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A note on forces exerted by a Stokeslet on
confining boundaries
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We consider a Stokeslet applied to a viscous fluid next to an infinite, flat wall,
or in between two parallel walls. We calculate the forces exerted by the resulting
flow on the confining boundaries, and use the results obtained to estimate the
hydrodynamic contribution to the pressure exerted on boundaries by force-free
self-propelled particles.
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1. Introduction
Solutions to the Stokes equation can be constructed by combining suitably placed

Stokeslets (the Green function of the Stokes equation) and other singular solutions,
that simultaneously satisfy the equation of motion and the boundary conditions
(Happel & Brenner 1983). This approach has proven especially fruitful in describing
the motion of small solid bodies (Chwang & Wu 1975). In recent years, methods of
Stokesian dynamics have been widely employed in studies of active matter systems
and self-propelled particles (Lauga & Powers 2009; Spagnolie & Lauga 2012). Such
systems often possess unique mechanical properties, with a vanishingly small shear
viscosity observed in suspensions of swimming bacteria (López et al. 2015; Saintillan
2018) and a recent debate on the pressure exerted by microswimmers on the walls of
the enclosing container (Takatori, Yan & Brady 2014; Yang, Manning & Marchetti
2014; Solon et al. 2015) being just a few examples. Most of the macroscopic
properties predicted for active matter systems still await experimental confirmation.
When designing such experiments, which typically include measurements of the forces
that the system in question exerts on confining boundaries, as in the cases of shear
viscosity and pressure, one often seeks to estimate the order of magnitude of the
potential effect. Since the velocity fields generated by self-propelled particles can be
constructed from the fundamental solutions of the Stokes equation, it is sufficient to
consider the forces exerted on solid boundaries due to the latter. Surprisingly, there
are no results available in the literature for the forces exerted on solid boundaries,
even by the simplest of singularities, and here we seek to fill this gap.

We study two archetypal problems: a Stokeslet next to a single flat boundary,
and a Stokeslet confined in between two parallel walls, see figure 1. Both problems
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FIGURE 1. Geometries used in this note. (a) A point force applied to a fluid next to a
wall. (b) A point force applied in between two parallel walls. The unit vector n gives the
direction of the outer normal to each boundary.

are solved in a Cartesian coordinate system {x, y, z}, with the z-direction selected
perpendicular to the boundaries. The velocity field v(r) at a position r satisfies the
incompressible Stokes equation

−∂ip(r)+µ∂2vi(r)+ fiδ(r− r0)= 0, (1.1)
∂ivi(r)= 0, (1.2)

where p is the pressure, and µ is the viscosity of the fluid; ∂i denotes the spatial
derivative in the ith direction, i= {x, y, z}, while ∂2 denotes the Laplacian. The point
force f is applied to the fluid at a position r0, which, without loss of generality, is
chosen to be (0, 0, h). The fluid is assumed to satisfy the no-slip condition at all
boundaries. The solution to (1.1) and (1.2) has been obtained by Blake (1971), for
the case of a single boundary, and by Liron & Mochon (1976) and Daddi-Moussa-
Ider et al. (2018) for two confining walls. Here, we use these results to evaluate the
associated forces applied by the fluid on the enclosing boundaries.

2. A point force next to a single boundary

In this problem, we consider a semi-infinite fluid bounded by an infinite, flat solid
boundary at z= 0 (see figure 1a). The solution to (1.1) and (1.2) in this case has been
obtained by Blake (1971), and reads

vj =
fk

8πµ

[(
1
r
−

1
R

)
δjk +

rjrk

r3
−

RjRk

R3

+ 2h
(
δk1

∂

∂R1
+ δk2

∂

∂R2
− δk3

∂

∂R3

){
hRj

R3
−
δj3

R
−

RjR3

R3

}]
, (2.1)

p=
fk

8πµ

[
rk

r3
−

Rk

R3
− 2h

(
δk1

∂

∂R1
+ δk2

∂

∂R2
− δk3

∂

∂R3

)(
R3

R3

)]
, (2.2)

where r = (x, y, z − h) and R = (x, y, z + h). An infinitesimal force exerted on the
boundary by this velocity field is given by Landau & Lifshitz (1987),

dFi =Σij|z=0 nj dx dy, (2.3)

where n is the outer normal to the solid boundary, and Σij is the stress tensor

Σij =−pδij +µ(∂jvi + ∂ivj). (2.4)
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Using nj = δjz, we obtain for the total force on the boundary

Fx =µ

∫
∞

−∞

dx dy∂zvx

∣∣∣∣
z=0

, (2.5)

Fz =−

∫
∞

−∞

dx dy p
∣∣∣∣

z=0

, (2.6)

where we used ∂xvz|z=0= ∂yvz|z=0= 0, since the operations of taking a derivative with
respect to x or y and evaluating these velocity components at z= 0 commute, and vi
vanish at the boundary. In a similar fashion, we set ∂zvz|z=0= 0 in (2.6), which follows
from the incompressibility condition, equation (1.2), and the argument above. The
expression for the y-component of the force is obtained by replacing the subscripts
x with y in (2.5).

Explicit evaluation using (2.1) and (2.2) yields

µ∂zvx|z=0 =
3hx
2π

fxx+ fyy− fzh
(h2 + x2 + y2)5/2

, (2.7)

p|z=0 =
3h2

2π

fxx+ fyy− fzh
(h2 + x2 + y2)5/2

, (2.8)

which, upon integration in (2.5) and (2.6), give

Fi = fi. (2.9)

The same conclusion can be reached by observing that the image system of a point
force next to a flat no-slip boundary includes a Stokeslet of an equal and opposite
strength and higher-order flow singularities (Blake 1971; Cichocki & Jones 1998;
Bhattacharya & Bławzdziewicz 2002). The force on the wall is, therefore, equal
to the force applied to the fluid. In § 4, we provide an intuitive argument for their
equality.

3. A point force in a plane channel
In the second problem we consider a fluid confined in between two infinite parallel

walls placed at z = 0 and z = H (see figure 1b). The flow field vi(r) satisfies (1.1)
and (1.2) with the boundary conditions vi(z= 0)= vi(z=H)= 0. The solution to this
problem was first reported by Liron & Mochon (1976), who used a method similar to
that of Blake (1971). An alternative approach was developed by Bickel (2007), and by
Daddi-Moussa-Ider and co-workers (Daddi-Moussa-Ider & Gekle 2018; Daddi-Moussa-
Ider et al. 2018), which is more convenient for evaluating the force applied to the
boundaries. In what follows, we use the method of Daddi-Moussa-Ider et al. (2018),
and repeat the main steps of their derivation for completeness. Since the result of
Liron & Mochon (1976) is probably better known, in appendix A we repeat the same
derivation using their method. We note here that the results of this analysis can also
be deduced from the lubrication theory used to describe highly bidisperse colloidal
suspensions (Bhattacharya & Blawzdziewicz 2008; Navardi & Bhattacharya 2010).

We start by introducing a two-dimensional Fourier transform for the velocity

vi(x, y, z)=
1

(2π)2

∫
∞

−∞

dkx dkyei(kxx+kyy)v̂i(kx, ky, z), (3.1)
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and a similar transform for the pressure. Upon inserting these expressions into (1.1)
and (1.2), we obtain

−ikαp̂+µ(∂2
z − k2)v̂α + fαδ(z− h)= 0, (3.2)

−∂zp̂+µ(∂2
z − k2)v̂z + fzδ(z− h)= 0, (3.3)

ikxv̂x + ikyv̂y + ∂zv̂z = 0, (3.4)

where α = {x, y}, and k2
= k2

x + k2
y . To proceed, we introduce the longitudinal and

transverse components of the in-plane velocity

v̂x =
kx

k
v̂l +

ky

k
v̂t, v̂y =

ky

k
v̂l −

kx

k
v̂t, (3.5a,b)

and a similar transformation for the longitudinal fl and transverse ft components of
the point force. Applying this transformation to (3.2)–(3.4), we obtain

µ(∂2
z − k2)v̂t + ftδ(z− h)= 0, (3.6)

−ikp̂+µ(∂2
z − k2)v̂l + flδ(z− h)= 0, (3.7)

−∂zp̂+µ(∂2
z − k2)v̂z + fzδ(z− h)= 0, (3.8)
ikv̂l + ∂zv̂z = 0. (3.9)

These equations decouple the transverse component from the rest, and below we solve
the associated problems separately.

3.1. Transverse velocity component
To solve (3.6), we observe that its solution can be split into two parts, v̂+t for z> h,
and v̂−t for z< h, that satisfy that same equation

µ(∂2
z − k2)v̂±t = 0, (3.10)

and the boundary conditions

v̂−t (0)= v̂
+

t (H)= 0. (3.11)

The matching condition at z = h is obtained by integrating (3.6) from z = h − ε to
z= h+ ε, which, in the limit ε→ 0, yields

∂zv̂
+

t (h)− ∂zv̂
−

t (h)=−ft/µ. (3.12)

Together with the requirement that the velocity is continuous, v+t (h)= v
−

t (h), this fully
specifies the solution, which is given by

v̂−t (z)=
ft

kµ
sinh(k(H − h))

sinh(kH)
sinh(kz), (3.13)

v̂+t (z)=
ft

kµ
sinh(kh)
sinh(kH)

sinh(k(H − z)). (3.14)
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3.2. Longitudinal and vertical velocity components
Excluding the pressure from (3.7) and (3.8), and using the incompressibility condition,
equation (3.9), we obtain for the vertical velocity

µ(∂2
z − k2)2v̂z − k2fzδ(z− h)− ikfl∂zδ(z− h)= 0. (3.15)

Similar to the transverse case, this equation is solved by splitting its solution into two
components, v̂±z , that satisfy

(∂2
z − k2)2v̂±z = 0, (3.16)

v̂−z (0)= ∂zv̂
−

z (0)= v̂
+

z (H)= ∂zv̂
+

z (H)= 0. (3.17)

Repeated integration of (3.15) in a small vicinity of z = h yields the following
matching conditions

∂3
z v̂
+

z (h)− ∂
3
z v̂
−

z (h)= k2µ−1fz, (3.18)

∂2
z v̂
+

z (h)− ∂
2
z v̂
−

z (h)= ikµ−1fl, (3.19)
∂zv̂
+

z (h)− ∂zv̂
−

z (h)= 0, (3.20)
v̂+z (h)− v̂

−

z (h)= 0. (3.21)

The solution to (3.16)–(3.21) is given by

v±z =
T±zz fz + T±zl ikfl

4kµ(1+ 2H2k2 − cosh(2Hk))
, (3.22)

where

T−zz (z, h) = −(2Hk2(−h+H + z)+ 1) sinh(k(h− z))

+ k(z(4Hk2(h−H)− 1)+ h− 2H) cosh(k(h− z))
+ (2k2(H − h)(H − z)+ 1) sinh(k(h+ z))
− k(h− 2H + z) cosh(k(h+ z))
− (2hk2z+ 1) sinh(k(h− 2H + z))
+ k(h+ z) cosh(k(h− 2H + z))
+ sinh(k(h− 2H − z))
+ k(z− h) cosh(k(h− 2H − z)), (3.23)

T−zl (z, h) = (4Hk2z(H − h)+ (z− h)) sinh(k(h− z))
− 2Hk(h−H + z) cosh(k(h− z))
+ (h− z) sinh(k(h+ z))
+ 2k(h−H)(H − z) cosh(k(h+ z))
+ (z− h) sinh(k(h− 2H + z))
+ 2hkz cosh(k(h− 2H + z))
+ (h− z) sinh(k(h− 2H − z)), (3.24)

and

T+zz (z, h)= T−zz (H − z,H − h), (3.25)
T+zl (z, h)=−T−zl (H − z,H − h). (3.26)

The longitudinal component v̂l can now be obtained from (3.9), while the pressure is
given by (3.7).
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882 A1-6 V. Škultéty and A. Morozov

3.3. Forces exerted on the boundaries
The forces applied by the flow determined above can now be calculated in a manner
similar to § 2, and are given by

F±x =∓µ
∫
∞

−∞

dx dy ∂zv
±

x , (3.27)

F±z =±
∫
∞

−∞

dx dy p±, (3.28)

evaluated at z=H and z= 0, respectively. Here, v±x and p± are the inverse transforms
of the corresponding Fourier components, and we used the fact that the outer normal
at the z= H boundary is pointing in the negative z-direction. The integrals in (3.27)
and (3.28) can, in fact, be obtained from the Fourier transform introduced in (3.1).
Indeed, if we put kx= k cos θ and ky= k sin θ , for an arbitrary function φ that depends
on x and y in a symmetric manner we obtain∫

∞

−∞

dx dyφ(x, y)=
1

2π
lim
k→0

∫ 2π

0
dθφ̂(k, θ). (3.29)

Therefore, the forces on the boundaries are readily obtained by integrating ∓µ∂zv̂
±

x
and ±p̂± over θ , taking the limit k→ 0 and evaluating the result at the appropriate z.
The final results then read

F−α = (1−∆)(1−
3
2∆)fα, F−z = (1−∆)

2(1+ 2∆)fz, (3.30a,b)

F+α =
1
2∆(3∆− 1)fα, F+z =∆

2(3− 2∆)fz, (3.31a,b)

where ∆= h/H, and α = {x, y}.

4. Discussion
Equations (2.9) and (3.30)–(3.31) constitute the main results of this work. The first

case corresponds to a Stokeslet near an infinite plane wall and implies that the whole
force applied to the fluid is transmitted to the wall, independent of the Stokeslet’s
distance to the wall. While appearing surprising, this result can be understood from a
simple argument. Due to the linearity of the Stokes equation, we expect the force on
the wall to be proportional to the strength of the force applied to the fluid, Fi= g(h)fi,
where g(h) is an unknown function of the distance between the Stokeslet and the wall.
Since g(h) should be dimensionless, it can only depend on a ratio between h and
another length scale. However, there are no other length scales in the problem, and
g is constant, independent of h. Considering the case when the Stokeslet is applied
directly to the interface between the wall and the fluid fixes g= 1, giving the result
in (2.9). An interesting consequence of this result is that an arbitrary force distribution
applied to the fluid next to a single wall exerts no force on the wall, as long as
the total force applied to the fluid is zero, as in the case of a collection of force-
free self-propelled particles. In a similar fashion, a force-free microswimmer stalled
by the wall, exerts no total force on it. Indeed, the propulsive force generated by
the swimmer is directly transmitted to the wall through the action of the interaction
potential between the wall and the swimmer. To generate this propulsive force, the
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swimmer applies the equal and opposite force on the fluid some distance away from
the wall, which is fully transmitted to the wall, as (2.9) suggests. The total sum is zero
for any orientation of the swimmer in contact with the wall. Therefore, there is no
hydrodynamic contribution to the pressure from a suspension of force-free swimmers
next to a single boundary.

When the Stokeslet is confined between two parallel walls, the argument above
yields Fi = g(h/H)fi, since there are now two length scales in the problem. The
corresponding functions g are non-trivial and different for the force components
perpendicular and parallel to the wall, see (3.30) and (3.31). First, we observe that
these expressions are symmetric with respect to ∆→ 1 − ∆, as expected. Next, in
the limit of H→∞, keeping h finite, we recover (2.9) for the force on the lower
wall, while F+i = 0; the same holds for h→∞, keeping H − h finite, with F+i = fi

and F−i = 0. Finally, the correct behaviour is also recovered in the limits of h→ 0
and h→H.

Equations (3.30) and (3.31) also allow us to make an interesting observation
regarding the total force applied to both boundaries. While the total vertical force
on the walls is equal to the vertical force applied to the fluid, F−z + F+z = fz, the
horizontal components give F−α + F+α = (1− 3∆(1−∆))fα, with α = {x, y}. The latter
result implies that F−α +F+α 6 fi, where the equality only applies when ∆= 0 or 1. To
understand the origin of the ‘missing’ force, we consider an imaginary box around
the Stokeslet and calculate the forces applied to the planes x=±L and y=±L, where
L� H. Far away from the Stokeslet, the velocity field is given by equation (51) of
Liron & Mochon (1976), and has only the in-plane components, while the far-field
behaviour of the pressure can be deduced from equation (56) of the same reference.
Calculating the forces exerted by this velocity field in the x-direction on the fictitious
surfaces as L→∞, we obtain that the forces at y = ±L are zero, while the forces
at x = ±L are the same and equal to (3/2)∆(1 − ∆)fx, where only the pressure
term contributes to this result. An identical expression is, of course, obtained for
the y-component of the force, where only the fictitious surfaces perpendicular to the
y-axis experience non-zero forces. Together with (3.30) and (3.31), this gives the total
force applied to the boundaries enclosing the Stokeslet being equal to fi, as it should.

We conclude by observing that our results can be trivially generalised for an
arbitrary distribution of point forces applied to the fluid due to linearity of the
Stokes equation. In particular, we consider a force dipole, which is relevant for
force-free self-propelled microswimmers (Lauga & Powers 2009). The dipole consists
of two equal and opposite point forces, −f e and f e, applied to the fluid at (0, 0, h)
and (0, 0, h) + le, respectively, where f is the magnitude of the force, e is a unit
vector along the direction of the dipole and l is its length. From (3.31), the vertical
component force on the upper boundary due to the dipole is given by

Fd(h)=
fl
H

[
−2

l2

H2
e4

z + 6e2
z∆(1−∆)+ 3e3

z
l
H
(1− 2∆)

]
, (4.1)

where ez denotes the z-component of e. An equal and opposite force is applied to the
lower boundary. Next, we consider a collection of such dipoles at a number density n.
Although it has been demonstrated that suspensions of dipolar microswimmers exhibit
significant correlations even at low densities (Stenhammar et al. 2017), here we
assume the suspension to be homogeneous and isotropic, for simplicity. The pressure
on the upper wall (a force per unit area) can then be calculated as the following
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average

pd =
n
2

∫ π

0
dθ sin θ

∫ H

0
dhFd(h)≈

1
3

fln, (4.2)

where we used ez = cos θ in spherical coordinates, and neglected terms of order l/H.
Apart from a numerical factor, this result can be readily obtained from dimensional
analysis. Using the dipolar strength fl ∼ 8 × 10−19 N s as measured by Drescher
et al. (2011) for E.coli bacteria, and setting n∼ 109 ml−1, as in typical experiments
with dilute bacterial suspensions (Jepson et al. 2013; López et al. 2015), we obtain
pd∼ 10−4 Pa. Such pressures are too small to be measured by conventional rheometry
but, perhaps, can be observed in an appropriate microfluidic experiment. We would
like to note that the pressure calculated above is due to the velocity fields generated
by the swimmers, and does not contain the osmotic contribution (Takatori et al. 2014;
Yang et al. 2014; Solon et al. 2015).
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Appendix A. Alternative derivation of (3.30)–(3.31)
Here we demonstrate that the forces exerted on the walls of a plane channel by a

Stokeslet can also be derived with the help of the velocity field obtained by Liron &
Mochon (1976), which is probably the most famous treatment of that problem.

Their solution for the jth component of the velocity field due to the kth component
of the point force, uk

j , is decomposed into two parts

uk
j = v

k
j +wk

j , (A 1)

where vk
j is the contribution due to the original free-space Stokeslet, together with

an infinite number of its images, and wk
j is an auxiliary solution that ensures the

no-slip boundary conditions at the walls. The Fourier transform of the auxiliary
solution is given by equations (26) and (31) of Liron & Mochon (1976); note that
their Fourier transform convention differs from ours, equation (3.1), by 2π. Using
the same argument as in § 3.3, we express the contribution of the auxiliary solution
to the forces on the upper boundary as

F+w,α =−µf k lim
ζ→∞

∫ 2π

0
dθ∂zŵk

α(λx = ζ cos θ, λy = ζ sin θ, z=H), (A 2)

F+w,z = f k lim
ζ→∞

∫ 2π

0
dθ p̂k(λx = ζ cos θ, λy = ζ sin θ, z=H), (A 3)

where λx and λy are the analogues of kx and ky used in the main text, and ζ 2
=λ2

x+λ
2
y ,

as in Liron & Mochon (1976). Here, α = {x, y}, and ŵk
α and p̂k denote the Fourier

transforms of the auxiliary velocity and pressure, respectively. Performing the integrals
and taking the limit yields

F+w,α =−
3
2∆(1−∆)fα, (A 4)

F+w,z =−∆(1−∆)(1− 2∆)fz. (A 5)
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A note on forces exerted by a Stokeslet on confining boundaries 882 A1-9

The velocity and pressure fields due to the original free-space Stokeslet and its
images are given in equations (15) and (16) of Liron & Mochon (1976), and are
conveniently expressed in terms of the infinite series from equations (43) and (44)
ibid. Using (3.27) and (3.28), we obtain

F+v,α = −
fα

2πH2

∫
∞

−∞

dx dy

×

∞∑
n=1

(−1)nπn sin (πn∆)
[

K0

(πnρ
H

)
+

x2

ρ

πn
H

K1

(πnρ
H

)]
= fα∆, (A 6)

F+v,z =−
fz

πH2

∫
∞

−∞

dx dy
∞∑

n=1

(−1)nπn sin (πn∆)K0

(πnρ
H

)
= fz∆, (A 7)

where ρ2
= x2

+ y2, K0 and K1 denote the zeroth- and first-order modified Bessel
functions of the second kind, and we dropped the terms that do not contribute to
the force. Combining these expressions with (A 4) and (A 5), we arrive at (3.31). The
force on the lower boundary is obtained by replacing ∆ with 1−∆ in (3.31), as can
be seen from (3.30).
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