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Instability of sliding viscoplastic films
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The stability of sliding spreading films of Herschel–Bulkley fluid is investigated
theoretically, motivated by a dramatic fingering pattern observed experimentally and
proposed theoretically to originate from an extensional flow instability of shear-thinning
fluids. Considering the thin-film limit, we construct axisymmetric base states and then
test their stability towards non-axisymmetric perturbations by numerically solving the
initial-value problem. We complement the numerics with analytical solutions for early
and late times. The stability analysis demonstrates that spreading thinning films are
unstable. At late times, where the spreading of the base state becomes self-similar,
non-axisymmetric patterns can develop strongly if the fluid has a yield stress or is
sufficiently shear thinning.
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1. Introduction

Shallow films of spreading fluid feature in a wide variety of problems in the geosciences
and engineering. In a number of settings, the film spreads with little traction over a
surface, and the main resistance to flow then stems from the extensional stresses of the
material, rather than the vertical shear stresses (which control shallow flow over a no-slip
substrate). For thin viscous flow, a common approach is then to exploit the low aspect
ratio of the film to develop a free-film model to compactly capture the spreading dynamics
(Oron, Davis & Bankoff 1997; Craster & Matar 2009). This type of approach has been
exploited to explore, for example, the spreading of oil over a fluid surface (di Pietro & Cox
1979; Koch & Koch 1995), and generalized to power-law fluids to describe the motion
of ice streams and shelves (MacAyeal & Barcilon 1988; MacAyeal 1989; Pegler, Lister &
Worster 2012; Schoof & Hewitt 2013) or the deformation of the Earth’s crust (England &
McKenzie 1982, 1983). Even when the surface over which the fluid flows would normally
satisfy a no-slip condition, the phenomenon of effective slip means that the spreading
dynamics becomes more comparable to a free film (Liu, Balmforth & Hormozi 2018).
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Figure 1. An experiment in which an aqueous suspension of Carbopol (with a density that is almost matched
with water) is extruded from a vent onto a launch stage and then into a shallow bath of dyed water, as
sketched in (a). The pump rate is Q � 10 ml min−1, the launch stage has diameter 5 cm and the water
depth is approximately 3 mm; a Herschel–Bulkley fit to the Carbopol rheology provided by a rheometer is
(n, τY , K) = (0.41, 8.0 Pa, 5.9 Pa sn). Panels (b–e) show photographs (from above) at the times indicated (the
spatial scale is indicated by the diameter of the launch stage). Note, the black circle in the images indicates
the vent and the larger circle indicates the edge of the launch stage. In ( f ) we show snapshots of the outline of
the Carbopol, equally spaced, Δt = 6.7 s, and coloured by time; the dashed circle identifies the launch stage
and the inset shows the initial condition from which pumping commenced. In (g) we plot the light intensity
transmitted through the dyed water along the cross-sections through each of the six fingers shown in (e). The
light intensity corresponding to the water bath is shown by the grey bar. The variation of this intensity along the
finger indicates the local depth of water below the finger, with a measurement close to 0.5 suggesting very little
water underneath the central parts of the fingers, and the lower values near the stage and flow front implying
deeper underlying water.

Alternatively, the surface can be treated to promote significant sliding of such fluids (Luu
& Forterre 2009, 2013).

Although experiments with radially spreading free viscous films have suggested that
the flow is stable towards non-axisymmetric disturbances (Pegler & Worster 2012; Sayag
& Worster 2019a), shear-thinning suspensions suffer a dramatic instability (Sayag, Pegler
& Worster 2012; Sayag & Worster 2019a). An illustration of this type of instability is
displayed in figure 1. Here, an aqueous suspension of Carbopol is extruded from a vent
onto a shallow bath of water. Such suspensions are viscoplastic fluids, possessing both
a yield stress and shear-thinning plastic viscosity (Balmforth, Frigaard & Ovarlez 2014).
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Instability of sliding viscoplastic films

The Xanthan gum solutions used by Sayag et al. are more commonly modelled without a
yield stress (although one can be measurable at sufficiently high concentration). Despite
this, and the much deeper baths over which they floated the Xanthan gum, the fingers
seen in figure 1 are strikingly similar to those reported by Sayag et al. and also reported
anecdotally in the squeeze flow of pastes and cement (Mascia et al. 2006; Roussel, Lanos
& Toutou 2006).

To rationalize their observations, Sayag & Worster (2019b) analysed the linear
stability of a radially expanding cylinder of power-law fluid towards two-dimensional,
non-axisymmetric perturbations in the inertialess limit (cf. Sayag (2019) for the stability of
extensional flow of a power-law fluid on a sphere). They observed that perturbations could
grow exponentially for limited durations of time, provided the fluid was shear thinning.
Nevertheless, the experiments feature an expanding fluid film that thins as it flows radially,
possessing a fully three-dimensional flow field and stress state, both of which may affect
the linear stability. Moreover, although the degree of instability becomes pronounced as
the fluid is made more shear thinning, the non-axisymmetric perturbations also decay
strongly before and after the interval over which they are unstable, lessening the impact for
typical laboratory experiments. In particular, focussing purely on the intervals over which
angular modes have a positive instantaneous growth rate can be misleading in comparison
to their net amplification (Ball, Balmforth & Dufresne 2021a). The fingering patterns in
radial extensional flows in both Hele-Shaw cells and shallow films may, in fact, have an
entirely different origin: localized fractures forming at the surface of the film, facilitated
by changes in the interfacial properties due to the presence of water (Ball et al. 2021a,b).

In view of these concerns, we therefore revisit Sayag and Worster’s stability analysis
but in the context of three-dimensional, thinning films. Moreover, to generalize the theory
to apply to viscoplastic films such as the Carbopol experiments shown in figure 1, we
consider a more general constitutive law. In particular we study shallow, spreading films
of Herschel–Bulkley fluid. We thereby assess the impact of both the structure of the
extensional flow and a yield stress on Sayag and Worster’s instability.

In § 2, we formulate the theoretical problem and provide some details of the viscoplastic
version of the asymptotic reduction that furnishes a free-film-type model. In § 3, we
consider axisymmetric spreading, constructing the base state for the stability analysis
conducted in § 4. The base state corresponds to the viscoplastic generalization of the
solutions provided by Pegler & Worster (2012) for spreading viscous films. Additional
details of the analysis of some asymptotic limits are provided in the appendices.

2. Formulation

Consider the spreading of a viscoplastic film that slides without friction over a horizontal
surface. The flow is fed by a source located at an inner radius rv that delivers a constant
flux Q with a prescribed depth. A key feature of the flow is that it is shallow, with a typical
vertical length scale H that is much smaller than a characteristic horizontal (radial) scale
L. We set ε = H/L � 1 for the typical aspect ratio, and define a characteristic horizontal
flow speed, V = Q/(HL). We choose L ≡ rv , but leave the vertical length scale H free
for the moment, demanding only that the incoming flow depth at the vent is of order H.

In cylindrical polar coordinates, (r, ϑ, z), the governing equations for an incompressible
fluid with negligible inertia and velocity field u = (u, v, w) are

∇ · u = 0, (2.1)

0 = −∇p + ∇ · τ + ρg, (2.2)
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where ρ and g = (0, 0, −g) are density and gravity, and the deviatoric stress tensor and
pressure are τ and p. The Herschel–Bulkley constitutive law is

γ̇ = 0, τ < τY ,

τ =
(

Kγ̇ n−1 + τY

γ̇

)
γ̇ , τ ≥ τY ,

⎫⎪⎬
⎪⎭ (2.3)

where τY , K and n represent the yield stress, consistency and power-law index. The
deformation rates are given by

γ̇ =

⎛
⎜⎝

2ur r−1(uϑ − v) + vr uz + wr

r−1(uϑ − v) + vr 2(u + vϑ)/r vz + r−1wϑ

uz + wr vz + r−1wϑ 2wz

⎞
⎟⎠ , (2.4)

and the scalars, γ̇ =
√

1
2
∑

j,k γ̇ 2
jk and τ =

√
1
2
∑

j,k τ 2
jk, denote tensorial invariants. Above,

and hereon, we use subscript to represent partial derivatives, except when referring to
tensor components or the yield stress.

At the top surface of the fluid, located by z = h(r, ϑ, t), we have the kinematic and stress
conditions,

ht + uhr + r−1vhϑ = w, (2.5)

(τ − pI) · n̂ = 0, (2.6)

(ignoring surface tension), where n̂ is the unit normal vector and I is the identity matrix.
On the underlying surface z = 0, free sliding without penetration demands τrz = τzθ =
w = 0.

2.1. Reduced model
We remove dimensions from the equations by scaling vertical and radial distances by H
and L, the horizontal velocity components u and v by V = Q/(HL), the vertical velocity
w by εV and time by L/V . The stresses and pressure can then be scaled by the hydrostatic
pressure ρgH. The net effect of these scalings is to replace the gravity term in (2.2) by the
unit vertical vector, and make the replacement Kγ̇ n−1 + τY γ̇ −1 → γ̇ n−1 + Biγ̇ −1 in the
constitutive law (2.3), where the dimensionless yield stress, or Bingham number, is

Bi = τYHnL2n

KQn , (2.7)

once we make the convenient choice for the vertical length scale,

H1+n = KQn

ρgL2n . (2.8)

When the dome is able to slide freely, the normal and horizontal shear stresses control
the spreading of a shallow fluid layer, with vertical shear stresses remaining relatively
weak (MacAyeal & Barcilon 1988; MacAyeal 1989; Oron et al. 1997; Pegler & Worster
2012; Balmforth 2018; Liu et al. 2018). The flow becomes plug like throughout its depth,
with horizontal velocity components, u ∼ u(r, ϑ, t) + O(ε2) and v ∼ v(r, ϑ, t) + O(ε2).
The preceding scalings then ensure that the extensional and horizontal shear stresses
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Instability of sliding viscoplastic films

counter the pressure gradients in the force balance equations. Also, in view of (2.4), the
vertical shear rates γ̇ rz and γ̇ θz are O(ε) in comparison to the other components of the
deformation rate tensor, a discrepancy that carries over to the stress components in view
of the constitutive law. We therefore set (τrz, τzθ ) = ε(τ̃rz, τ̃zθ ), reducing the force balance
equations to

∂p
∂r

= 1
r

∂

∂r
(rτrr) + 1

r
∂τrθ

∂ϑ
− τθθ

r
+ ∂τ̃rz

∂z
,

1
r

∂p
∂ϑ

= 1
r2

∂

∂r
(r2τrθ ) + 1

r
∂τθθ

∂ϑ
+ ∂τ̃zθ

∂z
,

(2.9a,b)

∂p
∂z

+ 1 − ∂τzz

∂z
= O(ε2), (2.10)

along with the surface stress conditions,

τ̃rz + hr( p − τrr) − r−1hϑτrθ = 0, (2.11)

τ̃zθ − hrτrθ + r−1hϑ( p − τθθ ) = 0, (2.12)

p − τzz = O(ε2), (2.13)

at z = h(r, ϑ, t). Thus, p = τzz + h − z.
Introducing this pressure solution into (2.9a,b), then integrating these relations and the

continuity equation (2.1) over the fluid depth (bearing in mind the plug-like form of the
horizontal velocity components, the stress boundary conditions and the surface kinematic
condition (2.5)) gives

hhr − [h(2τrr + τθθ )]r − 1
r

(hτrθ )ϑ + h
r
(τθθ − τrr) = 0, (2.14)

hhϑ

r
− 1

r
[h(2τθθ + τrr)]ϑ − (hτrθ )r − 2

r
hτrθ = 0, (2.15)

ht + 1
r
(rhu)r + 1

r
(vh)ϑ = 0, (2.16)

where, on dropping the vertical shear rates, the leading-order constitutive law implies

γ̇ = 0, τ < Bi,

[τrr, τθθ , τrθ ] =
(

Bi
γ̇

+ γ̇ n−1
)[

2ur,
2
r
(u + vϑ),

1
r
(uϑ − v) + vr

]
, τ ≥ Bi,

⎫⎪⎬
⎪⎭ (2.17)

with γ̇ =
√

γ̇ 2
rr + γ̇ 2

rθ + γ̇ 2
θθ + γ̇ rrγ̇ θθ and τ =

√
τrr2 + τrθ 2 + τθθ

2 + τrrτθθ .
Finally, we state the radial boundary conditions, which follow conveniently for the

reduced model by imposing net force balance at the outer edge and flux balance at the
inner edge or vent. The outer edge of the dome is defined as r = R(ϑ, t). Here, the radial
boundary conditions are

Rt + v

R
Rϑ = u, (2.18)
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1
2

h2 − h

⎡
⎣τrr + τθθ + R√

R2 + R2
ϑ

(
τrr − 2

Rϑ

R
τrθ + R2

ϑ

R2 τθθ

)⎤⎦ = 0, (2.19)

τrθ − Rϑ

R
(τθθ − τrr) − R2

ϑ

R2 τrθ = 0, (2.20)

where (2.18) is the kinematic condition and (2.19) and (2.20) are the conditions that there
is no normal or tangential stress there, respectively. At the inner vent r = 1, we impose the
incoming flux and depth

2πH0u(1, ϑ, t) = 1, h(1, ϑ, t) = H0, v(1, ϑ, t) = 0. (2.21a–c)

Note that the constant influx conditions in (2.21a–c) demand that fluid must yield at the
vent and remain above the yield stress if spreading continues in a nearly axisymmetric
fashion at subsequent times. Thus, for our axisymmetric base state and non-axisymmetric
linear perturbations, the fluid will not become rigid anywhere during its evolution, with
whatever force required to maintain the flux necessarily exerted at the vent. This permits
us to ignore the yield condition and consider only the yielded part of the constitutive law
in (2.17).

The model in (2.14)–(2.17) amounts to the viscoplastic generalization of models of free
(inertialess) viscous films (Oron et al. 1997; Craster & Matar 2009). With Bi → 0, we
recover the power-law fluid model popular for ice shelves (ignoring any buoyancy due to
flotation over an underlying ocean) and streams (MacAyeal & Barcilon 1988; MacAyeal
1989; Pegler et al. 2012; Schoof & Hewitt 2013), and similar to that proposed for crustal
deformation (England & McKenzie 1982, 1983). The viscoplastic model in (2.14)–(2.17)
has been considered previously in exploring the collapse by sliding of axisymmetric or
planar reservoirs (Balmforth 2018; Liu et al. 2018).

3. Axisymmetric spreading

From (2.14)–(2.17), axisymmetric spreading states with

h = H(r, t), u = U(r, t), v = 0, R = R̄(t),

[τrr, τrθ , τθθ ] = [Trr(r, t), Trθ (r, t), Tθθ (r, t)]

}
(3.1a–e)

satisfy the equations

HHr − [H(2Trr + Tθθ )]r + H
r

(Tθθ − Trr) = 0, (3.2)

Ht + 1
r
(rHU)r = 0, (3.3)

[Trr, Tθθ ] =
(

Bi
Γ̇

+ Γ̇
n−1
)[

2Ur,
2U
r

]
, Γ̇ = 2

√
U2

r + 1
r

UUr + 1
r2 U2, (3.4a,b)

along with the boundary conditions,

R̄t = U(R̄, t),
[1

2 h2 − h(2Trr + Tθθ )
]

r=R̄ = 0, 2πH0U(1, t) = 1, H(1, t) = H0.

(3.5a–d)

Although the most natural initial condition is to begin without any fluid in the domain
r > 1 and commence pumping at t = 0, computations of the axisymmetric states and
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their non-axisymmetric perturbations (§ 4) are eased by beginning with a finite, but
narrow, fluid annulus. In particular, for the axisymmetric base states we launch numerical
solutions of (3.2)–(3.5a–d) from R̄(0) = 1 + 10−4 and H(r, 0) = H0 for 1 < r < R̄(0).
These conditions correspond to the solution of the most natural initial-value problem, but
beginning from a short time interval after the commencement of pumping (of duration
10−4(2πH0), see § 3.3 and (3.18a,b)).

3.1. Generalized Newtonian limit
As shown by Pegler & Worster (2012) and illustrated in figure 2, a freely sliding,
Newtonian current converges to steady profile as it expands away from the vent, with the
outer edge approaching a constant speed. The steady profile corresponds to a constant-flux,
time-independent solution to (3.2)–(3.5a–d), in which we abandon the kinematic condition
and instead impose the normal stress condition at a fixed outer radius given by the
instantaneous value of R̄ (which is also displayed in the figure). The profile is characterized
by an adjustment near the vent over which the depth adjusts from the value set at the vent
to that for the H0−independent solution,

H ∼ r−1
√

3/π, U ∼ (2π)−1
√

π/3, (3.6a,b)

which satisfies (3.2)–(3.5a–d) but for the stress condition at the outer edge. In the solutions
of the initial-value problem, the stress condition forces a departure from (3.6a,b) over a
region near the outer edge, where the solution remains time dependent and given by a local
similarity solution of the form U = U(ζ ), H = t−1F(ζ ) and ζ ∝ r/t (cf. Pegler & Worster
(2012); appendix A.1). The outer edge is

R̄ ∼ 1 + Λt, Λ ≈ 0.173, (3.7a,b)

which is compared with the numerical solutions of the initial-value problem in figure 2.
This Newtonian behaviour generalizes to the case of a power-law fluid (n /= 1 and Bi =

0): as illustrated in figure 3, the sliding current again converges to a steady profile except
near the outer edge. The steady, H0−independent, constant-flux solution generalizing
(3.6a,b) is

H ∼ H̃0r−2n/(n+1), U ∼ (2πH̃0)
−1r−(1−n)/(n+1), (3.8a,b)

with

H̃0 =
[

(3n2 + 1)(1/2)(n−1)(6n2 − n + 1)

n(n + 1)nπn

]1/(n+1)

. (3.9)

The time-dependent region bordering the outer edge now has the self-similar form,
H = t−nF(ζ ), U = t−(1/2)(1−n)U(ζ ) and ζ ∝ rt−(1/2)(1+n), which is explored in more
detail in appendix A.1. The self-similar form indicates that the fluid depth at the outer
edge is H(R, t) ∝ t−n, as seen in figure 2(d) (for the Newtonian case, Pegler and Worster
established H(R, t) ∼ 4t−1). The radial expansion of the outer edge is given by

R̄ ∼ 1 + Λt(1/2)(1+n), (3.10)

where Λ depends on n; for n = 0.4, Λ = 0.328 which is again compared with the
numerical solutions in figure 3. A more detailed illustration of the approach of the
solutions to the self-similar form with n = 1 and n = 0.4 is shown in figure 4. Here, we
plot the numerical solutions of the initial-value problem for different initial conditions in
terms of the similarity variables.
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Figure 2. Sample Newtonian solutions (n = 1, Bi = 0), showing snapshots of (a) H(r, t) and (b) U(r, t), and
time series of (c) R̄(t) and (d) Hmin(t) = H(R̄, t) for H0 = 0.5, 1 and 2, with colour representing time (from
green, grey or red to blue, respectively). The times of the snapshots are indicated in (c,d). The insets in (a,b)
show the corresponding, true, steady solutions with a fixed outer radius given by that of the final solutions to
the initial-value problem. The dots in the insets show (3.6a,b). Also included in (c,d) are the results for the
solutions for power-law fluid shown in figure 3. The dots in (c) show the predictions in (3.7a,b) and (3.10); in
(d), the dots show 4t−1 and 0.8t−0.4.

The convergence of the steady states to (3.6a,b) or (3.8a,b) therefore guarantees that
the initial depth H0 has little impact on the evolution, and the self-similar structure
at the edge permits the current to become steady behind the flow front. At late times,
the self-similar structure occupies the bulk of the current. By contrast, as we see below,

912 A23-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1086


Instability of sliding viscoplastic films

0

0.5

1.0

1.5

2.0

100 101 102
0

0.5

1.0

1.5

2.0

100 101

r
102

100 101 102

0

0.05

U
 (r

, t
)

H
 (r

, t
)

0.10

0.15

100 101 102
0

0.1

(b)

(a)

Figure 3. Solutions for power-law fluid (n = 0.4, Bi = 0), showing snapshots of (a) H(r, t) and (b) U(r, t),
for H0 = 1, 1.5 and 2, with colour representing time (from green, grey or red to blue, respectively). The time
series of R̄(t) for these solutions is included in figure 2(c), as well as the times of the snapshots. The insets
show the corresponding, true, steady solutions with a fixed outer radius given by that of the final solutions to
the initial-value problem. The dots show (3.8a,b) and (3.10).

because the rates of extension decay with radius, the effect of the yield stress gradually
amplifies towards the outer edge when Bi /= 0. This prevents any approach to such a
steady profile, qualitatively changing the spreading dynamics and introducing a different
self-similar late-time structure.

3.2. Sample numerical solutions
Figure 5 displays a numerical solution to (3.2)–(3.5a–d) for n = 0.4 and Bi = H0 = 1. For
this viscoplastic material, the fluid initially expands outwards at constant speed, but the
advance then slows, damming up the flow and causing the dome to deepen near the vent.
The dynamics is therefore different to that for a Newtonian or power-law fluid (Bi = 0).
In particular, the expansion of the viscoplastic dome slows towards the weaker advance
R̄ ∝ t1/2 over long times, and the dome continues to thicken at the vent and thin at the
outer edge.

As shown in figure 6, varying the depth at the vent, H0, alters the solution at earlier
times, delaying the build up of material nearby. However, the solutions with different H0
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Figure 4. A comparison of numerical solutions of the initial-value problem (solid lines) with self-similar
solutions (dots) for (a) Newtonian (n = 1, Bi = 0) with H0 = 0.5, 1 and 2, and (b) power-law fluid (n =
0.4, Bi = 0) with H0 = 1, 1.5 and 2. Plotted are the scaled variables t(1/2)(1−n)(r/R̄)−(1−n)/(n+1)U ≡
ζ−(1−n)/(n+1)U(ζ ) and tn(r/R̄)2n/(n+1)H ≡ ζ 2n/(n+1)F(ζ ) against ζ ≡ r/R̄(t) every 100 time units. The two
panels present the initial-value problem solutions shown in figures 2 and 3, with colour again representing
time (from green, grey or red to blue, as indicated by the arrows), and omitting the earliest snapshot in each
computation.

subsequently converge to similar forms over longer times and larger radii. Thus, aside from
a thin region near the vent, the solutions again become insensitive to H0.

The viscoplastic evolution over even longer times is illustrated in figure 7 (for n = Bi =
1). This example shows more clearly the convergence of the outer radius to R̄ ∼ Λ

√
t/Bi,

for a constant Λ ≈ 1
2 and dependence on Bi that is rationalized below. We further plot

snapshots of the solution against the scaled radial coordinate ζ = r/R̄(t) and scale the
horizontal flow speed U(r, t) by Λ

√
tBi. The rescalings emphasize how the solution

converges to a self-similar form in which H ∼ BiF(ζ ) and U ∼ ΛU(ζ )/
√

tBi, with
ζ = r

√
Bi/t/Λ. Such self-similar solutions arise because the decline of the strain rates

over long times paves the way to a plastic limit of the problem in (2.14)–(2.21a–c).
This limit is analysed in more detail in § 3.4, which provides a direct construction of
the self-similar states. That corresponding to the long-time limit of the solution of the
initial-value problem in figure 7 is also included there for comparison.

3.3. Early-time solution, t � 1
For small times, we set r = 1 + δx and t = δt̂, where δ � 1 and x and t̂ are O(1). In this
limit, the variables remain close to their values at vent and so

H = H0 + δH1(x, t̂), U = (2πH0)
−1 + δU1(x, t̂), R̄ = 1 + δR̄1(t̂). (3.11a–c)
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Figure 5. Sample solution for n = 0.4 and Bi = H0 = 1, showing snapshots of (a) H(r, t) and (b) U(r, t), and
time series of (c) R̄(t) − 1 and (d) Hmax(t) (solid) and Hmin(t) (dashed). The stars in (c,d) indicate the times of
the snapshots in (a,b). Slopes of unity and 1

2 are indicated in (c).
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Figure 6. Sample snapshots of H(r, t) for n = 0.4 and Bi = 1 for varying H0. The inset shows the time series
of R̄(t).

At leading order, (3.2) and (3.4a,b) become
∂

∂x

[
1
2

H2
0 − H0(2Trr + Tθθ )

]
= 0, (3.12)

(Trr, Tθθ ) =
(

Bi
Γ̇

+ Γ̇
n−1
)(

2U1x,
1

πH0

)
, Γ̇ =

√√√√(2U1x + 1
2πH0

)2

+ 3
4π2H2

0
.

(3.13a,b)
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Figure 7. Numerical solution for n = Bi = H0 = 1, showing snapshots of (a) H(r, t)/Bi and (b)
U(r, t)

√
tBi/Λ every 100 time units, plotted against r/R̄(t), with Λ ≈ 1

2 . The dots and darker (blue) line show
the self-similar solution of § 3.4 with ε � 1. In (c,d), we plot times series of R̄(t), Hmax(t) (solid) and Hmin(t)
(dashed). The dashed line in (c) shows R̄ = Λ

√
t/Bi, and the initial linear scaling is indicated. In (e, f ), solutions

with H0 = 1, 2, 4, 6, 8 and 12 are plotted at the times indicated and again compared with the similarity solution;
time series of the edge R̄(t) for the solutions with H0 > 1 are included in (c) as the lighter grey lines, and (d)
includes Hmax(t) and Hmin(t) for H0 = 2 and 4.

In view of the stress conditions at the edge, we therefore have

1
4

H0Γ̇ = (Bi + Γ̇
n
)

√
Γ̇

2 − 3
4π2H2

0
, U1x = 1

2

√
Γ̇

2 − 3
4π2H2

0
− 1

4πH0
. (3.14a,b)
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Instability of sliding viscoplastic films

That is, U1x is constant, and so U = (2πH0)
−1 + U1x(r − 1) in terms of the original

variables. For Bi � 1, we arrive at the limit,

Γ̇ →
√

3
2πH0

, U1x → − 1
4πH0

, (3.15a,b)

whereas for a Newtonian fluid,

Γ̇ → 1
4πH0

√
12 + π2H4

0, U1x → πH2
0 − 2

8πH0
. (3.16a,b)

Hence, U always decreases away from the vent in the plastic limit, but more generally it
may increase for a sufficiently deep inflow.

Continuing on, the mass conservation and kinematic conditions become

H1t̂ + H0U1x + H1x

2πH0
+ 1

2π
= 0 and R̄1t̂ = (2πH0)

−1. (3.17a,b)

The first can be solved using the method of characteristics, noting that H1 = 0 for x = 0.
In terms of the original variables, we find

H = H0 − H0(1 + 2πH0U1x)(r − 1) and R̄ = 1 + (2πH0)
−1t. (3.18a,b)

3.4. Plastic similarity solution in the long-time limit
In the plastic limit, Γ̇ → 0, the system (2.14)–(2.21a–c) admits a similarity solution
described by

ζ ≡ Bi1/2r
Λt1/2 , F(ζ ) ≡ H

Bi
, U(ζ ) ≡ Λ−1(tBi)1/2U,

[Trr(ζ ), Tθθ (ζ )] ≡ Bi−1[Trr, Tθθ ],

⎫⎪⎬
⎪⎭ (3.19a–d)

and satisfying

0 = FFη − [F(2Trr + Tθθ )]ζ + (Tθθ − Trr)
F
ζ

, (3.20)

(Trr, Tθθ ) =
(
U2

ζ + 1
ζ
UUζ + 1

ζ 2U
2
)−(1/2) (

Uζ ,
U
ζ

)
, (3.21)

1
2ζ 2Fζ = (ζUF)ζ , (3.22)

subject to

U(1) = 1
2 and

[1
2 F2 − F(2Trr + Tθθ )

]
ζ=1 = 0 (3.23a,b)

at the edge of the dome, ζ = 1 or R̄ = Λ
√

t/Bi, and

2πζF0UΛ2 = 1 and F = F0 ≡ H0

Bi
(3.24a,b)

at the vent.
Awkwardly, in the initial-value problem, the vent is located at ζ = ε = Λ−1√Bi/t,

which shrinks constantly in time. We can only therefore expect convergence to the
self-similar solution of (3.20)–(3.23a,b) if that solution becomes independent of ε
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Figure 8. Similarity solutions solved (a,b) by shooting for five values of A over the range [1.0112, 1.0465],
and (c,d) as boundary-value problems for varying ε at fixed F0 = 8.57 (darker blue) and varying F0 for fixed
ε = 0.00625 (lighter grey). The blue dots in (c,d) show the shooting solution used to initiate the boundary-value
computations. The red dashed and dotted lines indicate the approximations shown by the legends (with A = 1),
as given in (3.25) and (3.26a,b). In (e, f ), solutions are continued to still smaller ε (as indicated by the stars)
using the alternative inner boundary condition F(ε) = −√

3 log ε. The dashed line in ( f ) shows the limiting
solution expected for ζ � 1 (appendix B.1) with a pre-factor chosen to be c = 0.4.

for ε → 0. Alternatively, one can adjust the initial-value problem and apply the inner
boundary condition on a vent with radius, r = Λε

√
t/Bi, to permit an exact similarity

solution.
An analysis of the singular point at the edge ζ = 1 indicates that

F
U

}
→
{

A(1 − ζ )1/3

1
2 + 1

4(1 − ζ )
for ζ → 1, (3.25)

for some constant A. Rather than employing the inner boundary conditions in (3.24a,b),
one can therefore fix A and solve (3.20)–(3.23a,b) as a shooting problem, integrating from
a point close to the outer edge into the inner edge at ζ = ε. On arrival, one then determines
the value of F0 corresponding to that choice of A. In practice, this procedure provides
solutions only for larger values of ε, as the integration becomes relatively stiff for ζ → 0.
Instead, one can then switch to solving (3.20)–(3.23a,b) as a boundary-value problem,
using the shooting solution as an initial guess. Sample solutions and their behaviour are
illustrated in figure 8. Evidently, the bulk of the solution is insensitive to the choices of
both F0 and ε.

Note that 2Trr + Tθθ � 1 throughout the interval in ζ , leading to the simple
approximations,

F ∼ −
√

3 log ζ and U ∼ 1
2ζ−(1/2) (3.26a,b)
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Instability of sliding viscoplastic films

(see appendix B.1), the first of which can be bridged to the limit for ζ → 1 by the
interpolant,

F ∼ −[
√

3 − A + A(1 − ζ )−2/3] log ζ. (3.27)

Also, the approximation for F(ζ ) in (3.26a,b) permits one to construct solutions for
arbitrarily small ε by employing the alternative boundary condition F(ε) = −√

3 log ε,
in place of F(ε) = F0. This alternative construction takes advantage of the limiting form
of the solution for ε → 0, namely F ∝ − log ζ and U ∝ −(ζ log ζ )−1 (see figure 7( f ) and
appendix B.1). The logarithmic growth of the fluid depth for ζ → 0 corresponds to the
piling up of material close to the vent in figure 7.

Finally, turning to the inner flux condition in (3.24a,b), we observe that

Λ = [2πεF(ε)U(ε)]−(1/2) → 0.4897 for ε → 0, (3.28)

in view of the numerical solutions in figure 8(c). Thus, despite the corresponding
logarithmic divergence of the fluid depth as ζ → 0, the solution does become independent
of the vent radius.

4. Stability analysis

To study non-axisymmetric perturbations to the base flows of § 3, we set

h = H(r, t) + ĥ(r, t) eimϑ, u = U(r, t) + û(r, t) eimϑ, (4.1a,b)

v = v̂(r, t) eimϑ, R = R̄(t) + R̂(t) eimϑ, (4.2a,b)

where m is the angular wavenumber. Linearizing the force balance and continuity
equations (2.14)–(2.16), we find the amplitudes {ĥ, û, v̂, R̂} satisfy

0 = [H(ĥ − 2τ̂rr − τ̂θθ ) − ĥ(2Trr + Tθθ )]r − im
r

Hτ̂rθ + H
r

(τ̂θθ − τ̂rr) + ĥ
r
(Tθθ − Trr),

(4.3)

0 = 1
r
(r2Hτ̂rθ )r − im[H(ĥ − 2τ̂θθ − τ̂rr) − ĥ(2Tθθ + Trr)], (4.4)

ĥt + 1
r

[r(Uĥ + Hû)]r + im
r

Hv̂ = 0, (4.5)

where the perturbations to the stress components are given by

τ̂rr = αrrûr + 1
r
βrr(û + imv̂), τ̂θθ = αθθ ûr + 1

r
βθθ (û + imv̂), (4.6a,b)

τ̂rθ = μ

[
r

∂

∂r

(
v̂

r

)
+ im

r
û
]

, (4.7)

with

αrr = 2
[
μ + 4μ′Ur

(
2Ur + 1

r
U
)]

, βrr = 8μ′Ur

(
2
r

U + Ur

)
, (4.8a,b)

αθθ = 8
r
μ′U
(

2Ur + 1
r

U
)

, βθθ = 2
[
μ + 4

r
μ′U
(

2
r

U + Ur

)]
, (4.9a,b)

μ = 1
Γ̇

(Bi + Γ̇
n
), μ′ = − 1

2Γ̇
3 [Bi + (1 − n)Γ̇

n]. (4.10a,b)
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The outer boundary conditions, after a Taylor expansion about the unperturbed edge, are

R̂t = UrR̂ + û

H(ĥ − 2τ̂rr − τ̂θθ ) − ĥ(2Trr + Tθθ )

+ [1
2 H2 − H(2Trr + Tθθ )

]
rR̂ = 0

τ̂rθ − imR̂(Tθθ − Trr)/R̄ = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

at r = R̄. (4.11)

At the vent we demand
û = ĥ = v̂ = 0 at r = 1. (4.12)

These equations can be solved numerically as an initial-value problem. Alternatively,
once the base states have converged to self-similar form (power law or plastic), the
corresponding solutions are independent of time once expressed in terms of the similarity
coordinates. This permits one to reduce the relevant linear stability analysis to a
conventional eigenvalue problem via the coordinate change described in appendices A.2
and B.2. Before heading down either route, we first consider the early-time limit in which
this stability problem simplifies substantially and becomes analytically solvable (cf. Sayag
& Worster 2019b).

4.1. Early times, t � 1
For the early-time solution derived in § 3.3, the coefficients in (4.3)–(4.7) become constant
to leading order in the small parameter δ. Moreover, assuming that M = mδ = O(1) and
the perturbation amplitudes all remain of comparable order, the leading-order terms in
the force-balance equations (4.3)–(4.4) are those with the highest radial and angular
derivatives. Thus,

0 = (2τ̂rr + τ̂θθ )x + iMτ̂rθ = (2αrr + αθθ )ûxx + iM(μ + 2βrr + βθθ )v̂x − M2μû,

0 = (τ̂rθ )x + im(2τ̂θθ + τ̂rr) = μv̂xx + iM(μ + αrr + 2αθθ )ûx − M2(βrr + 2βθθ )v̂,

}

(4.13)

where the coefficients are given by the early-time limits of (4.8a,b)–(4.10a,b) (with U/r →
(2πH0)

−1, Ur → U1x and the stress components and Γ̇ given by (3.13a,b)–(3.14a,b)).
These two relations can be combined into

0 = ûxxxx + ΣM2ûxx + Γ M4û, (4.14)

with

Σ = 3(βrrαθθ − αrrβθθ ) + μ(2αθθ + αrr + 2βrr + βθθ )

μ(2αrr + αθθ )
, Γ = 2βθθ + βrr

2αrr + αθθ

.

(4.15a,b)

Similarly, the boundary conditions become

û = 0, v̂ = 0 at x = 0, (4.16a,b)

and

(2αrr + αθθ )ûx + (2βrr + βθθ )iMv̂ = 0

μ(v̂x + iMû) − iMR̂(Tθθ − Trr) = 0

}
at x = X ≡ (2πH0)

−1 t̂. (4.17)

This system is closed, with the time dependence entering through the motion of the outer
edge, R̂t̂ = δ[U1xR̂ + û(X, t̂)], and the depth perturbation following separately from (4.5).
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Instability of sliding viscoplastic films

We may therefore solve (4.14) subject to (4.16a,b) and (4.17), and then determine the
instantaneous growth rate, which we express in terms of the original variables,

G(t) = R̂−1R̂t = U1x + R̂−1û(R̄, t). (4.18)

Despite this rewrite, the growth rate on the t̂−time scale is evidently of O(δ), and so
perturbations are predicted to grow far less quickly than the rate of expansion of the base
state (X = δ−1(R̄ − 1) = (2πH0)

−1 t̂). Also, because depth perturbations decouple from
the force balance in this limit (and H = H0), the situation is similar to the two-dimensional
extensional flow problem considered by Sayag & Worster (2019b) (the viscoplastic version
of which is explored further by Ball et al. 2021a). The two problems are not, however,
equivalent because, for the sliding shallow current, the radial flow field is not the same
as that for a two-dimensional incompressible fluid (with U ∝ r−1) and the stress state is
fully three-dimensional with τθθ /=−τrr. We investigate the impact of both features on the
stability characteristics below.

Irrespective of the rheology, the perturbation amplitude û → 0 for MX = m(R̄ −
1) → 0, and so the instantaneous growth rate G → U1x ≡ Ur(1) for the lower angular
wavenumbers. This term corresponds to the geometrical spreading contribution discussed
by Sayag & Worster (2019b), which is always equal to −1 in their incompressible
two-dimensional problem. Here, in contrast, U1x can become positive for sufficiently large
H0 (see figure 9) owing to the thinning of the base state as the fluid leaves the vent when
the inflow is relatively deep (cf. figure 2). In such cases, the base state is therefore unstable
at early times.

In the Newtonian limit, Σ → −2 and Γ → 1, leading to

G(t) = πH2
0 − 2

8πH0
+ (6 − πH2

0)

8πH0

9(MX)2 − 5 sinh2(MX)

9(MX)2 + 1 + 15 cosh2(MX)
, MX ≡ m(R̄ − 1).

(4.19)

The first term corresponds to U1x and controls the growth if MX → 0; for MX � 1, on the
other hand, G → (πH2

0 − 3)/(6πH0). All wavenumbers become unstable if H0 >
√

3/π.
In the plastic limit, Bi � 1, we find Σ = 1 and Γ = 1

4 , giving an instantaneous growth
rate,

G = − 1
16πH0

[1 + 3 cos(m
√

2(R̄ − 1))]. (4.20)

In this case, U1x < 0 and so instability can only appear when MX is not small. In fact,
although G(t) is sometimes positive, there is no net growth, with the average decay rate
of (8πH0)

−1. Thus, the spreading shallow plastic current is initially more stable than
two-dimensional plastic extensional flow as a result of its different stress state and rate
of extension.

Instantaneous growth rates away from either of these limits are shown in figure 9.
Although G always oscillates in the plastic limit, the instantaneous growth rate eventually
reaches a limit G∞ for MX → ∞ for any finite Bi, defining a time-independent growth
rate that is independent of m. This limit is also plotted in figure 9(c) for several values of
n and H0.

At early times, the spreading flow is therefore unstable to non-axisymmetric
perturbations provided the inflow is sufficiently deep and the yield stress is not too large.
However, the growth rate is small (O(δ) on the time scale at which the relatively narrow
annulus expands), and so the fluid is expected to spread beyond the small-time regime
before there is much exponential growth. We demonstrate this feature explicitly below in
§ 4.2 on numerical solving of the full initial-value problem.
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Figure 9. Instantaneous growth rates G(t) as functions of Bi and MX = m(R̄ − 1) for (a) H0 = 2
3 and (b)

H0 = 4
3 , with n = 1. The blue curves highlight the contour G = 0. In (c,d), we plot the limiting growth rates

G0 = U1x and G∞ = limM→∞(G) against Bi for n = 0.25, 0.4, 0.6, 0.8 and 1, with the values of H0 indicated.

4.2. Numerical results
To proceed beyond the limit of a relatively narrow annulus, we solve the linear stability
equations numerically beginning with the initial conditions, R̂(0) = 1 and ĥ(r, 0) = 0 for
1 < r < R̄(0) = 1 + 10−4. These initial conditions are arguably the most straightforward,
corresponding to launching a non-axisymmetric perturbation with angular wavenumber
m on top of the axisymmetric base state by modifying the position of the outer edge
without any associated changes in local depth (as the stability problem is linear, the initial
amplitude may be scaled to unity). Indeed, the analysis of § 4.1 demonstrates that local
depth perturbations decouple from the primary instability at early times, suggesting that
any ĥ(r, 0) /= 0 is insignificant.

Figure 10 displays solutions for Newtonian fluid with three values of m and H0.
For the entrance depths chosen (H0 = 1, 3 and 5), the stability theory for early times
predicts exponentially growing instabilities at early times (πH2

0 > 2). For wavenumbers
of m = 2 and 10, the instantaneous growth rate G = G0 = U1x for MX � 1 characterizes
the amplification until the base state has spread beyond a narrow annulus. The highest
wavenumber of m = 100, however, is sufficiently large to trigger a transition towards the
growth rate G = G∞ applying in the limit MX � 1.

Once the fluid has spread beyond the early-time regime, instability gradually switches
off, giving way to a late-time algebraic decay relative to the expansion of the base state (the
perturbations actually continue to grow algebraically in time in this latter phase, but with
a power of time that is less than that of R̄(t) ∼ t). This decay becomes independent of the
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Figure 10. Solutions of the initial-value problem for linear perturbations to Newtonian spreading flow (n =
1, Bi = 0), showing (a) time series of the perturbed radius scaled by the base state radius for the values of H0
and m indicated, and (b) the perturbed radial velocity û for H0 = 1 at the times indicated (successively offset
and with the colour coding representing m as in (a)). The inset to (a) shows the early-time behaviour of R̂(t)
along with the asymptotic predictions of § 4.1 (dashed); the dotted lines show the power laws t−0.8 (top), t−0.81

and t−0.76 (bottom) predicted by the analysis in appendix A.2. In (c–e), with m = 2 and H0 = 1, the solutions
for û(r, t), v̂(r, t) and ĥ(r, t) are scaled and plotted against r/R̄(t) every 50 time units up to the extended time
of t = 103; the dashed lines show the self-similar solutions from appendix A.2, taking ε = 0.006.
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entrance depth H0 at the latest times, with a weak dependence on m. During this evolution,
the linear solutions do not inherit a great deal of spatial structure, although they become
more localized to the outer edge at later times and for higher wavenumber (figure 10b).

The late-time power-law decay corresponds to the convergence of the perturbations
towards a self-similar spatial structure equivalent to that of the base state (§ 3.1), in which
ζ = r/R̄ and [û(r, t), v̂(r, t), ĥ(r, t)] = û(R̄, t)[Ǔ(ζ ), V̌(ζ ), F̌(ζ )/R̄]. Figure 10(c–e)
illustrates this structure over longer times for the case with H0 = 1 and m = 2. Further
details of this limit are given in appendix A.2, where the transformation to the similarity
variables facilities a standard normal-mode-style stability analysis. That analysis predicts
that the Newtonian problem is stable; the damping rates and perturbation amplitudes are
indicated in figure 10 and compare well with the results from numerical solution of the
initial-value problem. Note the increasingly abrupt rise in ĥ(r, t) near the outer edge,
emerging because the base state develops an infinite slope in the self-similar limit.

Figure 11 shows an analogous set of examples with a yield stress. In this case, the
expansion of the basic spreading flow out competes the perturbations in the early-time
limit (with R̂/R̄ decaying), but modes begin to grow relative to the base state at later
times. The lowest yield-stress case for Bi = 0.1 displays little overall amplification of the
linear modes, with the lowest angular wavenumber remaining strongest at the termination
of the computation. For Bi = 1, the modes (with m = 2 to 16) grow at comparable
late-time rates. With Bi = 10, however, the higher-wavenumber modes amplify quicker
and substantially. Unlike the Newtonian case, the perturbations do not become confined
to the outer edge as the fluid expands, but retain significant amplitudes throughout the
fluid, displaying spatial oscillations that narrow with increasing angular wavenumber
(figure 11b), a feature mirroring results in the two-dimensional problem of Sayag &
Worster (2019b). For the higher values of m, the perturbation to the edge R̂(t) also begins
to oscillate in time with a frequency that increases with m.

As discussed in appendix B.2, stronger instability at higher m, oscillatory growth and
persistent spatial oscillations also feature for the linear modes in the self-similar plastic
limit. The analysis there, in fact, predicts a (power-law) growth rate that increases as m2,
implying a rather singular limit to the stability problem. The enhanced amplification at
larger Bi and m seen in figure 11 evidently points to the emergence of this divergent
behaviour. A quantitative comparison of the numerical results in this figure with the
self-similar solutions is not possible, however, because these Bingham computations have
yet to converge to self-similar form. Moreover, since the vent radius is not fixed but
expanding in the similarity solutions, such a comparison only makes sense if results
are insensitive to the position and conditions at the inner edge, which is far from the
case in the plastic limit. Despite this, if we take the value of ε = R̄ −1 implied at the
end of the computations for Bi = 10 (which is the closest to the plastic limit) and
compute λ using the analysis in appendix B.2, we emerge with a qualitative guide to the
instantaneous growth rate (see the dashed lines in the main panel of figure 11a). Similarly,
the corresponding self-similar solutions broadly reproduce the spatial structure of the final
snapshots (figure 11c).

The addition of a yield stress therefore significantly destabilizes the spreading, shallow
current at late times. The situation is somewhat similar for a power-law fluid (Bi = 0),
with a decrease of n playing the same role as an increase in Bi. Figure 12 presents results
for m = 4 and 1, with a variety of values for n. For these two modes, the linear stability
analysis of the self-similar solutions in appendix A.2 predicts instability for n slightly less
than 0.2 and 0.55, respectively, with the m = 4 mode having a finite frequency. These
predictions are again broadly reproduced in the numerical computations. Moreover, unlike
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(û
, v̂

, (
2
π

)–
1
ĥ)
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Figure 11. Solutions of the initial-value problem for linear perturbations to Bingham spreading flow (n =
1, Bi > 0) with H0 = 1. (a) Time series of the perturbed radius scaled by the base state radius, R̂/R̄, for the
values of m indicated; the solid lines show results for Bi = 1, the dotted lines for Bi = 0.1 and the dot-dashed
lines for Bi = 10 (computations are terminated when |R̂|/R̄ = 106). The black dashed lines show the growth
expected from appendix B.2, based on the final value of ε = R̄−1. The inset shows the early-time behaviour
of R̂(t) along with the approximation eU1xt (dashed). (b) Snapshots of (û, v̂, (2π)−1ĥ)/Max(û) at t = 100 for
Bi = 1 (solid, dashed and dotted, respectively, with the colour coding representing m as in (a)). (c) The final
snapshots of v̂ for Bi = 10. The dots show the corresponding self-similar solutions of appendix B.2; for the
complex modes with m = 8 and 16, a constant phase is chosen arbitrarily.

in the plastic limit, a more detailed comparison of the mode shapes shows satisfying
agreement (see appendix B.2), primarily because the perturbations decay more strongly
towards the inner boundary, rendering the solutions less sensitive to the inflow conditions.
The growth rates also remain bounded, at least with finite n.
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Figure 12. Solutions of the initial-value problem for linear perturbations for power-law fluid (Bi = 0) for the
values of n indicated and H0 = 2. In the main panels, perturbed radius scaled by the base state radius is plotted
for (a) m = 4 and (b) m = 1. The dotted lines indicate the power laws tλr predicted for the self-similar solutions
in appendix B.2. The insets show the final snapshots of v̂.

5. Discussion

In this paper we have investigated the stability of sliding viscoplastic films. This work is
motivated by experiments in which a dramatic non-axisymmetric instability appears in
radially expanding films of Xanthan gum solution (Sayag et al. 2012; Sayag & Worster
2019a) and Carbopol suspensions (figure 1; Ball et al. 2021b). Sayag & Worster (2019b)
rationalized these observations in terms of an instability of two-dimensional, radial
extensional flow of a power-law fluid. However, this instability may be weak under typical
experimental conditions (Ball et al. 2021a) and different for base flows that thin as they
spread and possess three-dimensional stress states. In view of this, and to provide a
theoretical discussion that is also relevant for yield-stress fluids, we considered in this
paper the instability of spreading thinning films of Herschel–Bulkley fluids.

As a first step, we constructed axisymmetric spreading states. Without a yield stress,
power-law fluids develop a steady flow structure near the source but evolve to a self-similar
form further away, as discussed by Pegler & Worster (2012) for Newtonian fluid. The
addition of a yield stress eliminates such states, however, because the continued fall of the
rate of extension as the fluid spreads inexorably promotes the importance of the yield stress
in comparison to the viscous stresses. Instead, the current reaches a different self-similar

912 A23-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1086


Instability of sliding viscoplastic films

regime corresponding to a plastic limit dominated by the yield stress; i.e. flow dictated by
perfectly plastic deformation (Prager & Hodge 1951).

A linear stability analysis of the base states demonstrates the instability of Sayag &
Worster (2019b) and Sayag (2019) still operates for a spreading thinning film, although
the details are somewhat different. The dynamics breaks down into an early-time phase
wherein the spreading current remains a relatively narrow annulus, and a late-time,
self-similar regime. In the early time phase, the thinning of the base flow can drive linear
instability provided the yield stress is not too large, although amplification is always weak,
with perturbations growing more slowly than the expansion of the base state. Currents
with relatively strong yield stresses are linearly stable at early times, in contrast to the
viscoplastic version of Sayag and Worster’s two-dimensional problem (Ball et al. 2021a).

In the late-time, self-similar regime, non-axisymmetric perturbations subside in
Newtonian fluids, in line with experimental observations (Pegler & Worster 2012; Sayag &
Worster 2019a). However, with either a yield stress or a sufficiently strongly shear-thinning
viscosity, non-axisymmetric perturbations begin to grow relative to the expansion of the
base state. In the plastic limit, to which the fluid inevitably approaches whenever there is
a yield stress, the instability becomes especially pronounced, the linear stability analysis
predicting singular behaviour. The viscoplastic, spreading and thinning current therefore
appears to be rather more unstable than its two-dimensional analogue, but only over late
times when the fluid has expanded over distances well exceeding the initial radius. Of
course, it is also true that our exploration has been limited to a linear analysis and it is
conceivable that nonlinearity plays a more intrusive role.

Awkwardly, in experiments like that shown in figure 1, the non-axisymmetric patterns
develop immediately, as soon as the fluid leaves the launch stage and begins to thin
above the ambient bath. There is also evidence from both the free-surface experiments
and from other experiments in Hele-Shaw cells that an extensional flow instability cannot
be the complete story (Ball et al. 2021a,b): in order to develop extensional flow without
significant shear across the spreading film, one must avoid any friction with the underlying
surface. This was achieved by Sayag et al. and in the Carbopol experiment of figure 1 by
floating the complex fluid over a bath of water. Particularly with the Carbopol experiment,
however, the water bath is relatively shallow, and there is little sign that much water
remains underneath the Carbopol a short distance from the launch stage. In experiments
in which Carbopol was pumped into water-filled Hele-Shaw cells, there was similarly
little evidence for relatively thick residual wall layers of water. For both experiments it
is likely that there is therefore significant vertical shear across the film. Despite this,
fingering patterns still develop, and appear much like the Xanthan gum experiments of
Sayag et al., which use much deeper water baths. Crucially, if a different, immiscible liquid
with comparable viscosity (such as paraffin or mineral oil) is used for the ambient fluid
the experiments are substantially different, with non-axisymmetric patterns eliminated
entirely. Thus, interfacial interaction with the bath appears to play an important role. In
fact, the Hele-Shaw experiments (Ball et al. 2021a) suggest that a completely different
mechanism might be at play: the local fracturing under tension of the material, exacerbated
by a lowering of the fracture toughness due to the presence of water. How the extensional
flow instability competes or cooperates with fracture to create the finger pattern remains
unclear.
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Appendix A. Self-similar solutions for Bi = 0

A.1. Base states
We set

ζ = r
Λt(1/2)(1+n)

, F(ζ ) = tnH, U(ζ ) = Λ−1t(1/2)(1−n)U. (A1a–c)

The equations for the base state become

Uζ = F
8M

− Z
4MF

− U
2ζ

, Fζ = (n − ζ−1U − Uζ )F

U − 1
2 (n + 1)ζ

, Zζ = 2MF
(U

ζ

)
ζ

,

(A2a–c)
where Z(ζ ) ≡ t2n[ 1

2 H2 − H(2Trr + Tθθ )] and

M(ζ ) ≡
(

2
√
U2

ζ + ζ−1UUζ + ζ−2U2
)n−1

. (A3)

The outer boundary conditions are

U → 1
2(1 + n), Z → 0, for ζ → 1, (A4)

which leaves free the amplitude of a singular solution of the form (1 − ζ )(3n−1)/4 for n > 1
3

(in which case F → 2M(3n − 1)) or (1 − ζ )(1−3n)/3(n+1) for n < 1
3 (and F → 0). The

solution is therefore fully specified by the inner boundary condition, which corresponds to
the match to the steady profile in § 3.1

F → H̃0(Λζ)−2n/(n+1), U → ζ(Λζ)−2/(n+1)

2πH̃0
, (A5a,b)

and

Z → 1
2 F2 − 2n(3n − 1)(1 + 3n2)(n−1)/2(1 + n)−nF(U/ζ )n. (A6)

The last relation proves convenient to impose the inner boundary condition at a finite
position, ζ = ε, with ε sufficiently small to ensure that its value has little impact on the
solution. Finally, the inner flux condition demands

1 = 2πrHU → Λ2ζFU (A7)

at ζ = ε, which determines Λ, and therefore the position of the outer edge, R̄ ≡
Λt(1/2)(1+n). For example, we find Λ = 0.173 for n = 1 and Λ = 0.328 for n = 0.4. The
corresponding self-similar solutions are plotted in figure 4 and compared with the (suitably
scaled) solutions of the initial-value problems in figures 2 and 3 (including factors of the
powers of ζ required to suppress divergence for ζ → 0).
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A.2. Linear stability
To explore the linear stability, we set

h = t−n[F(ζ ) + tλ eimϑ F̌(ζ )], u = Λt−(1/2)(1−n)[U(ζ ) + tλ eimϑ Ǔ(ζ )], (A8a,b)

v = imΛtλ−(1/2)(1−n) eimϑ�(ζ ), R = Λt(1/2)(1+n)[1 + tλ eimϑ Ř], (A9a,b)

F̌ = X̌ − ζFǓ
ζ [U − 1

2 (n + 1)ζ ]
, Y̌ = ζ 2MF

(
Ǔ − �

ζ
+ �ζ

)
, (A10a,b)

and
tλ−2n eimϑ Ž(ζ ) = H(ĥ − 2τ̂rr − τ̂θθ ) − ĥ(2Trr + Tθθ ). (A11)

The linear equations can then be written as

Ǔ ζ = [ζF − 2M(2ζUζ + U)]F̌ − ζ Ž − F(2β̃rr + β̃θθ )(Ǔ − m2�)

(2α̃rr + α̃θθ )ζF
, (A12)

X̌ζ = m2F� − ζ(1 + λ)F̌, (A13)

Žζ = 2M
ζ 2 (ζUζ − U)F̌ + F

ζ 2 [(α̃rr − α̃θθ )ζ Ǔ ζ + (β̃rr − β̃θθ )(Ǔ − m2�)] − m2

ζ 3 Y̌,

(A14)

�ζ = � − Ǔ
ζ

+ Y̌
ζ 2MF

, (A15)

Y̌ζ = [ζF − 2M(2U + ζUζ )]F̌ − ζF(2α̃θθ + α̃rr)Ǔ ζ − F(2β̃θθ + β̃rr)(Ǔ − m2�),

(A16)

where (α̃rr, α̃θθ , β̃rr, β̃θθ ) = tn−1(αrr, αθθ , βrr, βθθ ). At the unperturbed outer radius ζ =
1, we impose

Ǔ = [λ+ 1
2(n + 1) − Uζ ]Ř, Ž + Zζ Ř = 0, Y̌ − 2MF(U − Uζ )Ř = 0, (A17a–c)

and set �(ε) = X̌(ε) = Ǔ(ε) = 0 to ensure that the solution does not diverge at the inner
boundary (although the solution appears to be insensitive to these conditions as long as it
remains regular for ζ → 0 and n and m are not too small).

The numerical solution of this linear problem furnishes only stable eigenvalues with
λr ≡ Re(λ) < 0 for the Newtonian problem (n = 1). However, a reduction in n increases
λr and eventually unstable modes appear; see figure 13. The m = 1 mode becomes unstable
for n slightly below 0.6 (and remains real); instabilities with higher wavenumber require
n < 1

3 , and are complex with frequencies λi ≡ Im(λ) /= 0. Solutions for the perturbation
amplitudes are compared with numerical solutions of the Newtonian initial-value problem
in figure 10, and figure 14 displays a selection of solutions for �(ζ) for various values
of n, ε and m. The cases with different ε are hard to distinguish in figure 14, except at
smaller m and n where the solutions become sensitive to ε because the corresponding
mode shapes fail to decay towards the inner boundary and begin to pile up against it.
Also, the flattening out of the growth-rate curves in figure 13(a) can be rationalized by a
Wentzel–Kramers–Brillouin (WKB)-style analysis in the limit m � 1, where the solutions
decay rapidly away from the outer boundary and depend on the spatial coordinate m(1 −
ζ ). The analysis is complicated by the presence of the singular point at ζ = 1, and the fact
that its nature switches for n = 1

3 , but otherwise predicts that λ becomes independent of
m.
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Figure 13. Eigenmodes of the linear stability problem for self-similar solutions with Bi = 0, showing (a) λr
against m for n = [0.1, 0.15, 0.2, 0.4, . . . , 1] and λi against m for n = [0.1, 0.15, 0.2], and (b) λr against n for
m = 1. In both panels, data for ε = 10−3 (solid), 0.01, 0.05 and 0.1 (all dashed) are shown.
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Figure 14. Eigenfunctions � for (a) n = 1, (b) n = 0.4 and (c) n = 0.1, with ε = 0.1 (dashed) and 0.01 (solid).
Modes with m = 1, 4 and 10 are plotted (as indicated by colour). The dash-dot lines show more m = 1 solutions
for ε = 10−3. In (c), the real parts of the complex modes with m > 1 are plotted. The dots show numerical
solutions of the initial-value problem at t ≈ 300 for a selection of the cases (m = 10 in (a); m = 1 and 4 in (b);
m = 4 in (c)).

Appendix B. Plastic self-similar solutions

B.1. The limit ε → 0
Writing

Z = F
(

1
2

F − 2C
)

, 2Uζ + U
ζ

= γ̇ C(ζ ),
√

3
U
ζ

= γ̇ S(ζ ) and 1 = C2 + S2,

(B1a–d)

the equations for the axisymmetric similarity solution read

Fζ = FU(
√

3C + S)

ζS(ζ − 2U)
, Uζ = U

2Sζ
(
√

3C − S), Zζ = F
ζ

(C −
√

3S). (B2a–c)
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In addition to the limits in (3.25), Z = O(ζ 4/3) for ζ → 1, which implies that C(1) = 0.
A simple approximation for the bulk of the current is furnished by assuming that C � 1
and S ≈ 1 everywhere, corresponding to 2Trr + Tθθ � 1. This assumption immediately
implies that Z ≈ 1

2 F2, Uζ ≈ −U/(2ζ ) and Zζ ≈ −√
3F/ζ , leading to (3.26a,b).

For ζ → 0, the solution for F diverges logarithmically, whereas |C| is bounded by unity.
Thus, Z → F2/2. The first and last equations in (B2a–c) can then only be consistent if
C → −S/

√
3, or (C, S) → 1

2 (−1,
√

3). This further implies that F ∼ −2 log ζ and U ∝
ζ−1; logarithmic corrections obscure this limit in the numerical solutions. In particular,
we note that C ∼ −S/

√
3 + 2/F, retaining the next correction. Thence, Uζ ∼ −(1 −

2/F)U/ζ , which furnishes U ∼ −c(ζ log ζ )−1, for some constant c, as seen in figure 8( f )
(where c is chosen to be 0.4).

We may also observe from (B2a–c) that (ζFU)ζ ∼ O(ζ ) for ζ → 0. It follows that

[ζFU ]ζ→0 =
∫ 1

0
F(ζ )ζ dζ ≈ 0.664, (B3)

using the computations in figure 8(c), which simply corresponds to mass conservation for
the self-similar solution. This result leads to the limit in (3.28).

B.2. Linear stability
For the perturbations to the similarity solution we set

h = Bi[F(ζ ) + tλ eimϑ F̌(ζ )], u = Λt−(1/2)Bi−(1/2)[U(ζ ) + tλ eimϑ Ǔ(ζ )], (B4a,b)

v = imΛtλ−(1/2)Bi−(1/2) eimϑ�(ζ ), R = Λt1/2Bi−(1/2)[1 + tλ eimϑ Ř]. (B5a,b)

Now we define Y̌ , Ž and X̌ through the relations

Y̌ = ζ 2F
Γ̇

(
Ǔ − �

ζ
+ �ζ

)
, Ž = (F − 2C)F̌ − F(2τ̌rr + τ̌θθ ), (B6a,b)

F̌ = X̌ − ζFǓ
ζ(U − 1

2ζ )
and Γ̇ = 2

√
U2

ζ + UUζ

ζ
+ U2

ζ 2 ≡
√

3U
ζS

, (B7a,b)

where the normal stress perturbations are

(τ̌rr, τ̌θθ ) = 1
2F

[(F − 2C)F̌ − Ž]
(

1 + C

S
√

3
, − 2C

S
√

3

)
. (B8)

The linearized equations for the perturbations can then be written as

Ǔ ζ = ζ Γ̇ [(F − 2C)F̌ − Ž] − 2FS(S − √
3C)(Ǔ − m2�)

4ζFS2 , (B9)

X̌ζ = m2F� − ζ(1 + λ)F̌, (B10)

Žζ = 1
ζ

(C −
√

3S)F̌ + 1
2ζS

(S +
√

3C)[(F − 2C)F̌ − Ž] − m2

ζ 3 Y̌, (B11)
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Figure 15. Eigenvalues λ = λr + iλi against m for a base state with A = 1.03 (F0 = 5.86) and ε = 0.05. The
eigenvalues are computed treating m as a real number; the solution with integer m are shown as circles, coloured
according to whether they are real (blue and red, with the former having a λ greater than that of the latter) or
complex (green). The insets show the mode shapes for Ǔ(ζ ).

�ζ = � − Ǔ
ζ

+ Γ̇ Y̌
ζ 2F

, (B12)

Y̌ζ = ζ(F − C −
√

3S)F̌ − ζ

2S
(S − C

√
3)[(F − 2C)F̌ − Ž]. (B13)

The boundary conditions are, at ζ = ε,

� = F̌ = Ǔ = 0, (B14)

and, near the unperturbed outer radius ζ = 1,

Ǔ ∼
(
λ+ 3

4

)
Ř, Ž ∼

√
3FŘ, Y̌ ∼

√
3FŘ. (B15a–c)

The singular point at the edge again impacts the linear stability problem: in order to shift
the outer boundary, the perturbation to the depth at ζ = 1 must diverge according to
F̌ ∼ −Fζ Ř. The dependent variables above, however, avoid any divergences. Nevertheless,
one must be careful to exclude solutions to (B9)–(B13) that diverge more strongly than
implied by (B15a–c). Indeed, we find numerical evidence for infinitely many solutions
with Real(λ) close to −1 that possess unphysical behaviour at the edge. Eliminating these
leaves a finite set of physically relevant modes that can be unstable.
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Figure 16. Eigenvalues λ = λr + iλi against m for the values of ε indicated (with A = 1.029112 for ε = 0.015,
A = 1.03 for ε = 0.05, and A = 1 for the cases with larger ε). The dashed lines show the linear and quadratic
curves of figure 15.

Numerical solutions to the linear stability problem are shown in figures 15 and 16. The
first figure displays a pair of unstable modes that arises for smaller angular wavenumbers
m for a base state with ε = 0.05. With increasing m, the eigenvalues of these modes pass
through a curious sequence of interactions wherein the pair either splits into distinct, real
values or collide into a complex conjugate pair. Overall, the growth rate λr increases
with m2, whereas the frequency of the conjugate pair scales with m. As displayed by the
eigenfunctions for Ǔ(ζ ) included in the plot, the modes acquire more spatial oscillations as
m increases. At higher m, further unstable modes appear, but at the values of m plotted, no
other growing eigenvalues were found. Some additional analytical progress is possible in
the high-wavenumber limit using WKB theory; the eigenfunctions acquire an oscillatory
structure given by exp(1

2 im
√

2 log ζ ), with a more slowly varying amplitude that is roughly
independent of m.

Growth rates for varying domain sizes (i.e. ε) are shown in figure 16. Notably, the
growth rates appear to diverge in the limit ε → 0, with λr = O(ε−am2) and 1.5 < a < 2.
Conversely, the instability is much reduced in the limit of a relatively narrow annulus, ε →
1, where further asymptotic analysis demonstrates that λr ≈ (1 − ε)2m2/12. In the plastic
limit, the instability is therefore markedly different from the two-dimensional instability
explored by Sayag & Worster (2019b). For that problem, the instantaneous growth rate is
maximized for m = 1 and all the higher angular modes pass repeatedly through phases
of stability and instability as the fluid expands (Ball et al. 2021a). Here, the instability
grows monotonically with the expansion of the dome and the shorter-wavelength modes
amplify fastest, at least until angular wavelength becomes comparable to the thickness of
the dome and the shallow-layer approximation breaks down. Consequently, the extensional
flow instability appears to be stronger for a thinning expanding dome.
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