
Euro. Jnl of Applied Mathematics (2000), vol. 11, pp. 529–559. Printed in the United Kingdom

c© 2000 Cambridge University Press

529

Self-similar flows of multi-phase immiscible fluids

A. OZTEKIN 1, B. R. SEYMOUR2 and E. VARLEY1

1 Department of Mechanical Engineering, Lehigh University, Bethlehem, PA 18017, USA
2 Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada

(Received 16 February 2000; revised 13 July 2000)

Exact analytical representations are obtained describing self-similar unsteady flows of multi-

phase immiscible fluids in the vicinity of non-circular, but constant strength, fronts. It is

assumed that Darcy’s law holds for each phase and that the mobilities are known functions

of the saturations. Equivalent representations are obtained for Hele-Shaw cell flows that are

produced when a viscous fluid is injected into a region containing some other viscous fluid.

The fluids may be Newtonian fluids or non-Newtonian fluids for which the coefficients of

viscosity depend on the shear stress. Even though the flows are unsteady and two dimensional,

the representations are obtained by using hodograph techniques.

1 Introduction

This paper describes flows in a porous medium that are produced when a stationary

fluid composed of several immiscible phases is displaced by injecting other immiscible

fluids into a region that is small compared with that occupied by the resident fluid.

The analysis is based on a model of the ‘secondary recovery’ process that is used in

the petroleum industry to drive oil towards a recovery well by injecting either water or

gas, or a combination of both. A comprehensive review of the various mathematical

models that are used to describe this process is given in the book by Barenblatt, Entov

& Ryzhik (1990). More recent accounts are described in two special issues (1995, 1999)

of the European Journal of Applied Mathematics. In the simplest Muskat–Leverett model,

the governing equations form a system of coupled first order partial differential equations

in space and time of convective-diffusive type for the variations in the saturations and

partial pressures. These result from applying Darcy’s law and the law of conservation of

mass to each phase, and stipulating equations of state for the mobilities and capillary

pressures in terms of the saturations. When the fluid contains just two phases and the flow

is one-dimensional, the bulk velocity of the fluid depends only on time. Then, a nonlinear

second order equation can be obtained that governs the variation in the saturation of one

of the phases in time and distance. When the effect of capillary pressure is small, as is

the case for the flows described in this paper, fronts develop across which the saturation

varies rapidly. When the effect of capillary pressure is neglected completely, this equation

reduces to the Buckley–Leverett simple wave equation and the fronts are propagating

surfaces across which the saturation is discontinuous. In this limit, one dimensional flows

can be analyzed by procedures that are standard in the study of gasdynamics.
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When the flows are unsteady and not unidirectional, only in the limiting case when the

total mobility is constant and capillary effects can be neglected are there any known exact

analytical solutions to the governing equations. Usually, solutions are sought by using

numerical procedures. However, because of the nature of the governing equations and

the existence of fronts whose locations must be determined as part of the solution, these

procedures remain unreliable (see Chavent and Jaffre, 1986): changing the grid orientation

can produce completely different numerical outputs. This study uses hodograph techniques

developed by Sidorov (1963) and Cumberbatch & Varley (1966) in their research on self-

similar, two-dimensional, unsteady flows of a gas to construct exact solutions to the

governing equations in the limit when the effect of capillary pressures can be neglected.

These exact solutions can be used to test the reliability of numerical schemes.

The techniques that are used are motivated by considering two dimensional radially

symmetric flows that are produced by injecting water at a varying rate at the axis of

symmetry into a region that is initially filled with oil. The injection process produces

an expanding circular front separating the oil filled region ahead from a ‘mushy’ region

behind that contains both oil and water. At large times the flow in the vicinity of the

front ‘forgets’ the details of the injection process and becomes self-similar. In particular,

the strength of the front, which is measured by the value of the water saturation behind

it, asymptotes to a constant value. The self-similar flows described in this paper are not

radially symmetric, even though there is a constant strength front separating the oil filled

region ahead from the mushy region behind. The solutions are not valid inside the region

where the fluid is injected; there the flow is extremely complicated and depends upon

the detailed nature of the injection process. Rather, the effect of the flow in the injection

region on that outside is modeled by specifying the shape of a contour of constant

water saturation. Once this iso-saturation contour is specified at some reference time, its

subsequent motion, together with the flow ahead of it, is uniquely determined. Only when

this contour is a circle is the flow radially symmetric.

Mainly, for definiteness, this paper describes self-similar flows of two-phase fluids when

the region ahead of the front contains a single phase. However, as is indicated in § 11, the

solutions can be generalized to study self-similar flows of multi-phase fluids.

Flows in a porous medium have many similarities to flows in Hele-Shaw cells. When

the fluids involved are Newtonian, so that the mean flow is governed by Laplace’s

equation, there are many well developed mathematical techniques that have been used to

study such flows. In the seminal papers of Saffman & Taylor (1958) and Taylor (1961),

hodograph techniques were used to construct solutions describing steady fingering flows.

These solutions were generalized by Alexandrou & Entov (1997) to describe fingering

flows of non-Newtonian fluids. Much of the recent research on unsteady Hele-Shaw cell

flows of Newtonian fluids, notably by Howison, Ockendon & Lacey (1985), Howison

(1986) and Entov & Etingof (1997), is based on complex variable techniques that were

developed by Richardson (1972, 1981). In § 12 it is shown that the techniques used to

describe self-similar unsteady flows in a porous medium can be modified to describe self-

similar flows that are produced when a viscous fluid is injected into a region containing

some other viscous fluid. The fluids may be Newtonian fluids, or non-Newtonian fluids

for which the coefficient of viscosity depends on the shear stress.
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2 Governing equations

The flows of the immiscible fluids oil and water in an isotropic, homogeneous, matrix

are referred to Cartesian axes that are fixed in the matrix. Let s (0 6 s 6 1) denote the

water saturation, uw, uo denote the velocities of the water and oil, and pw, po denote the

partial pressures in the water and oil. Using standard notation, the governing equations

(see Barenblatt, Entov & Ryzhik,1990) are Darcy’s law

uw = −λw∇pw, uo = −λo∇po, (2.1)

and the mass conservation laws for each component

φ
∂s

∂t
+ ∇ · uw = 0, φ

∂(1− s)
∂t

+ ∇ · uo = 0. (2.2)

In the simplest Muskat–Leverett model, the mobilities λw, λo and the capillary pressure

pc = po − pw (2.3)

are taken to be known functions of s, and the porosity φ is a constant.

If

λ(s) = λo + λw, F(s) =
λw

λ
and ε(s) = −λoλw

λ

dpc

ds
, (2.4)

equations (2.1)–(2.3) imply that s and the bulk velocity

u = uw + uo (2.5)

satisfy the equations

u = −λ(s)∇p, ∇ · u = 0, (2.6)

and

φ
∂s

∂t
+ ∇ · (F(s)u−ε(s)∇s) = 0. (2.7)

In terms of u and s,

uw = F(s)u−ε(s)∇s, (2.8)

uo = (1− F(s))u+ε(s)∇s; (2.9)

in terms of p and s,

pw = p+ (F(s)− 1)pc(s) +

∫ 1

s

pc(s)F
′(s)ds, (2.10)

po = p+ F(s)pc(s) +

∫ 1

s

pc(s)F
′(s)ds. (2.11)

3 Ideal flows when pc = 0

This paper describes flows in the vicinity of a front as it propagates into an oil filled

region. Behind the front there is an annular ‘mushy’ region containing both oil and water.
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When pc � 0 equation (2.7) for s is of the convective-diffusive type. However, to the

approximation that s is discontinuous at a front, it is consistent to take pc = 0 so that

s satisfies a hyperbolic equation. For the unsteady flows discussed here, capillary effects

are important only when the saturation gradients are large. For example, they must be

considered when the detailed structure of the front is of interest, or when the front focuses

to form a caustic.

With pc = 0 and t re-scaled so that φt represents time, equation (2.7) simplifies to

∂s

∂t
+ ∇ · (F(s)u) = 0. (3.1)

In the oil filled region s = 0, and in the mushy region 0 < s < 1. Typically,

λo = λo(0)(1− s)b and λw = λw(1)sa, (3.2)

where the constants a, b > 1. Correspondingly, if µw and µo denote the viscosities of oil

and water and if

c =
λo(0)

λw(1)
=
µw

µo
< 1, (3.3)

λ = λw(1)(sa + c(1− s)b) and F =
sa

sa + c(1− s)b . (3.4)

0 0.5 1

s

0

0.5

1

F
(s

)

s = sf

a = 4
b = 2
c = 0.01

Figure 1. Typical form of F(s). sf denotes the saturation behind the front.

In practice, λw = 0 for 0 6 s 6 sm < 1 and λo = 0 for sM 6 s < 1, where sm and

sM are experimentally determined constants with sm < sM. In this paper, we take sm = 0

and sM = 1: any other choices for these constants simply complicates the algebra. The

general representations are valid for any form of the dependence of the mobilities on the
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saturation. The profile of F(s) for typical values (a, b, c) is shown in Figure 1. Note that

F(0) = 0, F(1) = 1 and that F ′(0) = F ′(1) = 0. (3.5)

At a front s is discontinuous, but p and the component of u normal to the front are

continuous. Also, there is a condition that follows from the fact that the mass of each

phase is conserved at the passage of the front. If t = w(x) denotes the arrival time of a

front at x and if [s] and [F(s)] denote the jumps in s and F(s) at its passage, this condition

requires that

[s]

[F(s)]
= u · ∇w. (3.6)

Since condition (3.6) involves only the component of u normal to the front, u can be

evaluated either ahead or behind the front. This paper is concerned mainly with fronts

moving into oil filled region where s = F(s) = 0. Then

[s]

[F(s)]
=

s

F(s)
, (3.7)

where the right-hand side is evaluated behind the front.

4 Motivation: Radially symmetric flows

This first study describes two dimensional unsteady self-similar flows that are generated

by injecting water at a varying rate into a region that is initially filled with oil. The

procedures that are used are best motivated by considering the idealized case of radially

symmetric flows that are produced by a source of varying strength situated at the origin.

If R(t) represents the radial position at time t of particles that were located at the origin

at t = 0, for all radially symmetric flows the second of conditions (2.6) implies that the

radial velocity

q = R(t)R′(t)/r. (4.1)

The source is of strength 2πR(t)R′(t). According to (3.1) and (4.1), in the mushy region

s(t, r) satisfies the Buckley–Leverett simple wave equation

∂s

∂t
+ F ′(s)

R(t)R′(t)
r

∂s

∂r
= 0, (4.2)

or
1

R

∂s

∂R
+ F ′(s)

1

r

∂s

∂r
= 0. (4.3)

At the front, where t = w(r) and R = R(w(r)) = W (r), (3.6), (3.7) and (4.1) imply

s

F(s)
=
W

r

dW

dr
. (4.4)

Figures 2(a) and 2(b) show a typical development in the s versus r profiles with

increasing R, together with the corresponding s and R versus r profiles at the front, that

are predicted by equations (4.3) and (4.4). These profiles are obtained using procedures

that are standard in the study of gas dynamics (see Whitham, 1974). The illustrations
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Figure 2. (a) A typical development of the saturation profile with increasing R in a radially

symmetric flow. The broken curve depicts the variation of the saturation behind the front with

radial distance. (b) The corresponding trajectory of the front.

correspond to the simple case when s(0, r) = 0 and

s(t, 0) =

{
R/R0 for 0 6 R 6 R0

1 for R > R0.
. (4.5)

The corresponding injection process first produces a compression wave followed by an

expansion wave. At r = 0 the change from compression to expansion occurs when

R/R0 = sI , where F ′′(sI ) = 0. The front forms at r = 0 when t = 0 and s = 0. Thereafter,

at the front s increases monotonically with increasing R and as R/R0 →∞ asymptotes to

a maximum value sf that satisfies the condition (see Figure 1):

F ′(sf) =
F(sf)

sf
. (4.6)

The dependence of sf on the parameters a, b, c is shown in Figure 3.

Figures 2(a) and 2(b) also compare the s versus r profiles with that in the expansion

wave that is centered at (r, R) = (0, R0). In this wave, depicted by the broken curve,

F ′(s) =
r2

R2 − R2
0

. (4.7)

With s(r, R) determined by (4.7), at the front

r2(F(s)/F ′(s)− s) = constant. (4.8)

Equations (4.7) and (4.8), which determine the trajectory of the front, are uniformly valid

in the mushy region where s > sI and R > R0. In the limit as R/R0 →∞, the flow ‘forgets’
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Figure 3. The dependence of sf on the parameters a, b, c.

details of the injection process and asymptotes to the self-similar flow in which

F ′(s) =
r2

R2
(4.9)

and

q = R′(t)
R

r
=

R′(t)√
F ′(s)

. (4.10)

These relations are valid throughout the mushy region where sf 6 s 6 1. At the expanding

circular front q and p are continuous:

q, = qf,= R′(t)Qf where Qf = (F ′(sf))−1/2 < 1, (4.11)

and, without loss of generality, p = 0. In the mushy region, with s(r, R) determined by

(4.9),

p = −1

2
R(t)R′(t)

∫ s

sf

F ′′(s)
λ(s)F ′(s)

ds; (4.12)

and in the oil filled region, with

q = R′(t)
R

r
, p =

R(t)R′(t)
λ(0)

ln(q/qf). (4.13)

4.1 Remark

Note that if

q = R′(t)Q(R, r), (4.14)
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then in both the mushy and the oil filled regions Q = R/r satisfies the equation

Q
∂Q

∂R
+
∂Q

∂r
= 0. (4.15)

In the mushy region, where Q > Qf, s = S(Q) and λ = Λ(Q) are determined from the

conditions

F ′(s) = 1/Q2, Λ = λo(s) + λw(s). (4.16)

In the oil filled region, where Q < Qf,

S(Q) = 0 and Λ(Q) = λo(0). (4.17)

In both regions

p = R′(t)R(t)

∫ Q

Qf

dQ′

Λ(Q′)Q′
. (4.18)

5 Generalized self-similar flows

When the radially symmetric flow behind a circular front is self-similar, the strength of

the front, [s], is constant. This paper describes other self-similar flows behind non-circular,

constant strength, fronts whose shapes at any reference time can be specified arbitrarily.

The fronts are produced by injecting water into a region near the origin of typical

dimension r0 at a rate 2πr2
0R(t)R′(t). Let (x, y) be measured in units of r0 and (u, v) in

units of r0R
′(t). Also, if λ denotes some reference value of the bulk mobility, let p be

measured in units of r2
0R
′(t)/λ and λ in units of λ.

Using (x, y, R) rather than (x, y, t) as the independent variables, for any two dimensional

flow equations (2.6) imply

u = Q cos β = −λ∂p
∂x

=
∂ψ

∂y
, (5.1)

v = Q sin β = −λ∂p
∂y

= −∂ψ
∂x
. (5.2)

In (5.1) and (5.2), r2
0R
′(t)ψ is the streamfunction, r0R

′(t)Q is the fluid speed, and β is the

flow angle. ψ changes by 2πR(t) around any closed curve surrounding the injection region.

Equation (3.1) becomes

∂s

∂R
+
∂(F(s)u)

∂x
+
∂(F(s)v)

∂y
= 0, (5.3)

or, using the second of equations (2.6),

∂s

∂R
+ F ′(s)

(
u
∂s

∂x
+ v

∂s

∂y

)
= 0. (5.4)

These equations are valid outside a simply connected region near the origin where fluid is

injected.

If R = W (x, y) is the equation of a front, the unit normal to the front is

∇W/ |∇W | = (cos θ, sin θ), (5.5)
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say. The conditions that the normal component of velocity and that the tangential

derivative of p are continuous then imply

[Q cos(θ − β)] = 0 and [(Q/λ) sin(θ − β)] = 0. (5.6)

Additionally, according to (3.6)

[s]

[F(s)]
= Q

(
cos β

∂W

∂x
+ sin β

∂W

∂y

)
= Q cos(θ − β) |∇W | . (5.7)

In view of the first of conditions (5.6), in (5.7) Q and β can be evaluated either behind or

ahead of the front.

With λ(s) and F(s) specified, equations (5.1) and (5.4) yield five conditions for the five

unknowns Q, β, p, ψ and s. For the special case of self-similar flows described in this

paper, these conditions are supplemented by the conditions that

s = S(Q) and λ = Λ(Q), (5.8)

where S(Q) and Λ(Q) are determined from the parametric relations (4.16) and (4.17). It

follows from the first of (4.16), (5.4) and (5.8) that in the mushy region Q(R, x, y) satisfies

the equation

Q
∂Q

∂R
+ cos β

∂Q

∂x
+ sin β

∂Q

∂y
= 0. (5.9)

For the self-similar flows discussed here this equation holds also in the oil filled region. When

the flow is radially symmetric, (5.9) reduces to (4.15).

With s and λ given by (5.8), equations (5.1) and (5.9) yield five conditions for the four

unknown functions Q, β, p and ψ. In the following section it is shown that these equations

are compatible.

6 Transformation to hodograph variables

Only flows in which Q and β vary independently are considered. With

G =
Q

Λ(Q)
and C = −

(
1

Λ(Q)
+

∫ Q

Qf

dQ′

Λ(Q′)Q′

)
, (6.1)

all of the equations (5.1) and (5.9) are satisfied by expressions of the form

p = −G(Q)(x cos β + y sin β)− RC(Q) + P (Q, β) (6.2)

and

ψ = Q(−x sin β + y cos β) + βR +Ψ (Q, β). (6.3)

These representations are motivated by results obtained by Cumberbatch & Varley (1966)

in their research on shock waves in gases. Equations (5.1) and (6.2) yield the conditions

G′(Q)(x cos β + y sin β) + RC ′(Q) =
∂P

∂Q
, (6.4)

G(Q)(−x sin β + y cos β) =
∂P

∂β
; (6.5)
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equations (5.1) and (6.3) yield the conditions

x sin β − y cos β =
∂Ψ

∂Q
, (6.6)

and

Q(x cos β + y sin β)− R =
∂Ψ

∂β
. (6.7)

Since, by (6.1),

QC ′(Q) + G′(Q) = 0, (6.8)

equations (6.4)–(6.7) are compatible if Ψ (Q, β) and P (Q, β) satisfy the equations

G(Q)
∂Ψ

∂Q
= −∂P

∂β
and G′(Q)

∂Ψ

∂β
= Q

∂P

∂Q
. (6.9)

It remains to prove that equation (5.9) is satisfied. This can be re-written as

Q
∂(Q, x, y)

∂(R, x, y)
− cos β

∂(Q,R, y)

∂(R, x, y)
+ sin β

∂(Q,R, x)

∂(R, x, y)
= 0. (6.10)

If (x, y) are regarded as functions of (R,Q, β), (6.10) implies

Q
∂(Q, x, y)

∂(R,Q, β)
− cos β

∂(Q,R, y)

∂(R,Q, β)
+ sin β

∂(Q,R, x)

∂(R,Q, β)
= 0, (6.11)

or

Q
∂(x, y)

∂(β, R)
+ cos β

∂y

∂β
− sin β

∂x

∂β
= 0, (6.12)

or (
cos β − Q ∂x

∂R

)
∂y

∂β
+

(
Q
∂y

∂R
− sin β

)
∂x

∂β
= 0. (6.13)

Since Ψ = Ψ (β, Q), equations (6.6) and (6.7) yield

Q
∂x

∂R
= cos β, Q

∂y

∂R
= sin β, (6.14)

and (6.13) is trivially satisfied.

The radially symmetric flows discussed in the previous section correspond to the trivial

choices

x = r cos β, y = r sin β, Q = R/r, P = Ψ = 0.

7 Constant strength fronts

The self-similar flows described in the previous section can occur behind a constant

strength front that propagates with normal speed r0R
′(t)Q−1

f into an oil filled region. The

constant Qf is determined from (4.6) and (4.11). Since [Q] = 0 but [Λ]� 0, conditions

(5.6) imply that at the front the flow angle β is continuous and equal to θ, so that the

flow directions ahead and behind are always normal to the front. The fluid speed at the

front is r0R
′(t)Qf , which is less than the speed of the front.
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Let

R = W (x, y) (7.1)

denote the trajectory of the front. With Qf given by (4.11), (5.7) implies that W (x, y)

satisfies the equation

cos β
∂W

∂x
+ sin β

∂W

∂y
= Qf. (7.2)

Let

A(β) =
∂Ψ (Qf, β)

∂β
and B(β) =

∂Ψ (Qf, β)

∂Q
. (7.3)

Then, according to (6.6) and (6.7), with β(x, y) determined from the condition

x sin β − y cos β = B(β), (7.4)

at the front

R = Qf(x cos β + y sin β)− A(β) = W (x, y). (7.5)

These conditions, together with the conditions that Q and β are continuous, imply that

A(β) and B(β) are continuous at the front.

Equations (7.4) and (7.5) imply that at the front

∂W

∂x
= Qf cos β − (A′(β) + QfB(β))

∂β

∂x
, (7.6)

∂W

∂y
= Qf sin β − (A′(β) + QfB(β))

∂β

∂y
, (7.7)

and

cos β
∂β

∂x
+ sin β

∂β

∂y
= 0. (7.8)

Consequently, equation (7.2) is satisfied for any choices of the functions A(β) and B(β) .

A(β) and B(β) are not independent functions. The condition that β = θ at the front

implies that

A′(β) + QfB(β) = 0, (7.9)

a result that follows by using relations (7.4), (7.5) and the condition that at constant R

dy

dx
tan β = −1. (7.10)

Using (7.4), (7.5) and (7.9), the equation of the front is given parametrically as

Qfx = (R + A(β)) cos β − A′(β) sin β, (7.11)

Qfy = (R + A(β)) sin β + A′(β) cos β, (7.12)

or, with z = x+ iy, as

Qfz = (R + A(β) + iA′(β))eiβ . (7.13)
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According to (6.3), (6.6) and (6.7),

ψ = Ψ − Q∂Ψ
∂Q

+ βR, (7.14)

so, in particular, at the front

∂ψ

∂β
= A′′(β) + A(β) + R = ρ, (7.15)

where ρ denotes the radius of curvature of the front.

As for the case of radially symmetric flows, in what follows p can be measured so that

p = 0 at the front. To show that p is independent of β at the front, first note that (6.2),

(6.6) and (6.7) imply that

p = R

∫ Q

Qf

dQ′

Λ(Q′)Q′
+ P − Λ−1 ∂Ψ

∂β
. (7.16)

Consequently, at any constant R and Q

∂p

∂β
=
∂P

∂β
− Λ−1 ∂

2Ψ

∂β2
= −Λ−1

(
Q
∂Ψ

∂Q
+
∂2Ψ

∂β2

)
. (7.17)

In particular, using (7.3) and (7.9), at the front

∂p

∂β
= − 1

Λ(Qf)
(A′(β) + QfB(β)) = 0. (7.18)

In (7.11) and (7.12), the function A(β) can be determined in terms of the shape of the

front at some reference time when R = R0. For example, when the front is the ellipse

x2

(1 + m)2
+

y2

(1− m)2
= 1, (7.19)

A+ R0 = Qf(1 + m)(1− 4m sin2 β/(1 + m)2)1/2. (7.20)

More generally, if r = g(θ) is the polar equation of the front at R = R0, A(β) is determined

parametrically from the conditions that

A+ R0 = Qfg(θ) cos(θ − β) and tan(θ − β) = g′(θ)/g(θ). (7.21)

These relations follow from (7.13) with z = g(θ)eiθ.

8 Problem for Ψ (β, Q)

Eliminating P from equations (6.9) and using (6.8) yields the equation

Q2 ∂
2Ψ

∂Q2
+K(Q)

(
Q
∂Ψ

∂Q
+
∂2Ψ

∂β2

)
= 0, (8.1)

where

K(Q) = 1− QΛ
′(Q)

Λ(Q)
. (8.2)
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Equation (8.1) must be solved subject to the conditions that

when Q = Qf,
∂Ψ

∂β
= A(β) and Qf

∂Ψ

∂Q
= −A′(β). (8.3)

In terms of Ψ (Q, β),

x =
∂Ψ

∂Q
sin β + Q−1

(
R +

∂Ψ

∂β

)
cos β (8.4)

y = −∂Ψ
∂Q

cos β + Q−1

(
R +

∂Ψ

∂β

)
sin β, (8.5)

or, using complex notation,

z = Q−1eiβ
(
R +

∂Ψ

∂β
− iQ∂Ψ

∂Q

)
. (8.6)
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c = 1/100

(b)

Figure 4. K(Q) for typical values of a, b, c.

In what follows, we consider flows in which Q > Qf in the mushy region and Q < Qf in

the oil filled region. Figure 4 shows a typical form of K(Q) in the mushy region. With Qc
determined from the condition that K(Qc) = 0, behind the front K < 0 for Qf 6 Q < Qc
and K > 0 for Q > Qc. Consequently, (8.1) is a hyperbolic equation when Qf 6 Q < Qc
and an elliptic equation when Q > Qc. In the oil filled region K(Q) ≡ 1 and Ψ satisfies

the elliptic equation

Q2 ∂
2Ψ

∂Q2
+ Q

∂Ψ

∂Q
+
∂2Ψ

∂β2
= 0. (8.7)
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8.1 Singularities

A flow that has bounded saturation gradients at t = 0 may develop in a finite time into a

flow that has unbounded gradients. Such singularities occur when

∂(x, y)

∂(Q, β)
= 0, (8.8)

which requires that

K−1

(
Q2 ∂

2Ψ

∂Q2

)2

+

(
Q
∂2Ψ

∂Q∂β
− ∂Ψ

∂β
− R

)2

= 0. (8.9)

This condition is identical to that which holds when some contour of constant saturation

develops a cusp. In the elliptic region where K > 0, (8.9) can only be satisfied at a time

when

R = Q
∂2Ψ

∂Q∂β
− ∂Ψ

∂β
(8.10)

if Q and β are restricted by the condition

∂2Ψ

∂Q2
= 0. (8.11)

Condition (8.11) is satisfied at all points of the front and condition (8.10) is satisfied when

R = −(A′′(β) + A(β)) = −ρ0(β), (8.12)

where ρ0(β) denotes the radius of curvature when R = 0. Consequently, the front develops

a cusp only when it contains a dimple.

Singularities may develop in the hyperbolic region behind the front where K < 0. Since

the saturation gradients become large as such singularities form, capillary effects that are

modeled by the term ε(s)∇s in equations (2.8) and (2.9) become locally important.

9 Flows in unbounded regions

When the region occupied by the fluid is unbounded, A(β) can be expanded in a Fourier

series as

A(β) = A0 +
∑
n=1

(An cos(nβ) + Bn sin(nβ)), (9.1)

or, using complex notation with Cn = An + iBn,

A(β) = A0 + Re

[∑
n=1

Cne
−inβ
]
. (9.2)

The corresponding solution to (8.1) can be written as

Ψ = A0β +
∑
n=1

n−1(An sin(nβ)− Bn cos(nβ))Ψn(Q),

= A0β − Im

[∑
n=1

n−1Cne
−inβΨn(Q)

]
, (9.3)
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where the Ψn(Q) satisfy the equation

Q2Ψ ′′n +K(Q)(QΨ ′n − n2Ψn) = 0 (9.4)

with

Ψn(Qf) = 1 and QfΨ
′
n(Qf) = n2. (9.5)

In the oil filled region

Ψn(Q) =
1

2
(1 + n)

(
Q

Qf

)n
− 1

2
(n− 1)

(
Q

Qf

)−n
. (9.6)

In the mushy region the Ψn(Q) must be determined numerically.

Using the representation (9.3) for Ψ, the expressions (8.6) can be written

z = Q−1eiβ

(
R + A0 +

1

2

∑
n=1

[
Cn(Ψn + n−1QΨ ′n)e−inβ + Cn(Ψn − n−1QΨ ′n)einβ

])
. (9.7)

Since Ψ1(Q) = Q/Qf, in (9.7) the constants A0 and C1 can be taken to be zero; non-zero

values correspond to shifts in the origins of R, x and y. With Ψ given by (9.3), (7.14)

and (7.16) imply

ψ = βR + Im

[∑
n=2

n−1Cn(QΨ
′
n −Ψn)e

−inβ
]
, (9.8)

and

p = R

∫ Q

Qf

dQ′

Λ(Q′)Q′
+ Λ−1 Re

[∑
n=2

Cn(n
−2QΨ ′n −Ψn)e

−inβ
]
. (9.9)

Since the streamfunction is r2
0R
′(t)ψ, the flow rate across any closed curve that surrounds

the origin is 2πr2
0R(t)R′(t).

In the oil filled region the flow is potential flow and the expressions (9.7)–(9.9) can be

simplified by introducing the complex variable ζ through the relation

u− iv = Qe−iβ = Qfζ
−1. (9.10)

Then

z(ζ, R) = Q−1
f

(
Rζ +

1

2

∑
n=2

((n+ 1)Cnζ
(1−n) − (n− 1)Cnζ

(n+1))

)
, (9.11)

and the complex potential

Φ(ζ, R) = −λo(0)p+ iψ = R log ζ +
1

2

∑
n=2

n−1(n2 − 1)(Cnζ
−n − Cnζ

n). (9.12)

It follows that

u− iv =
∂Φ

∂ζ
/
∂z

∂ζ
. (9.13)

Although it is tempting to try to determine the flow in both the mushy and the oil

filled regions in terms of the shape of the front at R = R0, this problem is ill-posed! By
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the time that the strength of the front has stopped changing, its shape is almost circular

even when the flow in the mushy region well behind the front is far from being radially

symmetric. In what follows we describe flows in the mushy region between the front and

an inner surface, S0, on which the saturation s is a specified constant, = s0. A well-posed

problem is that of determining the flow in this annular region in terms of its shape when

R = R0. Of particular interest is the case when the saturation s0 is close to unity, so that

the inner surface is almost stationary when compared to the motion of the front. In this

limit, the front is almost circular even when S0 is far from circular.

According to (9.7), with

Q0 = (F ′(s0))−1/2, mn = Ψn(Q0)Cn and γn =
Q0Ψ

′
n(Q0)

nΨn(Q0)
, (9.14)

the parametric representation for S0 is given by

z = Q−1
0 eiβ

(
R +

1

2

∑
n=2

((1 + γn)mne
−inβ + (1− γn)mneinβ)

)
. (9.15)

In general, once s0 and S0 have been specified, the real constants γn and the complex

constants mn must be determined numerically. However, in the limit Q0 → Qf

γn(Q0)→ n and mn → Cn. (9.16)

The problem of determining the mn simplifies also in the important limit as s0 → 1,

(Q0 →∞). Since K(Q) given by (8.2) tends to 1, and since the solution to (9.4) Ψn(Q) ∝ Qn

as Q→∞, as s0 → 1

γn(Q0)→ 1. (9.17)

Thus, to a first approximation, at S0

z = Q−1
0 eiβ

(
R +

∑
n=2

mne
−inβ
)
, (9.18)

or, with ξ = eiβ ,

z = Q−1
0 ξ

(
R +

∑
n=2

mnξ
−n
)
. (9.19)

Consequently, the complex constants mn are determined by the conformal mapping that maps

the exterior of the unit circle in the complex ξ-plane onto the region exterior to S0 in the

complex z-plane.

As a simple application of the representation (9.19), suppose S0 is an ellipse at R = R0

with a ratio of minor to major axes of (1−m)/(1 +m). Then, with m2 = R0m and mn = 0

for n > 2, (9.19) reduces to

z = R0Q
−1
0 ((R/R0)ξ + mξ−1), (9.20)

which represents an ellipse whose ratio of minor to major axes at any R is (R − mR0)/

(R+mR0). As (R/R0)→∞, S0 tends to a circle. Figures 5(a) and 5(b) show the s, p and ψ

contours at R = R0 when m = 0.975 and s0 = 0.9995. Since the γn (Q0) ' 1 at this value

of s0, equation (9.15) for S0 is only approximated by (9.20). When S0 is constrained to be
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exactly an ellipse at R = R0, more than a single mode must be used in the representation

(9.15). The corresponding values of the mn are found by a straightforward iteration

process. Of course, with a value of s0 so close to one, the effect of these higher order

modes is insignificant. However, for smaller values of s0 the higher modes are important.

As an example, Figures 6(a) and 6(b) show the s, p and ψ contours when s0 is close to

sf. For this flow S0 is not specified a priori but is determined from the condition that the

series (9.7) contains a finite number of terms. In the illustration, only four of the complex

constants mn are non-zero. Figures 7(a) and 7(b) show the s, p and ψ contours when s0
is close to unity and four modes are excited.

10 The flow down a wedge

As a second application of the representations obtained above, consider flows that are

produced by injecting water at a rate β0r
2
0R(t)R′(t) in some vicinity of the apex of a

wedge of angle β0 (see Figures 8(a) and 8(b)). If the rigid boundaries of the wedge are the

lines

y = 0 and y = tan(β0)x, (10.1)

(7.11), (7.12) and the condition that these boundaries are streamlines for all R requires

that

∂Ψ

∂Q
= 0 when β = 0 and β = β0. (10.2)

Then, by (8.3),

A′(0) = A′(β0) = 0, (10.3)

and A(β) can be expanded in a Fourier series as

A(β) =
∑
n=1

An cos(κnβ), where κn = nπ/β0. (10.4)

The corresponding representations of z, ψ and p are given by (9.3)–(9.16) with n replaced

by κn and Cn = Cn = An. Also, in (9.8), (9.9) and (9.15), summation can start with n = 1.

11 Multi-phase immiscible fluids

In addition to oil and water phases a fluid may contain several other phases, such as

gas phases. When the phases are incompressible and immiscible, the solutions presented

above for two phase fluids can be generalized to describe self-similar flows of fluids with

n phases. Let R′(t)(ui, vi) denote the (x, y) velocity components of the ith phase whose

saturation is si, and let R′(t)p denote the pressure. When the effect of capillary pressure is

neglected, Darcy’s law implies that

ui = −λi ∂p
∂x
, vi = −λi ∂p

∂y
, i = 1 · ·n. (11.1)
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(b)(a)

Figure 5. (a) The contours of constant saturation when S0 is an ellipse. (b) The corresponding

streamlines and isobars.

(b)

0.68243

0.68243

0.
73

35

(a)

Figure 6. (a) The contours of constant saturation when s0 is close to sf and just four

nonsequential modes are excited. (b) The corresponding streamlines and isobars.
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Figure 7. (a) The contours of constant saturation when s0 is close to unity and just four

nonsequential modes are excited. (b) The corresponding streamlines and isobars.

(b)

0.804

0.925

(a)

Figure 8. (a) The contours of constant saturation in the flow down a wedge. (b) The

corresponding streamlines and isobars.
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where λi denotes the mobility of the ith phase. Additionally, conservation of mass for each

phase implies that

∂si
∂R

+
∂ui
∂x

+
∂vi
∂y

= 0, i = 1 · ·n. (11.2)

Since

n∑
i=1

si = 1, (11.3)

in (11.1) the λi are regarded as known functions of (s1, s2, ··, sn−1).

If

u =

n∑
i=1

ui, v =

n∑
i=1

vi, and λ =

n∑
i=1

λi, (11.4)

by (11.1)–(11.3),

u = −λ∂p
∂x
, v = −λ∂p

∂x
and

∂u

∂x
+
∂v

∂y
= 0. (11.5)

With

Fi = λi/λ, (ui, vi) = Fi(u, v) (11.6)

and equations (11.5) are complemented by the (n− 1) equations

∂si
∂R

+
∂(uFi)

∂x
+
∂(vFi)

∂y
= 0, i = 1 · · (n− 1), (11.7)

or, using (11.5), by

∂si
∂R

+ u
∂Fi
∂x

+ v
∂Fi
∂y

= 0, i = 1 · · (n− 1). (11.8)

The Fi satisfy the constraint

n∑
i=1

Fi = 1. (11.9)

Equations (11.5) and (11.8) provide (n + 2) equations for the (n + 2) unknowns

(u, v, p, s1, s2, ··, sn−1). Across the front R = W (x, y), p and the normal component of

the bulk velocity are continuous while

[si]

[Fi]
= u

∂W

∂x
+ v

∂W

∂y
. (11.10)

11.1 Self-similar flows

For radially symmetric flows, the bulk radial velocity q = R′(t)R(t)/r and equations (11.8)

reduce to the system of (n− 1) first order partial differential equations

1

R

∂si
∂R

+
1

r

∂Fi
∂r

= 0, i = 1 · · (n− 1) (11.11)
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for the si(R, r), i = 1 · · (n− 1). The front conditions (11.10) imply

[si]

[Fi]
=
W

r

dW

dr
, i = 1 · · (n− 1). (11.12)

Suppose that for t < 0 the fluid is at rest with the si specified constants, and then at t = 0

the (idealized ) injection process produces a discontinuous change in the si at r = 0. When

(11.11) form a completely hyperbolic system of equations for the si(R, r), i = 1 · · (n − 1),

the resulting flow is generated by a system of centered expansion waves that are separated

by fronts and regions in which all the si are constants. In each such wave si = Si(Q) where

Q = R/r and the Si(Q) satisfy the system of nonlinear ordinary differential equations(
∂Fi
∂sj
− Q−2δij

)
S ′j(Q) = 0, (i, j) = 1 · · (n− 1). (11.13)

At a front Q is continuous and

[si]

[Fi]
= Q2, i = 1 · · (n− 1). (11.14)

The pattern of centered waves, fronts, and regions in which the si are constant can be

quite complex. Consider the simplest case when n = 2, so there is at most one centered

wave. With s = s1 and F = F1, (11.13) implies that Q−2 = F ′(s). Let

s(0, r) = sA for r > 0 and s(R, 0) = sB for R > 0, (11.15)

where sA and sB are constants. Then, there are three possible flow patterns. Let s = sI
denote the saturation at which F(s) is inflectional with F ′′(s) > 0 for 0 < s < sI and

F ′′(s) < 0 for sI < s < 1. When sA < sI < sB, or sB < sI < sA, the disturbance takes the

form of a front followed by an expansion wave. At the passage of the front s changes

discontinuously from its value sA to a value sf > sI given by

F ′(sf) =
F(sf)− F(sA)

sf − sA . (11.16)

In the centered wave sf < s < sB, or sB < s < sf; at its head the front is given by

r/R =
√
F ′(sf) and at its tail r/R =

√
F ′(sB). The flows described in this paper are

examples of this case with sA = 0 and sB = 1. When sI < sA < sB, or sB < sA < sI , the

centered wave is not preceded by a front across which s is discontinuous. At its head

r/R =
√
F ′(sA) and at its tail r/R =

√
F ′(sB). When sA < sB < sI , or sI < sB < sA , the

flow consists of a front, at which

r/R =

√
F(sB)− F(sA)

sB − sA , (11.17)

separating the region ahead where s = sA from the region behind where s = sB: there is

no centered wave.

The radially symmetric flow pattern is determined once the si have been specified ahead

and behind the disturbance. Figure 9 depicts one of the many possible patterns for a

three phase fluid. Ahead of the disturbance s = (s1, s2) = constant, = sA. The head of the

disturbance is a front followed by a first expansion fan, followed by a region in which s =

constant, = sM, followed by a second front then by a second expansion fan, and finally by

a second region in which s = constant, = sB . sA and sB are specified, but sM is unknown
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and must be determined. Let (1/Q2
1(s), 1/Q2

2(s)) be the two distinct eigenvalues, and (r1(s),

r2(s)) corresponding right eigenvectors, of the 2 × 2 matrix (∂Fi/∂sj), (i, j) = 1, 2. Then,

with Q2(sB) > Q1(sB), in the expansion fans shown in Figure 9

ds

dQ
=

ri
ri·∇sQi

, i = 1, 2. (11.18)

In the first expansion fan equations (11.18) must be solved for s = s1(Q) subject to the

conditions that when Q = Q1(sf1)

s1 = sf1 (11.19)

where, with F(s) = (F1(s),F2(s)), sf1 is determined from the front conditions

sf1 − sA = Q2
1(sf1)(F(sf1)− F(sA)). (11.20)

In the second expansion fan equations (11.18) must be solved for s = s2(Q) subject to the

conditions that

when Q = Q2(sB), s2 = sB. (11.21)

It remains to determine Q which is equal to Qb1 at the back of the first fan and to Qf2 at

the second front. Then, if sf2 denotes the value of s behind the second front,

sM = s1(Qb1) and sf2 = s2(Qf2). (11.22)

With sM and sf2 given by (11.22), Qb1 and Qf2 are determined from the front conditions

sf2 − sM = Q2
2(sf2)(F(sf2)− F(sM)). (11.23)

The procedure described above, which in practice must be a numerical procedure,

determines the range of Q together with

s = S(Q) and λ = Λ(Q) (11.24)

in all regions of the flow domain. All other possible flow patterns can be obtained as

obvious limiting cases. The procedure can be generalized to multi-phase fluids.

According to (11.13), when conditions (11.24) hold all equations (11.8) are satisfied if

Q(x, y, R) satisfies the single equation

Q2 ∂Q

∂R
+ u

∂Q

∂x
+ v

∂Q

∂y
= 0. (11.25)

With u = Q cos β, v = Q sin β and λ = Λ(Q), equations (11.5) and (11.25) for Q, β and

p are identical to those governing self-similar flows of two phase fluids. Accordingly, the

representations obtained for two-phase fluids can be used to describe self-similar flows

of multi-phase fluids that are not radially symmetric. The representations yield an exact

description of the flow only in some neighbourhood of the head of the disturbance.

However, by the time all of the fronts are almost circular they do provide a good first

approximation to the flow well behind the head of the disturbance.

12 Darcy and Hele-Shaw cell flows

With slight modifications, the analysis described above may be used to describe two other

types of self-similar flows that are related to flows in porous media. First are Darcy flows
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of a single phase fluid that are generated by injecting the fluid into a region that initially

contains no fluid. Second are Hele-Shaw cell flows in which one viscous fluid is driven by

injecting some other viscous fluid; the fluids are immiscible and are either Newtonian or

non-Newtonian. For both types of flow the front, or interface, is a material surface across

which the pressure is continuous. The rate of flow across any closed curve surrounding

the region where the fluid is injected is 2πr2
0R(t)R′(t).

12.1 Darcy flows

With the variables normalized as in § 5, the flow behind the front is governed by equations

(5.1) and (5.2) with λ = constant. At the front R = W (x, y),

p = 0 and cos β
∂W

∂x
+ sin β

∂W

∂y
= Q−1

f . (12.1)

For self-similar flows the expressions (7.14) and (7.16) for ψ and p reduce to

ψ = βR +Ψ − Q∂Ψ
∂Q

(12.2)

and

p = log(Q/Qf)R + P − ∂Ψ

∂β
. (12.3)

x(R, β, Q) and y(R, β, Q) are given by (8.4) and (8.5). Ψ (β, Q) and P (β, Q) satisfy equations

(6.9) and (8.7) with G = Q/λ. The condition that p = 0 when Q = Qf , together with

equations (6.9) and (12.3), imply that A(β) and B(β) defined by (7.3 ) are related by (7.9).

Finally, comparing equations (7.2) and (12.1) yields the result that Qf = 1. It follows that

with Qf = 1 and λo(0) = λ, the flow is described by relations (9.10)–(9.12).

The representations (9.11) and (9.12) for z(ζ, R) and Φ(ζ, R) are valid only when the

image of the material surface at which p = 0 is the unit circle |ζ| = 1 in the ζ−plane. The

general problem of determining flows in the vicinity of a material surface at which p = 0

reduces to that of finding z(ζ, R) and Φ(ζ, R), which are analytic functions of ζ, satisfying

the equation

∂Φ

∂ζ
= ζ−1 ∂z

∂ζ
(12.4)

and the free boundary condition that

when Re(Φ) = 0, Re

(
ζ

(
∂z

∂R
− ζ ∂Φ

∂R

))
= 1. (12.5)

This last condition follows from the fact that at any material particle

dz

dR
= u+ iv = Qeiβ = ζ

−1
(12.6)

or

ζ

(
∂z

∂R
+
dζ

dR

∂z

∂ζ

)
= 1. (12.7)
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Since

dΦ

dR
=
∂Φ

∂R
+
dζ

dR

∂Φ

∂ζ
, (12.8)

it follows that

ζ

(
∂z

∂R
− ζ ∂Φ

∂R

)
+ ζζ

dΦ

dR
= 1. (12.9)

In particular, at any particle where p = 0 and Φ = iψ

ζ

(
∂z

∂R
− ζ ∂Φ

∂R

)
+ iζζ

dψ

dR
= 1 (12.10)

and so conditions (12.5) hold. When z and Φ are given by (9.11) and (9.12) these conditions

hold when |ζ| = 1. Other solutions, describing flows that are not self-similar, are obtained

by writing

Φ = R log ζ +

n=∞∑
n=−∞

(n+ 1)Φn(R)ζn and z = ζ

(
R +

n=∞∑
n=−∞

nΦn(R)ζn

)
. (12.11)

For example, if

ζf =
√

1± (Rf/R)2 , (12.12)

where Rf is a constant, the relations

z = Rζ +
1

2

∑
n=2

((n+ 1)Cn(ζ/ζf)
(1−n) − (n− 1)Cn(ζ/ζf)

(n+1))) (12.13)

Φ = −λp+ iψ = R log(ζ/ζf) +
1

2ζf

∑
n=2

n−1(n2 − 1)(Cn(ζ/ζf)
−n − Cn(ζ/ζf)

n) (12.14)

describe all possible flows for which the normal velocity of the front depends only on

time and does not vary with position on the front. The complex potential for the most

general radially symmetric flow,

Φ = R log

 z√
R2 ± R2

f

 , (12.15)

is obtained by taking the Cn = 0. When fluid is injected R′(t) > 0 and the plus sign

must be taken in (12.12). Then (12.13) and (12.14) describe flows that are not self-similar

for all R(t), but which asymptote to the self-similar flows described by (9.10)–(9.12) as

Rf/R → 0. When fluid is extracted R′(t) < 0 and the minus sign must be taken in (12.12).

In both cases, at the front |ζ| = ζf and its speed, which equals the speed of the fluid, is

r0R(t)R′(t)/
√
R2(t)± R2

f .

As examples of flows in which the velocity of the front varies in both time and position

consider the case when

z = Rζ0Z(η) and Φ = Rχ(η) where η = ζ/ζ0. (12.16)
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Then, by (12.4) and (12.5),

Z ′(η) = ηχ′(η) (12.17)

and when

Re(χ) = 0,Re(ηZ(η)) = 1. (12.18)

These conditions can be satisfied by taking

Z =

n=N∑
n=−N

Zne
nχ, η =

n=N∑
n=−N

nZne
nχ. (12.19)

The 2N complex constants Zn, n = −N · ·N, satisfy the (2N − 1) nonlinear algebraic

conditions

n=N∑
n=−N

n |Zn|2 = 1 and Re

(
n=N∑
n=−N

(n− k)ZnZn−k

)
= 0 (12.20)

for all −N 6 k 6 N except k = 0. The solutions given by (12.16)–(12.20) are special cases

of those obtained by Howison, Ockendon & Lacey (1985), Howison (1986) and Entov

& Etingof (1997). These were derived using techniques developed by Richardson (1972,

1981). When N = 1, without loss in generality,

z =

√
R2 ± R2

f

1− m2
(eΦ/R + me−Φ/R), (12.21)

where m is a constant with 0 6 m 6 1. According to (12.21) the front, and all other

isobars, are ellipses. The representation (12.21) was obtained first by Howison (1986) in

his investigation of bubble growth in a Hele-Shaw cell.

12.2 Hele-Shaw cell flows

If h denotes the width of the cell and (u(x, y, t), v(x, y, t)) denote the components of the

average fluid velocity, the lubrication flow equations are

u = q cos β = −λ(q)
∂p

∂x
=
∂ψ

∂y
, (12.22)

v = q sin β = −λ(q)
∂p

∂y
= −∂ψ

∂x
. (12.23)

At the interface t = w(x, y) separating the fluids

q

(
cos β

∂w

∂x
+ sin β

∂w

∂y

)
= 1. (12.24)

This condition, together with the fact that the pressure is continuous at the interface,

implies

[q cos(θ − β)] = 0 and [(q/λ) sin(θ − β)] = 0. (12.25)
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When µ, the coefficient of viscosity, is a function of τ, the magnitude of the shear stress

on planes parallel to the walls of the cell, λ(q) is determined from the parametric relations

λ =
h2

4(τw)3

∫ τw

0

τ2

µ(τ)
dτ, q =

h

2(τw)2

∫ τw

0

τ2

µ(τ)
dτ. (12.26)

The variable parameter τw represents the magnitude of the shear stress at the walls of the

cell. For a power law fluid

µ = µ0(τ/τ0)σ and λ/λ0 = (1− σ/3)
1

σ−1 (q/q0)
σ
σ−1 . (12.27)

where

λ0 =
h2

12µ0
and q0 =

hτ0

6µ0
. (12.28)

In particular, for a Newtonian fluid (σ = 0) λ = λ0.

Shear thinning fluids like visco-plastic (Bingham) fluids, and shear thickening fluids like

dilatant (colloidal) fluids, are often modeled in simple shear by piecewise linear relations

between τ and γ, the magnitude of the velocity gradient. When τ < τ0, τ = µ0γ; when

τ > τ0

τ = τ0 + µ∞(γ − τ0/µ0) = µ∞
(

τ

τ− (1− µ∞/µ0)τ0

)
γ. (12.29)

Consequently, when

τ < τ0, µ = µ0 and when τ > τ0, µ = µ∞
(

τ

τ− (1− µ∞/µ0)τ0

)
. (12.30)

It follows from (12.26) and (12.30) that when q < q0, λ = λ0 and when q > q0

λ = λ0
(1− µ)(1− 3τ2) + 2τ3

2µτ3
and q = q0

(1− µ)(1− 3τ2) + 2τ3

2µτ2
, (12.31)

where the variable τ = τw/τ0 varies in the range [1,∞] and the constant µ = µ∞/µ0.

Figure 10 shows λ versus q curves for typical values of µ; the scaling constants

λ∞ =
h2

12µ∞
and q∞ =

hτ0

6µ∞
. (12.32)

For shear thinning fluids (µ < 1) λ′(q) > 0 and λ0 6 λ 6 λ∞; for shear thickening fluids

(µ > 1) λ′(q) < 0 and λ∞ 6 λ 6 λ0.

For radially symmetric flows

q = R(t)R′(t)/r, p = R(t)R′(t)
∫ q

qf

dq

qλ(q)
, (12.33)

where

qf = R′(t)(1± R2
f/R

2(t))−1/2. (12.34)

In the limit as Rf/R → 0, the flow is self-similar and qf → R′(t).
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Q = Q2(s)
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Figure 9. Example of a flow pattern in the radially symmetric flow of a three phase fluid.
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Figure 10. λ(q) and K(q) when the relation between shear stress and the rate of deformation is

piecewise linear.
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12.3 Hodograph variables

If (β, q, t) are used as independent variables, the nonlinear equations (12.22) and (12.23)

can always be replaced by an equivalent set of linear equations. Let ψ and p be expressed

in terms of ψ̂(β, q, t) and p̂(β, q, t) as

ψ = ψ̂ − q ∂ψ̂
∂q

and p = p̂− q

K(q)

∂p̂

∂q
, (12.35)

where

K(q) = 1− qλ′(q)

λ(q)
. (12.36)

Then ψ̂ and p̂ satisfy the equations

q

λ(q)

∂ψ̂

∂q
= − ∂p̂

∂β
and

(
q

λ(q)

)′
∂ψ̂

∂β
= q

∂p̂

∂q
, (12.37)

so that

q2 ∂
2ψ̂

∂q2
+K(q)

(
q
∂ψ̂

∂q
+
∂2ψ̂

∂β2

)
= 0. (12.38)

In terms of ψ̂(β, q, t),

x =
∂ψ̂

∂q
sin β + q−1 ∂ψ̂

∂β
cos β and y = −∂ψ̂

∂q
cos β + q−1 ∂ψ̂

∂β
sin β, (12.39)

or, more concisely,

z = q−1eiβ
(
∂ψ̂

∂β
− iq ∂ψ̂

∂q

)
. (12.40)

For self-similar flows q is continuous, = R′(t) = qf(t), at the material interface separating

the fluids and λ(q) is discontinuous. It then follows from (12.25) that β is continuous,

= θ. For radially symmetric flows

ψ̂ = R(t)R′(t)β, p̂ = R(t)R′(t)
∫ q

qf

K(q)

qλ(q)
dq. (12.41)

x = q−1R(t)R′(t) cos β, and y = q−1R(t)R′(t) sin β. (12.42)

For flows that are not radially symmetric, write

ψ̂ = R(t)R′(t)β + Ψ̂ (β, q, t) (12.43)

and

p̂ = R(t)R′(t)
∫ q

qf

K(q)

qλ(q)
dq + P̂ (β, q, t) (12.44)

where Ψ̂ and P̂ satisfy the same equations as ψ̂ and p̂. In terms of Ψ̂

x = q−1

(
R(t)R′(t) +

∂Ψ̂

∂β

)
cos β +

∂Ψ̂

∂q
sin β (12.45)
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y = q−1

(
R(t)R′(t) +

∂Ψ̂

∂β

)
sin β − ∂Ψ̂

∂q
cos β. (12.46)

At the front

when q = qf = R′(t),
∂Ψ̂

∂β
= qfA(β) and

∂Ψ̂

∂q
= −A′(β). (12.47)

Also, the trajectory of the front is given by

x = (R(t) + A(β)) cos β − A′(β) sin β (12.48)

y = (R(t) + A(β)) sin β + A′(β) cos β (12.49)

t = w(x, y) and β = β(x, y) given by (12.48) and (12.49) satisfy equation (12.24) when

q = R′(t).
For power law fluids the problem for Ψ̂ (β, q, t) simplifies considerably. Since λ _

qσ/(σ−1),

K(q) = (1− σ)−1. (12.50)

Then

with Q = q/qf, Ψ̂ = qfΨ (Q, β) (12.51)

where

(1− σ)Q2 ∂
2Ψ

∂Q2
+ Q

∂Ψ

∂Q
+
∂2Ψ

∂β2
= 0. (12.52)

The auxiliary conditions (12.47) require that, when

Q = 1,
∂Ψ

∂β
= A(β) and

∂Ψ

∂Q
= −A′(β). (12.53)

It follows that the representations (9.1)–(10.4) continue to hold with the Ψκ(Q) satisfying

the Euler equation

(1− σ)Q2Ψ ′′κ + QΨ ′κ − κ2Ψκ = 0 (12.54)

with

Ψκ(1) = 1 and Ψ ′κ(1) = κ2. (12.55)

When the fluid is non-Newtonian and is not a power law fluid K varies with q. (Figure

10 shows typical forms of K(q) when the relation between τ and γ is piecewise linear.) If

A(β) =
∑
κ

(Aκ cos(κβ) + Bκ sin(κβ)), (12.56)

where summation is over some range of the parameter κ,

Ψ̂ =
∑
κ

κ−1(Aκ sin(κβ)− Bκ cos(κβ))Ψ̂κ(q, qf) (12.57)

where

q2 ∂
2Ψ̂κ

∂q2
+K(q)

(
q
∂Ψ̂κ

∂q
− κ2Ψ̂κ

)
= 0 (12.58)
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with

Ψ̂κ(qf, qf) = qf and
∂Ψ̂κ(qf, qf)

∂q
= κ2. (12.59)

It is easy to show that if Φκ(q) is any non-zero solution to the ordinary differential

equation

q2Φ′′κ +K(q)(qΦ′κ − κ2Φκ) = 0, (12.60)

then

Ψ̂κ(q, qf) = qf
Φκ(q)

Φκ(qf)
(1 + hκ(qf)

∫ q

qf

λ(q)

qΦ2
κ(q)

dq) (12.61)

where

hκ(qf) = Φκ(qf)(κ
2Φκ(qf)− qfΦ′κ(qf))/λ(qf). (12.62)

One possible choice for Φκ(q) is Ψ̂κ(q, qf(t0)), where t0 denotes some reference time.

To summarize: with Ψ̂ given by relations (12.57)–(12.61), and with x and y given by

(12.45) and (12.46),

ψ = R(t)R′(t)β +
∑
κ

κ−1(Aκ sin(κβ)− Bκ cos(κβ))

(
Ψ̂κ − q ∂Ψ̂κ

∂q

)
(12.63)

and

p = R(t)R′(t)
∫ q

qf

K(q)

qλ(q)
dq +

1

λ(q)

∑
κ

κ−2 (Aκ cos(κβ) + Bκ sin(κβ))

(
q
∂Ψ̂κ

∂q
− κ2Ψ̂κ

)
.

(12.64)

Note that, according to (12.59) and (12.64), p = 0 at the interface separating the fluids.

The representations given above are valid for any non-Newtonian fluids for which the

shear modulus is a known function of the shear stress. The function R(t) is arbitrary, and

the shape of the front at any one time can be specified.

13 Conclusion

Hodograph techniques, that are usually used when the flow variables are functions of

just two independent variables, are generalized to construct a class of exact solutions

describing unsteady self-similar flows of multi-phase immiscible fluids. The techniques are

used also to investigate the related problem of flows in a Hele-Shaw cell when the fluids

involved are non-Newtonian. The flows are characterised by the fact that the sharp fronts,

that separate the different phases or the different fluids, propagate with velocities that

depend only on time. If the flows develop singularities in a finite time, capillary effects are

locally important. When singularities are not produced, at large time the flows become

radially symmetric.
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