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Turbulent miscible fountains discharged vertically from a round source into quiescent
uniform unbounded environments of density ρ0 are investigated numerically using
large-eddy simulations. Both upward and downward fountains are considered. The
numerical simulations cover a wide range of the density ratio ρi/ρ0, where ρi is the
source density of the released fluid. These simulations are used to evaluate how the
initial maximum height Hi and the steady state height Hss of the fountains are affected
by large density contrasts, i.e. in the general non-Boussinesq case. For both upward
and downward non-Boussinesq fountains, the ratio λ=Hi/Hss remains close to 1.45,
as usually observed for Boussinesq fountains. However the Froude (linear) scaling
originally introduced by Turner (J. Fluid Mech., vol. 26 (4), 1966, pp. 779–792) for
Boussinesq fountains is no longer valid to determine the steady fountain height. The
ratio between Hss and the height predicted by the Turner’s relation turns out to be
proportional to (ρi/ρ0)

n. Remarkably, it is found that the power exponent n differs
following the direction in which the buoyant fluid is released (n= 1/2 for downward
fountains and n = 3/4 for upward fountains). This new result demonstrates that for
non-Boussinesq turbulent fountains the configurations heavy/light and light/heavy
are not equivalent. Finally, scalings are proposed for fountains, regardless of the
direction (upwards and downwards) and of the density difference (Boussinesq and
non-Boussinesq).

Key words: plumes/thermals

1. Introduction

A buoyant fluid injected vertically forms a fountain when the buoyancy opposes
its momentum. Such flows are commonly encountered in geophysical flows (Carazzo,
Kaminski & Tait 2008), thermal comfort issues (Baines, Turner & Campbell 1990),
safety engineering or industrial processes (Ricciardi et al. 2008). For more details, in
a recent review, Hunt & Burridge (2015) outline the wide occurrence of fountains in
nature and industry.
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FIGURE 1. Sketch of the (a) initial upflow and (b) steady state of a turbulent fountain
during (c) the corresponding typical time evolution of the penetration height.

As depicted in figure 1(a), during its initial transient phase, the momentum of a
fountain competes with the opposite buoyancy until the fountain reaches a null vertical
velocity at a maximum initial height Hi. Then, at this height, an annular downflow
settles with a density higher than the ambient and surrounds the upflow. A steady
state is then reached and the penetration height of the fountain stabilizes at a value
Hss generally lower than the initial value Hi (see figure 1b). The typical time evolution
of the fountain is depicted in figure 1(c).

In the present study, we shall distinguish between upward and downward fountains:
upward (respectively downward) fountains refer to the release of a fluid in a lighter
(respectively heavier) ambient. In the literature, many experiments focusing either
on upward fountains (Turner 1966; Baines et al. 1990; Pantzlaff & Lueptow 1999;
Burridge & Hunt 2012) or on downward fountains (Seban, Behnia & Abreu 1978;
Cresswell & Szczepura 1993; Papanicolaou & Kokkalis 2008) have been realized.
These experiments were all carried out for modest density contrasts between the
ambient and the release, i.e. for so-called Boussinesq fountains. For such fountains,
when the conditions at the source are similar (in terms of volume, momentum and
buoyancy fluxes), there are no differences between the penetration heights of an
upward fountain and those of a downward fountain. Thus, the question is whether
some differences might be observed in the case of significant density contrasts
between the ambient and the release, i.e. for so-called non-Boussinesq fountains. This
is the aim of the present paper.

The paper is organized as follows. In § 2, some of the fundamentals of turbulent
fountains are presented. Our numerical model is described in § 3. The results of the
simulations are presented and discussed in § 4. Finally, conclusions are offered in § 5.

2. Fundamentals of turbulent fountains

As a pioneering work, Turner (1966) studied experimentally and theoretically the
reversing buoyant jets and plumes for the special case of cumulus clouds. Based
on a dimensional analysis considering both buoyancy and momentum fluxes, one of
Turner’s main results is the linear scaling of the steady dimensionless height Hss/bi

with the Boussinesq source Froude number Fr:

Fr=
wi
√

gηibi
, (2.1)
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where g is the gravitational acceleration and wi, bi and ηi are respectively the velocity,
the radius and the relative density difference of the discharge at the source location.
The density deficit is defined by ηi=|ρi−ρ0|/ρ0, where ρi is the source density of the
release and ρ0 that of the ambient. By widening the range of Froude numbers (0.56.
Fr . 11.8) studied by Turner (1966) to larger values of Fr, many other experimental
works (including Seban et al. 1978; Baines et al. 1990; Cresswell & Szczepura 1993;
Zhang & Baddour 1998; Pantzlaff & Lueptow 1999; Kaye & Hunt 2006) confirmed
the linear scaling Hss/bi∝Fr for large source Froude numbers (Fr&3) with a constant
of proportionality lying between 2.10 and 2.46.

Also of interest is the initial rise of the fountain up to its maximum initial height Hi.
Extending the original theoretical work of Morton, Taylor & Turner (1956) to forced
plumes with negative buoyancy, Morton (1959) demonstrated that the dimensionless
height Hi/bi is also proportional to the source Froude number Fr. As a consequence,
the ratio λ = Hi/Hss turns out to be a constant: both experiments (Turner 1966;
Pantzlaff & Lueptow 1999; Burridge & Hunt 2012) and theoretical works (Bloomfield
& Kerr 2000; Mehaddi et al. 2015b) have found λ ∼ 1.43 for values of the source
Froude number larger than 5.5. For lower values of the source Froude number and
based on the evolution of Hss/bi and λ with Fr, the need for a classification of the
Boussinesq turbulent axisymmetric fountains appeared within the works of Zhang
& Baddour (1998) and Kaye & Hunt (2006). Zhang & Baddour (1998) identified
two regimes, weak and forced, and Kaye & Hunt (2006) added a third regime (very
weak). Recently, Burridge & Hunt (2012) proposed in their experimental work a more
detailed classification into five regimes according to the value of the source Froude
number Fr: very weak (Fr . 1.0), weak (1.0.Fr . 1.7), intermediate (1.7.Fr . 2.8),
forced (2.8.Fr . 5.5) and highly forced (Fr & 5.5). Each class encompasses a steady
height dependency on Fr and a range of λ. Burridge & Hunt (2012) also showed that
the rise height ratio λ is found to be constant, λ = 1.45, only for the highly forced
regime and could decrease down to 1.0 for the forced regime. However, for both
the forced and highly forced regime, Burridge & Hunt (2012) confirmed the linear
scaling by Turner (1966) which reads

Hss/bi = 2.46Fr. (2.2)

In comparison with experimental works, numerical simulations of turbulent fountains
are more scarce in the literature. Recently, we note the studies by direct numerical
simulations of very weak and weak fountains over the range 0.1 6 Fr 6 2.1 by
Williamson, Armfield & Lin (2010) and the forced fountain flow regime for Fr = 4
and 7 by Williamson, Armfield & Lin (2011). In the latter, the steady penetration
height of the fountains is found to collapse on the Hss/bi= 2.46Fr curve. In addition,
the morphology of the fountain is highlighted, as well as a detailed description
of the dynamics of the flow. In the recent theoretical work of Mehaddi et al.
(2015b), inspired by Carazzo, Kaminski & Tait (2010), high-Froude-number turbulent
fountains are considered and a model accounting for the effect of the downflow on
the fountain upflow is derived. In order to determine the constants of the model, this
work is supported by large-eddy simulations. Again, the model allows the relation
Hss/bi = 2.46Fr and the ratio λ= 1.43 to be recovered.

All the mentioned studies (experimental, theoretical or numerical) have considered
the Boussinesq approximation and have been carried out for upward or downward
fountains. In all the cases, we do not notice any difference in the correlations.

Actually, unlike the Boussinesq case, negatively non-Boussinesq buoyant releases
have received much less attention. We only note the works of Baddour & Zhang
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(2009) and Mehaddi, Vauquelin & Candelier (2015a). Baddour & Zhang (2009)
studied experimentally round hypersaline upward turbulent fountains in the highly
forced regime over the range Fr = 7.6 − 45.6 and a relative density difference
variation, 1ρ/ρ0 = 0.001 − 0.1. They measured the penetration height and obtained
a relation Hss/bi = f (1ρ/ρ0)Fr with f (1ρ/ρ0) approximately equal to a constant
for 1ρ/ρ0 6 0.003 before monotonically declining by 15 % at the maximum for
1ρ/ρ0 = 0.1. The recent experimental work by Mehaddi et al. (2015a) focuses on
downward air–helium fountains in ambient air over a wide range of density ratio
0.13 < ρi/ρ0 < 0.96 and Froude number 0.2 < Fr < 64. These authors extend the
classical Boussinesq height Hss correlations provided that the (Boussinesq) Froude
number Fr is multiplied by (ρi/ρ0)

1/2. As previously used by several authors (Crapper
& Baines (1978), Michaux & Vauquelin (2008) for plumes and Mehaddi et al. (2015a)
for fountains), the following generalized (non-Boussinesq) Froude number FrNBd is
introduced:

FrNBd =

(
ρi

ρ0

)1/2

Fr=
wi√
gη′ibi

, (2.3)

where η′i = (ρ0 − ρi)/ρi is the density difference relative to the source density
ρi. By plotting the experimental steady state height Hss/bi as a function of the
non-Boussinesq Froude number FrNBd , they find a linear relation, Hss/bi = 2.58FrNBd

(note that the form of the relation is similar to the Boussinesq situation, where the
Boussinesq Froude number Fr has been replaced by the downward non-Boussinesq
Froude number FrNBd and the proportionality constant 2.46 by 2.58). However, in
the appendix of their paper, they show that if we consider the classical correction
of the entrainment coefficient α for the non-Boussinesq plumes (Ricou & Spalding
1961; Rooney & Linden 1996; Michaux & Vauquelin 2008; Van den Bremer &
Hunt 2010), the Froude number has to be multiplied by a density ratio (ρi/ρ0)
exhibiting an exponent greater than 1/2, namely 3/4. We can therefore imagine that
some non-Boussinesq effects can modify the nature of the correlations following the
direction of injection (upwards or downwards). To answer this question and to extend
the results of Mehaddi et al. (2015a), numerical simulations are carried out for both
downward and upward non-Boussinesq fountains. These numerical simulations are
described in the following section.

3. Numerical simulations

We consider vertical, isothermal and continuous releases of gas mixtures to simulate
downward and upward non-Boussinesq turbulent miscible fountains. For the downward
case, simulations have been carried out for a density ratio ρi/ρ0 ranging from 0.05 to
0.8. For the upward case, the density contrast varies between 1.52 and 12. A total of
around forty simulations were achieved over the range 4.0 . Fr . 29 corresponding
originally to the forced or highly forced Boussinesq regime. In all the simulations,
the Reynolds number based on the source diameter is set to Re= 4000 (see table 2
in appendix C for the source parameters of the fountain simulations).

To simulate numerically a turbulent fountain, we use large-eddy simulations to
solve the Favre-filtered Navier–Stokes equations (mass and momentum balance)
along with species transport equations. We use the numerical computational code
CALIF3S-ISIS (software developed at the French Institut de Radioprotection et de
Sûreté Nucléaire (IRSN)), dedicated to three-dimensional simulations of turbulent
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and slightly compressible flows (low-Mach-number approach). The three-dimensional
filtered Navier–Stokes equations in Cartesian coordinates are as follows:

∂ρ

∂t
+
∂(ρũi)

∂xi
= 0, (3.1)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj
=−

∂p
∂xi
+
∂Sij

∂xj
+ (ρ0 − ρ)gi −

∂τij

∂xj
, (3.2)

where ũi is the Favre-filtered velocity and p is the dynamic pressure. The density
ρ is the filtered density of the fluid and is calculated using the ideal gas law in
combination with the mass fraction of the different species of the gas mixture. In (3.2),
gi is the gravitational acceleration, τij = ρuiuj − ρũiũj represents the subgrid-scale
Reynolds stress and Sij = −(2/3)µ(∂ ũk/∂xk)δij + µ(∂ ũi/∂xj + ∂ ũj/∂xi) is the filtered
strain rate tensor where µ is the molecular dynamic viscosity calculated as a function
of the individual viscosities and molar masses as well as the corresponding mass
fractions.

The mass fraction yk of a species k is governed by a species transport equation
which reads as:

∂ρỹk

∂t
+
∂(ρỹkũi)

∂xi
=

∂

∂xi

(
ρD

∂ ỹk

∂xi
+
µt

Sct

∂ ỹk

∂xi

)
, (3.3)

where ỹk stands for the Favre-filtered mass fraction of the kth component of the
mixture and D represents the molecular diffusivity of the mixture. In (3.3), the simple
gradient diffusion hypothesis (SGDH) is used to close the problem with a turbulent
Schmidt number Sct set to 0.7. In the simulations, a box filter in each direction is
implicitly applied and the WALE (wall adapting local eddy) subgrid-scale model for
the subgrid Reynolds stress (Nicoud & Ducros 1999) is adopted. A staggered grid
is used with a cell-centred piecewise constant representation of the scalar variables
and with a marker and cell (MAC) type finite volume approximation for the velocity.
For the time discretization, we use a fractional step algorithm decoupling balance
equations for the transport of species and Navier–Stokes equations which are solved
by a pressure correction technique. As we consider fountains in an infinite (open)
environment, the computational domain must be bounded by artificial boundary
conditions which perturb as little as possible the flow in the interior of the domain.
The boundary conditions used in our simulations are based on the usual control of the
kinetic energy and allow us to distinguish between the flow that leaves the domain
and the flow that enters it. This type of boundary condition was initially established
for the incompressible case in Bruneau & Fabrie (1994, 1996) and its extension to
compressible flows was tackled in Bruneau (2000).

The three-dimensional computational domains Ω are rectangular boxes. In each
simulation, the values set to the total lateral l and vertical L lengths depend on the
physical parameters of the flow under consideration (see appendix A for more detail).
The source is set flush with the bottom (respectively the top) solid boundary of the
computational domain Ω for an upward (respectively downward) injection and the
fountain emerges at the centre of Ω . We use a refined Cartesian grid with a uniform
square mesh (1x × 1y) over a subregion Ω1 centred at the origin. Outside Ω1, the
grid is stretched toward the lateral boundaries of the domain. In the vertical direction
z, the grid spacing (i.e. 1z) is kept uniform from the source vertical position up to
a vertical distance L1z and then stretched toward the opposite boundary. To initiate
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the turbulence at the source, we apply an azimuthal forcing similar to Zhou, Luo &
Williams (2001).

For each simulated case, a grid convergence study was carried out to validate the
box length l, the domain height L, the extent of the subregions Ω1 and L1z and the
grid spacing in each direction. We tested vertical grid spacings 1z/bi ranging from
0.4 to 0.125 and horizontal grid spacings 1x/bi varying from 0.2 to 0.067. For the
time discretization, a CFL (Courant–Friedrichs–Lewy) number close to unity has been
imposed for each calculation even if time step sizes for which CFL numbers greater
than one are allowed with the use of implicit schemes. We set the duration times
of the simulations sufficiently large to guarantee first that the steady states of the
fountains are reached and secondly to ensure the convergence of the time-averaged
values of the fountain variables (the variations of the mean field fall below 3 % of
the value of the mean). In practice, the time interval over which the statistics were
computed covers approximately 20 fountain-oscillation periods (see Mehaddi et al.
2015b).

Furthermore, a previous simulation presented in Mehaddi et al. (2015b) in
comparison with the experiment by Cresswell & Szczepura (1993) (hot water injected
into a tank of fresh water with Re= 5000 and Fr= 3.1) has been repeated in order to
verify the ability of the large-eddy simulation (LES) approach to reproduce a turbulent
miscible fountain. By simulating the equivalent downwards injection of hot air into
cold ambient air, it has been shown that the computed time-averaged (radial) profiles
of velocity, Reynolds stress and density deficit compare well with the experimental
data. We will see further in the paper that the results of Mehaddi et al. (2015a) for
the steady state height Hss/bi of downward non-Boussinesq turbulent fountains are
also recovered by our simulations, confirming the suitability of the CALIF3S-ISIS
code to properly evaluate the heights of non-Boussinesq fountains.

As an illustration of the flow development, figure 2 presents successive snapshots
of a downward fountain.

4. Results and discussion
4.1. Fountain heights

Figure 3(a) shows, for the whole set of upward and downward simulations, the steady
state heights Hss/bi of the fountain as a function of the source Froude number Fr
together with the relation Hss/bi = 2.46Fr (valid for the Boussinesq case). In this
figure, upward (respectively downward) triangles are related to upward (respectively
downward) fountains and a grey scale colour bar is adopted to indicate the value
of the density ratio over the range ρi/ρ0 = 0.05 to 12 (dark grey for ρi/ρ0� 1 and
light grey for ρi/ρ0� 1). For density ratios far from the Boussinesq approximation,
we notice a strong deviation from the so-called Boussinesq relation (2.2) indicating
that ρi/ρ0 has a marked influence on the steady state height Hss. In figure 3(a), the
Boussinesq relation is found to clearly separate the downward and upward cases.
Dispersion of the data does not suggest any simple correlation in Froude number but
raises a clear dependence with ρi/ρ0 for both situations.

In the light of this experimental finding, we plot in figure 3(b) the downward and
upward simulation results for the steady height Hss/bi in terms of the non-Boussinesq
Froude number FrNBd . For the downward case, the data collapse onto a unique curve
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 2. Flow development of a downward non-Boussinesq fountain with Fr =
23.7, ρi/ρ0 = 0.4 from t = 0.15 s (a) with an increment of δt = 0.30 s between each
snapshot.

given by the linear scaling (4.1):

Hss/bi = 2.41FrNBd for ρi/ρ0 < 1. (4.1)

We recover (with a 7 % difference on the value of the coefficient) the experimental
correlation obtained from the measurements of air–helium fountain heights of Mehaddi
et al. (2015a). We underline that this agreement constitutes a reliable validation
criterion of our simulations.

By contrast, it is striking to note that the points for the steady height Hss/bi
corresponding to an upward release still keep away from the linear relation (4.1).
Thus, a first and noteworthy feature is that upward and downward non-Boussinesq
turbulent fountains are not similar as observed in Boussinesq situations where the
direction of injection does not matter and a unique relation Hss/bi ∝ Fr is found.
A second feature is that whereas the quantity biFrNBd is a suitable length scale for
downward non-Boussinesq fountains, this quantity is not relevant for the upward case.

We can rewrite the linear relation (4.1) for downward non-Boussinesq fountains in
order to highlight the power-law dependence of the steady height Hss with the density
ratio ρi/ρ0:

Hss

2.46biFr
' 0.98

(
ρi

ρ0

)1/2

for ρi/ρ0 < 1. (4.2)

The idea is now to examine the behaviour of the quantity Hss/(2.46biFr) as a
function of the density ratio ρi/ρ0 for the whole set of simulations. The result is
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FIGURE 3. (a) Comparison between the present numerical results for the dimensionless
fountain height Hss/bi and the correlation (solid line), Hss/bi = 2.46Fr. The data points,
(A) for upward fountains and (C) for downward fountains, are shaded according to the
density ratio ρi/ρ0. (b) Comparison between the present numerical results (symbols similar
to figure 3a) for the dimensionless fountain height Hss/bi and the correlation (solid line),
Hss/bi = 2.41FrNBd .

plotted in figure 4 as well as the more appropriate power law for the density ratio for
each direction of injection. In addition to the relation (4.2) obtained for downward
fountains, a second power-law behaviour with the density ratio ρi/ρ0 can be clearly
observed for the upward fountains:

Hss

2.46biFr
' 0.98

(
ρi

ρ0

)3/4

for ρi/ρ0 > 1. (4.3)
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H s
s/
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FIGURE 4. Normalized fountain height (Hss/(2.46biFr)) plotted against the density ratio
(ρi/ρ0) whereA represent experimental data for upward fountains by Baddour & Zhang
(2009), C are experimental data for downward fountains by Mehaddi et al. (2015a), (q)
correspond to our simulations of upward fountains and (s) of downward fountains. The
solid line represents the power law of the density ratio for the downward case, with a
slope of 1/2 and the dash-dotted line represents the power law of the density ratio for
the upward case, with a slope of 3/4.

Unlike the downward injection, the trend of the steady height Hss/(2.46biFr) for the
upward fountains dramatically changes to adopt a (ρi/ρ0)

3/4 behaviour.
This trend demonstrates the asymmetry of non-Boussinesq fountains with respect

to the direction of injection. Actually, a similar non-Boussinesq asymmetry can be
found in the Rayleigh–Bénard literature (see for instance Wu & Libchaber 1991).
In Rayleigh–Bénard convection, asymmetry can be explained by the fact that the
physical properties of the fluid vary with temperature. In our simulations, however,
the fountains are isothermal and therefore their physical properties are constant.
The only mechanism that explains the asymmetry between downward and upward
fountains is the mixing process. As discussed by Bloomfield & Kerr (2000), the
entrainment process in a steady turbulent fountain is due to the return flow that
entrains the surrounding fluid as a line plume. It is indeed widely accepted that the
ambient fluid is entrained by vortices at the edge of the fountain. The mixing process
can be attributed to two distinct effects, namely the shear and the baroclinic torque
(Kaye 2008). There is no reason for the contribution of the shear to be different for
an upward fountain and for a downward fountain. In contrast, the contribution of the
baroclinic torque to the entrainment process will be of opposite sign depending on the
considered configuration (see Hermanson & Cetegen 2000). The physical reasons why
upward non-Boussinesq fountains differ from downward non-Boussinesq fountains are
based on this contribution, with values of the baroclinic torque depending on the large
density difference but with an opposite sign according to the direction of injection.
For Boussinesq fountains where the density deficit is small, the contribution of the
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baroclinic torque to the entrainment process turns out to be too weak to observe an
asymmetry.

As already mentioned, the relation (4.1) (as with that obtained experimentally in
Mehaddi et al. (2015a)) obtained for a downward release should be seen as the
equivalent to the relation Hss/bi= 2.46Fr obtained for turbulent Boussinesq fountains.
In the case of an upward injection, such a comparison is not straightforward.
Nevertheless, if we define a modified radius β = (ρi/ρ0)

1/2bi and an upward
non-Boussinesq Froude number FrNBu based on the modified radius β and defined by:

FrNBu =

(
ρi

ρ0

)1/4

Fr=
wi√
gη′iβ

, (4.4)

(4.3) can be recast into the form:

Hss/β = 2.41FrNBu . (4.5)

As a result, the relation (4.5) for upward non-Boussinesq fountains appears as the
equivalent of (4.1) and (2.2) for respectively downward non-Boussinesq fountains and
Boussinesq fountains. Note that as a consequence of the linear scaling laws (4.1)
and (4.5), the quantities Ld = biFrNBd and Lu = βFrNBu may be seen as appropriate
characteristic length scales for respectively downward and upward non-Boussinesq
forced fountains.

4.2. Length and time scales
The question now arises whether the scaling observed for the steady height can be
extended to the whole time history of the fountain penetration height. In the present
context of turbulent forced fountains, where the flow is dominated by momentum and
buoyancy fluxes, we recall that characteristic length scales can be defined in the basis
(Mi, Bi) (Turner 1966; Baines et al. 1990; Burridge & Hunt 2012) where Mi and
Bi are respectively the source fluxes of momentum and buoyancy. For a Boussinesq
release, the source fluxes of momentum, Mi, and buoyancy, Bi, are defined respectively
by:

Mi = 2π

∫ bi

0
w2(r)r dr, Bi = 2π

∫ bi

0
w(r)g

1ρ(r)
ρ0

r dr, (4.6a,b)

where r is the radial coordinate, w(r) the Reynolds-averaged local vertical velocity and
1ρ(r) = ρ0 − ρ(r) with ρ(r) the time-averaged local density. Considering a top-hat
velocity profile (i.e. w(r) = wi and ρ(r) = ρi), the source momentum and buoyancy
fluxes can be expressed respectively as Mi∝πb2

i w2
i and Bi∝πb2

i wig(ρ0−ρi)/ρ0 and a
characteristic length scale LB as well as a time scale τB can be constructed respectively
as:

LB =M3/4
i /B1/2

i ∝π1/4biFr, τB =Mi/Bi ∝ (bi/wi)Fr2. (4.7a,b)

By applying similar scaling arguments to their experimental data over 15.8.Fr . 78,
Pantzlaff & Lueptow (1999) found that the representation of the non-dimensional
penetration height, from the initial rise to the steady state, as a function of the
non-dimensional time, nearly collapses onto a unique curve similar to the one drawn
in figure 1(c). By analogy, in a non-Boussinesq situation, similar scales can be
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deduced by dimensional analysis based on the source fluxes of momentum and
buoyancy defined respectively by:

Mi = 2π

∫ bi

0
ρ(r)w̃2(r)r dr, Bi = 2π

∫ bi

0
w̃(r)g1ρ(r)r dr, (4.8a,b)

where w̃(r) is the Favre-averaged local vertical velocity. Again, the expression of
source momentum and buoyancy fluxes can be simplified respectively as Mi∝πb2

i ρiw2
i

and Bi ∝ πb2
i wig(ρ0 − ρi). To obtain a characteristic length scale and a time scale,

we have respectively to evaluate the ratios (Mi/ρref )
3/4/(Bi/ρref )

1/2 and (Mi/Bi) where
ρref is a reference density. If we first consider ρref = ρi, a characteristic length scale
L1 can be defined as L1= (Mi/ρi)

3/4/(Bi/ρi)
1/2
∝π1/4biFrNBd . We notice that L1∝Ld

corresponds to the length scale suitable for the downward injection as addressed
by (4.1). When we consider ρref = ρ0, another characteristic length scale L2 can
be defined as L2 = (Mi/ρ0)

3/4/(Bi/ρ0)
1/2
∝ π1/4βFrNBu . We notice that L2 ∝ Lu

corresponds to the length scale suitable for the upward injection as underlined by
the relation (4.5). Furthermore, it is worth mentioning the existence of a unique time
scale τNB whatever the direction of injection (upwards or downwards), defined by
τNB = (Mi/Bi) ∝ wi/g(1ρ/ρi). This time scale can be reformulated in the downward
case by τNB = τd ∝ (bi/wi)Fr2

NBd
and in the upward case by τNB = τu ∝ (β/wi)Fr2

NBu
.

Based on these length and time scales and on the criteria defined in appendix B,
it is therefore possible to plot the time history of the fountain penetration H(t) in
non-dimensional form, from the initial rise height to the steady state. Figure 5(a)
depicts the time history for the downward non-Boussinesq releases. First, during
the initial phase, the fountain rises up to reach its maximum height Hi/Ld ∼ 3.6
at t/τ ∼ 5. Then, due to the presence of the downflow, the fountain collapses and
reaches a minimum height at t/τ ∼ 10, corresponding to Hmin/Ld ∼ 2. From t/τ ∼ 20,
the fountain reaches a steady state height, Hss/Ld ∼ 2.5. We particularly note that
the ratio of the initial height to the steady state height, noted λ = Hi/Hss, is close
to 1.45, as is the case for Boussinesq fountains. Similarly to the ratio λ, it is also
possible to define the ratio γ = Hmin/Hss between the minimum height Hmin reached
for the first collapse of the fountain and the steady state height Hss. We note that
γ ∼ 0.8. Figure 5(b) shows the time history for the upward non-Boussinesq releases.
We underline that the behaviour of the penetration height obeys a similar trend to that
of the downward release. In particular, we note that the geometric ratios Hi/Lu∼ 3.6,
Hmin/Lu ∼ 2 and Hss/Lu ∼ 2.5 are similar to the downward release. Nevertheless, we
observe that the instants to reach the maximum initial height Hi, the minimum height
Hmin and the steady state height Hss are slightly advanced. Note that figures 5(a) and
(b) show scatter of the order of ±20 % in the transient phase. Such a scatter is not
surprising in turbulent fountain experiments especially for moderate Froude number
Fr (from 5 to 12), as discussed in Burridge & Hunt (2012). Indeed, by extending their
conclusions to the case of turbulent non-Boussinesq fountains, that is by replacing
Fr by FrNBd or FrNBu , it appears that this scatter is natural because the present study
mainly explored the range of moderate Froude numbers.

Finally, for the three cases of release, Boussinesq (upward or downward), downward
and upward non-Boussinesq, we summarize in table 1 the length and the time scalings
for the fountain heights. In this table also appear for each release the input data,
i.e. the characteristic source radius, the source density deficit and the source Froude
number on which the length, time and velocity scale are built.
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FIGURE 5. Penetration height (a) H/Ld as a function of time t/τd for downward releases.
Data symbols indicate: +, ρi/ρ0=0.05,Fr=23.72; ×, ρi/ρ0=0.08,Fr=19.78;6, ρi/ρ0=

0.15, Fr = 11.07; @, ρi/ρ0 = 0.20, Fr = 11.07; p, ρi/ρ0 = 0.25, Fr = 11.19; E, ρi/ρ0 =

0.35, Fr = 9.45; u, ρi/ρ0 = 0.40, Fr = 11.07. (b) H/Lu as a function of time t/τu for
upward releases. Data symbols indicate: +, ρi/ρ0 = 2.0, Fr = 7.91; ×, ρi/ρ0 = 3.0, Fr =
5.54; 6, ρi/ρ0 = 4.0, Fr = 5.54; @, ρi/ρ0 = 4.0, Fr = 7.91; p, ρi/ρ0 = 5.0, Fr = 3.96; E,
ρi/ρ0 = 6.0, Fr= 3.16;p, ρi/ρ0 = 6.0, Fr= 5.54;A, ρi/ρ0 = 8.0, Fr= 2.37. Note that the
points on the steady state correspond to the averaged value of Hss whereas the points on
the transient phase correspond to instantaneous measurements.

5. Conclusion
Turbulent forced fountains issuing from a source release of density ρi into a uniform

ambient of density ρ0 have been studied numerically by large-eddy simulations.
Density ratios ρi/ρ0 far from the unity (non-Boussinesq conditions) were considered
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Boussinesq Non-Boussinesq Non-Boussinesq
(upward or downward) downward upward

Characteristic radius bi bi β =

(
ρi

ρ0

)1/2

bi

Density deficit ηi =
|ρi − ρ0|

ρ0
ηi
′
=
ρ0 − ρi

ρi
ηi
′
=
ρi − ρ0

ρi

Froude number Fr=
wi
√

gηibi
FrNBd =

wi
√

gηi
′bi

FrNBu =
wi
√

gηi
′β

Length scale LB ∝ biFr Ld ∝ biFrNBd Lu ∝ βFrNBu

Time scale τB =
bi

wi
Fr2 τd =

bi

wi
Fr2

NBd
τu =

β

wi
Fr2

NBu

Velocity scale VB =
LB

τB
∝

wi

Fr
Vd =

Ld

τd
∝

wi

FrNBd

Vu =
Lu

τu
∝

wi

FrNBu

TABLE 1. Expression for the three cases, Boussinesq (upward or downward), downward
non-Boussinesq and upward non-Boussinesq, of the source characteristic radius, the source
density deficit, the source Froude number, the length scale, the time scale and the velocity
scale.

as well as downward and upward directions of injection. It is shown that, depending
on the direction of injection, the penetration height of the fountain does not follow
the same scaling as it is the case for Boussinesq fountains. For the downward case, a
characteristic length scale is Ld = biFrNBd where FrNBd = wi/

√
gηi
′bi is the downward

non-Boussinesq Froude number and the density deficit ηi
′ is based on the source

density, i.e. ηi
′
= (ρ0−ρi)/ρi. For the upward case, Lu=βFrNBu where β= (ρi/ρ0)

1/2bi
is a modified radius and FrNBu = wi/

√
gηi
′β is the upward non-Boussinesq Froude

number. Based on this scaling, a simple behaviour is found for the steady height,
i.e. Hss ' 2.4L for both the upward and downward non-Boussinesq case and also
encompasses the Boussinesq case.

Another remarkable feature is the universal trend of the penetration height from
the initial rise to the steady state. In particular, the ratio between the maximum
initial height Hi and the steady state height Hss, noted λ = Hi/Hss, is found to be
close to 1.45. Finally, it is surprising to note that the non-Boussinesq plume theory
(validated by Ricou & Spalding (1961) for plumes with ρi/ρ0 � 1) allows us to
recover the relevant scaling for upward non-Boussinesq fountains, i.e. for ρi/ρ0� 1.
This observation suggests that a similar analogy may exist between a downward
heavy non-Boussinesq plume and a downward light non-Boussinesq fountain. This
also suggests that, similarly to downward and upward non-Boussinesq fountains,
non-Boussinesq downward and upward plumes may also present an asymmetric
behaviour.

Appendix A. Computational domain dimensions
The choice of the dimensions of the computational domain is based on the expected

geometrical characteristics of the simulated fountain, namely its maximum height and
its downflow radius. These geometrical characteristics are hereafter exposed as a
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function of the length scale L discussed in § 4.1 (L=Lu and L=Ld for respectively
upward and downward turbulent non-Boussinesq fountains). For the height of the
domain, L, given that the maximum initial height of the fountain is Hi/L ' 3.5,
we have chosen L ' 1.33Hi, i.e. L/L ' 4.7. We recall that in Williamson et al.
(2011), the vertical extent is given by L/L ' 4.5. The distance L1z specified in
the text corresponds to the initial height Hi of the fountain, i.e. L1z/L ' 3.5. For
the lateral extent l, we choose values close to that of Williamson et al. (2011) by
considering (l/2) ' 1.75rda, where rda is the radius of the fountain downflow. This
radius corresponds to the frontier between the fountain and the ambient fluid (see
Williamson et al. 2011). In our numerical simulations, it was shown that the fountain
radius rda was on average of the order 2L. Consequently, we have chosen l/L ' 7.
Concerning the subregion Ω1, it covers the range [−0.2L; 0.2L].

Appendix B. Fountain height determination

In this appendix, the criterion for the determination of the fountain height is
exposed. First, we stress the fact that the criterion of the null vertical velocity at the
top of the fountain, w̃= 0, which has been used for the determination of the steady
height Hss cannot be used for the transient phase. Actually, during this phase, not
only the top of the fountain constantly moves but also the ambient surrounding fluid
which is pushed by the top of the fountain. As a consequence, a criterion on the
density has to be found. For turbulent Boussinesq fountains, Williamson et al. (2011)
studied the time evolution of the fountain height from the initial rise to the steady
state height. They introduced the scalar criterion

φ =
ηm

ηi
=

ρ − ρ0

ρ0
ρi − ρ0

ρ0

(B 1)

to identify the top of the fountain for r = 0. In practice, they considered a fixed
value of the criterion, namely φ = 0.1, corresponding to the vertical location where
the relative density difference is divided by a factor of 10. In this case, the density at
the top of the fountain is found to be extremely close to the density of the ambient. In
the present study of turbulent non-Boussinesq fountains, a similar criterion based on
the density is proposed. When we look at the vertical density profiles for the simulated
upward and downward forced turbulent fountains (see figures 6 and 7) at steady state,
two main remarks can be formulated. First, we note that the vertical evolution of
the densities differ following the direction of injection. Second, the relative density
difference with the ambient of the fountain top is observed to be always greater than
15%, indicating that the fountain is still non-Boussinesq at the height Hss. Based on
these remarks, defining a unique value of a single criterion valid for the two directions
is not possible. Thus, we choose to define two different criteria depending on the
direction of injection. For the downward injection, we define the penetration height
H(t) as the first vertical location where the quantity

γ =
ζm

η′i
=

ρ0 − ρ

ρ
ρ0 − ρi

ρi

, (B 2)
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FIGURE 6. Vertical evolution (for r= 0) of the density ratio ρ/ρ0 for downward releases
at steady state.
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FIGURE 7. Vertical evolution (for r= 0) of the density ratio ρ/ρ0 for upward releases at
steady state.

is inferior to a threshold value of γ = 0.075. For the upward case, we define the
penetration height H(t) as the first vertical location where the quantity

ψ =
ζm

ηi
=

ρ − ρ0

ρ
ρi − ρ0

ρ0

, (B 3)

is inferior to a threshold value of 0.075.

Appendix C. Source parameters of fountain simulations and the corresponding
steady state height Hss
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Injection Ambient ρi/ρ0 bi (m) wi (m s−1) Re Fr Hss/bi

SF6/helium mixture SF6 0.05 4.005× 10−2 2.417 4000 3.96 2.5
SF6/helium mixture SF6 0.05 1.213× 10−2 7.975 4000 23.72 12.6
SF6/helium mixture SF6 0.08 2.358× 10−2 2.555 4000 5.54 3.5
SF6/helium mixture SF6 0.08 1.009× 10−2 5.969 4000 19.78 14.6
Air/helium mixture Air 0.138 2.55× 10−2 6.962 4000 15.00 12.5
Air/helium mixture Air 0.138 1.875× 10−2 9.447 4000 23.74 19.2
Air/helium mixture Air 0.15 2.963× 10−2 5.506 4000 11.07 11.4
Air/helium mixture Air 0.2 2.493× 10−2 4.899 4000 11.07 12.9
Air/helium mixture Air 0.2 1.499× 10−2 8.143 4000 23.81 22.4
Air/helium mixture Air 0.25 2.178× 10−2 4.478 4000 11.19 14.0
Air/helium mixture Air 0.25 1.168× 10−2 8.350 4000 28.48 28.6
Air/helium mixture Air 0.35 2.037× 10−2 3.407 4000 9.45 15.0
Air/helium mixture Air 0.35 1.093× 10−2 6.354 4000 24.07 28.8
Air/helium mixture Air 0.4 1.720× 10−2 3.524 4000 11.07 18.0
Air/helium mixture Air 0.4 1.035× 10−2 5.859 4000 23.74 32.0
Air/helium mixture Air 0.45 1.976× 10−2 2.723 4000 8.33 15.4
Air/helium mixture Air 0.654 1.211× 10−2 3.035 4000 14.97 30.0
Air/helium mixture Air 0.654 9.111× 10−3 4.036 4000 22.95 39.0
Air/helium mixture Air 0.743 9.63× 10−3 3.349 4000 21.49 44.0
Air/helium mixture Air 0.8 1.264× 10−2 2.364 4000 15.02 30.0

CO2 Air 1.52 5.258× 10−3 2.401 4000 14.66 48.0
Air/SF6 mixture Air 2.0 6.014× 10−3 1.922 4000 7.91 35.0
Air/SF6 mixture Air 2.0 2.891× 10−3 3.997 4000 23.74 85.0
Air/SF6 mixture Air 2.5 4.486× 10−3 2.033 4000 7.91 38.4
Air/SF6 mixture Air 3.0 4.534× 10−3 1.651 4000 5.54 33.3
Air/SF6 mixture Air 3.0 2.654× 10−3 2.821 4000 12.36 62.4
Air/SF6 mixture Air 3.5 2.966× 10−3 2.134 4000 7.91 47.4
Air/SF6 mixture Air 4.0 3.207× 10−3 1.701 4000 5.54 39.6
Air/SF6 mixture Air 4.0 2.528× 10−3 2.158 4000 7.91 56.4
Air/SF6 mixture Air 5.0 3.080× 10−3 1.375 4000 3.96 34.8

Helium/SF6 mixture Helium 6.0 1.195× 10−2 2.422 4000 3.16 33.4
Helium/SF6 mixture Helium 6.0 8.230× 10−3 3.518 4000 5.54 54.0
Helium/SF6 mixture Helium 6.5 6.384× 10−3 4.179 4000 7.12 70.4
Helium/Air mixture Helium 7.21 3.463× 10−3 6.886 4000 14.99 157.0
Helium/SF6 mixture Helium 8.0 1.063× 10−2 2.028 4000 2.37 29.4
Helium/SF6 mixture Helium 8.5 4.464× 10−3 4.534 4000 7.91 98.8
Helium/SF6 mixture Helium 10.0 4.763× 10−3 3.591 4000 5.54 76.4
Helium/SF6 mixture Helium 12.0 3.920× 10−3 3.604 4000 5.54 89.2

TABLE 2. Source parameters of fountain simulations (downward injection for ρi/ρ0 < 1
and upward injection for ρi/ρ0 > 1) and the corresponding steady state height Hss. The
Reynolds number is defined as Re = 2wmbi/ν where ν is the kinematic viscosity. Note
that the mean velocity wi is based on a turbulent pipe flow profile which leads us to
wi= 72/91wm where wm is the maximum velocity at the radial coordinate r= 0. The gases,
air, helium, carbon dioxide (CO2) and sulphur hexafluoride (SF6) have been taken at 1 atm
and 20 ◦C.
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