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Background. Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder.
Additionally, environmental factors such as perinatal stress and early adversities contribute to the occurrence and sever-
ity of ADHD. Recently, DNA methylation has emerged as a mechanism that potentially mediates gene–environmental
interaction effects in the aetiology and phenomenology of psychiatric disorders. Here, we investigated whether serotonin
transporter gene (SLC6A4) methylation patterns were associated with clinical characteristics and regional cortical thick-
ness in children with ADHD.

Method. In 102 children with ADHD (age 6–15 years), the methylation status of the SLC6A4 promoter was measured.
Brain magnetic resonance imaging was obtained and ADHD symptoms were evaluated.

Results. A higher methylation status of the SLC6A4 promoter was significantly associated with worse clinical presenta-
tions (more hyperactive-impulsive symptoms and more commission errors). Additionally, a negative correlation was
observed between SLC6A4 methylation levels and cortical thickness values in the right occipito-temproral regions.

Conclusions. Our results suggest that the SLC6A4 methylation status may be associated with certain symptoms of
ADHD, such as behavioural disinhibition, and related brain changes. Future studies that use a larger sample size and
a control group are required to corroborate these results.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is
a neurodevelopmental disorder that is characterized by
inattention, impulsivity, and hyperactivity (Biederman
& Faraone, 2005). With an estimated heritability of ap-
proximately 76%, ADHD is generally considered to
have a genetic basis (Faraone et al. 2005). The heritability
estimates account not only for the main effects of genetic
factors but also for gene–environment interactions. Thus,
the entire heritability of the diseasemay be attributable to
the presence or absence of a necessary environmental co-
factor. From the epigenetic perspective, environmental
factors can modulate gene expression without causing

alterations in the DNA sequence and without affecting
protein function in the brain (Elia et al. 2012). DNA can
bemethylated via DNAmethyltransferases; methylation
typically occurs at cytosine-guanine dinucleotides (CpG)
and represses gene activity (Bird, 1986; Goll & Bestor,
2005). DNA methylation of cytosines in CpG sites is
thought to be the most representative of the broader
epigenetic modification of a given locus (Hochberg
et al. 2011).

It has been reported that environmental stress, such
as perinatal stress, social environment, environmental
toxins, drugs, or childhood adversities produced per-
sistent changes in methylation patterns of the promoters
of several genes (Rampon et al. 2000; Bollati et al. 2007;
Cheng et al. 2008; Roth et al. 2009; Devlin et al. 2010;
Kang et al. 2013; Szyf, 2013). This environmental stress
(e.g. perinatal stress, childhood adversities) is known
to be a risk factor for ADHD (Merry & Andrews,
1994; Ben Amor et al. 2005; Grizenko et al. 2008;
Ouyang et al. 2008). Additionally, it has been reported
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that certain types of environmental stress contribute to
the specific ADHD phenotype. For example, Grizenko
et al. (2008) reported that children with the ADHD com-
bined subtype are exposed to more stress in utero than
are children with the ADHD inattentive subtype.
Another study found that children with the inattentive
subtype were less likely to have received regular pre-
natal check-ups and were more likely to have experi-
enced postnatal medical illness compared to children
who had the combined subtype (Park et al. 2014).

Recently, van Mil et al. (2014) found that lower DNA
methylation levels of the dopamine receptor D4 gene
and the serotonin transporter gene (SLC6A4 or 5-HTT),
which were assessed at birth using cord blood samples,
were associated with the child having more ADHD
symptoms at 6 years. The DNA methylation status of
neuronal genes at birth may reflect prenatal exposure
to adverse environmental factors, such as maternal
smoking (Langley et al. 2005) or stress (Grizenko et al.
2008), which are risk factors of ADHD. However,
DNA methylation status at birth cannot reflect the epi-
genetic effect of postnatal factors on the risk of exhibit-
ing ADHD symptoms. By contrast, the postnatal
methylation status may represent both antenatal and
postnatal risk factors. In addition, the precise manner
in which DNA methylation affects the neural system,
leading to ADHD symptoms, has yet to be established.

In this study, wemeasuredDNAmethylation patterns
by using the peripheral blood of children. These patterns
may reflect exposure to postnatal as well as prenatal ex-
posure to an adverse environment. Additionally, we
investigated whether the DNA methylation patterns of
SLC6A4 were associated with clinical characteristics
and brain cortical thicknesses (CT) of children with
ADHD. The SLC6A4 promoter region was selected be-
cause theSLC6A4genehas a critical role in theassociation
between childhood adversities and increased susceptibil-
ity to a lifetime risk for many psychiatric disorders, such
as depression (Jans et al. 2007) and alcohol dependence
(Laucht et al. 2009). Additionally, this region is one of
the two regions in which DNA methylation levels were
associated with ADHD symptoms in the previous
study by van Mil et al. (2014). We hypothesized that the
DNAmethylation status of SLC6A4would be associated
with worse inattentive and/or hyperactive-impulsive
symptoms and decreased regional CT values in children
with ADHD.

Materials and method

Participants

A total of 102 children with ADHD (aged 6–15 years)
were recruited from Seoul National University Hospital
in Seoul, Korea, between May 2012 and April 2014.

ADHD patients with an intelligence quotient (IQ) <70; a
past or an ongoing history of tic disorder, obsessive com-
pulsive disorder, language disorder, learning disorder,
convulsive disorder, pervasive developmental disorder,
schizophrenia, bipolar disorder, or brain damage; or a re-
cent history of taking stimulants or atomoxetine over the
past 4 weeks were excluded from the study. The study
protocol was approved by the institutional review
board for human subjects at Seoul National University
Hospital. Detailed information about the study was
given to parents and children, andwritten informed con-
sentwasobtained frombothparents and childrenprior to
study entry.

Diagnostic and clinical evaluations

We assessed the presence of ADHD and other psychi-
atric disorders by using a semi-structured diagnostic
interview, the Kiddie-Schedule for Affective Disorders
and Schizophrenia – Present and Lifetime version
(K-SADS-PL). The validity and reliability of the origin-
al and Korean versions of the K-SADS-PL have been
established previously (Kaufman et al. 1997; Kim
et al. 2004). The parents completed the Korean version
of the ADHD Rating Scale-IV (ARS; So et al. 2002), and
the children participated in a computerized continuous
performance test (CPT) that measured their levels of
attention and response inhibition (Greenberg &
Waldman, 1993). The CPT was standardized for age
among Korean children and adolescents (Shin et al.
2000), and four variables were measured: omission
errors (a measure of inattention), commission errors
(a measure of impulsivity), response time (a measure
of information processing speed), and response time
variability (a measure of the consistency of attention).
Higher T scores indicate worse performance.

Quantitative DNA methylation analysis

Quantitative DNAmethylation analysis was performed
as described previously (Kang et al. 2013), with slight
modification. In brief, genomic DNA was extracted
from whole blood using an Intron_G-DEX™ IIb
Genomic DNA Extraction kit (Intron, Korea). DNA
was bisulfite-treated using an EX DNA Methylation-
Lighting kit (Zymo Research, USA). A 185 bp fragment
of the SLC6A4 promoter was amplified by PCR from
bisulfite-treated DNA using the primers listed in
Fig. 1. The following thermal profile was applied
using a PTC-220 DYAD™ thermal cycler (Bio-Rad,
USA): 10 min at 95 °C for initial denaturation, followed
by 45 cycles of 95 °C for 30 s, 54 °C for 30 s, and 72 °C
for 30 s, with a final extension at 72 °C for 5 min. PCR
products were sequenced using the PyroMark ID
Pyrosequencing system (Qiagen, USA) according to
the manufacturer’s protocol with the two types of
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sequencing primers listed in Fig. 1. The methylation
percentage at each CpG region was quantified by
using Pyro Q-CpG software (Qiagen).

SLC6A4 genotype

Serotonin-transporter-linked polymorphic region (5-
HTTLPR) in SLC6A4 was amplified by using a PCR
method described previously (Heils et al. 1996). The
484-bp fragment was designated as an S allele, and
the 528 bp fragment was designated as an L allele.
Frequency distributions conformed to Hardy–Weinberg
equilibrium.

Image acquisition and processing

Whole-brain structural MRI was acquired with a T1-
weighted magnetization-prepared rapid acquisition
gradient echo (MPRAGE) scan on a 3T Siemens scan-
ner (Siemens Magnetom Trio Tim Syngo MR B17,
Germany). Images were acquired with the following para-
meters: TR = 1900 ms, TE = 3.13 ms, inversion time 900
ms, flip angle = 9°, voxel size 0.9 mm3, FOV= 230 mm,
slices 176.

T1-weighted images were registered in the ICBM 152
average template using linear transformation and cor-
rected for intensity non-uniformity artifacts. The
images were then classified into white matter (WM),
grey matter (GM), cerebrospinal fluid (CSF) and back-
ground using an advanced neural net classifier.
Hemispheric cortical surfaces were automatically
extracted from each T1-weighted image using the
Constrained Laplacian-based Automated Segmen-
tation with Proximities (CLASP) algorithm, which

reconstructed the inner cortical surface by deforming
a spherical mesh onto the WM/GM boundary and
then expanding the deformable model to the GM/
CSF boundary (MacDonald et al. 2000; Kim et al.
2005). The reconstructed hemispheric cortical surfaces
consisted of 40 962 vertices, each forming high-
resolution meshes. The inner and outer cortical sur-
faces had the same number of vertices, and there was
a close correspondence between the counterpart verti-
ces of the inner and outer cortical surfaces. CT was
defined using the t-link method, which captures the
Euclidean distance between these linked vertices
(MacDonald et al. 2000; Kim et al. 2005). For group ana-
lysis, each individual thickness map was transformed
to a surface group template using a 2-dimensional
(2D) surface-based registration that aligns variable sul-
cal folding patterns through sphere-to-sphere warping
(MacDonald et al. 2000; Lerch et al. 2005)

Statistical analysis

First, we explored whether individual genetic variants
may underlie variation in DNAmethylation levels. The
methylation percentages at each CpG site were com-
pared according to the SLC6A4 genotype (SS v. SL
v. LL) by using analysis of variance (ANOVA).

Second, we investigated the associations between
SLC6A4 promoter methylation percentages and clinical
and neuropsychological characteristics of ADHD.
Multiple linear regression models were constructed
with the methylation percentages at each CpG site
(continuous variable) as the predictive variables and
the subscores on the ARS or CPT (continuous variable)

Fig. 1. The schema of serotonin transporter gene (SLC6A4) promoter region for DNA methylation analyses. The CpGs are
underlined and numbered. Forward and backward primers and sequencer appear in bold.
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as the dependent variables, after adjusting for age, sex,
and IQ.

SPSS version 21.0 (SPSS Inc., USA) was used to per-
form all the statistical analyses, and a p value <0.01 was
considered significant, which provided some control
for type I errors.

To investigate the correlation between SLC64 methy-
lation percentages and brain CT, multiple regression
analyses were performed with SLC64 methylation
percentages, age, sex, IQ, and intracranial volume as
independent variables, and each vertex of CT was
used as a dependent variable. All 81 924 of the vertices
were used in the statistical analysis. We utilized
SurfStat (by K. Worsley; http://www.math.mcgill.ca/
keith/surfstat/), which is a MATLAB toolbox
(MathWorks Inc., USA) for the statistical analysis of
multivariate surface data using linear mixed-effects
models. We employed thresholding in our resulting
statistical maps (uncorrected p < 0.001).

Results

A total of 102 children with ADHD (77 males, 25
females, mean age 8.9 ± 2.4 years) participated in this
study. The characteristics of the participants are pre-
sented in Table 1.

There were no significant differences between the
methylation percentages at each CpG site and their
average values according to the SLC6A4 allele type
(Supplementary Table S1).

We examined the existence of an association between
SLC6A4 promoter methylation levels and clinical char-
acteristics and regional CT of ADHD. After adjusting
for age, sex, and IQ, higher methylation status in the
CpG6 and CpG8 regions was significantly associated
with higher hyperactive-impulsive scores; higher
methylation status in the CpG4 and CpG5 regions was
significantly associated with higher total ARS scores;
higher methylation status in the CpG6, CpG7, and
CpG8 regions was significantly associated with more
commission errors; and higher mean SLC6A4 promoter
methylation levels were associated with higher
hyperactive-impulsive scores, higher total ARS scores,
and higher commission error scores (Table 2).

Additionally, a negative correlation was observed
between methylation levels in the CpG5, CpG6,
CpG7, and CpG8 regions and CT values in the right
occipito-temporal regions (Fig. 2, Table 3).

Discussion

The principal findings from this study of patients with
ADHD were that a higher SLC6A4 promoter methyla-
tion status was significantly associated with worse clin-
ical symptoms (more hyperactive-impulsive symptoms

and more commission errors) and decreased regional
CT. Hypermethylation of the gene promoter is recog-
nized as reducing respective gene expression (Philibert
et al. 2007). A study by Wang et al. (2012) reported that
increased methylation levels of the SLC6A4 promoter
in blood cells were associated with decreased levels of
SLC6A4 RNA and brain serotonin synthesis. The cited
study suggests that peripheral DNA methylation of
the serotonin transporter may be a marker of central
serotonin transporter function (Wang et al. 2012). In
reports describing epigenetic studies of patients with
psychiatric disorders (e.g. depressive disorder, alcohol
dependence, schizophrenia), patients were more likely
to have hypermethylated neuronal candidate genes, in-
cluding SLC6A4, than non-patients (Jans et al. 2007;
Laucht et al. 2009; Ikegame et al. 2013). This is consistent
with our study, where we found a positive association
between SLC6A4 promoter methylation levels and
more severe symptoms of ADHD.

In particular, commission errors are indicators of a
deficit in response inhibition, which is clinically
presented as hyperactivity, poor impulse control, and
behavioural disinhibition (Barkley, 1997; Aron &
Poldrack, 2005). Therefore, we suggest that hyper-
methylation of the SLC6A4 promoter reduces brain
serotonin synthesis, which may affect behavioural disin-
hibition and present as more hyperactive-impulsive
symptoms and more commission errors in children
with ADHD. This suggestion is plausible because cen-
tral serotonin function is an important component of
normal behavioural inhibition that controls impulsive
responding (Evenden, 1999; Winstanley et al. 2006).

Table 1. Characteristics of the study participants

N = 102

Gender, % boys 75.5
Age, years, mean (S.D.) 8.9 (2.4)
IQ, mean (S.D.) 106.1 (14.3)
Subtype, %
Combined 40.2
Inattentive 37.0
Hyperactive-impulsive 8.7
NOS 14.1

Serotonin transporter (SLC6A4) genotype
SS 61.8
SL 34.3
LL 3.9

ARS score, mean (S.D.)
Inattentive score 14.9 (5.6)
Hyperactive-impulsive score 9.2 (6.4)
Total score 23.9 (10.9)

NOS, Not otherwise specified; ARS, ADHD Rating Scale.
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Table 2. Associations between serotonin transporter (SLC6A4) promoter methylation percentages and clinical and neuropsychological characteristics of ADHD (N = 102)

Mean CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 CpG7 CpG8

B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value B (95% CI) p value

ARS
Inattentive 0.53

(0.02 to
1.03)

0.041 0.51
(0.05 to
0.96)

0.029 0.51
(−00.16 to
1.18)

0.135 0.43
(−0.22 to
1.07)

0.190 0.42
(0.07 to
0.76)

0.019 0.48
(0.07 to
0.90)

0.023 0.29
(−0.05 to
0.63)

0.097 0.41
(−0.26 to
1.08)

0.228 0.33
(−0.06 to
0.72)

0.095

Hyperactive-
impulsive

0.74
(0.19 to
1.29)

0.009 0.52
(0.01 to
1.02)

0.046 0.76
(0.03 to
1.49)

0.043 0.60
(−0.10 to
1.31)

0.094 0.47
(0.09 to
0.85)

0.016 0.56
(0.10 to
1.01)

0.018 0.54
(0.17 to
0.90)

0.005 0.75
(0.02 to
1.48)

0.043 0.59
(0.17 to
1.01)

0.006

Total 1.28
(0.34 to
2.23)

0.009 1.05
(0.19 to
1.92)

0.017 1.28
(0.02 to
2.54)

0.047 1.07
(−0.14 to
2.29)

0.082 0.90
(0.24 to
1.55)

0.008 1.05
(0.27 to
1.83)

0.009 0.83
(0.19 to
1.47)

0.011 1.17
(−0.09 to
2.43)

0.068 0.92
(0.19 to
1.64)

0.014

CPT
Omission
errors

0.09
(−10.60 to
1.77)

0.920 0.00
(−1.54 to
1.53)

0.995 0.17
(−20.02 to
2.36)

0.880 −0.15
(−2.23 to
1.94)

0.889 0.12
(−1.051 to
0.28)

0.843 −0.04
(−1.43 to
1.35)

0.953 −0.01
(−1.17 to
1.16)

0.990 1.30
(−0.96 to
3.56)

0.254 −0.01
(−1.33 to
1.31)

0.983

Commission
errors

2.05
(0.64 to
3.45)

0.005 1.50
(0.21 to
2.80)

0.024 1.56
(−0.33 to
3.46)

0.105 1.59
(−0.20 to
3.38)

0.080 1.29
(0.31 to
2.27)

0.010 1.52
(0.35 to
2.68)

0.011 1.59
(0.63 to
2.55)

0.001 3.55
(1.72 to
5.38)

<0.001 1.52
(0.41 to
2.63)

0.008

Response
time

−0.38
(−1.65 to
0.89)

0.557 −0.63
(−1.77 to
0.52)

0.281 −0.42
(−2.06 to
1.23)

0.618 −0.69
(−2.26 to
0.87)

0.381 −0.17
(−1.05 to
0.71)

0.702 −0.33
(−1.37 to
0.71)

0.531 0.00
(−0.87 to
0.88)

0.993 −0.55
(−2.26 to
1.17)

0.528 −0.25
(−1.25 to
0.74)

0.618

Response
time
variability

−0.08
(−1.14 to
0.99)

0.887 −0.16
(−1.13 to
0.81)

0.748 −0.09
(−1.49 to
1.30)

0.894 −0.15
(−1.47 to
1.17)

0.821 0.08
(−0.65 to
0.82)

0.821 0.02
(−0.86 to
0.90)

0.963 −0.36
(−1.09 to
0.37)

0.328 0.73
(−0.70 to
2.16)

0.314 −0.07
(−0.91 to
0.76)

0.866

ADHD, Attention deficit hyperactivity disorder; CI, confidence interval; ARS, ADHD rating scale; CPT, continuous performance test.
B (unstandardized regression coefficients) represents the change in the ARS or CPT scores for every 1-unit increase in methylation percentages.
Multiple regression analyses are adjusted for age, sex, and IQ.
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For example, premature response control on the rat
5-choice serial reaction-time task and human CPT is
influenced by 5-HT receptor manipulations and central
5-HT depletion (Carli et al. 2006; Dougherty et al. 2007;
Walderhaug et al. 2008). Furthermore, 5-HT depletion
also impaired go/no-go inhibition in rats and led to hos-
tile aggression in children with ADHD (Harrison et al.
1997; Zepf et al. 2008). However, it should be noted
that we could not determine whether the relationship
with symptom severity holds across the full range or
only in more severe cases due to the lack of a population
sample with a broad range of ADHD symptoms.

Our results showed negative correlations between
SLC6A4 promoter methylation levels and CT values
in the right temporal gyri and suggest that hyper-
methylation of the SLC6A4 promoter may play an add-
itional role in developmental delays or abnormal
development in these brain regions. The right temporal
region is a cortical region that is closely related to dis-
ruptive behaviour disorders and poor impulse control
(Wahlund & Kristiansson, 2009; Fahim et al. 2011).
Therefore, our results suggest that hypermethylation
of the SLC6A4 promoter may have a negative impact
on temporal maturation, possibly increasing the risk
and the severity of ADHD. However, we could not de-
termine whether the relationship with CT values is
general or specific to ADHD due to the lack of a con-
trol group in this study.

Contrary to our results, van Mil et al. (2014) reported
that DNA methylation levels of SLC6A4 using cord
blood samples were negatively associated with
ADHD symptom scores of children at age 6 years.
These differences may be accounted for by methodo-
logical differences in the sampling period (at birth v.
childhood), sample characteristics (population-based
birth cohort v. ADHD sample), and measures (child
behavior checklist (CBCL) v. ARS). The biggest differ-
ence between the previous study and present study
is that we used peripheral blood samples of children,
while the previous study used cord blood samples
of newborn babies. Unlike DNA methylation status
determined with cord blood samples at birth, the
DNA methylation status determined with peripheral
blood samples in childhood may be influenced by a
variety of postnatal factors, including childhood adver-
sities, as well as antenatal factors (Rampon et al. 2000;
Kang et al. 2013; Szyf, 2013). Therefore, the previous
study suggests that prenatal SLC6A4 hypomethylation
related to prenatal stress increases the risk of ADHD,
whereas the present study suggests that childhood
SLC6A4 hypermethylation related to the prenatal and
postnatal adverse environment is associated with cer-
tain phenotypes of ADHD (behavioural disinhibition
and poor impulse control).

Our study has some limitations that should be
noted. First, the cross-sectional nature of our design

Fig. 2. Correlational analysis between cortical thickness values and SLC6A4 promotor methylation levels in the CpG5 (a),
CpG6 (b), CpG7 (c), and CpG8 (d) in children with attention deficit hyperactivity disorder, controlling for age, sex, IQ , and
intracranial volume. Statistical t maps with t value ranges of −6.0 to 6.0. Negative correlations are shown in blue and positive
correlations are shown in red (left). Negative correlations were observed at an uncorrected p < 0.001 (right).
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did not allow for causal associations to be tested ro-
bustly. Second, there was no control group. To deter-
mine whether the influence of SLC6A4 promoter
methylation on clinical symptoms and CT is specific
to ADHD patients, we should have obtained data
from healthy controls. Third, the sample size of the
present study was relatively small; thus, the results
should be interpreted with caution. Finally, due to re-
source constraints, methylation status could only be
investigated for one CpG island of the SLC6A4 gene.
Methylation status that was measured for this single is-
land can only act as a proxy for the methylation status
of the whole gene.

Conclusions

Our preliminary findings suggest that SLC6A4 methy-
lation status may be associated with the severity of
hyperactive-impulsive symptoms and related brain
changes in children with ADHD. Future studies that
use a larger sample size and a control group and exam-
ine multiple CpG islands of the SLC6A4 gene are
required to corroborate these results.
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For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S003329171500094X.
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