
J. Fluid Mech. (2013), vol. 737, pp. 308–328. c© Cambridge University Press 2013 308
doi:10.1017/jfm.2013.563

Nematic–isotropic phase transition in turbulent
thermal convection
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We report on turbulent Rayleigh–Bénard convection of a nematic liquid crystal while
it undergoes a transition from the nematic to the isotropic phase in a cylindrical
convection cell with a height equal to twice the diameter (aspect ratio Γ = 0.50).
The difference between the top and bottom plate temperature 1T = Tb − Tt was held
constant, while the average temperature Tm = (Tb + Tt)/2 was varied. There was a
significant increase of the transported heat when the phase transition temperature TNI

was between Tb and Tt. Measurements of the temperatures along the sidewall of
the sample as a function of Tm showed several ranges with qualitatively different
behaviour of quantities such as the time-averaged sidewall temperature, temperature
gradient, or temperature fluctuations. We interpret these different ranges in terms of
properties of the thermal boundary layers close to the top and bottom plates whose
stability and nature depends on the location within the sample of TNI .
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1. Introduction
Thermal convection is the fluid motion driven by a thermal gradient in the presence

of gravity; for reviews, see Kadanoff (2001), Ahlers (2009), Ahlers, Grossmann &
Lohse (2009), Lohse & Xia (2010) and Chillà & Schumacher (2012). It is a very
effective heat-transport mechanism and therefore important in many natural systems
(Marshall & Schott 1999; Rahmstorf 2000; Hartmann, Moy & Fu 2001), for industrial
applications (Brent, Voller & Reid 1988; Kühn, Bosbach & Wagner 2009; Iezzi,
Francolino & Mucchetti 2011), as well as in daily life. To study thermal convection
in controlled experiments or to investigate it numerically, simplified systems are
considered in which a simple fluid (Newtonian and isotropic) is confined between
two parallel horizontal plates. While the top plate is cooled, the bottom plate is heated.
For temperature differences 1T = Tb − Tt between the two plates that are not too large,
the fluid properties can be assumed to be constant (the Oberbeck–Boussinesq or OB
approximation: Oberbeck 1879; Boussinesq 1903) and the system is governed by only
two dimensionless parameters. These are the Rayleigh number

Ra= gα1TL3

νκ
, (1.1)
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and the Prandtl number

Pr = ν/κ. (1.2)

Here L is the distance between the two plates, g is the gravitational acceleration, α
is the isobaric thermal expansion coefficient, ν is the kinematic viscosity, and κ is
the thermal diffusivity of the fluid. The Rayleigh number is the dimensionless form
of the temperature difference and is thus the parameter that can be easily controlled
in an experiment, while Pr depends only on the fluid properties and usually does not
vary much in a given experiment. Besides these two parameters, only the nature of the
boundaries can influence the fluid flow and thus the heat transport. Most experimental
and numerical studies used or assumed a cylindrical container of diameter D, which
introduced the aspect ratio Γ ≡ D/L as a third parameter.

In most of the experimental investigations of thermal convection, simple fluids
with nearly constant physical properties were used. In natural systems, however,
fluid properties often depend on the temperature, and in interesting cases the fluid
even undergoes a first-order phase transition. When a phase transition takes place,
bubbles of the low-density phase or drops of the high-density phase can form in
the convecting system. Due to the latent heat of vaporization, their transport can
contribute importantly, and under appropriate conditions even overwhelmingly, to the
heat transport.

One can roughly distinguish two types of phase transitions that play a role in
turbulent convection. The first occurs when the two phases have very different physical
properties (e.g. the mass density) and when the latent heat of the transition is large
and thus contributes in a major way to the heat transport (see, for instance, Zhong,
Funfschilling & Ahlers 2009). For example, at a typical liquid–vapour transition such
as water at its normal boiling point, the latent heat is of order 2000 kJ kg−1 and
the densities of the two phases differ by orders of magnitude. The heat transport can
then be much larger, by an order of magnitude or more, than it is for single-phase
convection at similar Ra. This case is important in many physical situations such as
during cloud formation (see, for instance, Auernhammer, Vollmer & Vollmer 2005;
Stevens 2005; Weidauer, Pauluis & Schumacher 2010; Pauluis & Schumacher 2011),
as well as in numerous engineering applications when heat has to be transported
effectively (see, for instance, Zerban & Nye 1956; Tong & Tang 1997; Dhir 1998).

The second type concerns systems where the fluid undergoes a soft phase change,
meaning the physical properties of both phases are very similar and the latent heat
and density discontinuity at the transition are small. This is the case of interest for
the present paper. For the fluid used in the present study the latent heat was only
1.56 kJ kg−1 (Thoen 1992; van Roie et al. 2005), i.e. three orders of magnitude
less than the previous example, and the density changed by only 0.2 %. Important
examples of soft phase transitions occurring in nature involve convection in the Earth’s
mantle (see, for instance, Verhoogen 1965; Kerr 1992; Christensen 1995; Shim, Duffy
& Shen 2001) where the mantle material is subject to several phase changes. For
these transitions only the crystalline structure changes, and thus properties such as the
density or the heat conductivity change by only a few per cent. While the transported
heat is smaller for these systems, the effect on the flow structure can be significant
and thus has been the subject of investigations for several decades: see, for instance,
Verhoogen (1965), Kerr (1992), Weinstein (1993), Christensen (1995) and Jacobs &
van den Berg (2011).

Already for the case of relatively small Rayleigh numbers unexpected effects can
occur in systems with soft phase changes. Using linear stability analysis, Busse &
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310 S. Weiss and G. Ahlers

System 1ρ/ρ 1H (kJ kg−1) Range of Ra Pr

5CB 0.002 1.57 3× 107–6× 108 400
Mantle transitions 0.02–0.09 0.4–1.2 O(107) Nearly ∞

TABLE 1. Comparison of typical parameters for the nematic–isotropic transition in 5CB
(Thoen 1992; Ahlers 1995; van Roie et al. 2005) and for phase transitions in the Earth’s
mantle (see, for instance, Verhoogen 1965; Christensen 1995).

Schubert (1971) found that a denser phase on top of the less dense one can be
stable, while the opposite can be unstable. These results were confirmed and extended
experimentally and theoretically by Ahlers, Berge & Cannell (1993) and Sakurai et al.
(1999) (see also Ahlers 1995). Those authors investigated the onset of convection in a
thin layer of the liquid crystal 5CB (see § 2.2 below) while the top plate was colder
and the bottom plate warmer than the transition temperature at which the liquid turns
from the nematic phase into the isotropic one. It was found that, depending on the
average temperature Tm, the quiescent fluid layer can be stable in a certain range of
1T , while for both smaller and larger 1T the fluid becomes unstable and convection
sets in.

While the theoretical and experimental work at small Ra near the onset of
convection in systems with soft phase transitions had yielded significant insight, the
Ra range typical of mantle convection heretofore, so far as we know, had been studied
primarily by obtaining solutions of model equations using numerical methods (see,
for instance, Schubert 1992; Christensen 1995). The work we report on here is, we
believe, the first experimental study at very large Pr and for Ra ' 108 or so which
is typical of mantle convection. Thus it is worthwhile comparing some of the relevant
parameters that are involved in these two cases: they are collected in table 1. One sees
that the mantle transitions involve a larger (albeit still small) density discontinuity, but
about the same latent heat 1H. The range of the Rayleigh number of the experiment
is comparable to that found in the mantle. Although the mantle Prandtl number is
effectively infinite and the experimental value is finite, we note that many features of
turbulent convection do not change much as Pr increases from the experimental value
of ∼400 to much larger values. Of course there remain major differences between the
experimental system and mantle convection. Important ones are that in the geophysical
system there is internal heating as well as heating from below, that the mantle is
laterally extended and curved while our sample was confined by sidewalls, that non-
OB effects are unimportant in the experiment but play a major role in the physical
system, and that the latent heat in the mantle transitions can be positive or negative
depending on which transition is of interest, as well as many others. Nonetheless, the
present study comes closer to the physical system than any other experiment known to
us.

In this paper we report on thermal convection at large Rayleigh numbers where the
fluid is nearly turbulent. We use a nematic liquid crystal (NLC) as the working
fluid and investigate the convective heat transport while the NLC undergoes a
transition from the nematic to the isotropic phase. NLCs are fluids that consist of
elongated or discoidal molecules that, due to their steric interactions, align their
preferred axes parallel to each other; see, for instance, de Gennes & Prost (1995)
and Khoo (2007). The director field n̂ represents the direction of the preferred
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molecular alignment, averaged over a mesoscopically small region, as a function of
the spatial coordinates. While still having Newtonian shear properties, NLCs show
a broken rotational symmetry and a spatial order on intermediate length scales
(O(µm)). However, the interaction leading to alignment is rather weak and at a certain
temperature the molecules lose their alignment and the fluid turns into an isotropic
fluid. The temperature TNI at which the transition occurs is called the clearing point
because the fluid is opaque below and transparent above TNI . For many NLCs TNI is
close to room temperature. The transition at TNI is weakly first-order for many NLCs,
i.e. various physical properties show discontinuities at TNI , but these discontinuities, as
well as the associated latent heat, are small.

The correlation length over which the director of the NLC is ordered (O(µm)) is
several orders of magnitude shorter than the characteristic dimensions of the sample
(O(10 cm)). Therefore, the vigorous fluctuations of the velocity field at large Ra
produce a homogeneous distribution of the director throughout the sample. As a
result, the convective heat transport by the NLC is similar to that of an isotropic
fluid, as long as no external magnetic field is applied (Weiss & Ahlers 2013). A
magnetic field aligns the director in thermal and viscous boundary layers adjacent to
the top and bottom plates. Thus the heat transport was enhanced by the field because
the conductivity of the NLC is larger in a direction parallel to n̂ than it is in the
perpendicular direction. Experimental data presented here were all taken without an
external field and therefore we can neglect the anisotropic nature of the nematic phase
in the following.

The remainder of this paper is organized as follows. In the next section, we briefly
describe the experimental apparatus, the measurement procedure, and the properties of
the fluid. In § 3 we present the measurements and discuss possible explanations of the
results. We end the paper with a brief conclusion in § 4.

2. Experimental setup and fluid properties
2.1. Experimental setup and procedure

The experiments were carried out in the ‘small convection apparatus’ (SCA) that was
used previously to investigate the influence of a magnetic field on turbulent convection
of a liquid crystal (Weiss & Ahlers 2013). The apparatus was described in more
detail by Weiss & Ahlers (2011). The cylindrical convection cell consisted of a Lexan
sidewall with an inner diameter D = 95.3 mm, a wall thickness of 3.2 mm, and a
length L = 190.5 mm. It was closed by two copper plates, one each at the top and
bottom, resulting in a cell with aspect ratio Γ = 0.500. The cylinder was levelled
within 10−4 rad. While the top plate was temperature-controlled by a circulating water
bath, the bottom plate was heated by a metal-film heater (90 �) glued to its underside.
Two thermistors, previously calibrated against a standard platinum thermometer, were
installed in each of the plates for temperature measurements, and computer-controlled
feedback loops kept both plates at the desired temperature during an experimental run.

The convection cell was located in an air and foam filled inner container which
itself was surrounded by the temperature-controlled cooling water at temperature Tt

which was used to control the top plate temperature. The foam minimized heat loss
from the cell to the cooling bath (see figure 1 of Weiss & Ahlers 2011). Prior to the
convection experiments we measured the heat conductivity of the ‘empty’ cell (i.e. a
cell filled with foam in order to suppress convection of the air). These measurements
thus took into account both the heat transfer along the sidewall and the heat loss of the
cell to its surroundings which was at Tt.
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312 S. Weiss and G. Ahlers

Twenty-four thermistors were installed in the sidewall. They were arranged in three
sets, each set containing eight thermometers equally spaced azimuthally in a horizontal
circle. The three sets were located at vertical positions z = L/4, L/2 and 3L/4 away
from the bottom plate. We shall use the notation Tk,i to identify these thermometers.
Here k = b,m, or t, where b,m, t stand for the ‘bottom’, ‘middle’, and ‘top’ set. The
index i identifies thermometers 1 to 8 in a given set. In the figures below in § 3.2 we
shall use red, green, or blue symbols to represent data for the bottom, middle, or top
set respectively. Also below, in § 3.2, we shall examine the three average temperatures

Tw,k = 1
8

8∑
i=1

T̃k,i, (2.1)

where

T̃k,i = 〈Tk,i(t)〉t, (2.2)

as well as the three root mean square deviations

σk = 1
8

8∑
i=1

√
〈(Tk,i(t)− T̃k,i)

2〉t. (2.3)

Here 〈· · ·〉t indicates the time average.
As described elsewhere (Brown, Nikolaenko & Ahlers 2005; Funfschilling, Brown

& Ahlers 2008), all sidewall thermistors were immersed in blind holes entering the
sidewall from the outside. Thus, the thermistors were not in actual contact with the
fluid. While this technique gave excellent sidewall temperature readings in apparatus
where a side shield was present that was set at the mean temperature Tm ≡ (Tb + Tt)/2,
in our case the sidewall was surrounded by the can at temperature Tt = Tm − 1T/2.
Thus, there was a small parasitic heat current from the sidewall to the can. This led
to a small temperature offset of the measured sidewall temperatures. For 1T = 6 K
this offset was approximately 0.84 K, although it is not known precisely. For the
data shown below we added 0.84 K to the actual measurements. This caused Tw,k

in the single-phase regions all to be not very far from Tm, as they should be for a
near-Boussinesq system. The experimental temperature offset is expected to have no
significant influence on the dependence of Tw,k on Tm in the two-phase region and on
the small temperature variation Tw,b − Tw,t vertically along the sidewall. It is likely
that the fluctuation sizes σk are reduced below their actual values in the fluid, but the
dependence of σk on Tm nonetheless gives useful information, as we shall see in § 3.2.

All thermistors as well as the heat input to the bottom plate were measured every
3.2 s for the duration of an experimental run at a given 1T and Tm (a day or so).
During a typical experimental run, 1T and Tm were kept constant while measurements
were taken for ∼24 h. Then Tm was changed while 1T was held constant and
measurements were taken for the next 24 h, and so on. We report results for 1T = 1,
2 and 6 K and a variety of different Tm covering the transition region, i.e. the Tm

region where the convective fluid undergoes the phase transition.

2.2. Fluid properties
We used the nematic liquid crystal 4-Cyano-4′-pentylbiphenyl (5CB) as the convecting
fluid. It was chosen because it is not excessively toxic, because it has a convenient
clearing point close to room temperature (TNI = 35.17 ◦C), because its cost (although
still high) is manageable, and because its physical properties are fairly well known and,
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FIGURE 1. (Colour online) Properties of 5CB as a function of temperature. (a) Heat
conductivity parallel to the director alignment n̂ (λ‖, solid line, blue online), perpendicular
to it (λ⊥, dashed, red online), and the averaged conductivity relevant to random orientations
of n̂ ((λ‖ + 2λ⊥)/3, dot-dashed, black). The vertical dotted line marks the clearing point
at 35.17 ◦C. (b) Density (solid, blue online, left y-axis) and volume expansion coefficient
(dashed, red online, right y-axis) as a function of temperature. Both plots are based on
experimental data and their fitted functions published by Ahlers et al. (1994) and Ahlers
(1995).

based on a survey of the literature, have been conveniently compiled (Ahlers 1995).
Of this material 2.5 kg were obtained from Tokyo Chemical Industry America (TCI)
for this experiment and that of Weiss & Ahlers (2013) at a cost of approximately
USD 6000.

From the anisotropic fluid properties, only the thermal conductivity λ and the
thermal diffusivity κ = λ/cp% are relevant in thermal convection (see (1.1) and (1.2)).
Both quantities depend on the orientation of the director. Figure 1(a) shows the
conductivity in the direction parallel to n̂ (λ‖, solid line, blue online) and perpendicular
to it (λ⊥, dashed line, red online). For T < TNI , the difference between λ‖ and λ⊥
becomes smaller as the temperature T increases. Above TNI , the anisotropy disappears
and only one value exists for the heat conductivity – the fluid turns into an isotropic
liquid. For a sample of rod-like molecules like 5CB we expect that the measured
conductivity of a sample with random director orientation (on macroscopic length
scales) will be given by

λavg = (λ‖ + 2λ⊥)/3. (2.4)

As can be seen from figure 1(a), λ‖ varies significantly with temperature, and both λ⊥
and λ‖ have significant discontinuities at TNI . However, λavg varies only a little with T
and its discontinuity at TNI is very small. Thus, the Nusselt number, which we take to
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FIGURE 2. The effective thermal conductivity λeff (open circles, right y-axis) and the Nusselt
number Nu (solid circles, left y-axis) as a function of the mean temperature Tm. The
measurements were made with 1T = 6 K. The scales of the vertical axes were chosen so
as to cause λeff and Nu to nearly coincide below TNI .
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FIGURE 3. (Colour online) (a) Prandtl number of 5CB as a function of the temperature. (b)
Rayleigh number as a function of Tm for 1T = 6 K (squares, red online), 1T = 2 K (open
circles, blue online) and 1T = 1 K (diamonds, purple online). The calculations of Ra and
Pr are based on the fluid properties at Tm, a heat conductivity λ = (2λ⊥ + λ‖)/3, and a
clearing point TNI = 35.17 ◦C (vertical dotted lines in (a,b)).

be given by

Nu≡ λeff /λavg (2.5)

with

λeff = QL

A1T
(2.6)

(Q is the heat current and A the cross-sectional area of the cell), is not directly
influenced very much by non-OB effects, although of course the strong temperature
dependence for instance of Ra (see figure 3b below) may have an indirect influence.

We compare results for λeff with those for Nu in figure 2. They are seen to have a
very similar dependence on Tm. Nonetheless we shall report further results in terms of
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Properties % (g cm−3) α (1 K−1) λ (W cm−1 K) κ (cm2 s−1) Ra/1 T Pr

Nematic phase
(T = 32 ◦C)

1.0155 11.0×10−4 1.59× 10−3 8.042×10−4 2.9×108 309.5

Isotropic phase
(T = 38 ◦C)

1.0067 8.9× 10−4 1.52× 10−3 8.370×10−4 2.5×108 273.6

TABLE 2. Typical values for fluid properties in the nematic and the isotropic phase.
Adapted from Ahlers (1995) and references therein.

λeff because the meaning of Nu is ambiguous in the two-phase region, where some of
the sample is in one phase while Tm is in the other.

As T varies and then passes through the transition, the mass density changes as
well. However, as shown in figure 1(b), the density changes only very slightly with
temperature below and above Tni, and the density discontinuity at Tni is only ∼0.2 %
(see Ahlers 1995). This small density drop is in contrast to typical convection systems
with liquid–gas phase transitions, where the density drops by a factor of 1000 or even
more. Interestingly, it is, however, comparable to the density discontinuities expected
at certain depths in the Earth’s mantle; see, for instance, Verhoogen (1965), Kerr
(1992) and Christensen (1995). As discussed in § 1, we call such a transition with a
small density discontinuity and an associated small latent heat a soft phase transition.
We also show in figure 1(b) the volume expansion coefficient α as a function of
the temperature. While α is nearly constant for temperature T > Tni, it increases
significantly with temperature below Tni. However, α remains fairly small and – for
temperatures not too close to Tni – is of the order of 10−3/K−1. That means that
the density difference (and thus the buoyancy) between the nematic and the isotropic
phase is similar to that of two volumes of the same phase that differ in temperature by
∼2 K.

The exact value of TNI can vary somewhat, perhaps due to differing (albeit small)
amounts of impurities. While Ahlers et al. (1994) (see also Ahlers 1995 and van Roie
et al. 2005) measured TNI = 35.17 and 35.2 ◦C respectively, Bezrodna et al. (2008)
found a higher value of 35.55 ◦C. Thus we re-determined TNI , using the sample of
the present work. For this purpose a small amount of the NLC was placed in a glass
tube, and the tube was inserted in a temperature-controlled water bath. The clearing
point could easily be identified visually. We found that it shifted slightly during our
experiment. For a fresh sample of 5CB we measured TNI = 35.20 ± 0.03 ◦C, while we
measured a slightly lower TNI = 35.07 ± 0.04 ◦C for 5CB after it had been used in
our experiment for a couple of months. The value cited by Ahlers (1995) is not far
from (and indeed between) these values. Since we based our data analysis on the fluid
properties compiled by Ahlers (1995), we used 35.17 ◦C in further data analysis.

For a nematic liquid crystal there are five independent viscosities which can be
expressed in terms of the Leslie coefficients αi (see, for instance, de Gennes & Prost
1995). The equivalent of the kinematic viscosity of an isotropic fluid is given by
ν = α4/2ρ. This parameter is used to determine Ra and Pr using (1.1) and (1.2) (see,
for instance, Kramer & Pesch 1995). As an overview we present in table 2 typical
values for the fluid properties of the nematic phase (at T = 32 ◦C) and of the isotropic
phase (at T = 38 ◦C).

Figure 3 shows how the changes with temperature of fluid properties affect Pr and
Ra. The calculation of these parameters assumed constant properties throughout the
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FIGURE 4. (Colour online) The effective heat conductivity λeff as a function of the mean
temperature Tm. (a) Data for 1T = 6 K covering a large range of Tm. The inset shows the
region close to the maximum. The area between the two vertical dotted lines represents
the temperature range between Tb and Tt over which we expect the phase transition to
occur, i.e. where TNI occurs somewhere in the sample. (b) Data for 1T = 6 K (squares,
red online), 1T = 2 K (open circles, blue online), and 1T = 1 K (diamonds, purple online)
over a narrower temperature range. The black solid (dashed) vertical line marks TNI as given
by Ahlers et al. (1994) (Bezrodna et al. 2008).

cell. Away from TNI , Pr decreases and Ra increases with increasing temperature, while
for both a sharp peak appears right at TNI . The maximum of Ra at TNI ≈ 35.17 ◦C is
about three times larger than Ra at Tm = 36 ◦C, for instance. This strong temperature
dependence is due primarily to that of the expansion coefficient α (see (1.1)). Thus,
near the transition the OB approximation is not very good. It is, however, well
established that results for Nu(Ra) in a single-phase fluid are not influenced strongly
by deviations from the OB approximation of the type encountered here (Ahlers et al.
2006, 2007, 2008). Further away from TNI , deviations from the OB approximation
rapidly decrease as |Tm − TNI| increases.

We shall present our results mostly as a function of Tm. Nonetheless, we have to
recall the results for Ra in figure 3 in the next section, when we analyse the heat
transport with the phase transition present in order to distinguish between contributions
from the phase transition itself and contributions due to changes of the fluid properties.

3. Results
3.1. Heat transport

Figure 4(a) shows λeff as a function of Tm for an applied temperature difference
1T = 6 K. The region between the vertical dotted lines marks the range where both
phases are expected to co-exist. To the left of it, in the nematic phase, λeff increases
monotonically with Tm. For Tm between 32.2 and 38.2 ◦C, the fluid constantly changes
from one phase to the other while it convects from the top to the bottom plate and
back. In analogy to a liquid–gas phase transition, we will refer to the formation of
the high (low) temperature isotropic (nematic) phase at the bottom (top) plate of the
cell as ‘bubble’ (‘droplet’) formation, even though in this case the difference in density
between the bubbles and droplets is very small. In this two-phase range the increase of
λeff with Tm first becomes steeper and then decreases after passing through a maximum
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near Tm ≈ 35.5 ◦C. Beyond Tm ≈ 38.2 ◦C the sample is entirely in the isotropic phase
where λeff gradually increases.

It is apparent that the region with the most rapid increase and decrease of λeff is
where a phase transition is expected to be present and thus where latent heat effects
may contribute. The more gradual increase of λeff with Tm in the single-phase regions
is due to an increase of Ra (see figure 3), which is caused by the change of fluid
properties as Tm changes.

The maximum of λeff in the two-phase region is not symmetric about Tm (see
inset of figure 4a). Close to the maximum the slope of the curve becomes smaller
and reaches a small plateau at Tm ≈ 35.7 ◦C. For slightly larger Tm, there is a
small discontinuous drop of λeff . The decrease beyond the discontinuity is steeper
than the increase below the maximum. We investigated whether the asymmetry is
associated with hysteresis, but could not find such an effect. At least part of this
asymmetry comes from the asymmetric peak of Ra(T) (and thus of Nu(T)) displayed
in figure 3(b) (see also the asymmetric peak of λexp shown below in figure 5a). We can
not say whether there is a contribution to the asymmetry from the latent heat released
due to the two-phase nature of the system.

Figure 4(b) shows some of the same data as figure 4(a) on an expanded horizontal
scale, and also includes results for 1T = 2 K (open circles, blue online) and
1T = 1 K (diamonds, purple online). It is expected that, far away from TNI , λeff

is largest for 1T = 6 K and smallest for 1T = 1 K because Ra, and thus also Nu,
increases with 1T . For each of these measurements, the maximum is located close to
(but not necessarily at) Tm ≈ TNI as expected. The maximum value of λeff is nearly
independent of 1T . However, the maximum heat current, proportional to λeff1T , is
largest for the largest 1T .

For a further discussion of the two-phase region it is useful to define the temperature
fraction

φ = 0.5+ (Tm − TNI)/1T. (3.1)

Then the potential two-phase region can exist over the range 0 6 φ 6 1. We are not
aware of a way to accurately separate the contribution to λeff for 0 6 φ 6 1 into
contributions from latent-heat and density-discontinuity effects on the one hand and
from single-phase turbulent convection on the other. Nonetheless, we can make an
estimate

λtrans ≡ λeff − λexp (3.2)

of the part that is to be attributed to the phase transition. Here λexp(Tm) is the expected
conductivity of the single-phase turbulent system at a temperature T = Tm. To estimate
λexp(Tm), we first compute Ra(Tm) and Pr(Tm) (equations (1.1) and (1.2)) using the
fluid properties at Tm. An example is given in figure 3. We then obtain the single-
phase value of Nu(Ra,Pr) (and thus λexp, see (2.5)) from a fit of our single-phase
measurements, both above and below TNI , to the power law Nu = Nu0Pr

αRaγ . This
estimate should be valid in the limit as 1T→ 0, but for finite 1T we expect the true
λexp (which is unknown to us at the quantitative level) to be more rounded over the
interval spanned by 1T . An example of λexp for 1T = 6 K is shown as open squares
in figure 5(a). One sees that there is fairly good agreement with the measured λeff in
the single-phase regions. However, in the two-phase region (between the two vertical
lines) λexp is smaller than λeff , indicating that there is an additional contribution λtrans

from the phase transition to λeff . In the absence of effects from the latent heat and
the density discontinuity we would have expected λeff in the two-phase region to be
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FIGURE 5. (Colour online) (a) The effective heat conductivity λeff (squares, red online), and
the expected effective heat conductivity λexp without a phase transition (open squares), both
for 1T = 6 K and as a function of the average temperature Tm. The two vertical lines indicate
the boundaries of the two-phase region in the physical system (i.e. φ = 0 and 1). (b) The part
λtrans = λeff − λexp of the effective heat conductivity that is attributed to the phase transition
from the nematic to the isotropic phase. Data are for 1T = 1 K (solid diamonds, purple
online), 1T = 2 K (open circles, blue online) and 1T = 6 K (solid squares, red online). The
short vertical lines near the bottom horizontal axis give the values of Tm where the top or
bottom plate temperature reaches TNI .

smaller than λexp because at most one of the boundary layers (which control the heat
transport) can be near the maximum of λexp. Results for λtrans for all three values of
1T are given in figure 5(b).

An interesting feature revealed in figure 5(b) (at least for the larger 1T) is a
shift, relative to TNI , of the temperature Tb,on for the start of the formation of the
isotropic phase at the hot (bottom) plate. This is illustrated by the small vertical lines
in figure 5(b), which give Tm when the top (cold) and bottom (warm) plates have
reached the bulk transition temperature TNI . As Tm increases from the nematic phase
into the two-phase region, the data suggest that the increase of λtrans above zero at Tb,on

does not happen until Tb,on exceeds TNI by five per cent or so of 1T . The analogous
phenomenon does not seem to occur noticeably at the top plate, where with decreasing
Tm the first droplet formation of the nematic phase occurs when Tt,on ' TNI within the
resolution of the data. Closely related phenomena will be discussed in § 3.2.2 below.
We note that a shift similar to that of Tb,on relative to TNI was observed by Zhong
et al. (2009) near a liquid–gas phase transition. In their case, however, Tt,on was shifted
below the phase transition temperature, i.e. there was a delay of the formation of
liquid droplets near the top plate as Tm was decreased.

3.2. Sidewall temperature distribution

Here we shall discuss the measurements of the sidewall temperatures with the three
sets of eight thermometers each discussed in § 2.1. We did not find any evidence for
a large-scale circulation, and report here only on the three azimuthally and temporally
averaged temperatures Tw,k of the eight temperatures Tk,i at each level k = b,m, t
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FIGURE 6. (Colour online) A schematic diagram of the vertical time-averaged temperature
profile in the sample. The width of the boundary layers was increased by a factor of ten for
clarity. The dotted horizontal (blue) line corresponds to Tm. The dashed horizontal (red) line
represents TNI for the arbitrarily chosen example (TNI − Tt)/1T = 0.7. For that case the part
of the sample to the right of the vertical dashed (red) line could potentially be in the isotropic
phase.

(equations (2.1)) and on the three azimuthal and temporal averages of the temperature
fluctuations σk (equation (2.3)).

3.2.1. Expected temperature profile
For the interpretation of these data it is necessary to consider the typical vertical

temperature profile in the sample. A schematic diagram of this profile is shown
in figure 6. A lowest-order model due to Malkus (1954) assumes that half of the
temperature drop 1T occurs over each of two thermal boundary layers (BLs), one
each below the top and above the bottom plate. In this approximation the sample
interior, or ‘bulk’, is isothermal in the time average at the temperature Tm, even though
its temperature may be intensely fluctuating. The thickness of the thermal BLs can
then be shown to be

λB = L/(2Nu). (3.3)

Looking at figure 2, one sees that the BLs are predicted to have a thickness that ranges
from ∼0.7 to 1.7 per cent of the sample height. The BLs in figure 6 are shown with
a width that is about a factor of ten larger for clarity. The centre temperature in the
Malkus model would correspond to the dotted horizontal line. Experimental data (Lui
& Xia 1998; du Puits, Resagk & Thess 2013) have shown that the Malkus temperature
profiles is, for our purposes, a remarkably good first approximation although the
detailed shape of the BLs is actually more intricate.

Going beyond the Malkus model, it has long been known that the bulk also sustains
temperature gradients (see, e.g., Tilgner, Belmonte & Libchaber 1993; Brown &
Ahlers 2007), albeit much smaller ones than those in the BLs. Although it was
long thought that the gradient in the bulk was independent of z (but dependent on
the radial position r), it was found recently (Ahlers et al. 2012) that the temperature
profile actually depends logarithmically on z. However, for the present purpose we
shall neglect this intricacy and focus merely on an average temperature drop across the
bulk approximated by 2(Tw,b − Tw,t)/1T which, as can be seen in figure 7(b) below, in
the single-phase region is only ∼0.04 (to be compared with approximately 0.48 for the
drop across each BL in this approximation). The bulk temperature with this gradient is
shown as the solid nearly horizontal line in figure 6.
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3.2.2. Single-phase regions and the onset of droplet and bubble formation
Figure 7 presents several measured quantities as a function of Tm for 1T = 6 K. It

reveals a richness of phenomena which occur as Tm is increased from low to high
values (the same sequence of phenomena was observed also when Tm was decreased
from high to low values). In order to discuss these in detail, we shall identify special
values of Tm by introducing a second index, thus writing Tm as Tm,j, where the value of
j corresponds to the corresponding value of φ (see (3.1) and the top horizontal axis of
figure 7).

On thermodynamic grounds, a two-phase region could potentially exist from
Tm,0 = TNI−1T/2= 32.17 ◦C to Tm,1 = TNI+1T/2= 38.17 ◦C. This range is indicated
in the figure by the two solid vertical lines. Starting in the single-phase nematic
region with Tm < Tm,0, one would expect to encounter isotropic bubble formation
at the bottom plate as Tm is increased beyond Tm,0. However, no evidence of this
happening is revealed by any of the measured quantities shown in the figure. The
first indication of a new process, presumably the expected bubble-formation process, is
found at Tm = Tm,on = Tm,0.12 (the left short-dashed vertical line in the figure), where
the temperature in the bulk (i.e. all three Tw,k) begins to increase relative to Tm.
The same onset is found also in the λtrans results shown in figures 5(b) and 5(d),
as discussed already in § 3.1 above. A similar, albeit smaller, delay of the onset of
nematic drop formation at the top plate can be seen in Tw,k when Tm is decreased from
large values as it crosses Tm,1 (the right solid line). The onset of drop formation is
indicated by the right short-dashed line and occurred at Tm,0.95. It was not resolved by
the λtrans data (figure 7d).

We note that a depression of drop formation to Tm < Tm,1 was observed also by
Zhong et al. (2009) near the vapour pressure curve of ethane as Tm was reduced
below Tm,1. Those authors were able to study this phenomenon in more detail. They
found that the shift of Tm below Tm,1 for the onset of drops was independent of 1T ,
i.e. it occurred at the same value φ = 0.95 (in the ethane case) for all values of 1T
studied by them. However, at the low temperature end they found that the formation
of bubbles at the bottom plate, although it occurred only well above Tm,0, was
irreproducible from one run to another, suggesting that the bubble nucleation in their
case was heterogeneous. The reproducibility, absence of hysteresis, and independence
of whether Tm was increased or decreased, suggest that the nucleation process for
ethane droplets (at the top plate) and for 5CB droplets or bubbles at either plate may
be homogeneous.

Qualitatively one might attempt to explain the shift of the onset of bubble or
droplet formation above Tm,0 or below Tm,1 respectively in terms of the temperature
distribution shown in figure 6. Let us assume that Tm,φ barely exceeds Tm,0. Then
the thickness of the layer near the bottom plate in which the phase transition could
potentially occur remains very thin because the temperature gradient in the BL is
steep (note that the lines in figure 6 near z/L = 0 and 1 are drawn with one tenth
the actual slope for clarity). Thus, only a very thin layer of potentially unstable fluid
exists, while a layer exceeding a minimum thickness is required for the nucleation of
a droplet of critical size or larger. Roughly, one can estimate that, in the present case,
the onset at φ = 0.12 corresponds to a thickness of the unstable layer of z/L ' 0.002
or z ' 400 µm. However, this estimate turns out to be two orders of magnitude
larger than an estimate of the critical droplet size from homogeneous nucleation
theory (see, for instance, Gunton, Miguel & Sahni 1983). Thus, it appears that the
simple homogeneous nucleation theory for a system in thermodynamic equilibrium is
inadequate to fully explain the experimental observation of the onset shift. A possible
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FIGURE 7. (Colour online) (a) Average temperature at the sidewall at heights L/4 (diamonds,
red), L/2 (circles, green) and 3L/4 (squares, blue) as a function of Tm. (b) Temperature
gradient along the sidewall, normalized by the applied temperature difference 1T , as a
function of Tm. (c) The azimuthal average of the root mean square deviation σ/1T , obtained
separately at each of the three levels and normalized by 1T , as a function of Tm. The symbols
are as in (a). (d) The excess effective conductivity λtrans due to the phase transition as in
figure 5(b). All data are time averages for 1T = 6 K. The various vertical lines separate
temperature ranges that show a qualitatively different behaviour (see text for explanation).
The top horizontal axis shows the temperature fraction φ = 0.5+ (Tm − TNI)/1T .

reason for this may be that the nucleation dynamics in the near-quiescent fluid deep in
the interior of the BL directly adjacent to the plate is too slow, and that the turbulent
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fluctuations and/or plume emissions which occur in the part of the BL which is further
away from the plate are necessary to initiate droplet or bubble nucleation.

3.2.3. Bubble formation in the bottom boundary layer
Next we consider the system as Tm is increased further above Tm,0.12. Initially the

temperature in the sample centre increases, until a maximum is reached near Tm,0.4. At
constant 1T , this implies that the heat transport across the bottom BL is enhanced
relative to that across the top one and that the temperature difference across the top
BL (the nature of which remains unaltered) is increased to values larger than 1T/2
in order for the two BLs to transport the same heat current. The enhanced heat
transported across the bottom BL and into the bulk may be attributed to the latent heat
transported by the bubbles; but it could also in part be due to a destabilization of the
BL by the emission of bubbles. While the Tw,k are increasing with Tm, our estimate of
the heat current associated with the phase transition λtrans also increases (see figure 7d).
Beyond Tm,0.4 both the Tw,k and λtrans briefly decrease, until a new transition point
is reached at Tm,0.45. The precise reason for the maximum and subsequent decrease
is not entirely clear to us. We assume that it is associated with the approach of the
isothermal plane at temperature TNI to the bulk. At the transition from the BL to the
bulk the profile shown in figure 6 is no longer a good approximation; the temperature
profile in this region is rounded (Lui & Xia 1998; du Puits et al. 2013) and a more
sophisticated description, for instance in terms of a Prandtl–Blasius profile (Schlichting
& Gersten 2000; Prandtl 1905; Blasius 1908), would be needed but is beyond the
considerations in the present paper.

It is noteworthy that both the temperature gradient in the bulk (figure 7b) and
the fluctuations σk of the bulk temperatures (figure 7c) are essentially constant for
Tm < Tm,0.45 (the dot-dashed vertical line), while the bottom BL undergoes bubble
formation and the bulk temperature increases. This provides additional support to the
idea that the bulk and top BL are essentially unaffected while the boiling process,
including bubble formation and absorption, is restricted to the bottom BL or at least to
that BL and the bottom quarter below z= L/4 of the bulk.

3.2.4. Bubble penetration into the bulk
At Tm,0.45 a new phenomenon sets in suddenly. The temperature gradient in the

bulk (figure 7b) and the bulk temperature fluctuations (figure 7c) increase dramatically.
Figure 7(a) indicates that the increase of the temperature gradient is due primarily to
a slowdown of the decrease of Tw,b (relative to Tw,m and Tw,t), i.e. of the temperature
closest to the bottom BL. Clearly at this point the boiling process is no longer
restricted to the BL and the lower quarter of the bulk, but is actually penetrating
into the centre of the sample. In this region we envision that the bulk continues to
consist primarily of the nematic phase, but that this phase is interspersed with a high
concentration of warm isotropic bubbles that originated at the bottom plate and which
influence the temperature gradient and cause the vigorous temperature fluctuations
displayed in figure 7(c).

We note that the discontinuity of λtrans observed at Tm = TNI = 35.17 ◦C (φ = 0.5)
and displayed by the data in figure 7(d) is not real but instead is a consequence of the
choice of λexp (see figure 5a) that was used to determine λtrans. Ideally λexp would be
the effective conductivity in the absence of latent-heat and density-discontinuity effects
but in the presence of the phase transition; for a finite 1T it would not have a sharp
peak like that in figure 5(a) and instead would be more rounded. Unfortunately this
ideal version of λexp is not known to us.
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FIGURE 8. The bottom plate heater-power as a function of time for 1T = 2 K after a step
of Tm from 35.4 to 35.6 ◦C (of φ from 0.615 to 0.715). The left vertical dotted line marks
the time interval needed by the feedback control to reach a stable temperature difference. The
right vertical dotted line indicates the approximate end of the transition to the new state. The
horizontal dotted line is the average of the data over the interval from 12 000 to 20 000 s.

3.2.5. The catastrophic inversion: the bulk becomes isotropic!
With further increase of Tm, a catastrophic event takes place at Tm,0.59 (the longer-

dashed vertical line in the figure). At this point, the temperature gradient in the bulk
suddenly vanishes or becomes extremely small, and the temperature fluctuations also
nearly cease to exist. We believe that an inversion takes place at Tm,0.59 where the bulk,
which heretofore had consisted of the nematic phase (albeit with bubbles of isotropic
fluid travelling through and being absorbed by it), is replaced by isotropic liquid. Thus,
for larger Tm, only the top BL continues to consist of the nematic phase. A similar
catastrophic inversion was observed also in the case of the liquid–vapour transition in
ethane studied by Zhong et al. (2009). In that case, however, the transition was found
with decreasing Tm and at φ = 0.43, where the initially vapour-filled sample suddenly
filled with liquid. We note that in neither case did the transition take place at the
thermodynamic instability point φ = 1/2, but rather at some significant interval beyond
it. We assume that this shift is due to the difference between the fluid properties of the
high and the low temperature phase.

Interesting support for the occurrence of the inversion comes from the time record
of the experimental data. Figure 8 shows the bottom plate heater-power Q for a run
with 1T = 2 K as a function of the time t. At t = 0 the setpoint had been changed
from Tm = 35.4 ◦C (where the system had been equilibrated) to Tm = 35.6 ◦C. Initially,
transients were observed due to the finite-time response of the feedback loop of the
bottom plate heater. After t ' 2000 s (the left vertical dotted line in the figure), the
heater power settled down, albeit not at its ultimate value. At t = tI ' 10 000 s, a
transition took place at constant 1T to a lower power level which was then maintained
for the duration of the run (which was ∼8 × 104 s). Our interpretation of this
phenomenon is that, for t < tI , energy had to be provided to achieve the conversion of
nematic to isotropic fluid. From figure 8 one can estimate the excess energy provided
by considering the part of Q above the horizontal dotted line for t < 10 000 s. After
subtracting contributions needed to heat the sample and its container, we find this
estimate to be ∼1.7 kJ. Given a latent heat of 1.56 kJ kg−1 (Thoen 1992; van Roie
et al. 2005), this energy is enough to convert ∼1.1 kg of 5CB from the nematic to
the isotropic phase. Our actual sample mass was 1.4 kg, not very different from the
above semi-quantitative estimate. Similar results were obtained also with 1T = 1 and
6 K. When the experiment was conducted by decreasing Tm from 35.6 to 35.4 ◦C,
the bottom plate heater-power settled down on its final value immediately after the
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initial transients which were restricted approximately to the first 2000 s. This can be
understood since the heat generated by the isotropic-to-nematic transition throughout
the bulk is dissipated at the top plate which would lead to an increased cooling
necessary to maintain the top plate temperature. This quantity, however, was not
measured in the experiment.

3.2.6. An interval of ‘superconductivity’
Returning our attention to figure 7, we note that there is a short interval of Tm

beyond Tm,0.59, up to Tm,0.66, over which the thermal gradient in the bulk vanishes
within our resolution (see figure 7b) and where the temperature fluctuations σk (see
figure 7c) become smaller than they were in the single-phase nematic or isotropic
fluid (φ < 0 or φ > 1). Also noteworthy is that over this interval the bulk temperature
Tw,k decreased significantly, as seen in figure 7(a). We do not really have a good
explanation for the existence of this interval of essentially vanishing thermal gradients
and fluctuation amplitudes. It seems as if bubbles (droplets) are forming in the upper
(lower) part of the bottom (top) boundary layer or even in the lower (upper) part of the
bulk. These bubbles (droplets) have a temperature very close to the bulk temperature
and are thus not visible in the σk measurements. However, the exact processes in this
range are unknown to us, and it would be of interest to investigate this state further by
local temperature measurements in the sample interior.

3.2.7. Droplet formation in the top boundary layer
Beyond Tm,0.66 the observed phenomena are essentially the reverse of what was seen

from Tm,1 to Tm,0.59 and described in §§ 3.2.2 and 3.2.3, albeit over a somewhat smaller
interval of Tm. The data for Tw,k and σk suggest that from Tm,0.66 to Tm,0.96 nematic
droplet formation continued in the top BL, while finally for Tm > Tm,0.96 the entire
sample was isotropic.

4. Summary and conclusion
We used the nematic liquid crystal 4-Cyano-4′-pentylbiphenyl (5CB) to study

thermal convection while a soft phase transition from the nematic to the isotropic
state or vice versa (the ‘clearing point’ at a temperature TNI = 35.17 ◦C) was present
in the sample. This problem is of fundamental interest for its own sake, but is also
relevant to the geophysical phenomenon of convection in the Earth’s mantle where
several phase transitions with small latent heats 1H and small density discontinuities
take place at various depths (see, for instance, Christensen 1995).

We covered with our data Rayleigh numbers in the range 3 × 107 6 Ra 6 6 × 108,
which is similar to that of mantle convection. Whereas in the mantle the Prandtl
number is effectively infinite, many features of thermally driven convection do not
change very much above Pr ' 400 (see, for instance, Ahlers et al. 2009) which is
typical of 5CB. The latent heat at the clearing point is 1.57 kJ kg−1 (Thoen 1992;
van Roie et al. 2005), which is not very different from the range 0.4 to 1.2 kJ kg−1

relevant to the geological cases (Verhoogen 1965). The density discontinuity of 5CB
at TNI is, however, an order of magnitude smaller than it is for the geophysical
system. Beyond these comparisons there are of course many differences between
the enormously complex geophysical problem and the highly idealized laboratory
experiment.

In § 3.1 we presented measurements of the effective thermal conductivity λeff of
the 5CB sample both well above and well below TNI in the single-phase regions, as
well as closer to TNI where the applied temperature difference straddled the transition
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temperature. In the single-phase regions the corresponding Nusselt number Nu agreed
with measurements for isotropic fluids (Weiss & Ahlers 2013), but in the two-phase
region there was a significant additional contribution to λeff which we attribute to
latent heat carried by bubbles of isotropic fluid generated in the bottom or droplets
of nematic fluid generated in the top boundary layer. Due to the small value of 1H,
the enhancement of λeff never exceeded a factor of two or so. This can be compared
with the enhancement by an order of magnitude in the case of ethane near its vapour
pressure curve (Zhong et al. 2009) where 1H varies from ∼500 kJ kg−1 at the normal
boiling point to zero at the critical point.

In § 3.2 we elucidated the processes of nematic droplet and isotropic bubble
formation at the cold (top) and hot (bottom) end of the sample respectively where
the system sustains thermal boundary layers (BLs). For our system these BLs had
a thickness of about a mm each, which is thin compared to the sample height (see
§ 3.2.1). Each of the BLs sustained nearly half of the temperature drop across the
entire system, leaving the bulk nearly isothermal. The measurements consisted of the
temperatures along the sidewall of the sample and of the time evolution of the heat
current needed to maintain a prescribed temperature. This was done in greatest detail
for an applied temperature difference of 1T = 6 K. A complex sequence of events
took place as the mean temperature Tm of the sample was increased from values in
the single-phase region well below TNI to much higher values well above TNI (an
equivalent sequence of events was seen when Tm was reduced from larger values). We
shall discuss them in terms of the temperature fraction φ = 0.5+ (Tm − TNI)/1T . Note
that φ = 0 when Tb = TNI , and φ = 1 when Tt = TNI . The observed events can be
summarized as follows.

(i) When the bottom temperature Tb of the sample passed TNI (φ = 0) so that
thermodynamically the formation of isotropic 5CB in the bottom boundary layer
became possible, the system remained nematic until a ‘superheating’ (Tb > TNI)
by ∼0.121T (φ = 0.12) was achieved (see § 3.2.2). At that level of superheating
we estimate that the thickness of the fluid layer in the bottom boundary with
T > TNI was ∼400 µm, which is much thicker than simple estimates of the critical
bubble size for homogeneous nucleation (see, for instance, Gunton et al. 1983).
The phenomenon is similar to what was observed for ethane near its vapour
pressure curve by Zhong et al. (2009). While it remains unexplained in detail,
we conjecture that turbulent fluctuations of the supersaturated fluid are necessary
to initiate bubble formation and/or growth at a significant rate, and that the fluid
in the BL but immediately adjacent to the plate does not sustain fluctuations of
sufficient size to promote this process.

(ii) As φ was increased beyond 0.12, the contribution λtrans from the latent heat to the
heat transport became noticeable and the temperature in the bulk began to increase
while temperature gradients and fluctuations in the bulk remained unaffected (see
§ 3.2.3). We take this to mean that bubble formation near the bottom plate had
started but that the bubbles were still confined to the bottom BL.

(iii) As φ increased beyond 0.44, the temperature gradient and fluctuations in the
bulk increased, indicating that bubble formation, initiated in the bottom BL, was
penetrating the bulk (see § 3.2.4).

(iv) When φ reached 0.59, a catastrophic inversion took place where the nematic fluid
in the bulk was suddenly replaced by isotropic fluid (see § 3.2.5). This event was
reflected in the time evolution of the bottom plate power needed to provide the
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latent heat of about 1 kJ and to maintain the system at a constant 1T while the
inversion was taking place.

(v) The inversion was followed by a remarkable interval of φ, up to φ = 0.66, over
which the temperature gradient in the bulk vanished within our resolution and the
fluctuation amplitudes became even smaller than they were in the single-phase
regions (see § 3.2.6). We do not have a good explanation for this remarkable
‘superconducting’ state.

(vi) For the remainder of the run, up to φ > 1, the sequence of events was the reverse
of what had happened up to φ = 0.59, except that it took place near and in the
top BL where nematic droplets were now forming in a generally isotropic sample.
The droplet formation was not a precise mirror image of the bubble formation;
we attribute this to the differing physical properties of the isotropic and nematic
phases.
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