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In this paper we use U(2), the group of 2 × 2 unitary matrices, to parametrize the
space of all self-adjoint boundary conditions for a fixed Sturm–Liouville equation on
the interval [0, 1]. The adjoint action of U(2) on itself naturally leads to a refined
classification of self-adjoint boundary conditions – each adjoint orbit is a subclass of
these boundary conditions. We give explicit parametrizations of those adjoint orbits
of principal type, i.e. orbits diffeomorphic to the 2-sphere S2, and investigate the
behaviour of the nth eigenvalue λn as a function on such orbits.
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1. Introduction

Unbounded self-adjoint (SA, for brevity) operators are very important objects in
mathematical physics. In quantum mechanics, an observable is represented by an SA
operator, rather than a symmetric one. In perturbative quantum field theory, when
calculating the contribution of a one-loop graph, one should obtain the (regularized)
determinant of a differential operator, but before that a suitable SA extension
should be chosen first. However, generally, there may be too many SA extensions –
different SA boundary conditions represent different SA extensions. For example,
consider the classical Sturm–Liouville (SL) equation on J = [0, 1]:

ly := −(py′)′ + qy = λy, 0 < p ∈ C1(J), q ∈ C(J). (1.1)

Then the set U of all complex SA boundary conditions can be divided into two
mutually exclusive subsets. The first, called separated, includes boundary conditions
of the form

y(0) cos α − (py′)(0) sinα = 0,

y(1) cos β − (py′)(1) sinβ = 0,

}
(1.2)

where α ∈ [0, π), β ∈ (0, π]. The second, called coupled, includes boundary condi-
tions of the form (

y(1)
(py′)(1)

)
= eiϕK

(
y(0)

(py′)(0)

)
, (1.3)
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where

K ∈ SL(2, R) =:
{

K =
(

k11 k12

k21 k22

)
; kij ∈ R, det K = 1

}

and ϕ ∈ [0, 2π).
It is well known that the eigenvalues of the above SL problem consisting of (1.1)

and an SA boundary condition are bounded from below and can be ordered to form
a non-decreasing sequence

−∞ < λ0 � λ1 � λ2 � · · · � λn � · · ·

that approaches ∞ such that the number of times an eigenvalue can appear is equal
to its (geometric) multiplicity.

In this paper we mainly put emphasis on the structure of U and assume that
p ≡ 1 and q ∈ C(J) for brevity, though the main body of results here holds for
more general p, q.

It is of interest to consider these λn as functions on U and explore how they
change when the boundary condition varies. It is already clear that λn are not
continuous on U equipped with the natural topology [5]. However, when restricted
on certain subsets S ⊂ U , λn may have nice properties. For example, if, on S, λ0
is bounded from below, then all these λn are continuous on S. This is called the
continuity principle in [5], and we shall use frequently in what follows.

An abstract theorem of von Neumann implies that U is globally parametrized
by U(2), the unitary group in complex dimension 2, but in the mathematical lit-
erature on SL problems, in terms of boundary data, U is often viewed as a set of
equivalence classes of matrices, for example, as a submanifold of the Grassmanian
of two-dimensional subspaces in C

4. In this context, (1.2) and (1.3) are in fact pre-
ferred representatives of these classes, and the underlying group U(2) cannot be
seen directly in this manner. Recently it was found [1] that there is, more or less,
a canonical way to identify U with U(2),1 which is the starting point of our paper.

As a smooth 4-manifold, U(2) is very special. It is a compact Lie group and
has a rich geometry. In this paper, however, we mainly consider one aspect of this
geometry and its interplay with SL problems: U(2) acts on itself by conjugation,
i.e. g ·u = gug−1 for g, u ∈ U(2). Orbits of this action are called adjoint orbits, each
characterized by its eigenvalues (matrices in an orbit all have the same eigenvalues).
Topologically, these orbits are divided into two types, those consisting of a single
point (the two eigenvalues are the same), and those diffeomorpic to the 2-sphere S2

(the two eigenvalues are different). We shall mainly explore the behaviour of the
λn as functions on these spheres in the latter case.

Note that in this paper, for brevity, by eigenvalues of a boundary condition A
(represented by a matrix) we always mean eigenvalues of the associated boundary-
value problem, while eigenvalues of A refer to eigenvalues of the matrix A.

The paper is organized as follows.
We divide § 2 into two subsections. In the first, we discuss the structure of

U(2) as the space of SA boundary conditions. We identify several subsets of U(2),
parametrize them and show how these parametrizations are related to the ones

1 This way of parametrizing SA extensions by U(2) is already known in the context of boundary
triples; see, for example, [8, ch. 14].
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given in (1.2) and (1.3). In the second, we give a refined classification of SA bound-
ary conditions in terms of adjoint orbits, and parametrize orbits of principal type –
those diffeomorphic to S2.

We devote § 3 to briefly investigating the so-called characteristic curve Γ , which
is of great importance when one considers all SA boundary conditions together. To
the best of our knowledge, this curve was first investigated in [5]. The behaviour
of Γ is complicated and we add hardly any new insight into it. We only rewrite
it out in our context and write down the characteristic equation in terms of it
(theorem 3.1). The advantage is that this equation is canonical and valid for all SA
boundary conditions. At the end of this section, we make the observation that Γ
has no point in common with almost all adjoint orbits of principal type. This will
imply that the situation considered in § 4 is general.

In § 4, we investigate the behaviour of λn as a function on an adjoint orbit O of
principal type. We show that λn is continuous on O. If, furthermore, Γ has no point
in common with O, then λn is a real analytic function on O and has exactly two
critical points. If [an, bn] is the range of λn, then these an, bn, n ∈ N, are precisely the
zeros of a certain real analytic function, and an < bn < an+1 < bn+1 (theorems 4.3,
4.7 and 4.9). There are two ways to regard eigenvalues of SL problems. On the
one hand, eigenvalues are roots of the characteristic equation. On the other hand,
eigenvalues can also be characterized in terms of quadratic forms using the min–
max principle. To obtain our results, we freely switch our viewpoint between the
two if it is convenient. At the end of this section, we investigate the shape of the
level subset of λ in O.

Finally, § 5 can be seen as a complement to § 4. We consider λn as a function on
the diagonal of the torus in U(2). We show that the range of λn on U(2) is in fact
already determined by its restriction on the diagonal (theorem 5.1).

In the final section we outline how our main results can be generalized to a wider
context.

2. The space of SA boundary conditions and adjoint orbits

2.1. The space of SA boundary conditions

Let l0 and l1 respectively be the minimal and the maximal operators associated
with l. Von Neumann’s abstract theory [8, ch. 13] implies that the set U of all SA
extensions of l0 is parametrized by unitary transforms from ker(l1−iI) to ker(l1+iI).
Since the spaces are both two dimensional, topologically U is just U(2). In this
description, however, there is no canonical way to identify U with U(2), because to
realize such a parametrization a distinguished transform should be chosen.

Recently, an explicit and canonical way of expressing SA boundary conditions in
terms of elements of U(2) was found [1]. Let y be a function in the Sobolev space
W2,2(J) and let2

ψ :=
(

y(0)
y(1)

)
, ψ̇ :=

(
ẏ(0)
ẏ(1)

)
.

2 Here we use ẏ to denote the outward unit normal derivative of y. So ẏ(0) = −y′(0) and
ẏ(1) = y′(1).
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An SA boundary condition then takes the form

i(I + U)ψ̇ = (I − U)ψ, (2.1)

where I is the 2 × 2 identity matrix. This way we shall identify U with U(2). For
the details of (2.1) and even its generalization, we refer the interested reader to [1].

Before proceeding further, we recall a description of U(2). Any element g of U(2)
can be decomposed into two factors,

g =
√

det g · (g/
√

det g),

where
√

det g ∈ U(1) is a square root of det g, and g/
√

det g ∈ SU(2), i.e. with
determinant 1. Since there are two square roots of det g, U(2) is the quotient of
U(1)×SU(2) under the natural action of Z2. This result is often written as U(2) =
U(1) ×Z2 SU(2). We denote the corresponding quotient map by P .

It is natural to classify all SA boundary conditions into two mutually exclusive
subclasses according to whether det(I + U) equals 0 or not. Define

U0 = {U ∈ U |det(I + U) = 0}, U1 = {U ∈ U |det(I + U) �= 0}.

U1 is certainly open and dense in U(2). If U ∈ U1, then

A := −i(I + U)−1(I − U) (2.2)

is actually a Hermitian matrix and precisely the Cayley transform of U . In terms
of A, the boundary condition (2.1) can then be rewritten as

ψ̇ = Aψ. (2.3)

Note that since A and U are in one-to-one correspondence in U1, A can also be
viewed as the coordinate in the chart U1 ⊂ U (so topologically U1 � R

4). Let y1,
y2 be the solutions of (1.1) satisfying

y1(0) = 1, y′
1(0) = 0, y2(0) = 0, y′

2(0) = 1.

If

A =
(

a b

b̄ c

)
,

where a, c are real numbers and b is complex, then the characteristic equation is3

∆(λ) = det
[(

0 −1
ẏ1 ẏ2

)
−

(
a b

b̄ c

) (
1 0
y1 y2

)]
= 0,

i.e.
−aẏ2 + (ac − |b|2)y2 − cy1 + ẏ1 − 2 Re b = 0. (2.4)

Let us consider the structure of U0. If U ∈ U0, we can set

U = eiθ
(

a b

−b̄ ā

)
,

3 For brevity, in a characteristic equation we shall always write y1/2 instead of y1/2(1, λ).
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where θ ∈ [0, π] and (
a b

−b̄ ā

)
∈ SU(2).

Let a = reiω, r ∈ [0, 1], ω ∈ [0, 2π). Then one can find that

eiθ = −r cos ω + i
√

1 − r2 cos2 ω. (2.5)

So U is completely determined by its factor in SU(2). But ±I ∈ SU(2) determine
the same U = −I. This argument shows that U0 is topologically the 3-sphere S3

with two points glued together.4 A general element of U0 is of the form

eiθ
(

reiω
√

1 − r2eiγ

−
√

1 − r2e−iγ re−iω

)
,

where θ is given by (2.5) and r ∈ [0, 1], ω, γ ∈ [0, 2π).
There is another interesting subset UR ⊂ U consisting of all real SA boundary

conditions. As for the shape of UR in U(2), we have the following proposition.

Proposition 2.1. UR = {U ∈ U(2) | U = UT}, where the superscript “T” denotes
the transpose of a matrix. Furthermore, with U(2) viewed as U(1)×Z2 SU(2), UR is
topologically just P (S1 × S2) (for the precise meaning, see the proof).

Proof. A real SA boundary condition is precisely one whose complex conjugate
represents the same boundary condition except that ψ, ψ̇ are replaced by ψ̄, ¯̇

ψ. The
complex conjugate of (2.1) is

i(I + Ū) ¯̇
ψ = −(I − Ū)ψ̄.

It can be rewritten as

iŪ(I + Ū−1) ¯̇
ψ = Ū(I − Ū−1)ψ̄,

i.e.
i(I + Ū−1) ¯̇

ψ = (I − Ū−1)ψ̄.

Then that the boundary condition is real precisely means U = Ū−1, which is
precisely U = UT. Let

U = eiθ
(

a b

−b̄ ā

)
.

Then U = UT precisely means that b is purely imaginary or zero. This observation
immediately leads to the conclusion that UR = P (S1 × S2).

Remark. In [6, theorem 3.3], there is also a description of the space of all real SA
boundary conditions. However, the global picture is more clear here.

Let us now see how the boundary conditions (1.2), (1.3) look in U(2). It is easy
to see that the separated boundary conditions correspond to those U of diagonal
form, forming a Cartan subgroup H of U(2), topologically a 2-torus.

For the coupled case, two subcases should be distinguished: k12 �= 0 and k12 = 0.

4 Topologically, SU(2) � S3.
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Proposition 2.2. If in the coupled case k12 �= 0, then the corresponding U lies in
U1 and the associated Hermitian matrix is

A(eiϕK) =
1

k12

(
k11 −e−iϕ

−eiϕ k22

)
.

Proof. If k12 �= 0, the boundary condition (1.3) can be rewritten as

ψ̇ =
(

k11/k12 −e−iϕ/k12

−eiϕ/k12 k22/k12

)
ψ.

Comparing this with (2.3), we come to the conclusion.

It is not hard to see that if k12 = 0, the corresponding boundary condition cannot
be rewritten as (2.3), and so the corresponding U(eiϕK) ∈ U0. However, from the
above proposition we can obtain a unified expression of U(eiϕK) no matter whether
k12 = 0 or not.

Proposition 2.3. For the coupled boundary condition (1.3), the corresponding ele-
ment U(eiϕK) ∈ U(2) is

1
k12 − k21 + i(k11 + k22)

(
k12 + k21 + i(k22 − k11) 2ie−iϕ

2ieiϕ k12 + k21 − i(k22 − k11)

)
,

and it has −1 as its eigenvalue if and only if k12 = 0.

Proof. If k12 �= 0, then, from proposition 2.2, U(eiϕK) ∈ U1 and

U(eiϕK) = [I − iA(eiϕK)][I + iA(eiϕK)]−1

due to (2.2). This leads to the expression, as required. Obviously, this expression
extends smoothly to the k12 = 0 case.

Note that det[I + U(eiϕK)] = 0 is equivalent to

k12[k12 − k21 + i(k22 + k11)] = 0,

which holds if and only if k12 = 0.

For the case in which k12 = 0, we also have the following proposition.

Proposition 2.4. If in the coupled case k12 = 0, then in terms of r, ω, γ the
matrix eiϕK is determined by (without loss of generality, we set k11 > 0)

k11 =
√

1 − r2 cos2 ω + r sin ω√
1 − r2

,

k21 =
−2r cos ω√

1 − r2
,

eiϕ = e−i(γ+π/2).
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Proof. In terms of r, ω, γ the associated boundary condition is

y(1) =
√

1 − r2 cos2 ω + r sin ω√
1 − r2

e−i(γ+π/2)y(0), (2.6)

y′(1) = − 2r cos ω√
1 − r2

e−i(γ+π/2)y(0) +
√

1 − r2 cos2 ω − r sin ω√
1 − r2

e−i(γ+π/2)y′(0). (2.7)

Comparing this with (1.3), we get the conclusion.

U0 has been investigated in another way in the literature. From the above dis-
cussion, it is easy to see that U0 is actually the set JC in [5].

Remark. No matter whether k12 = 0 or not, the eigenvalues of U(eiϕK) are inde-
pendent of ϕ. So for a fixed K, U(eiϕK), ϕ ∈ [0, 2π), all lie in the same adjoint
orbit, tracing out a circle. There is a beautiful inequality among eigenvalues of SL
problems when the boundary condition varies only on this circle [4].

2.2. Adjoint orbits

Let H ⊂ U(2) be the Cartan subgroup as in the last section, and let W (∼= Z2)
be the corresponding Weyl group. Then the quotient H/W is a two-dimensional
manifold with boundary – in fact, it is topologically the famous Möbius strip.
H/W can be viewed as the space of adjoint orbits in U(2), with each interior point
representing an adjoint orbit of principal type and with each point on the boundary
representing an adjoint orbit consisting of a single matrix. In this sense, a generic
adjoint orbit is diffeomorphic to S2. Let Π : U(2) → H/W be the quotient map.
We refer the reader to [9] for the basics of compact Lie groups.

Since both U0 and U1 are invariant under the adjoint action, an adjoint orbit
would lie entirely in either U0 or U1. This, of course, leads to a more refined classifi-
cation of SA boundary conditions – each adjoint orbit represents a subclass. In this
section we mainly consider orbits of principal type. These are in fact real analytic
two-dimensional manifolds.

By (2.2), U1 is diffeomorphic to the space M of 2 × 2 Hermitian matrices, and
the adjoint action of U(2) on U1 corresponds to the one on M. This way we can
identify adjoint orbits in U1 with adjoint orbits in M. An adjoint orbit O ⊂ M is
characterized by its eigenvalues ζ1 > ζ2. Let µ = 1

2 (ζ1 + ζ2), ν = 1
2 (ζ1 − ζ2) and

denote the adjoint orbit by Oµ,ν .

Proposition 2.5. A general element in Oµ,ν is of the form

A =
(

µ − ν cos 2θ ν sin 2θe−iγ

ν sin 2θeiγ µ + ν cos 2θ

)
, γ ∈ [0, 2π), θ ∈ [0, 1

2π].

Proof. Oµ,ν is the adjoint orbit through(
µ − ν 0

0 µ + ν

)
.

Then each element in Oµ,ν can be represented by(
a b

−b̄ ā

) (
µ − ν 0

0 µ + ν

) (
a b

−b̄ ā

)−1

,
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for some (
a b

−b̄ ā

)
∈ SU(2).

We can even further require that a � 0. Setting a = cos θ, θ ∈ [0, 1
2π], and b =

sin θe−iγ then leads to the representation.

Remark. From proposition 2.2 we can see that γ essentially contains the same
geometric content as ϕ in (1.3). Note that θ = 0, 1

2π actually correspond to the
only two separated boundary conditions in Oµ,ν . It is easy to find that in Oµ,ν real
boundary conditions lie precisely on the circle formed by the two semicircles γ = 0
and γ = π. It will soon be clear that this is a general property of orbits of principal
type.

An adjoint orbit in U0 is determined by the other eigenvalue eiχ (χ ∈ [0, π) ∪
(π, 2π)) not equal to −1. We shall denote the orbit by Oχ. Since, in this case,

trU = eiθ(a + ā) = −1 + eiχ,

we find that Re a = sin 1
2χ if χ ∈ [0, π), and Re a = − sin 1

2χ if χ ∈ (π, 2π).

Proposition 2.6. For χ ∈ [0, π), a general element of Oχ is of the form

U = ieiχ/2

⎛
⎝ sin 1

2χ + it
√

cos2 1
2χ − t2 eiγ

−
√

cos2 1
2χ − t2 e−iγ sin 1

2χ − it

⎞
⎠ ,

where t ∈ [− cos 1
2χ, cos 1

2χ] and γ ∈ [0, 2π).
For χ ∈ (π, 2π), a general element of Oχ is of the form

U = −ieiχ/2

⎛
⎝ − sin 1

2χ + it
√

cos2 1
2χ − t2 eiγ

−
√

cos2 1
2χ − t2 e−iγ − sin 1

2χ − it

⎞
⎠ ,

where t ∈ [cos 1
2χ,− cos 1

2χ] and γ ∈ [0, 2π).

Proof. By (2.5),
eiθ = − sin 1

2χ + i cos 1
2χ = ieiχ/2

if χ ∈ [0, π), and
eiθ = sin 1

2χ − i cos 1
2χ = −ieiχ/2

if χ ∈ (π, 2π). The conclusion then easily follows.

3. The characteristic curve

The characteristic curve Γ : R → U(2) is a parametrized curve, the image of which
consists of all SA boundary conditions having a double eigenvalue. This curve con-
tains all information concerning eigenvalues of SA boundary conditions (of course,
if one puts eigenfunctions aside) [6].
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From (2.1), it is easy to find that Γ is of the form5

Γ (λ) =
1

y2 − ẏ1 + iẏ2 + iy1

(
y2 + ẏ1 + iẏ2 − iy1 2i

2i y2 + ẏ1 − iẏ2 + iy1

)
,

where λ ∈ R. The image of Γ is completely included in UR. Π ◦Γ is a curve in H/W ,
which we call the induced curve of Γ , and is characterized by the two eigenvalues
of Γ (λ), say,

κ±(λ) =
y2 + ẏ1 ± i

√
4 + (ẏ2 − y1)2

y2 − ẏ1 + iẏ2 + iy1
.

Proposition 3.1. In terms of Γ (λ), the characteristic equation for an SA bound-
ary condition U can be written in the form

det(U − Γ (λ)) = 0. (3.1)

The subset Sλ ⊂ U of boundary conditions with λ as an eigenvalue is diffeomorphic
to U0.

Proof. U(2) acts on itself by left translation and Sλ can be represented as −Γ (λ)U0.
By (3.1), Sλ is diffeomorphic to U0, i.e. a 3-sphere with two points glued together.
This observation was already noted in [6], but in more complicated language.

Corollary 3.2. The matrix Γ (λ) has −1 as an eigenvalue if and only if λ =
λD

n for some n ∈ N. Therefore, the characteristic curve Γ intersects U0 countably
infinite times.

Proof. This is obvious.

Remark. However, the above result does not mean that Γ has infinitely many
intersection points with U0. In addition, −1 can be replaced by eiθI, θ ∈ [0, 2π),
and a similar result holds.

Example 3.3. Let q ≡ 0. Then, for λ > 0,

y1(x, λ) = cos
√

λx, y2(x, λ) =
sin

√
λx√

λ
.

The two eigenvalues of Γ (λ) are

κ±(λ) =
(1/

√
λ −

√
λ) sin

√
λ ± 2i

(1/
√

λ +
√

λ) sin
√

λ + 2i cos
√

λ
.

For the Dirichlet boundary condition, λD
n = (n+1)2π2, κ±(λD

n ) = ±(−1)n+1. So in
this case, the intersection points of Γ and U0 all lie in the orbit through(

1 0
0 −1

)
.

5 An eigenfunction should be of the form ay1(x) + by2(x) for constants a, b. Then (2.1) reduces
to an equation of the form (U − Γ (λ))

(a
b

)
= 0, which implies that the coefficient matrix U − Γ (λ)

should be zero for a double eigenvalue.
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In fact, there are only two such points, i.e.

±
(

0 1
1 0

)
.

Since the space H/W parametrizing all adjoint orbits is of dimension 2, and the
induced curve of Γ is analytic and, of course, of dimension 1, the characteristic
curve Γ would not intersect a generic adjoint orbit of principal type.

4. λn as functions on adjoint orbits of principal type

In this section, by adjoint orbits we will always mean those of principal type. We
mainly consider adjoint orbits that have no point in common with the characteristic
curve Γ . From the previous section, we know a generic adjoint orbit is of this kind.
We denote by λN

n the nth eigenvalue of the Neumann boundary condition.
For the orbit Oµ,ν , by (2.4) the corresponding characteristic equation is

(µ − ν cos 2θ)ẏ2 + (ν2 − µ2)y2 + (µ + ν cos 2θ)y1 − ẏ1 = −2ν sin 2θ cos γ. (4.1)

Lemma 4.1. Let λ+
n and λ−

n be the nth eigenvalues of the boundary conditions

ẏ(0) = (µ − ν)y(0), ẏ(1) = (µ − ν)y(1)

and
ẏ(0) = (µ + ν)y(0), ẏ(1) = (µ + ν)y(1)

respectively. Then the function λn on Oµ,ν satisfies

λ−
n � λn � λ+

n .

In particular, by the continuity principle, λn is continuous on Oµ,ν .

Proof. For A ∈ Oµ,ν , the associated quadratic form is

Q(y) =
∫ 1

0
|y′|2 dx +

∫ 1

0
q(x)|y|2 dx − ψ†Aψ, y ∈ H1,

where H1 is the Sobolev space W1,2(J).
Note that

ψ†Aψ = µ|ψ|2 + (|y(1)|2 − |y(0)|2)ν cos 2θ + 2ν Re[ȳ(0)y(1)e−iγ ] sin 2θ.

By the inequality 2|ab| � |a|2 + |b|2, we have

2 Re[ȳ(0)y(1)e−iγ ] sin 2θ � (1 + cos 2θ)|y(0)|2 + (1 − cos 2θ)|y(1)|2

and

2 Re[ȳ(0)y(1)e−iγ ] sin 2θ � −(1 − cos 2θ)|y(0)|2 − (1 + cos 2θ)|y(1)|2.

Therefore, we come to the estimation

(µ − ν)|ψ|2 � ψ†Aψ � (µ + ν)|ψ|2.

The conclusion then follows from the variational characterization of λn(A) – the
min–max principle.
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Remark. The boundedness of λn on Oµ,ν is actually a conclusion of [5] that λn

is continuous on U1, together with the fact that S2 is compact. Conversely, minor
modification of the proof of lemma 4.1 gives another proof that λn is continuous
on U1.

Proposition 4.2. λn is a continuous function on U1.

Proof. For any given A0 ∈ U1, let Oµ0,ν0 be the orbit through A0 (we allow ν0 to
be 0 here). Then, for δ > 0, the set

Vδ =
⋃

µ+ν<µ0+ν0+δ

Oµ,ν

is an open neighbourhood of A0. Note that, for A ∈ Vδ,

(µ0 + ν0 + δ)|ψ|2 � ψ†Aψ.

The min–max principle implies that λ0 is bounded from below on Vδ, and thus λn

is continuous on Vδ and, in particular, continuous at A0.

Theorem 4.3. Assume that Oµ,ν has no point in common with Γ . Then, for each
n, λn as a function on Oµ,ν is real analytic, and has exactly two critical points. Let
[an, bn] be the range of λn on Oµ,ν . Then, for each n,

an < bn < an+1 < bn+1.

These an, bn, n = 0, 1, 2, . . . , are exactly roots of

ν2(ẏ2 − y1)2 + 4ν2 = [µ(ẏ2 + y1) + (ν2 − µ2)y2 − ẏ1]2. (4.2)

Proof. Denote the left-hand side of (4.1) by D(λ, p), viewed as a function on R ×
Oµ,ν . Since Oµ,ν has no point in common with Γ , (∂D/∂λ)|(λn(p),p) �= 0 for any
p ∈ Oµ,ν . In addition, D(λ, p) and the right-hand side of (4.1) are real analytic
functions on R × Oµ,ν . So, by the implicit function theorem, λn is a real analytic
function on Oµ,ν .

It is easy to find that for a critical point p, we must have sin γ = 0. This implies
that all critical points must lie on the circle C0 formed by the two semicircles γ = 0
and γ = π. So, to find all critical points of λn on Oµ,ν , we only need to find all
critical points of λn on C0. Now consider the characteristic equation restricted on
C0, i.e.

ν(ẏ2 − y1) cos 2θ − 2ν sin 2θ = µ(ẏ2 + y1) + (ν2 − µ2)y2 − ẏ1, (4.3)

where θ ∈ (− 1
2π, 1

2π]. For a given λ ∈ R, there are at most two values of θ satisfying
the above equation. It is an elementary calculation to show that λn has no degen-
erate critical point. These together imply that there are at most two critical points
of λn as a function on C0. Since C0 is compact, we know that there are precisely
two critical points, one the maximizer and the other the minimizer.

Any critical value κ of λn must satisfy (4.2). Conversely, it is not hard to find
that any root κ of (4.2) must be a critical value of some λn. By the uniqueness of
minimizer and maximizer, κ = an or bn.
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If an+1 = λn+1(p0) for some p0 ∈ C0, then

an+1 > λn(p0) � an.

We only need to check that an+1 > bn. If this is not the case, then an+1 ∈ (an, bn]
and there is another point p1 ∈ C0 such that

λn(p1) = an+1 = λn+1(p0).

If p1 = p0, this means that an+1 is a double eigenvalue of the boundary condition
p0, contradicting that Γ has no point in common with Oµ,ν ; if p1 �= p0, then, for
λ = an+1, at least two different values of θ satisfy (4.3). This contradicts the fact
that an+1 is the unique minimum of λn+1. The proof is then complete.

Example 4.4. Let q ≡ 0. Then for λ > 0 (4.3) is

−2ν sin 2θ = 2µ cos
√

λ + (ν2 − µ2)
sin

√
λ√

λ
+

√
λ cos

√
λ.

The common critical points of all λn such that λn > 0 are θ = ±π
4 . Equation (4.2)

is now

2µ cos
√

λ + (ν2 − µ2)
sin

√
λ√

λ
+

√
λ cos

√
λ = ±2ν.

If µ = ν, then the above equation obtains the more accessible form

cos
√

λ = ± 2ν

2ν +
√

λ
.

From [5, theorem 3.73], we can derive that nearly all points in U0 are discontinuity
points of λn as a function on U(2). This, of course, does not exclude the possibility
that λn is continuous on adjoint orbits lying in U0.

For the orbit Oχ with χ ∈ [0, π), the associated characteristic equation is

(− cos 1
2χ + t)ẏ2 + (− cos 1

2χ − t)y1 − 2 sin 1
2χy2 = 2 cos(γ + 1

2π)
√

cos2 1
2χ − t2.

Lemma 4.5. On the orbit Oχ with χ ∈ [0, π),

λn � λN
n , n = 0, 1, 2, . . . .

In particular, by the continuity principle, λn is continuous on Oχ.

Proof. If t �= cos 1
2χ, the associated quadratic form is

Q1(y) =
∫ 1

0
|y′|2 dx +

∫ 1

0
q(x)|y|2 dx +

2 sin 1
2χ

cos 1
2χ − t

|y(0)|2, y ∈ H1
γ,t,

where

H1
γ,t =

{
y ∈ H1

∣∣∣∣ y(1) = e−i(γ+π/2)

√
cos 1

2χ + t

cos 1
2χ − t

y(0)
}

⊂ H1.

Note that in this case, by the min–max principle,

λn = min
Sn+1⊂H1

γ,t

max
y∈Sn+1−{0}

Q1(y)
‖y‖2 ,
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where Sn+1 ranges over all (n + 1)-dimensional subspaces of H1
γ,t. Since

min
Sn+1⊂H1

γ,t

max
y∈Sn+1−{0}

Q1(y)
‖y‖2 � min

Sn+1⊂H1
γ,t

max
y∈Sn+1−{0}

Q0(y)
‖y‖2 ,

where Q0(y) =
∫ 1
0 |y′|2 dx +

∫ 1
0 q(x)|y|2 dx, and

λN
n = min

Sn+1⊂H1
max

y∈Sn+1−{0}

Q0(y)
‖y‖2 ,

where Sn+1 ranges over all (n + 1)-dimensional subspaces of H1, we must have

λn � λN
n .

If t = cos 1
2χ, the associated quadratic form is

Q2(y) =
∫ 1

0
|y′|2 dx +

∫ 1

0
q(x)|y|2 dx + tan 1

2χ|y(1)|2, y ∈ H1, y(0) = 0.

A similar argument then leads to the inequality λn � λN
n .

Corollary 4.6. Let Ω :=
⋃

χ∈[0,π) Oχ. Then λn are continuous functions on Ω.

Proof. Note that λN
0 is independent of the orbit parameter χ. The inequality in

lemma 4.5 holds uniformly on Ω. By the continuity principle, the conclusion follows.

Theorem 4.7. Assume that Oχ with χ ∈ [0, π) has no point in common with Γ .
Then, on Oχ, λn is real analytic, and has exactly two critical points. Let [an, bn] be
the range of λn on Oχ. Then, for each n,

an < bn < an+1 < bn+1.

These an, bn, n = 0, 1, 2, . . . , are exactly roots of

(y1 − ẏ2)2 + 4 = (ẏ2 + y1 + 2y2 tan 1
2χ)2. (4.4)

Proof. Let t = cos 1
2χ sin τ , τ ∈ [− 1

2π, 1
2π]. Then the characteristic equation be-

comes

2 cos(γ + 1
2π) cos τ + (1 − sin τ)ẏ2 + (1 + sin τ)y1 + 2y2 tan 1

2χ = 0.

Then the argument in the proof of theorem 4.3 still holds. We omit the details
here.

For the orbit Oχ with χ ∈ (π, 2π), the corresponding characteristic equation is

(cos 1
2χ + t)ẏ2 + (cos 1

2χ − t)y1 + 2 sin 1
2χy2 = 2 cos(γ + 1

2π)
√

cos2 1
2χ − t2. (4.5)

Lemma 4.8. On the orbit Oχ with χ ∈ (π, 2π), λ0 is bounded from below. In par-
ticular, by the continuity principle, λn is continuous on Oχ.
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Proof. We only need to prove that for λ sufficiently negative (4.5) cannot hold for
any γ and t. For this purpose, we should use the following estimations for λ = −s2

(s > 0) sufficiently negative:

y1(1, λ) = cosh s + O

(
es

s

)
, y2(1, λ) =

sinh s

s
+ O

(
es

s2

)
,

ẏ2(1, λ) = cosh s + O

(
es

s

)
.

These results are not hard to obtain from [7, theorems 1.2.1 and 1.2.2, ch. 1]. Note
that unlike in the previous situation, the continuity of q is used to obtain these
estimations.

Divide the left-hand side of (4.5) by cosh s. Then for s sufficiently large, the
result is less than cos 1

2χ. Divide the right-hand side of (4.5) by cosh s. Then for s
sufficiently large, the result is greater than cos 1

2χ. This is exactly what we want.

Remark. For t < − cos 1
2χ, the associated quadratic form is

Q1(y) =
∫ 1

0
|y′|2 dx +

∫ 1

0
q(x)|y|2 dx +

2 sin 1
2χ

cos 1
2χ + t

|y(0)|2, y ∈ H1
γ,t,

where

H1
γ,t =

{
y ∈ H1

∣∣∣∣ y(1) = e−i(γ+π/2)

√
− cos 1

2χ + t

− cos 1
2χ − t

y(0)
}

⊂ H1.

The argument in the proof of lemma 4.5 fails to hold. The situation is similar for
t = − cos 1

2χ. This is the reason that we have turned to the several estimations in
the proof of lemma 4.8.

Theorem 4.9. Assume that Oχ with χ ∈ (π, 2π) has no point in common with Γ .
Then, on Oχ, λn is real analytic and has exactly two critical points. Let [an, bn] be
the range of λn on Oχ. Then, for each n,

an < bn < an+1 < bn+1.

These an, bn, n = 0, 1, 2, . . . , are exactly roots of

(y1 − ẏ2)2 + 4 = (ẏ2 + y1 + 2y2 tan 1
2χ)2. (4.6)

Proof. The proof is similar to that of theorem 4.7 and we omit the details.

Remark. In [4] Eastham et al . obtained a general inequality among eigenvalues
of different coupled boundary conditions. In fact, these boundary conditions lie on
the circle parametrized by γ in our adjoint orbit O. In [2] this inequality was re-
derived via variational characterization of the eigenvalues. To a certain extent, our
inequality an < bn < an+1 < bn+1 can be viewed as an extension in this direction
– we consider an adjoint orbit rather than a circle in it.

Example 4.10. Let q ≡ 0. Then, for λ > 0, the equation in theorem 4.7 or theo-
rem 4.9 is

cos
√

λ +
sin

√
λ√

λ
tan 1

2χ = ±1.

The critical points are t = 0 and γ = 0 or π.
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To conclude this section we will find out the level set Λκ in an adjoint orbit O
consisting of boundary conditions with κ as an eigenvalue.

Theorem 4.11. Let O be an adjoint orbit and let p0 ∈ O. If λn(p0) = κ for some
n, then the level set Λκ is a set either consisting of a single point or diffeomorphic
to a circle.

Proof. Let ζ1 �= ζ2 be the two eigenvalues of O ⊂ U(2), and let �1 �= �2 be the two
eigenvalues of Γ (κ). The general element of O is of the form

U(x, γ) =
(

ζ1x + ζ2(1 − x) (ζ2 − ζ1)
√

x(1 − x)eiγ

(ζ2 − ζ1)
√

x(1 − x)e−iγ ζ1(1 − x) + ζ2x

)
,

where x ∈ [0, 1], γ ∈ [0, 2π). The level set Λκ ⊂ O is characterized by the equation
det(U(x, γ) − Γ (κ)) = 0. Since we are only interested in the shape of Λκ, we can
safely set

Γ (κ) =
(

�1 0
0 �2

)
.

This implies that

x = − (ζ2 − �1)(ζ1 − �2)
(�1 − �2)(ζ2 − ζ1)

,

1 − x =
(ζ1 − �1)(ζ2 − �2)
(�1 − �2)(ζ2 − ζ1)

.

If at least one of ζ1, ζ2 coincides with �1 or �2, then x or 1 − x equal 0 and Λκ

consists only of the point

p =
(

ζ1 0
0 ζ2

)
or

(
ζ2 0
0 ζ1

)
.

If ζ1, ζ2 are both different from �1 and �2, then both x and 1−x are non-zero and
determined by these values. It follows that Λκ is diffeomorphic to S1, parametrized
by γ.

Remark. If O has no point in common with Γ , then, from our previous result, Λκ

is actually the level-κ set of λn. If κ = an or bn, then Λκ consists of the minimizer
or maximizer of λn. For other values of κ, Λκ are all diffeomorphic to S1.

5. λn as functions on the boundary circle of H/W

In the previous sections we have mainly analysed the behaviour of the λn as func-
tions on generic adjoint orbits represented by interior points in H/W . However,
attention should also be paid to points on the boundary circle ∂(H/W ) – impor-
tant boundary conditions, such as the Dirichlet, Neumann and Robin boundary
conditions, lie on this circle. In this section we shall consider the λn as functions
on ∂(H/W ). Note that ∂(H/W ) can be naturally viewed as the diagonal circle Sd

of H, consisting of matrices of the form eiθI.
It is known that the range of λn on U(2) is the same as that of λn on H [5], and

the range is closely related to the eigenvalues of the Dirichlet boundary condition.
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Since H is two dimensional, it is possible to determine this range by restricting λn

on Sd. Let Λn,κ ⊂ H be the nth level-κ curve on H, i.e. the subset of boundary
conditions in H whose nth eigenvalue is κ; see [5]. Then we have the following
theorem.

Theorem 5.1. The range of λn on U(2) is the same as that of λn on Sd. More
precisely, Sd intersects Λn,κ at a unique point.

Proof. The proof is based on [3, theorem 2.2], where in fact the level curve Λn,κ ⊂ H
is characterized.

In [3], boundary conditions in H are written in the form of (1.2). It is easy to find
that the diagonal of H corresponds to α, β satisfying α + β = π. The level curve
Λn,κ ⊂ H can be written as

{(α, β) ∈ [0, π) × (0, π] | α = f(β), β ∈ J0},

where the precise form of the interval J0 ⊂ (0, π] depends on whether κ > λD
n−1

or not, and the function f is strictly increasing on J0. So if Sd intersects Λn,κ, the
intersection point is unique. As for the existence of the intersection point, it can be
derived easily from the argument of [3]; see figure 1 therein.

Remark. It should be pointed out that in [3] there is another ‘diagonal’ C in H
(see (1.10) in [3]), which is different from ours. C corresponds to α, β satisfying
α = β, rather than α+β = π. Theorem 5.1 does not hold when Sd is replaced by C.

Corollary 5.2. If Sd is parametrized by β ∈ (0, π] (so α = π −β), then, for each
n, λn as a function of β is strictly increasing and continuous.

Proof. That λn is continuous can be derived from [2, lemma 2.1]. For β ∈ (0, π),
the associated quadratic form is

Qβ(y) =
∫ 1

0
|y′|2 dx +

∫ 1

0
q(x)|y|2 dx − cot β|ψ|2, y ∈ H1,

and the strict monotonicity of λn is a conclusion of the min–max principle and
theorem 5.1.

6. Conclusion

In this brief section, we address generalizing the previous results to more general
coefficients p and q in (1.1), i.e.

1/p, q are Lebesgue integrable on (0, 1) and p > 0 almost everywhere on [0, 1].

Our previous investigation was based on the formulation of SA boundary con-
ditions in the form of (2.1), the several characteristic equations, and the min–max
characterization of eigenvalues. It can be seen that, for more general p, q as men-
tioned above, the form of the SA boundary conditions (see [1]) and the several
characteristic equations are preserved in the sense that only ẏ should be replaced
by pẏ. The min–max principle also holds in the more general context except that
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the Sobolev space H1 should be replaced by a weighted Sobolev space H1
p whose

norm is given by

|y|2p =
∫ 1

0
[p(x)|y′(x)|2 + |y(x)|2] dx,

and Q0(y) should be replaced by
∫ 1
0 p(x)|y′(x)|2 dx +

∫ 1
0 q(x)|y(x)|2 dx. Note that

the boundary contribution in the quadratic form Q(y) is completely determined by
the boundary condition U .

The work in §§ 2 and 3 only depended on the particular form of the boundary
conditions, and so results there could be generalized directly. In § 4, when proving
that λn are real analytic, besides the characteristic equations and the min–max
principle, one should also use the additional fact that y1/2(1, λ), ẏ1/2(1, λ) are ana-
lytic functions of λ. The corresponding property still holds in the general case;
see [10, theorem 2.5.3]. So the discussion in §§ 4 and 5 extends to the more gen-
eral setting except for lemma 4.8 and theorem 4.9 (These two are based on some
estimations that involve the continuity of q and p ≡ 1).
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8 K. Schmuedgen. Unbounded self-adjoint operators on Hilbert space, Graduate Texts in

Mathematics, vol. 265 (Springer, 2012).
9 M. R. Sepanski. Compact Lie groups, Graduate Texts in Mathematics, vol. 235 (Springer,

2007).
10 A. Zettl. Sturm–Liouville theory (Providence, RI: American Mathematical Society, 2005).

https://doi.org/10.1017/S0308210517000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000105



