easily modified to approximate the quickest time
distribution with a trade-off between accuracy and running time. The performance and
properties of the exact and modified algorithms are explored through computational exper-
iments, which are conducted on 10 randomly generated networks. The exact algorithm is
also compared with the exhaustive method which examines all state vectors.

Keywords: dynamic network, evacuation system, quickest time distribution, reliability

1. INTRODUCTION

To study the evolution of a system over time, Ford & Fulkerson [6] introduced the concept
of dynamic networks, where flows take discrete time to pass through network arcs. The time
is called transit time, and the flow is referred to as dynamic flow or flow over time. Various
dynamic network flow problems have been studied [3,5,11,17]. The most basic problem is
the dynamic max-flow problem [6] which identifies a dynamic flow that maximizes flow from
source s to sinkt within a specified time horizon. The quickest flow problem aims to achieve
a feasible dynamic flow that sends a given flow value from s to t within the least possible
time [3,11]. For brevity, we define quickest time as the least possible time in the quickest
flow problem. The quickest path problem [4], in which transmission occurs via a single path,
is a special case of the quickest flow problem. Dynamic networks are widely utilized to
model real-world evacuation problems [2,8,9,16]. According to Hamacher & Tjandra [9] and
Tjandra [16], the analysis of the movement distribution of evacuees to determine evacuation

c© Cambridge University Press 2018 0269-9648/18 $25.00 50

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

file:jian2898@gmail.com
https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 51

time is necessary for evacuation planning. This need inspires the present study to determine
the distribution of the quickest time for evacuation system planning.

Given that arcs are subject to failures, Bang, Choo & Mun [1], Ruzika & Thiemann
[15], and Xue [18] studied the quickest most reliable path (the most reliable among the
quickest paths), the reliable quickest path (the quickest path among all paths with at least a
predefined path reliability), and the most reliable quickest path (the quickest path among the
most reliable ones), respectively. In case of an emergency, the movement of evacuees should
not be restricted to specific disjoint paths. Instead, evacuees should flee to safe areas via all
accessible joint and disjoint paths as soon as possible. Contrary to references [1,15,18], the
present study aims to compute the probability distribution of the quickest time of dynamic
networks from the viewpoint of the quickest flow instead of the quickest path.

While existing references [1,15,18] considered the reliability issues of dynamic networks
with binary-state arcs, Lin [12,13] and Yeh [19] enlarged the dynamic network into a dynamic
stochastic-flow network, in which arc capacities are discrete random variables with multi-
integer values. Lin [12,13] and Yeh [19] calculated the reliability that a specified amount of
flow can be simultaneously sent from s to t through k disjoint minimal paths within a given
time horizon (in [12], k = 1) for a dynamic stochastic-flow network. Lin [12,13] proposed
an algorithm based on pre-searched k disjoint minimal paths to search all minimal capacity
vectors that fulfill the requirements of flow units and time horizon. Reliability was then
calculated in terms of these minimal capacity vectors. Yeh [19] accelerated the search for
all minimal capacity vectors on the basis of a depth-first search.

The present work is different from previous studies [12,13,19] in two aspects. First, the
present work calculates the reliability issue from the viewpoint of a flow that consists of all
joint and disjoint minimal paths instead of k disjoint minimal paths only. This feature is
important in analyzing evacuation systems because evacuees escape via all possible paths
regardless of whether these paths are disjoint or not. Second, Lin [12,13] and Yeh [19]
discussed multi-state dynamic stochastic-flow networks, whereas the present work studies
binary-state dynamic flow networks. The proposed algorithm is the first to compute the
probability distribution of the quickest time in a dynamic network via the quickest flow
rather than via k disjoint paths as references [12,13,19].

In a dynamic network where arc states are binary random variables that switch between
success and failure, the quickest time from s to t is a random variable. To compute the
probability distribution of the quickest time, a set of state vectors is denoted as an event.
An event is classified as determined when all vectors in it have an identical quickest time.
Otherwise, the event is undetermined. The undetermined universal event is first divided into
disjoint sub-events. Each sub-event is recursively divided until all sub-events are determined.
With respect to moderate networks, we set a critical level α and skip undetermined sub-
events whose probabilities are smaller than α. Approximation of the probability distribution
is achieved by recursively reducing α until the trade-off between accuracy and running time
becomes acceptable.

The main contribution of this work is it presents a novel algorithm for the analysis of
the probability distribution of the quickest time. After deriving the probability distribution,
performance indices, such as the expected quickest time and the reliability (probability) that
the quickest time is not longer than a specified time threshold, can be calculated directly.
For moderate networks, the proposed algorithm can be easily modified to approximate the
probability distribution with a trade-off between accuracy and running time.

The remainder of this paper is organized as follows. Section 2 introduces network mod-
els. Section 3 presents the exact algorithm and its modification for the approximation of
the probability distribution of the quickest time. Section 4 illustrates the exact algorithm in
terms of a benchmark network. Computational experiments are conducted on 10 randomly

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

52 C.-C. Jane and Y.-W. Laih

generated moderate networks to determine the performance and properties of the exact and
approximation algorithms. Section 5 presents the concluding remarks and possible directions
for future research.

2. NETWORK MODELS

A network G = [N,A] consists of a set N of n nodes and a set A of m directed arcs.
Let source s and sink t be two distinct nodes in N . Each arc e in A is weighted with a
capacity ce and a transit time τe. Capacity ce is the maximum amount of data that can be
transmitted through arc e per unit time. Suppose that arc e is directed from node u to node
v. If one unit of flow in node u is sent along arc e at time τ , then it arrives at node v at
time τ + τe.

2.1. Static flows

For node u ∈ N , AO(u) and AI(u) are subsets of arcs in A that are directed out of and into
u, respectively. A static flow from s to t in G is a function f from A to a non-negative real
that satisfies flow conservation constraints (1) and (2) and capacity constraints (3).

∑

e∈AO(s)

f(e) −
∑

e∈AI(s)

f(e) =
∑

e∈AI(t)

f(e) −
∑

e∈AO(t)

f(e), (1)

∑

e∈AO(u)

f(e) −
∑

e∈AI(u)

f(e) = 0, for u ∈ N\ {s, t} , (2)

0 ≤ f(e) ≤ ce, for e ∈ A. (3)

The value |f | =
∑

e∈AO(s) f(e) − ∑
e∈AI(s) f(e) of flow f is the net flow that leaves source

node s. A maximum flow is the flow that has the maximum value of all flows. If each arc
e is associated with we, which denotes a cost per unit of flow through e, then the cost of
a flow f is

∑
e∈A wef(e). A min-cost max-flow problem involves searching for a maximum

flow with the lowest possible cost.

2.2. Dynamic flows

Dynamic flow is defined in network G = [N,A] with a finite time horizon T . The time can
either be discrete or continuous. We focus on the discrete time case. Time horizon T is the
time until which the flow can travel in the network. It defines set Γ = {0, 1, . . ., T} of the
analyzed time moments. For e ∈ A and τ ∈ Γ , a dynamic flow is a function h on A × Γ
that satisfies the following constraints.

T∑

τ=0

∑

e∈AO(s)

h(e, τ) −
T∑

τ=0

∑

e∈AI(s),τ≥τe

h(e, τ − τe) =
T∑

τ=0

∑

e∈AI(t),τ≥τe

h(e, τ − τe)

−
T∑

τ=0

∑

e∈AO(t)

h(e, τ), (4)

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 53

∑

e∈AO(u)

h(e, τ) −
∑

e∈AI(u),τ≥τe

h(e, τ − τe) = 0, for u ∈ N\ {s, t} , τ ∈ Γ, (5)

0 ≤ h(e, τ) ≤ ce, for e ∈ A, τ ∈ Γ. (6)

Constraint (4) states that the net flow that leaves source s during T periods equals the
net flow that arrives at sink t within the time interval. Constraint (5) states that for
each intermediate node u and each time τ , the quantity of flow that leaves u at time
τ is equal to the quantity of flow that enters u at time τ . Constraint (6) requires that
the flow along an arc should not exceed its capacity. Let |h| =

∑T
τ=0

∑
e∈AO(s) h(e,τ) −

∑T
τ=0

∑
e∈AI(s),τ≥τe

h(e,τ − τe) be the net flow value that leaves s during period T . A
dynamic max-flow refers to a dynamic flow that has the maximum flow value.

Ford and Fulkerson [6] demonstrated that if the capacities and transit times are discrete
and constant, then the dynamic max-flow can be determined by solving a min-cost max-flow
problem in an enlarged network G+ =[N+, A+], where N+ = N∪{t+} and A+ = A∪{e+}.
Specifically, G+ is derived from G by (1) adding a node t+ and an arc e+ from t to t+ with
capacity c+

e = ∞ and transit time τ+
e = −(T + 1) and (2) setting the cost of each arc e to

its transit time τe. Let f = (f(e1), f(e2), . . . , f(em), f(e+)) be the min-cost max-flow
from s to t+. According to Ford and Fulkerson [6], the value |h| of the dynamic max-flow
is –

∑
e∈A+ τef(e).

2.3. Quickest flows

The quickest flow is a dynamic flow that sends specified σ units of flow from s to t within
the least possible time τσ. That is, a dynamic flow h during periods T is a quickest flow
for sending σ units of flow from s to t if it satisfies |h| < σ when T < τσ and |h| ≥ σ when
T ≥ τσ. This study describes the least possible time as the quickest time. Thus, whenever
the quickest time is referred to, we omit the phrase “sending σ units of flow from s to t” if
this expression is clear from the context. If s and t are not linked, then quickest time T is set
as infinite. Otherwise, the quickest time is a finite integer. Burkard et al. [3] demonstrated
that the maximum amount of flow that can be sent through a network increases with time
T . Thus, we can conduct a binary search over time T and solve the dynamic max-flow
problem per iteration until the minimum time required to send the given amount of flow
is determined. Burkard et al. [3] also constructed a strongly polynomial algorithm that
is a more complex search algorithm with superior worst-case bounds on time complexity
than the binary search algorithm. Lin & Jaillet [11] recently designed a new cost-scaling
algorithm for the quickest flow problem that runs in the same time bound as the cost-scaling
algorithm of Goldberg and Tarjan. Their result revealed that the quickest flow problem can
be solved within the same time bound as the min-cost max-flow problem. Given that the
present study aims to discover the probability distribution of the quickest time, the simple
binary search method of Burkard et al. [3], which is easy to implement, is employed in the
proposed algorithm. In practice, we conduct a binary search of a min-cost max-flow in an
enlarged network [N+, A+] until the minimum time required to send the given amount of
flow is reached. The min-cost max-flow that corresponds to the quickest time is represented
as f = (f(e1), f(e2), . . . , f(em), f(e+)).

2.4. Binary state arcs

In this study, each arc ei, 1 ≤ i ≤ m, is a binary random variable X i that assumes the
values of good (X i = 1) and failure (X i = 0). Variables X i are assumed to be statistically

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

54 C.-C. Jane and Y.-W. Laih

independent. A state vector x = (x1, x2, . . . , xm) with xi = 1 or xi = 0 denotes the states
of all arcs. Let B1(x)={ei| xi = 1, 1 ≤ i ≤ m} and B0(x)= {ei| xi = 0, 1 ≤ i ≤ m} be
sets of good and failed arcs with respect to vector x , respectively. For B ⊆ A, let T (B) be
the quickest time when only arcs in B are used to send the flow. Under state vector x , arcs
in B0(x) fail. The quickest time under x is T (B1(x)). Given that 2m state vectors exist,
T (B1(x)) becomes a random variable. This study investigates the probability distribution
of the quickest time T (B1(x)) under all 2m possible state vectors.

3. ALGORITHMS

The exhaustive method, which completely enumerates all 2m state vectors, is the only
available method thus far to compute the probability distribution of the quickest time.
However, such brute force is inefficient and cumbersome. Thus, we divide the set of 2m

state vectors into disjoint subsets, such that the quickest time under each vector in the
same subset is identical. We introduce the concept of an event and its representation. An
event, which is a set of state vectors, is then classified as determined or undetermined. A
decomposition algorithm is proposed to accurately compute the probability distribution of
the quickest time. By trading off accuracy for running time, the exact algorithm can be
easily modified to approximate the probability distribution.

3.1. Representation of events

Let εi denote arc ei as good (xi = 1) and ε̄i denote ei as failed (xi = 0). An event, which
is a set of state vectors, is represented by a multiplication of symbols. For example, event
E = ε̄iεj ε̄k is the set of state vectors that satisfies the condition where arc ej is good,
arcs ei and ek are failed, and other arcs are stochastic (i.e., they can be either good or
failed); that is, E = ε̄iεj ε̄k = {x | xj = 1, xi = xk = 0, and xl = 1 or 0 for 1 ≤ l ≤ m,
l �= i, j, k}. Event E splits arc set A into three disjoint subsets Ag(E), Af (E), and As(E)
by setting ex ∈ Ag(E), ey ∈ Af (E), and ez ∈ As(E), respectively, if and only if ex is good,
ey is a failed arc, and ez does not appear in E. For E = ε̄iεj ε̄k, Ag(E) = {ej}, Af (E) = {ei,
ek}, and As(E) = A\{ei, ej , ek}. When arc e is good with probability pe and failed with
probability 1-pe, the probability of event E is Pr(E) =

∏
e∈Ag(E) pe

∏
e∈Af (E) (1 − pe). The

universal event Ω is the initial event where all arcs are stochastic (i.e., Ag(Ω)= Af (Ω)= Ø
and As(Ω) = A). Events D and E are disjoint if and only if an arc e exists, such that
e ∈ Ag(D) ∩ Af (E) or e ∈ Af (D) ∩ Ag(E).

3.2. Division of events

Recall that T (B) is the quickest time when only arcs in B are used to send the flow. The
following lemma was provided by Burcard et al. [3].

Lemma 1: T (·) is a monotonic decreasing function, i.e., for A1 ⊆ A2 ⊆ A, T (A2) ≤ T (A1).

Proof: Given that A1 ⊆ A2, the quickest time computed by employing a large arc set A2 is
not larger than the quickest time computed by employing a small arc set A1. Consequently,
T (A2) ≤ T (A1). �

Following Corollary proceeds directly from Lemma 1.

Corollary 1: For event E, T (Ag(E) ∪ As(E)) ≤ T (Ag(E)).

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 55

With respect to event E, in which all arcs in Af (E) are failed arcs, Corollary 1 implies
that T (Ag(E)) and T (Ag(E) ∪ As(E)) are the largest and smallest quickest times among all
state vectors in E, respectively. If T (Ag(E) ∪ As(E)) = T (Ag(E)) then the quickest times
under all vectors in E are identical and event E is designated as τE-determined where
τE = T (Ag(E)). Otherwise, event E is undetermined.

For an undetermined event E (initially, E = Ω), we compute the smallest quickest time
T (Ag(E) ∪ As(E)), and let f = (f(e1), f(e2), . . . , f(em), f(e+)) be the min-cost max-flow
that corresponds to the smallest quickest time. We then search critical arc set A∗

s(E) by
setting A∗

s(E) = {ei|ei ∈ As(E) and f(ei) > 0, 1 ≤ i ≤ m} = {e1, e2, . . . , emE}. Set A∗
s(E),

which is a subset of As(E), is further utilized to divide event E into disjoint sub-events and
to compute the probability distribution of the quickest time. Theorem 1 is fundamental to
our decomposition algorithm.

Theorem 1: Let A∗
s(E) = {e1, e2, . . . , emE} be a critical arc set with respect to event E.

(1) If A∗
s(E) = Ø, then event E is τE-determined.

(2) If A∗
s(E) �= Ø, then event E∗ = Eε1ε2. . . εmE is τ∗

E-determined, where τ∗
E =

T (Ag(E∗)).

Proof: Following the definition of A∗
s(E), T (Ag(E) ∪ As(E)) = T (Ag(E) ∪ A∗

s(E)).

(1) If A∗
s(E) = Ø, then Ag(E) ∪ A∗

s(E) = Ag(E). Thus, T (Ag(E) ∪ As(E)) = T (Ag(E)),
and event E is τE-determined.

(2) If A∗
s(E) �= Ø, then event E∗ = Eε1ε2. . .εmE , implying that Ag(E∗) = Ag(E) ∪

A∗
s(E), Af (E∗) = Af (E), and Ag(E∗) ∪ As(E∗) = Ag(E) ∪ As(E). Conseque-

ntly, Γ (Ag(E∗) ∪ As(E∗)) = Γ (Ag(E) ∪ As(E)) = Γ (Ag(E) ∪ A∗
s(E)) = Γ (Ag(E∗)).

Then, event E∗ = Eε1ε2. . . εmE is τ∗
E-determined. �

When A∗
s(E) �= Ø, the complement of event ε1ε2. . .εmE , (ε1ε2. . .εmE)C can be

expressed as the sum of disjoint sub-events as follows [14]:

(ε1ε2 . . . εmE)C = ε̄1 + ε1ε̄2 + . . . + ε1ε2...εmE−1ε̄mE
. (7)

Consequently, event E can be divided into the following disjoint sub-events.

E = E(ε1ε2 . . . εmE
+ (ε1ε2 . . . εmE

)C) = Eε1ε2 . . . εmE
+ Eε̄1

+ Eε1ε̄2 + . . . + Eε1ε2...εmE−1ε̄mE
. (8)

Theorem 1 states that E∗ = Eε1ε2. . .εmE is τ∗
E-determined. However, Eε̄1, Eε1ε̄2, . . . ,

and Eε1ε2...εmE−1ε̄mE
are undetermined. The probability of event E∗, Pr(E∗), contributes

to the probability that the quickest time is equal to τ∗
E = T (Ag(E∗)).

Disjoint sub-events Ei = Eε1ε2...εi−1ε̄i1 ≤ i ≤ mE are contained in storage Z. To min-
imize the space of Z instead of {E1, E2, . . . , EmE}, a collection with respect to E is
employed. A collection with respect to E consists of E, A∗

s(E), mE , and index i with an
initial value of 0. A collection is a set of {E, A∗

s(E), mE , i}. Index i denotes the event Ei

that is currently considered for classification and further decomposition. In Z, all collections
are stored in a stack (first-in last-out). The advantage of the first-in last-out policy is that it
enables Z to hold a minimum number of collections. Whenever Ei is retrieved in accordance
with the top collection in Z, i is updated by i + 1 on the condition that i < mE . However,
if i = mE , then the probability distribution of the quickest time is updated first, and the
topmost collection in Z is discarded.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

56 C.-C. Jane and Y.-W. Laih

3.3. Decomposition algorithm

Let Rτ be the probability that the quickest time (for sending σ units of flow from s to
t in network G) is τ . The largest quickest time in G is τmax = τ∗ + σ, where τ∗ is the
largest transit time among all s–t paths. This condition occurs if the s–t path with the
largest transit time is the only path that connects s and t, and the capacity of this s–t
path is 1. The step-by-step procedure to compute the probability distribution of Rτ by the
proposed algorithm is presented below.

Input : G = (N , A), s, t, σ, ci, τi, and pi for each ei ∈ A.
Output : Rτ .
Steps:

1. Set Rτ = 0, 1 ≤ τ ≤ τmax.
2. Set initial event E as the universal event Ω (i.e., E = Ω).
3. Compute the quickest time T (Ag(E) ∪ As(E)) in accordance with [3].
4. Search critical arc set A∗

s(E) = {e1, e2, . . . , emE
} based on the min-cost max-flow f .

5. Z = {{E, A∗
s(E), mE , i = 0}}//initial collection w.r.t. E = Ω //

6. if A∗
s(E) = Ø, then R∞ = 1, discard the top collection in Z // where s and t are not

connected//
7. while Z �= Ø do
8. {if i = mE , then {Rτ = Rτ + Pr(E∗), where E∗ = Eε1ε2. . .εmE

, τ = T (Ag(E∗)).
9. Discard top collection in Z.}

10. else {i = i + 1.
11. Derive an undetermined E = Ei = Eε1ε2...εi−1ε̄i, 1 ≤ i ≤ mE .
12. Compute quickest time T (Ag(E) ∪ As(E)) in accordance with [3].
13. Search critical arc set A∗

s(E) based on the min-cost max-flow f .

14. A new collection {E, A∗
s(E), mE , i = 0} is stored on top of Z.}

15. }//End of while Z �= Ø do (step 7)//

Theorem 2: The decomposition algorithm correctly computes the probability distribution of
the quickest time.

Proof: Step 1 involves initializing all the probabilities of Rτ to zero. In steps 2–5, the
algorithm starts at the universal event E = Ω where all arcs are stochastic. The small-
est quickest time T (Ag(E) ∪ As(E)) = T (A) is computed with respect to E, the critical
arc set A∗

s(E) = {e1, e2, . . . , emE
} is searched, and Eε1ε2. . .εmE

, Eε̄1, Eε1ε̄2, . . . , and
Eε1ε2...εmE−1ε̄mE

are stored in the form of a collection. In step 6, an empty A∗
s(E) implies

that s and t are not connected in G = [N , A]. Thus, R∞ = 1. The quickest time T (A) set
to ∞ indicates that the flow never arrives at sink t. If A∗

s(E) is not empty, E is divided into
disjoint Eε1ε2. . .εmE

, E ε̄1 , and Ei = Eε1ε2...εi−1ε̄i, 2 ≤ i ≤ mE in the while loop (steps 7–
15). The τ∗

E-determined E∗ = Eε1ε2. . .εmE
is considered in step 8, where τ = T (Ag(E∗)).

Accordingly, Rτ is updated by Rτ+Pr(E∗). Step 9 involves outputting the top collection in
Z that implies that all sub-events Ei1 ≤ i ≤ mE have been examined in steps 10–14, which
recursively divide the undetermined sub-event Eε1ε2...εi−1ε̄i, 1 ≤ i ≤ mE . The while loop
terminates when no undetermined sub-events remain. �

Theorem 3: Storage Z requires O(m2) memory space.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 57

Proof: Storage Z stores collections with respect to events. A collection w.r.t. event E is a
set {E, A∗

s(E), mE , i}. Given that an event consists of a maximum of m good/failed arcs and
A∗

s(E) ⊆ A, a collection requires O(m) space. Given that sub-events Ei, 1 ≤ i ≤ mE ≤ m,
are derived from E, a maximum of m collections are stored in Z in a first-in last-out manner.
Theorem is thus proven. �

Theorem 4: The decomposition algorithm requires a running time of O(min(logσ, gmax)·
m·logn·(m+n·logn)·#E), where gmax, n, m, and #E are the value of the maximum static
flow and the numbers of nodes, arcs, and sub-events generated, respectively.

Proof: In step 1, the largest quickest time τmax = τ∗ + σ can be searched in O(m + n·logn)
time [7]. Steps 2, 7, and 10 require a constant time (i.e., O(1)). According to Burkard et al.
[3], steps 3 and 12 require O(min(logσ, gmax)·m·logn·(m+n·logn)) time to compute the
quickest time. To search the critical arc set A∗

s(E), steps 4 and 13 require O(m) time to
examine each arc once. Steps 5 and 14 assign a collection with respect to E into Z, and
steps 6 and 9 discard the top collection in Z. All these steps require O(m) time. Pr(E∗) is
computed by multiplying the probabilities of the good arcs in Ag(E∗) and the failed arcs
in Af (E∗). Step 8 requires O(m) time. Step 11 derives event Ei by designating arcs in
A∗

s(E) as good or failed and requires O(m) time. Given that the while . . . do loop (steps
7–15) is executed #E times, it requires O(min(logσ, gmax)·m·logn·(m+n·logn)·#E). As
a result, O(min(logσ, gmax)·m·logn·(m+n·logn)·#E) is the running time of the proposed
algorithm. �

3.4. Approximation algorithm

Given that 2m state vectors exist, the number of sub-events #E grows exponentially in
the worst case. As a result, the proposed algorithm requires exponential time to run in the
worst case. The direct approach to obtain an acceptable running time for a large network is
to limit the growth of #E. In the following, an undetermined sub-event with a probability
that is less than a pre-specified critical level α is further designated as an irrelevant sub-
event. Skipping irrelevant sub-events, we modify the proposed algorithm to approximate the
probability distribution Rτ to trade-off accuracy for running time. We empirically verify
that the modified algorithm obtains an acceptable accuracy with satisfactory execution time
by reducing the critical level α recursively. If α = 0, then the modified algorithm and the
proposed accuracy algorithm will be identical. The modified algorithm that approximates
Rτ is provided as the following pseudo code.
Input : G = (N , A), s, t, σ, α, ci, τi, and pi for each ei ∈ A.
Output : Rτ .
Steps:

1. Set Rτ = 0, 1 ≤ τ ≤ τmax.
2. Set initial event E as the universal event Ω (i.e., E = Ω).
3. Compute quickest time T (Ag(E) ∪ As(E)) in accordance with [3].
4. Search critical arc set A∗

s(E) = {e1, e2, . . . , emE
} based on the min-cost max-flow f .

5. Z = {{E, A∗
s(E), mE , i = 0}}//initial collection w.r.t. E = Ω//

6. if A∗
s(E) = Ø, then R∞ = 1, discard the top collection in Z // where s and t are not

connected//
7. while Z �= Ø do
8. {if i = mE , then {Rτ = Rτ + Pr(E∗) where E∗ = Eε1ε2. . . εmE

, τ = T (Ag(E∗)).

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

58 C.-C. Jane and Y.-W. Laih

9. Discard top collection in Z.}
10. else {i = i + 1.
11. Derive an undetermined E = Ei = Eε1ε2...εi−1ε̄i, 1 ≤ i ≤ mE .
12. If Pr(E) >= α then // Check sub-event E is irrelevant or not//
13. {Compute quickest time T (Ag(E) ∪ As(E)) in accordance with [3].
14. Search critical arc set A∗

s(E) based on the min-cost max-flow f .

15. A new collection {E, A∗
s(E), mE , i = 0} is stored on top of Z.}

16. else i = i + 1}// Irrelevant E is skipped//
17. } // End of while Z �= Ø do (step 7) //

4. COMPUTATIONAL EXPERIMENTS

In this section, we illustrate the initial implementation of the exact decomposition algorithm
based on a benchmark network and compare it with the exhaustive method. Then, we
conduct experiments on moderate networks to explore the performance and properties of
the exact and approximation algorithms.

4.1. Illustration of the decomposition algorithm

The decomposition algorithm is illustrated in terms of a benchmark network, which is
cited from Ford and Fulkerson [6]. It contains 11 nodes and 21 arcs, as shown in Figure 1.
For simplicity, the operation and failure probabilities of all arcs are set to 0.9 and 0.1,
respectively.

In Figure 1, the minimum capacity among all arcs is 10, and the value of the maximum
static flow from s to t is 85. The three demand units, σ = 10, 50, and 100, are tested based
on the aforementioned facts (σ = 10 implies that any single path can supply the demand,
σ = 100 is a demand over the maximum static flow, and σ = 50 is a moderate demand).
The computational results are listed in Table 1. The infinite quickest time T implies that
s and t are not connected. The infinite quickest time is excluded from the computation of
the expected quickest time.

Figure 1. The test benchmark network.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 59

Table 1. Quickest time distribution of the benchmark network

Demand σ

Probability RT
σ 10 50 100

Quickest time T ∞ 0.003855 0.003855 0.003855
16 0.828794 – –
17 0.153349 0.364242 –
18 0.013962 0.543247 0.593021
19 0.000038 0.049668 0.250738
20 0.000001 0.027842 0.040648
21 0.000001 0.009043 0.066137
22 0.002072 0.008103
23 0.000029 0.008065
24 0.000001 0.000156
25 0.000001 0.018303
26 0.008879
27 0.002064
28 0.000029
29 0.000001
30 0.000001

Expected quickest time 16.119720 17.707295 18.752770

The following observations are drawn from Table 1.

1. The probability that s and t are not connected is R∞
σ = 0.003855. R∞

σ is independent
of demand σ.

2. A large demand σ results in a large range of quickest time value T and a large
expected quickest time.

3. Given that the minimum capacity among all arcs is 10, in the case of σ ≤ 10, any
single path that connects sand t can completely send demand σ. In such a case, the
time of the quickest flow equals the time of the quickest path. As a result, probability
distribution RT

10 can be treated as the probability distribution of time to send not
larger than 10 units of flow via the quickest path.

4. For each demand σ, the smallest T that has a non-zero probability RT
σ is the quickest

time when all arcs are perfect. In the test example, if all arcs are not subject to failure,
the quickest time for demands 10, 50, and 100 are 16, 17, and 18, respectively.

5. The reliability (probability) that the quickest time is not larger than a specified T ∗

can be easily evaluated by formula
∑

T≤T∗ RT
σ . For instance, in the case where the

demand is 100 units, the reliability that the quickest time is not larger than 20 is
R18

100+R19
100 + R20

100 = 0.593021 + 0.250738 + 0.040648 = 0.884407.

The exhaustive method, which completely enumerates all 221 = 2,097,152 state vectors
in Figure 1, is the only alternative for computing the probability distribution of the quickest
time. The execution times of both algorithms in Figure 1 are listed in Table 2.

Table 2 shows that with respect to demands 10, 50, and 100, the CPU times
of the exhaustive methods are 7.49 (=4,492/600), 12.21 (=12,942/1,060), and 12.72
(=14,250/1,120) times that of the proposed algorithm, respectively. The running time of
the proposed algorithm is superior to that of the exhaustive method.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

60 C.-C. Jane and Y.-W. Laih

Table 2. CPU times (unit 0.001 second) of the proposed algorithm
and the exhaustive method

Demand σ

10 50 100

Proposed algorithm 600 1,060 1,120
Exhaustive method 4,492 12,942 14,250

4.2. Performance of the proposed algorithms

To investigate the performance and properties of the exact and approximation algorithms,
10 moderate networks that consist of 15 nodes and 35 arcs are generated by the network
generator NETGEN [10]. The integer capacity and transit time of each arc are assigned
uniformly from sets {10, 15, 40, 60, 90} and {1, 3, 5, 7}, respectively. The demand σ of
each network is assigned to its maximum static flow from the source node to the sink node.
In addition, to determine how the operation probabilities of arcs affect the performance of
the proposed algorithms, operation probabilities of arcs are set to high, middle, and low as
following three network families.

H-networks: All the operation probabilities of the arcs in the 10 networks are set to 0.9.
M-networks: All the operation probabilities of the arcs in the 10 networks are set to

0.6.
L-networks: All the operation probabilities of the arcs in the 10 networks are set to 0.3.
We examine six critical levels: 10−8, 10−9, 10−10, 10−11, 10−12, and 0 (the exact

algorithm case). To achieve reliable and robust comparisons, the average computational
results over the 10 networks in the three network families are obtained, as shown in Table 3.

The following points are drawn from Table 3.

1. For every network family, the CPU time, number of determined sub-events, and
expected quickest time increase as α decreases and are upper bounded when α = 0.
The total probabilities of irrelevant sub-events decrease as α decreases and are lower
bounded by 0 (in case α = 0).

2. For H-networks, to reach the expected quickest time of 14.144 under α = 10−10,
which is accurate to the second decimal place, the CPU time of the approximation
algorithm is 12.30% of that of the exact algorithm (α = 0). Meanwhile, an identical
expected quickest time of 14.145 can be obtained in 22.99% CPU time of that of the
exact algorithm. The trade-off between accuracy and CPU time is satisfactory.

3. For M-networks, the approximation algorithm obtains expected quickest times
accurate to the first and second decimal places under α = 10−10 and α = 10−11,
respectively, whereas the CPU times of the approximation algorithm are 66.96% and
94.02% of that of the exact algorithm (α = 0). In addition, the results of critical level
α = 10−12 indicate that the probability of each sub-event is larger than 10−12. As
a result, the approximation algorithm runs similar to the exact algorithm when the
critical level is not larger than 10−12. The approximation algorithm is unsuitable for
M-networks.

4. For L-networks, under α = 10−9, the approximation algorithm consumes 10.77%
CPU time of that of the exact algorithm and has an expected quickest time of
4.111, which is precise to the first decimal. To obtain a second decimal precision
of the expected quickest time, the approximation algorithm requires 57.38% CPU

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

D
E
C
O

M
P
O

S
IT

IO
N

A
L
G

O
R
IT

H
M

S
T

O
C
O

M
P
U

T
E

T
H

E
Q

U
IC

K
E
S
T

T
IM

E
D

IS
T

R
IB

U
T

IO
N

6
1

Table 3. Average computational results of the proposed algorithms w.r.t. three network families

Critical level α

10−8 10−9 10−10 10−11 10−12 0

H-networks CPU time (unit 0.001
second)

57,871.5
(2.32%)

143,276.5
(5.74%)

306,985.5
(12.30%)

573,683.7
(22.99%)

938,307.3
(37.59%)

2,495,872.5
(100%)

Number of determined
sub-events

324,396.0
(1.22%)

898,743.5
(3.37%)

2,126,438.3
(7.98%)

4,322,007.7
(16.21%)

7,605,355.1
(28.53%)

26,659,939.6
(100%)

Expected quickest time 14.116 14.139 14.144 14.145 14.145 14.145

Total probabilities of
irrelevant sub-events

1.648×10−3 3.306×10−4 5.537×10−5 7.793×10−6 9.386×10−7 0

M-networks CPU time (unit 0.001
second)

155,750.2
(6.43%)

616,125.9
(25.46%)

1,620,708.4
(66.96%)

2,275,701.2
(94.02%)

2,419,592.6
(99.97%)

2,420,383.9
(100.00%)

Number of determined
sub-events

875,545.7
(3.28%)

486,6087
(18.25%)

15,609,970.8
(58.55%)

24,570,934.1
(92.16%)

26,659,939.6
(100.00%)

26,659,939.6
(100.00%)

Expected quickest time 12.799 14.753 15.408 15.476 15.478 15.478

Total probabilities of
irrelevant sub-events

1.903×10−1 4.134×10−2 3.931×10−3 1.160×10−4 0 0

L-networks CPU time (unit 0.001
second)

79,195.5
(3.29%)

259,013.5
(10.77%)

674,414.2
(28.03%)

1,380,315
(57.38%)

2,014,008.8
(83.72%)

2,405,734
(100%)

Number of determined
sub-events

766,758.6
(2.88%)

2,766,003.2
(10.38%)

7,414,154.8
(27.81%)

1,548,9476.8
(58.10%)

22,577,274.3
(84.69%)

26,659,939.6
(100%)

Expected quickest time 4.017 4.111 4.138 4.143 4.144 4.144

Total probabilities of
irrelevant sub-events

8.207×10−3 1.977×10−3 3.449×10−4 3.100×10−5 1.684×10−6 0

Figures in the parentheses are the percentages of the approximation algorithm with critical level α relative to the exact algorithm (α = 0).

https://doi.org/10.1017/S026996481700047X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S026996481700047X

62 C.-C. Jane and Y.-W. Laih

time of that of the exact algorithm. The approximation algorithm is acceptable for
L-networks.

In summary, according to the experimental results on moderate networks, the per-
formance of the approximation algorithm depends heavily on the operation probabilities
of the arcs and the critical level. The approximation algorithm is satisfactory for sys-
tems that consist of high operation probability arcs, is unsuitable for systems that consist
of middle operation probability arcs, and is acceptable for systems that consist of low
operation probability arcs. The approximation algorithm starts at a large critical level
α, then it recursively reduces α until the trade-off between accuracy and running time
becomes acceptable. In addition, we performed a comparison of the CPU time of the
exact algorithm and that of the exhaustive method. The exhaustive method examines
all 235 = 34,359,738,368 state vectors for more than 24 h, whereas the exact algorithm
(α = 0) divides all state vectors into an average of 26,659,939.6 determined sub-events within
2,496 s. The exhaustive enumeration of all state vectors is infeasible in practice for moderate
networks.

5. CONCLUDING REMARKS AND FURTHER RESEARCH

This study considers dynamic flow networks in which arcs are subject to failures. The quick-
est time (i.e., the least possible time that a dynamic flow requires to send a given amount of
flow from the source to the sink) is a random variable. To evaluate the probability distribu-
tion of the quickest time, we utilize the simple binary search method for the quickest flow
problem [3]. When the source and sink are not connected, the quickest time is specified as
infinite. Otherwise, the quickest time is a finite integer. Consequently, the probability of the
infinite quickest time is the probability that the source and sink are not connected. When the
source and sink are linked, the expected quickest time and the reliability/probability that
the quickest time is not larger than a specified time threshold can be directly obtained from
the probability distribution of the quickest time. By skipping irrelevant sub-events whose
probabilities are smaller than a pre-specified critical level, the proposed algorithm trades
off accuracy for running time. The results of the computational experiments conducted on
moderate networks suggest that the efficiency of the approximation algorithm depends on
the critical level and the operation probabilities of arcs. It is satisfactory, unsuitable, and
acceptable for moderate networks whose arc operation probabilities are high, moderate, and
low, respectively.

Contrary to previous studies on the quickest most reliable path [1], the reliable quick-
est path [15], the most reliable quickest path [18], and the reliability evaluation of dynamic
stochastic-flow networks in terms of k disjoint minimal paths [12,13,19], the present work
is the first to investigate the probability distribution and reliability of the quickest time in
dynamic flow networks. The simple binary search method of Burkard et al. [3] for computing
the quickest time is embedded in the proposed algorithm. Embedding the strongly poly-
nomial algorithms of Burkard et al. [3] and Lin & Jaillet [11] into the proposed algorithm
improves the running time for large networks.

This article presents the computation of the probability distribution of the quickest time,
where the following interesting question arises: “Can we find the quickest time possible to
send σ units of data from the source to the sink with a reliability of at least γ without looking
at the entire probability distribution?” This question remains a topic for future research.
Furthermore, an efficient simulation method that estimates the probability distribution is
also worthy of further research.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

DECOMPOSITION ALGORITHMS TO COMPUTE THE QUICKEST TIME DISTRIBUTION 63

Acknowledgements

The authors are grateful to Editor, Professor Jamol Pender, and anonymous referees for their valu-
able comments and constructive suggestions, which have significantly improved the paper. This research
is partially supported by the Ministry of Science and Technology (Taiwan, ROC) under Grant MOST
104-2221-E-275-002-MY3.

References

1. Bang, Y.-C., Choo, H., & Mun, Y. (2003). Reliability problem on all pairs quickest paths. In

P.M.A. Sloot, D. Abramson, A.V. Bogdanov, Y.E. Gorbachev, J.J. Dongarra & A.Y. Zomaya (eds.),

Computational Science—ICCS 2003. Berlin, Heidelberg: Springer, pp. 518–523.
2. Bretschneider, S. & Kimms, A. (2011). A basic mathematical model for evacuation problems in urban

areas. Transp. Res. Part A Policy Pract. 45(6): 523–539.
3. Burkard, R.E., Dlaska, K., & Klinz, B. (1993). The quickest flow problem. Z. Oper. Res. 37(1): 31–58.
4. Chen, Y.L., & Chin, Y.H. (1990). The quickest path problem. Comput. Oper. Res. 17(2): 153–161.
5. Fleischer, L. & Skutella, M. (2002). The quickest multicommodity flow problem. In W.J. Cook & A.S.

Schulz Integer Programming and Combinatorial Optimization. Berlin, Heidelberg: Springer, pp. 36–53.
6. Ford, L.R. & Fulkerson, D.R. (1962). Flows in networks. Princeton: Princeton University Press.
7. Fredman, M.L. & Tarjan, R.E. (1987). Fibonacci heaps and their uses in improved network optimization

algorithms. J. ACM 34(3): 596–615.
8. Göttlich, S., Kühn, S., Ohst, J.P., & Ruzika, S. (2016). Evacuation modeling: a case study on linear

and nonlinear network flow models. EURO J. Comput. Optim. 4(3–4): 219–239.
9. Hamacher, H.W. & Tjandra, S.A. (2001). Mathematical modelling of evacuation problems: a state of

art. Berlin: Springer.
10. Klingman, D., Napier, A., & Stutz, J. (1974). NETGEN: A program for generating large scale capac-

itated assignment, transportation, and minimum cost flow network problems. Manage. Sci. 20(5):
814–821.

11. Lin, M. & Jaillet, P. (2015). On the quickest flow problem in dynamic networks: a parametric min-
cost flow approach. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms. 1343-1356. SIAM.

12. Lin, Y.K. (2003). Extend the quickest path problem to the system reliability evaluation for a stochastic-
flow network. Comput. Oper. Res. 30(4): 567–575.

13. Lin, Y.K. (2011). Transmission reliability of k minimal paths within time threshold. Comput. Ind. Eng.
61(4): 1160–1165.

14. Locks, M.O. (1982). Recursive disjoint products: a review of three algorithms. IEEE Trans. Reliab.
31(1): 33–35.

15. Ruzika, S. & Thiemann, M. (2011). Reliable and restricted quickest path problems. Lect. Notes Comput.
Sci. 6701: 309–314.

16. Tjandra, S. A. (2003). Dynamic network optimization with application to the evacuation problem, PhD
thesis, Universität Kaiserslautern, Shaker Verlag, Aachen.

17. Wilkinson, W.L. (1971). An algorithm for universal maximal dynamic flows in a network. Oper. Res.
19(7): 1602–1612.

18. Xue, G. (1998). End-to-end data paths: quickest or most reliable? IEEE Trans. Commun. Lett. 2(6):
156–158.

19. Yeh, W.C. (2015). A fast algorithm for quickest path reliability evaluations in multi-state flow networks.
IEEE Trans. Reliab. 64(4): 1175–1184.

https://doi.org/10.1017/S026996481700047X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481700047X

	1 INTRODUCTION
	2 NETWORK MODELS
	2.1 Static flows
	2.2 Dynamic flows
	2.3 Quickest flows
	2.4 Binary state arcs

	3 ALGORITHMS
	3.1 Representation of events
	3.2 Division of events
	3.3 Decomposition algorithm
	3.4 Approximation algorithm

	4 COMPUTATIONAL EXPERIMENTS
	4.1 Illustration of the decomposition algorithm
	4.2 Performance of the proposed algorithms

	5 CONCLUDING REMARKS AND FURTHER RESEARCH

