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Viewed on a hydrodynamic scale, flames in experiments are often thin so that they
may be described as gasdynamic discontinuities separating the dense cold fresh
mixture from the light hot burned products. The original model of a flame as a
gasdynamic discontinuity was due to Darrieus and to Landau. In addition to the
fluid dynamical equations, the model consists of a flame speed relation describing
the evolution of the discontinuity surface, and jump conditions across the surface
which relate the fluid variables on the two sides of the surface. The Darrieus–
Landau model predicts, in contrast to observations, that a uniformly propagating
planar flame is absolutely unstable and that the strength of the instability grows with
increasing perturbation wavenumber so that there is no high-wavenumber cutoff of
the instability. The model was modified by Markstein to exhibit a high-wavenumber
cutoff if a phenomenological constant in the model has an appropriate sign. Both
models are postulated, rather than derived from first principles, and both ignore the
flame structure, which depends on chemical kinetics and transport processes within
the flame. At present, there are two models which have been derived, rather than
postulated, and which are valid in two non-overlapping regions of parameter space.
Sivashinsky derived a generalization of the Darrieus–Landau model which is valid
for Lewis numbers (ratio of thermal diffusivity to mass diffusivity of the deficient
reaction component) bounded away from unity. Matalon & Matkowsky derived a
model valid for Lewis numbers close to unity. Each model has its own advantages
and disadvantages. Under appropriate conditions the Matalon–Matkowsky model
exhibits a high-wavenumber cutoff of the Darrieus–Landau instability. However,
since the Lewis numbers considered lie too close to unity, the Matalon–Matkowsky
model does not capture the pulsating instability. The Sivashinsky model does capture
the pulsating instability, but does not exhibit its high-wavenumber cutoff. In this
paper, we derive a model consisting of a new flame speed relation and new jump
conditions, which is valid for arbitrary Lewis numbers. It captures the pulsating
instability and exhibits the high-wavenumber cutoff of all instabilities. The flame
speed relation includes the effect of short wavelengths, not previously considered,
which leads to stabilizing transverse surface diffusion terms.

1. Introduction
In unconfined premixed gaseous combustion, a mixture of fuel and oxidizer reacts

in a flame to form the burned products. Sufficiently far ahead of and behind the
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flame the composition and temperature of the gas, and consequently the density, are
essentially constant. Since flames are typically thin compared with the characteristic
scales of the fluid flow, a simplified model of premixed combustion views the flame
as a surface of discontinuity separating the dense cold mixture from the light hot
products. A model of this kind was first proposed independently by Darrieus (1938,
1945) and by Landau (1944). In the Darrieus–Landau model a flame propagating
through a gaseous mixture is described by two incompressible fluids of different
densities, separated by the flame surface. To complete the model it is necessary to
provide an expression describing the evolution of the flame, e.g. the flame speed,
and the relation between the fluid variables on either side of the flame. These, in
fact, depend on the reaction kinetics and on transport processes within the flame.
Rather than deriving these relations Darrieus and Landau postulated that the flame
propagates normal to itself, at the fixed adiabatic flame speed s̃0

F of a uniformly
propagating planar flame. Thus, the flame speed s̃F is

s̃F = s̃0
F . (1.1)

Across the flame they postulated jump conditions which state that the mass and
momentum fluxes are continuous across the flame. In non-dimensional form these
relations are

[m] = 0, [p + mvn] = 0, [v⊥] = 0, (1.2)

where the square bracket denotes the jump of the indicated quantity across the flame
surface, [∗] = ∗b − ∗f , where ∗b and ∗f represent the quantity ∗ evaluated at the flame
surface as viewed from the burned and fresh gas, respectively. We will in general
denote quantities referring to the burned and fresh gas by the subscripts b and f ,
respectively. Tildes denote dimensional quantities, while terms without a tilde are
the corresponding non-dimensional quantities. Here, m = m̃/(ρ̃f s̃0

F ), p = p̃/(ρ̃f (s̃0
F )2),

vn = ṽn/s̃
0
F , and v⊥ = ṽ⊥/s̃0

F are the mass flux through the flame, the pressure, the
normal velocity, and the tangential velocity, respectively. In terms of the density
ρ = ρ̃/ρ̃f , the normal velocity, and the normal speed of the flame relative to a fixed
reference frame un = (ũn/s̃

0
F ), the mass flux is given by m = ρ(vn − un). The normal

and tangential components of the velocity v = ṽ/s̃0
F are vn = v · n and v⊥ = n × v × n,

respectively, where n is the normal vector, pointing in the direction of the burned
products. For the Darrieus–Landau model m ≡ 1. It is more common to describe
the propagation of the flame in terms of the flame speed sF = s̃F /s̃0

F which is defined
as the relative speed of the flame with respect to the fresh mixture. In terms of the
non-dimensional variables, with the fresh values taken as reference values, m = sF =1.
A major problem with the Darrieus–Landau model is that planar flames propagating
through a mixture initially at rest are unconditionally unstable to perturbations of
any wavelength, in contradiction to laboratory observations. In order to overcome
this deficiency of the Darrieus–Landau model, Markstein (1951, 1964) proposed a
phenomenological model, where the flame speed is assumed to be proportional to the
mean curvature c̃ = −(∇̃ · n)/2 of the flame,

s̃F = s̃0
F (1 − l̃M2c̃), (1.3)

where l̃M is the Markstein length which can be determined experimentally as in
Searby & Quinard (1990). In non-dimensional terms, c = c̃l̃ and ∇ = l̃∇̃, where l̃ is a
characteristic length scale of the flow (e.g. the diameter of a burner). Equation (1.3)
can be written as

m = 1 − Mr 2c, (1.4)
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Flames as gasdynamic discontinuities 13

where the Markstein number Mr = l̃M/l̃. In the Markstein model the jump conditions
(1.2) are unchanged, and the dependence of the flame speed on curvature is postulated
rather than derived from first principles. The Markstein length is a phenomenological
quantity, unrelated to the physicochemical parameters of the mixture.

Following the ideas of Eckhaus (1961), Markstein (1964) generalized his earlier
model to phenomenologically account for the curvature of the flow, i.e. the strain
−n · ∇̃ṽ · n, which yields

m = 1 − Mr(2c − n· ∇v · n). (1.5)

This relation is in qualitative agreement with Karlovitz et al. (1953) who assumed
that the flame speed depends not only on curvature but also on flame stretch
χ = χ̃ l̃/s̃0

F , which is defined as the time derivative of the surface area of a flame
element, normalized by the area itself. For uniformly propagating planar flames the
Karlovitz stretch χ is identical to the divergence of the tangential velocity, which for
incompressible fluids is the strain − n · ∇v · n.

The theories of Darrieus–Landau, Markstein, and Karlovitz et al. are all
phenomenological. That is, the authors did not derive their results from first principles:
they did not consider the chemical reactions nor the transport processes occurring
within the flame. Rather, the presence of the flame simply caused a jump in the
density of the flow. In reality, the self-propagation mechanism of premixed flames
is determined by a balance of chemical reactions, heat conduction, mass diffusion
and convective transport of heat and species. In non-uniform time-dependent flows
there is a strong interaction of the flow with this balance, resulting in a non-constant
local flame propagation speed. In order to derive a model from first principles it is
necessary to specify the chemical reactions and consider the internal structure of the
flame. A characteristic scale for the thickness of the flame is l̃0 = λ̃f /(s̃0

F ρ̃f c̃pf ) where

κ̃f = λ̃f /(ρ̃f c̃pf ) is the thermal diffusivity of the fresh mixture with the corresponding

thermal conductivity λ̃f and heat capacity c̃pf . The ratio of the fluid scale to the flame

thickness is the Péclet number Pe = l̃/l̃0.
Barenblatt, Zeldovich & Istratov (1962) (see also Zeldovich et al., Makhviladze 1985)

introduced the diffusional thermal model of combustion. In contrast to the previously
discussed purely hydrodynamic models, they ignored thermal expansion, but took
into account transport processes and chemical reactions. In its simplest form the
combustion process is considered as a one-step irreversible reaction between fuel and
oxidizer. The reaction is deemed to have a high activation energy and is very sensitive
to temperature variations so that the reaction is restricted to a thin zone, the reaction
zone, near the maximum temperature. Mathematically, this property of the flames
is expressed by a large value of the Zeldovich number Ze = Ẽ/(2R̃gT̃b)(1 − T̃f /T̃b).

Here Ẽ is the activation energy of the global reaction mechanism, R̃g is the gas

constant, T̃f is the fresh temperature, and T̃b is the adiabatic burned temperature of a

uniformly propagating planar flame. The thickness of the reaction zone is O(l̃0/Ze).
That is, the reaction zone is a thin layer O(1/Ze) within the flame zone. Behind the
reaction zone there is no reaction since all the available fuel has been consumed in
the reaction, while ahead of the reaction zone the reaction rate is negligibly small
due to the low temperature. The preheat zone is located ahead of the reaction zone.
Within the preheat zone, the mixture is preheated by conduction until reaction sets
in at a sufficiently high temperature. In addition, within the preheat zone fuel diffuses
toward the reaction zone where it is consumed. Due to the low thermal and mass
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14 A. G. Class, B. J. Matkowsky and A. Y. Klimenko

diffusivities of gas mixtures, the preheat zone is typically thin compared to the scale
of the fluid flow.

The flame speed of premixed flames governed by a one-step irreversible reaction
in a general fluid flow when thermal expansion is present is considered in
several publications, e.g. Sivashinsky (1976), Clavin & Williams (1982), Matalon &
Matkowsky (1982). The flame speed relation and the jump conditions are no longer
postulated, but rather derived. In these models, the solution of the diffusional thermal
problem, generalized to include the effects of thermal expansion, represents the thin
flame structure which interacts with the flow on a larger scale, i.e. it is assumed that
the flame curvature is weak compared to the thickness of the preheat zone, implying
that variations along the flame are weak compared to variations normal to the flame.
The flame characteristics depend on the Lewis number Le, defined as the ratio of
thermal diffusivity to mass diffusivity of the limiting reaction component. The flame
speed relation was derived by employing an asymptotic expansion in powers of Pe−1.
The models in Clavin & Williams (1982) and Matalon & Matkowsky (1982) provide
perturbative corrections to the Darrieus–Landau model which are O(Pe−1). The flame
speed in Clavin & Williams (1982) is a linearization of the relation in Matalon &
Matkowsky (1982), corresponding to the Clavin–Williams assumption of infinitesimal
perturbations of nearly planar flames in nearly uniform flows.

Sivashinsky (1976) considered Lewis numbers not necessarily equal to unity. The
jump conditions (1.2) are unchanged. The mass flux m is determined by

m2 lnm = Ze Pe−1IS

(
1

m

∂m

∂t
+ χ

)
. (1.6)

Here, t = t̃ s̃0
F /l̃ denotes time and IS is a constant which depends on the properties of

the mixture:

IS = Tb

∫ Tb

1

κ(T )

T

(
1 −

(
T − 1

Tb − 1

)Le−1
)

dT , (1.7)

where κ(T ) = λ̃ρ̃f c̃pf /(λ̃f ρ̃c̃p) is the thermal diffusivity as a function of temperature

and Tb = T̃b/T̃f is the burned temperature. The mass flux, or flame speed, relation (1.6)
is a nonlinear differential equation. However, Sivashinsky rejected the time-dependent
relation (1.6) that he had derived because of stability considerations and considered
(1.6) to be valid only for stationary flames.

Clavin & Williams (1982) considered infinitesimal perturbations of nearly planar
flames in nearly uniform flows for near-equidiffusional flames, i.e. Le = 1 + o(1) with
respect to an expansion in powers of Ze−1. In this case the planar flame may
be stable with respect to short-wavelength perturbations. The analysis in Clavin
& Williams (1982) only yields the flame speed relation. Jump conditions for the
case of infinitesimal perturbations of planar flames in nearly uniform flows were
derived in Pelce & Clavin (1982), which provide perturbative corrections to the jump
conditions in the Darrieus–Landau model, and represent a linearized version of the
jump conditions in Matalon & Matkowsky (1982).

Matalon & Matkowsky (1982) considered arbitrary flame shapes for near-
equidiffusional flames with thermal expansion in general flow fields. At leading order
the model reduces to the Darrieus–Landau model. Including perturbative corrections,
the mass flux through the flame becomes

m = 1 − Pe−1αM χ + O(Pe−2), (1.8)

αM = (Tb − 1)−1Tb ln Tb + Lered IM, (1.9)
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Flames as gasdynamic discontinuities 15

IM (Tb) =

∫ 0

−∞
ln (1 + (Tb − 1) ex) dx, (1.10)

where Lered = Ze (Le − 1) is the O(1) reduced Lewis number. The integral IM depends
on thermal expansion Tb − 1 and αM is a physicochemical parameter which depends
on thermal expansion, the Zeldovich number and the Lewis number. We note that
the flame speed relation (1.8) is similar to the phenomenological relation (1.5), if we
replace 2c − n · ∇v · n by the stretch χ . Indeed, 2c − n · ∇v · n is the flame stretch
of stationary flames. Therefore, Pe−1αM can be identified as the Markstein number
Mr , which is now given in terms of properties of the mixture, rather than being a
phenomenological constant as originally proposed. As the mass flux relation now
involves terms which are O(Pe−1) it is no longer sufficient to consider the jump
conditions of Darrieus and Landau. They are replaced by the jump conditions of
Matalon & Matkowsky (1982, 1984):

[m] = Pe−1χ ln Tb + O(Pe−2),

[p + mvn] = Pe−1(Tb(Tb − 1)−1 ln Tb[∇np] + 2c(Tb − 1 + Tb ln Tb)

+ un χ ln Tb) + O(Pe−2),

[v⊥] = −Pe−1(Pr + Tb(Tb − 1)−1 ln Tb)[n × ∇ × v] + O(Pe−2),




(1.11)

where Pr is the Prandtl number and ∇n∗ = n · ∇∗ is the normal derivative. The
right-hand sides of (1.11) were explained as being due to transport along the flame.

Thus, at present there are separate theories for Le − 1 = O(1) (Sivashinsky 1976)
and for Le ≈ 1 (Matalon & Matkowsky 1982). In Sivashinsky (1976) only the leading
order term in the expansion in powers of Pe−1 is considered, while in Matalon &
Matkowsky (1982), O(Pe−1) perturbative corrections are considered as well. A unified
theory containing both cases is the goal of this paper. Moreover, in the unified theory
we derive new expressions for the flame speed relation and jump conditions. In a
companion paper, Class, Matkowsky & Klimenko (2003), the resulting model will be
shown to be capable of capturing all the relevant instabilities of the planar flame,
while eliminating non-physical short-wavelength instabilities present in the previous
analyses.

Recently Klimenko & Class (2000) employed tensor calculus to derive the flame
speed relations of the prior theories by Matalon & Matkowsky (1982) and Sivashinsky
(1976) in a way that eliminates many of the purely geometrical terms which are
present in the earlier works. In Klimenko & Class (2002) the approach was applied
to a multistep chemical reaction. The nonlinear differential equation of Sivashinsky
(1976) is replaced by a simpler algebraic relation. A coordinate system similar to that
of Klimenko & Class (2000) was employed in De Goey & ten Thije Boonkkamp
(1999).

In the present paper we employ a philosophy similar to that in Matalon &
Matkowsky (1982) together with the tensor formalism of Klimenko & Class (2000) to
derive new jump conditions and a new flame speed relation. Thus, we consider large
Péclet numbers, effectively assuming that the flame, measured on the scale of the flame
thickness is weakly curved. Our approach, though similar, differs somewhat from that
of Matalon & Matkowsky (1982). Specifically, we consider both the equations which
describe the reactive structure of the flame and those which govern the non-reactive
hydrodynamic model. The solutions of both models must be identical away from the
flame zone. Thus, equating the two models yields both the flame speed equation and
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the jump conditions for the non-reactive hydrodynamic model. In the limit Pe → ∞
the reactive model is approximated by the hydrodynamic model, with the flame zone
of the reactive model shrinking to the discontinuity surface of the hydrodynamic
model, across which the fluid variables jump. The actual expressions for the jump
conditions, as well as the flame speed relation, depend on the precise location of
the discontinuity surface within the flame zone. Note that the discontinuity surface
represents a mathematical construct rather than a physical surface of discontinuity
and must be defined. Changing the location by O(Pe−1) induces O(Pe−1) changes in
the flame speed relation and jump conditions. The fact that the form of the expression
depends on the precise location of a separating surface was already recognized by
Gibbs (1876 and 1878, 1879) when he considered the problem of surface tension on
the surface separating two immiscible fluids. A flame position which is defined by a
density integral is shown to be attractive as many of the terms in the jump conditions
then vanish. The reason why these terms vanish is that the mass flux across the
flame for this particular definition of the flame position becomes continuous. In the
jump conditions for the normal momentum only a single correction term appears,
which is proportional to the curvature of the flame. This term, due to compressibility
effects, is analogous to the surface tension term in the problem of two immiscible
fluids separated by an interface. However, its sign is opposite to that of surface
tension. We therefore refer to it as surface compression. In the tangential momentum
equations, the gradient of surface compression along the flame imposes tangential
forces, analogous to the forces in the Marangoni convection problem.

In our approach we no longer consider Le ≈ 1 and Le − 1 = O(1) as separate
cases. In addition, by accounting for the effects of short-wavelength variations along
the flame, which were ignored in previous analyses, we derive a new flame speed
relation. Short-wavelength effects result in new terms in the flame speed equation,
which are not present in previous relations. In particular, we derive a transverse
diffusion term and a nonlinear term involving transverse gradients. The transverse
diffusion term plays a similar stabilizing role to that of the biharmonic operator in
the Kuramoto–Sivashinsky equation (Sivashinsky 1980), which describes the weakly
nonlinear evolution of flames in the constant-density approximation. The nonlinear
term is similar to the nonlinear term in the Kuramoto–Sivashinsky equation, though
the latter is due to a geometrical effect, while here it is due to transverse diffusion.
If short wave variations are neglected our new flame speed relation reduces to the
previous results of Matalon & Matkowsky (1982) and Sivashinsky (1976) in the
appropriate limits. We also derive a new intermediate limit, in which the flame speed
relation reduces to the stationary version of the Sivashinsky relation if we restrict
consideration to corrugations of O(1) length scale and consider moderately large
flame stretch. We also derive new expressions for the jump conditions.

The structure of the paper is as follows. In § 2 the governing equations are presented
and transformed to generalized moving coordinates. In § 3 we introduce an asymptotic
expansion in inverse powers of Pe and solve for the first two orders, which yields the
fluid equations and the jump conditions. In § 4 we derive the flame speed relation.
Finally, in § 5 the results are summarized and conclusions drawn.

2. Governing equations
The transport and reaction of a combustible mixture is governed by conservation

equations for mass, momentum, energy, and the chemical species participating in the
reaction. We consider a single deficient component of the reaction. We assume an
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Flames as gasdynamic discontinuities 17

unconfined flame propagating at a speed much lower than the local sound speed.
Thus, the Mach number Ma (ratio of flame speed to sound speed) is assumed to
be small. Density changes are assumed to result from temperature changes only, i.e.
we exclude acoustics from consideration. Compressibility effects are neglected in the
energy equation as well.

In suitable non-dimensional variables the conservation equations for mass,
momentum, energy and the deficient species concentration become

∂R

∂t
+ ∇ · (RV ) = 0, (2.1)

∂(RV )

∂t
+ ∇ · (RV ⊗ V ) = −∇P + ∇ · Σ, (2.2)

∂(RT )

∂t
+ ∇ · (RVT ) =

1

Pe
∇ · (Λ∇T ) + (Tb − 1) W, (2.3)

∂(RY )

∂t
+ ∇ · (RVY ) =

1

Pe Le
∇ · (Λ∇Y ) − W. (2.4)

We refer to this model as the reactive model. The equations correspond to the leading
term in an expansion with respect to Ma2. The quantity P in (2.2) corresponds
to the deviation of the pressure from its constant ambient value, i.e. the pressure
is P0 + Ma2P , where the constant P0 does not enter the equations since only ∇P

appears.
We introduce a reference length l̃ which is a characteristic length of the flow field. As

a reference velocity we employ s̃0
F , the adiabatic laminar flame speed. The thickness of

the flame is estimated as l̃0 = λ̃/(ρ̃f c̃pf s̃0
F ). In atmospheric hydrocarbon combustion

l̃0 = O(0.1 mm), while l̃ is much larger. The ratio of the hydrodynamic length scale
to the flame thickness is the Péclet number Pe = l̃/̃l0 which is assumed to be large.
We use T̃f , Ỹf and ρ̃f as reference values for temperature, concentration and density.
The transport coefficients are also non-dimensionalized by their fresh values.

The independent variables are the time t = t̃ s̃0
F /̃l and the Cartesian spatial variables

ηi = η̃i/l̃ (i =1, 2, 3). The nabla operator is ∇ = (∂/∂η1, ∂/∂η2, ∂/∂η3) and the operator
⊗ denotes the dyadic product.

Thus, the non-dimensional density, velocity, pressure, temperature, and deficient
species concentration are R = ρ̃/ρ̃f , V = ṽ/s̃0

F , P = p̃/(ρ̃f (s̃0
F )2), T = T̃ /T̃f , and Y =

Ỹ /Ỹf .
For convenience, we assume that there is a single species in the fresh mixture which

is present in small quantity and which limits the reaction. This species is referred
to as the deficient component. For lean (rich) hydrocarbon/air flames the deficient
component is the hydrocarbon (oxygen). If a single deficient species is present it
suffices to track this species. Other concentrations of the mixture are deemed to be
sufficiently large that they can be considered essentially constant. Our approach may
be generalized to more complex reaction schemes, in which case it is preferable to
use the specific enthalpy of the mixture which is a function of the temperature, rather
than the temperature itself. Typically, the specific heat c̃p is only weakly dependent
on the temperature in the temperature interval of interest. Thus, we replace c̃p by its
constant-temperature-averaged value.

Though the flow is incompressible outside the flame region, we must account for
compressibility in the flame region. Thus, the stress tensor is given in the compressible
form

Σ = Pr Pe−1Λ
(
∇V + ∇V T − 2

3
I∇ · V

)
, (2.5)
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where the superscript T denotes the transpose of the corresponding matrix and I
denotes the identity matrix.

The quantity Λ = λ̃/λ̃f is the non-dimensional thermal conductivity. From kinetic
gas theory we find a theoretical dependence Λ ∼ T 1/2. We assume that the diffusion
coefficients for momentum, heat and species have the same temperature dependence
but have distinct ratios, i.e. the Prandtl number Pr = µ̃f /(ρ̃f κ̃f ) is the ratio of the
kinematic viscosity µ̃f /ρ̃f to the thermal diffusivity κ̃f and the Lewis number Le =
κ̃f /D̃f is the ratio of the thermal diffusivity to the species diffusivity D̃f .

The temperature T and the density R are related by the equation of state, which
for an ideal gas at constant ambient pressure is

TR= 1. (2.6)

The reaction rate is given by the Arrhenius law W = AY n exp(−2ZeTb/(T (1 −
1/Tb))), where A is the pre-exponential factor, n is the reaction order, Ze is the
Zeldovich number which is a non-dimensional measure of the activation energy. The
adiabatic burned temperature is Tb = 1 + Q̃/(c̃pT̃f ) where Q̃ is the heat release of the
reaction. We will employ the reaction sheet approximation corresponding to large Ze,
i.e. we assume that the reaction rate W is highly sensitive to temperature changes.
Thus, if the temperature becomes lower than the burned temperature Tb by a small
amount the reaction rate decreases rapidly and may be neglected. Consequently, the
reaction zone is thin compared to the thickness of the flame.

Note that if Le =1 the energy and concentration equations (2.3) and (2.4) become
similar and the concentration and temperature are then related by (T − 1)/(Tb −
1) = 1 − Y so that a single equation describes the problem. Therefore, if Le is close
to 1, the effect of the deviation of Le from unity represents an asymptotic correction
and is manifested at the next order in the analysis. Thus, a correction to the leading
order result is necessary if Le − 1 is small, which is not the case if Le − 1 = O(1). This
previously required separate consideration of the cases Le−1 = o(1) and Le−1 = O(1).

Here, the two cases are analysed together. We introduce the O(1) reduced enthalpy

H =
1

1 − Le−1

(
T − 1

Tb − 1
+ Y − 1

)
(2.7)

and write an equation for the enthalpy by dividing (2.3) by Tb − 1, adding (2.4), and
then dividing the result by 1 − Le−1 to yield

∂(RH )

∂t
+ ∇ · (RVH ) =

1

Pe
∇ · (Λ∇(H − Y )). (2.8)

Note that H vanishes in the fresh mixture. The enthalpy equation (2.8) replaces
the temperature equation (2.3). We will, however, employ (2.3) when we replace
integration with respect to spatial variables by integration with respect to T .

To describe a propagating flame we must prescribe boundary conditions for the fluid
variables as well as T = Y = 1, H =0 far ahead of the flame and ∇T = Y = ∇H = 0
far behind the flame, as well as appropriate initial conditions.

2.1. The hydrodynamic model

The flame is a layer separating the fresh mixture from the burned products. The
density on either side of the layer is constant to the accuracy of the present theory
but experiences a jump across the flame.
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Variable Hydrodynamic model Reactive model

density ρ R

velocity v, vi V , V i

mass-flux mi Mi

pressure p P
thermal conductivity λ Λ
stress σ Σ
temperature ϑ T
concentration y Y
enthalpy h H
reaction rate W

Table 1. Symbols in the hydrodynamic and the reactive models.

We propose to derive a hydrodynamic model for the flame. In the resulting model
the internal structure of the flame, which is described by the reactive model, will not
be resolved and is replaced by a discontinuity surface across which the variables of
the hydrodynamic model jump from their fresh to their burned values. Note that
the discontinuity surface represents a mathematical construct which must be properly
defined. Sufficiently far ahead of and behind the flame, i.e. outside the layer, the
hydrodynamic and the reactive models are identical. Therefore, differences between
the two models may be observed within the flame structure only. Below we will
consider the case where the hydrodynamic scale l̃ is much larger than the flame
thickness l̃0, so that the layer represents an asymptotically thin inner layer embedded
within the flow region of larger scale, i.e. the outer region.

The hydrodynamic model’s parameters, such as the location of the discontinuity
surface and the jump conditions across it, are determined from the internal structure
of the flame. To derive the hydrodynamic model, we employ two sets of equations:
one for the hydrodynamic model, and a second set for the reactive structure of the
flame. Also note that both the reactive model and the hydrodynamic model are
defined in the whole domain including the flame zone. We will choose the location of
the discontinuity surface and derive the jump conditions and the flame speed relation.
Finally, we consider the thin flame limit Pe 
 1 to derive explicit formulas for the
flame speed relation and jump conditions.

To distinguish the variables of the hydrodynamic model from those of the reactive
model we use lower-case letters for the former and capital letters for the latter. The
variables in the reactive and hydrodynamic models are given in table 1 (some of the
symbols are introduced in the sections that follow).

We also formulate the governing equations for the hydrodynamic model on either
side of the flame as

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.9)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · σ , (2.10)

where ρ = ρ̃/ρ̃f , v = ṽ/s̃0
F , and p = p̃/(ρ̃f (s̃0

F )2) are the density, velocity, and the

dynamic pressure in the constant density flow. Here σ = Pr Pe−1λ(∇v + ∇vT − 2
3
I∇ · v)

is the stress tensor. The dynamic viscosity is given by the combination Pr Pe−1λ
where Re = Pe/Pr is the Reynolds number. In the fresh mixture λ=1, while in the
burned mixture λ= λb. In the burned region small variations of λ may result from
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20 A. G. Class, B. J. Matkowsky and A. Y. Klimenko

small temperature variations about the adiabatic temperature Tb. However, they will
be shown to be negligibly small, so that λb = T

1/2
b .

In the hydrodynamic model the density ρ is constant both in the fresh and burned
mixtures with ρ = ρf = 1 and ρ = ρb = 1/Tb. Behind the flame the small variations of
the temperature ϑ about Tb, i.e. small variations of the enthalpy h about zero, result
in small variations of the density ρ so that ρ − ρb = O(ϑ − Tb) = O(h(1 − Le−1)). This
difference is shown to be negligible. Thus, in the hydrodynamic model the densities
ahead of and behind the flame are constant but different.

The hydrodynamic model concentration y is uniform in both the fresh and the
burned regions, where the concentrations are 1 and 0, respectively.

Clearly, the equations of the reactive and hydrodynamic models are nearly identical.
Yet, there is an important difference. The hydrodynamic model holds separately on
either side of the flame and does not include a reaction term, while the reactive model
governs all the processes within the flame structure.

To close the hydrodynamic model the effects of flame structure on the non-reactive
flow on either side of the flame must be accounted for. These result in jumps in the
density, mass flux and momentum flux across the discontinuity surface, which must
be determined. In addition, the speed of the discontinuity surface must be determined.

The goal of the analysis that follows is to derive from first principles the jump
conditions across the discontinuity surface and the flame speed relation.

2.2. Jump conditions

Instead of using fixed Cartesian coordinates it is convenient to transform the equations
to a moving generalized curvilinear coordinate system x1, x2, x3 where x1 = 0 specifies
the discontinuity surface, which has been referred to as the flame surface. The
coordinate system is chosen such that in the normal direction it is attached to the
discontinuity surface and in the tangential direction it moves with the local tangential
flow. Thus, in this coordinate system the flame is at rest with no flow along the
flame surface. In our analysis we employ tensor calculus (see Aris 1989). Without
loss of generality the x1 coordinate lines can be chosen to be normal to the surfaces
x1 = const including the discontinuity surface x1 = 0. The covariant metric tensor for
this system of coordinates is given by gij (i, j = 1, 2, 3). Due to the orthogonality of the
x1 coordinate lines with respect to the surfaces x1 = const, g1α = 0 where Greek indices
run from 2 to 3 and Latin indices run from 1 to 3. Without loss of generality we set
g11 = 1, i.e. the normal coordinate is uniformly spaced (see Klimenko & Class 2000).
We use lower-case letters for the spatial variables and the metric tensor, as we did for
the hydrodynamic model variables. This emphasizes the fact that in the asymptotic
theory for thin flames that follows, the metric tensor is constant to leading order
within the flame region. Quantities which vary on the large hydrodynamic scale are
denoted by lower-case letters while functions which vary within the flame structure are
denoted by capital letters. We introduce the volume element

√
g where g ≡ 1/ det(gij ),

which is identical to the element of surface area since g11 = 1. This allows us to define
the mean curvature c of the surface x1 = 0 by c = −(∂

√
g/∂x1)/(2

√
g) evaluated at

x1 = 0.
Note that in tensor notation the physical components of vectors and tensors are

calculated from contravariant/covariant components using the normalization

V (i) = V i√gii = Vjg
ij √

gii, no summation on i, (2.11)

Σ(ij ) = Σikgjk

√
gii/gjj , no summation on i, j, (2.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

50
7X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200300507X


Flames as gasdynamic discontinuities 21

where V (i) and Σ(ij ) denote physical components, while the quantities on the right-
hand side are the corresponding tensor components. The covariant matrix tensor gij

is the inverse of the matrix gij .
Consider the conservation equation for a scalar quantity Φ in fixed Cartesian space

∂

∂t
(Φ) + ∇ · (J(Φ)) = Pe Q(Φ), (2.13)

where J(Φ) = VΦ − D∇Φ , with velocity V and diffusivity D, is the flux associated
with Φ and Q(Φ) is a source term, scaled by the Péclet number for convenience.

In generalized moving coordinates the conservation equation for Φ is written in
terms of conventional derivatives as

∂

∂t
(
√

gΦ) +
∂

∂xj
(
√

gJ j (Φ)) =
√

gPe Q(Φ), (2.14)

where we employ the Einstein summation convention of summing repeated indices.
The flux vector becomes J j (Φ) = (V j − uj )Φ − gijD∂Φ/∂xi where uj ≡ ∂xj/∂t is
the speed of the moving xj -system of coordinates relative to the fixed ηj -system of
coordinates.

We decompose summation with respect to the index j in (2.14) into its normal and
tangential components

∂

∂t
(
√

gΦ) +
∂

∂x1
(
√

gJ 1(Φ)) +
∂

∂xα
(
√

gJ α(Φ)) =
√

gPe Q(Φ). (2.15)

A conservation equation for the volume element
√

g is obtained if we consider the
transport equation for Φ = 1 and neither allow for diffusion (D = 0) nor a source term
(Q(1) = 0), so that the corresponding flux results from convection of the coordinate
system alone, J j (1) = −uj . The resulting equation is used in the definition of flame
stretch.

We now write the fluxes and source terms for each of the governing equations.
The fluxes of the continuity (Φ = R), energy (Φ =RT ), concentration (Φ = RY ), and
enthalpy (Φ = H ) equations are

J j (R) ≡ Mj, (2.16)

J j (RT ) ≡ MjT − 1

Pe
gijΛ

∂T

∂xi
, (2.17)

J j (RY ) ≡ MjY − 1

Pe Le
gijΛ

∂Y

∂xi
, (2.18)

J j (RH ) = MjH − 1

Pe
gijΛ

∂

∂xi
(H − Y ), (2.19)

where Mj = R(V j − uj ) is the contravariant mass flux in the moving system of co-
ordinates and the corresponding source terms are

Q(R) = Q(H ) ≡ 0, Q(RT ) ≡ (Tb − 1)W, Q(RY ) ≡ −W. (2.20)

Since momentum is a vector quantity, the momentum equations are not in
the appropriate form to apply (2.15). However, if we write a scalar momentum
conservation equation in a fixed spatial direction we may apply (2.15). We introduce
a parallel vector field li , which in Cartesian coordinates has constant components, i.e.
has constant direction and length, and write the conservation equation for V ili , which
represents the velocity component in the direction of li . A parallel vector field has
special properties with respect to differentiation. In particular, covariant derivatives,
denoted by ( ),i , which are the tensorial generalization of partial derivatives, of parallel
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vector fields vanish, i.e. li,j = 0. For a moving coordinate system, as considered here,
this is true at any instant of time. However, the components of li are time dependent.
The metric tensor has a similar property (Ricci’s lemma), i.e. g

ij
,k = 0. In the following

analysis we will need the relation ∂l1/∂x1 = 0 which follows from Ricci’s lemma,
g1α = 0, and g11 = 1:

g11
,i =

∂g11

∂xi
+ 2Γ 1

ij g
1j = 2Γ 1

i1 = 0, (2.21)

g1α
,1 =

∂g1α

∂xi
+ Γ 1

j1g
αj + Γ α

1j g
1j = Γ α

11 = 0, (2.22)

where Γ
ij
k are Christoffel symbols of the second kind. Now we calculate l1,1 to find

that it vanishes since l1 is a parallel vector:

l1,1 =
∂l1

∂x1
− Γ i

11li =
∂l1

∂x1
= 0. (2.23)

The momentum equation is obtained if we set

J j (RV ili) ≡ (MjV i + gijP − Σij )li , Q(RV ili) ≡ 0, (2.24)

where the stress tensor is

Σij =
Pr

Pe
Λ

(
gjk ∂V i

∂xk
+ gik ∂V j

∂xk
− V k ∂gij

∂xk
− 2

3

gij

√
g

∂
√

gV k

∂xk

)
. (2.25)

Flux equations for the hydrodynamic model are obtained by replacing the reactive
model variables by the corresponding hydrodynamic model variables:

J j (ρ) ≡ mj, Q(ρ) ≡ 0, (2.26)

J j (ρvili) ≡ (mjvi + gijp − σ ij )li , Q(ρvili) ≡ 0, (2.27)

J j (ρy) ≡ mjy − 1

LePe
gijλ

∂y

∂xi
, Q(ρy) ≡ 0, (2.28)

J j (ρh) ≡ mjh − 1

Pe
gijλ

∂h

∂xi
, Q(ρh) ≡ 0, (2.29)

where all the source terms vanish in the hydrodynamic model. The stress tensor is

σ ij =
Pr

Pe
λ

(
gjk ∂vi

∂xk
+ gik ∂vj

∂xk
− vk ∂gij

∂xk
− 2

3

gij

√
g

∂
√

gvk

∂xk

)
. (2.30)

Henceforth, we denote m1 at the discontinuity surface by m, to be consistent with
the notation in the introduction. This is appropriate since g11 = 1 so that the physical
normal mass flux m equals the corresponding mass flux m1 in tensor notation:

m =m1|x1 = 0. (2.31)

Let us examine the difference between the equations for the reactive and the
hydrodynamic model. These equations only differ by the fact that in the hydrodynamic
model the variables jump while in the reactive model there is a continuous variation
and a reaction term. In particular, density is constant on either side of the discontinuity
surface in the hydrodynamic model, while in the reactive model the density varies
continuously. Outside the reaction layer there is no reaction. Thus, both models
describe the same non-reactive hydrodynamic flow so that there is no density difference
between the two.
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From the continuity equations we obtain

∂

∂t
(
√

g(R − ρ)) +
∂

∂xα
(
√

g(Mα − mα)) +
∂

∂x1
(
√

g(M1 − m1)) = 0. (2.32)

We will now apply a simple procedure to determine the jump conditions for the
hydrodynamic model. We note that this procedure differs from the procedure used
in matched asymptotics. Here, we use the fact that the hydrodynamic and reactive
models describe the same non-reactive flow outside the flame zone, i.e. both models are
identical far from the discontinuity surface. At this stage, our procedure is applicable
even when the reaction layer is not thin within the flame. We note that when we finally
apply the asymptotic limit below, we are able to calculate asymptotic corrections to
the jump conditions without the need to determine asymptotic corrections to the
solutions in the flame zone, which is the most complicated step in the traditional
approach. At this stage we make no assumptions on the reaction scheme and the
fluid properties, so that the results we obtain are general.

Integrating equation (2.32) across the fresh mixture from x1 = x1
f < 0 to x1 = 0 (the

discontinuity surface) and across the burned region from x1 = 0 to x1 = x1
b > 0 and

summing the integrals yields

∂

∂t

(∫ x1
b

x1
f

√
g(R − ρ) dx1

)
+

∂

∂xα

(∫ x1
b

x1
f

√
g(Mα − mα) dx1

)
+

√
g

∗
[m] = 0, (2.33)

where x1
f is sufficiently far upstream that reaction and heat conduction from the flame

are negligible. Similarly, x1
b is sufficiently far downstream that reaction is negligible.

The square bracket [m] denotes the jump of the hydrodynamic model’s normal mass
flux m, i.e. m1 at the discontinuity surface. This term is sometimes referred to as
the excess surface mass. The term arises from the normal mass flux in (2.32). Both
at x1 = x1

f and x1 = x1
b the reactive and the hydrodynamic model mass fluxes are

identical so that no contributions are found at the upstream (x1 = x1
f ) and downstream

(x1 = x1
b ) integration boundaries. At the discontinuity surface (x1 = ± 0) the reactive

model mass flux M1 is continuous, so that the corresponding terms cancel each other.
The asterix denotes quantities evaluated at the discontinuity surface. It should be
noted that we have written the sum of the integrals in the fresh and the burned
mixtures as a single integral. In an actual evaluation the density ρ must be replaced
by the fresh density ρf in x1 ∈ (x1

f , 0) and by the burned density ρb in x1 ∈ (x1
b , ∞).

Note that (2.33) is the jump condition for the mass flux m. However, it is necessary
to evaluate the integrals in (2.33) which involve the reactive model which must be
analysed.

The relation (2.33) suggests that the hydrodynamic model mass flux may be
discontinuous at the discontinuity surface. This will be discussed below. However,
we will define the precise location of the discontinuity surface in such a way that m is
continuous across this surface. Rather than defining the location of the discontinuity
surface as the surface of maximum reaction rate as has been done previously and then
evaluating the corresponding excess surface mass, we now choose the location of the
discontinuity surface such that the excess surface mass vanishes. This may be ensured
if each integral in (2.33) separately vanishes. Both integrals involve terms which may
be adjusted. The transverse mass fluxes Mα and mα both contain the transverse
speed uα of the coordinate system, which is as yet undetermined. The transverse
speed uα can always be chosen to ensure both that the coordinate lines x1 remain
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orthogonal to the surfaces x1 = const and that the integral
∫ x1

b

x1
f

√
g(Mα − mα) dx1 = 0.

This requires that Mα = R(V α − uα) ≈ 0 and mα = ρ(vα − uα) ≈ 0, i.e. the coordinate
system is transported along the flame approximately at the speed of the tangential
flow. Note that we cannot enforce Mα = mα = 0, since the tangential mass fluxes
change weakly within the flame structure and also Mα = mα . This will be clarified
below when we asymptotically approximate the integrals. The integral involving the
time derivative in (2.33) may be made to vanish by choosing an appropriate position
for the discontinuity surface. This too will be clarified below. The requirement that∫ ∞

−∞
√

g(R − ρ) dx1 = 0 will determine the position of the discontinuity surface.
A jump condition similar to (2.33) is derived from the hydrodynamic and the

reactive model momentum equations (2.15) with the corresponding fluxes defined in
(2.24) and (2.27). Again the difference of the equations is taken and then the equation
integrated across the reactive structure to yield

∂

∂t

(∫ x1
b

x1
f

√
g

(
RV ili − ρvili

)
dx1

)

+
∂

∂xα

(∫ x1
b

x1
f

√
g(J α(RV ili) − J α(ρvili)) dx1

)
+

√
g

∗ [
J 1(ρvili)

]
= 0. (2.34)

The jump [J 1(ρvili)] = [mvi +gi1p −σ i1]l∗
i involves the terms which are present in the

Darrieus–Landau jump conditions and, in addition, the jump of the stress across the
discontinuity surface. In order to satisfy continuity of the normal mass flux m1 across
the flame we have used all the degrees of freedom at our disposal. Therefore, we must
expect that the integral in (2.34) does not vanish. Thus, forces must be associated
with the discontinuity surface, which account for compressibility effects within the
flame structure.

Repeating our procedure for the enthalpy equation yields

∂

∂t

(∫ x1
b

x1
f

√
g(RH − ρh) dx1

)

+
∂

∂xα

(∫ x1
b

x1
f

√
g (J α(RH ) − J α(ρh)) dx1

)
+

√
g

∗
[J 1(ρh)] = 0, (2.35)

where [J 1(ρh)] = m
j∗
b h∗

b − Pe−1λ∗
b(∂hb/∂x1)∗

b and where the asterix and the subscript
b denote quantities evaluated at the discontinuity surface as seen from the burned
mixture.

Finally, repeating our procedure for the concentration, we determine the equation
for the propagation speed of the discontinuity surface.

∂

∂t

(∫ x1
b

x1
f

√
g(RY − ρy) dx1

)
+

∂

∂xα

(∫ x1
b

x1
f

√
g (J α(RY ) − J α(ρy)) dx1

)

− √
g

∗
m =Pe

∫ x1
b

x1
f

√
gQ(RY ) dx1, (2.36)

where we employed [J 1(ρy)] = m(yb − yf ) = − m. Note that the source term Q(RY )
depends on the temperature and thus on the enthalpy h∗

b. Thus, both (2.35) and (2.36)
must be solved to calculate the flame speed.
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In the analysis to follow we determine the appropriate position of the discontinuity
surface and its normal propagation speed. In addition, the jump conditions for the
mass and momentum are derived.

3. Asymptotic derivation of the fluid equations and jump conditions
In § 2.2 we derived the jump conditions for mass (2.33), momentum (2.34), enthalpy

(2.35), and concentration (2.36) which arise upon replacing the flame region by a
surface across which the fluid variables jump. In the hydrodynamic model enthalpy
and concentration no longer appear. Instead an equation for the propagation of the
discontinuity surface is derived from (2.35)–(2.36). To explicitly determine expressions
for the fluid jump conditions and the flame speed relation it will be necessary to
asymptotically evaluate the integrals in (2.33)–(2.36). We derive asymptotic formulas
taking advantage of the fact that flames are typically thin compared to the length
scale of the fluid flow, i.e. Pe−1 � 1. We will see that the integrals are O(Pe−1).

We are interested in the flame zone, which is thin. In the terminology of matched
asymptotics the flame region represents an inner region embedded within the outer
non-reactive flow. Within the flame zone there is the yet thinner reaction zone. We
introduce the stretched normal spatial variable X = Pe x1. In terms of X the width of
the flame region is O(1) and the integration boundaries x1

f and x1
b become X = −∞

and X = ∞, respectively.
Equation (2.15) becomes

1

Pe

(
∂

∂t
(
√

gΦ) +
∂

∂xα
(
√

gJ α(Φ))

)
+

∂

∂X
(
√

gJ 1(Φ)) =
√

gQ(Φ). (3.1)

We now exploit the fact that Pe 
 1. Note that Ze−1 = o(1) in an expansion in powers
of Pe−1. We expand as

F ∼
∑

n

Pe−nF(n), (3.2)

where F denotes any of the reactive model quantities R, T , Y , H , W , P , V i , Mi ,
J j (R), J j (RT ), J j (RY ), J (RH ), J j (RV ili), and Σij .

Quantities associated with the coordinate system
√

g, gij , c, and its speed ui , as
well as the parallel vector field li are Taylor expanded as

f =
∑
n =0

∂nf (0)

(∂x1)n
Pe−n

n!
Xn =

∑
n= 0

Pe−nf ∗
(n)X

n, (3.3)

where f denotes any of the quantities
√

g, gij , c, ui , and li . The coefficients f ∗
(n) are

independent of X, though they may vary along the flame. The hydrodynamic model
quantities ρ, p, vi , mi , h, J j (ρ), J j (ρvili), J (ρh) and σ ij may jump at X = 0, or at
least their normal derivatives may jump, so that we Taylor expand these quantities
separately in the fresh and burned regions.

Introducing the Taylor expansion g1/2 = g
1/2∗
(0) + Pe−1g

1/2∗
(1) X + · · · into (3.1), where

g
1/2∗
(1) = −2c and χ∗ = (∂g1/2∗/∂t)/g1/2∗, yields

1

Pe

((
∂

∂t
+ χ∗

)
Φ +

1
√

g
∗

∂

∂xα
(
√

g
∗
J α(Φ))

)
+

∂

∂X

((
1 − 1

Pe
2cX

)
J 1(Φ)

)

=

(
1 − 1

Pe
2cX

)
Q(Φ) + O(Pe−2). (3.4)
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Note that we have omitted the index (0) for convenience in Taylor-expanded quantities
evaluated at the discontinuity surface. Substituting the asymptotic expansions for the
fluxes and the source terms into (3.4) and setting the coefficients of like powers of
Pe−1 to zero yields

∂

∂X

(
J 1

(0)(Φ)
)

= Q(0)(Φ), (3.5)

(
∂

∂t
+ χ∗

)
Φ(0) +

1
√

g
∗

∂

∂xα

(√
g

∗
J α

(0)(Φ)
)

+
∂

∂X

(
J 1

(1)(Φ) − 2cXJ 1
(0)(Φ)

)
= Q(1)(Φ) − 2cXQ(0)(Φ). (3.6)

Similarly, we write two terms of the asymptotic expansion of a generic jump condition

[
J 1

(0)(φ)
]

=

∫ ∞

−∞
Q(0)(Φ) dX, (3.7)

[
J 1

(1)(φ)
]

=

∫ ∞

−∞

(
Q(1)(Φ) − 2cXQ(0)(Φ)

)
dX −

(
∂

∂t
+ χ∗

)∫ ∞

−∞

(
Φ(0) − φ(0)

)
dX

−
∫ ∞

−∞

1
√

g
∗

∂

∂xα

(√
g

∗ (
J α

(0)(Φ) − J α
(0)(φ)

))
dX. (3.8)

Here φ denotes a generic variable of the hydrodynamic model and Φ denotes the
corresponding variable of the reactive model.

Note that χ∗ is the relative change of the element of surface area (since g11 = 1).
This quantity is related to the flame stretch χ . Indeed, we will show that these
quantities are identical in our moving coordinate system since there is no flow on the
flame surface. For now, we distinguish between χ∗ and the stretch χ . The quantities
χ∗, c, and uj are related by the conservation equation for the volume element g1/2,
i.e. Φ = 1. Equation (3.6) with ∂u1/∂X =0 yields

χ∗ =
1

√
g

∗
∂

∂xα

(√
g

∗
uα

(0)

)
− 2cu1

(0), (3.9)

where the normal speed of the coordinate system u1 may be expressed in terms of
the mass flux as u1∗

(0) = v1∗
f − m(0) = v1∗

b − m(0)/ρ
∗
b . Clearly, there is a contribution to χ∗

due to tangential velocity gradients (first term on the right-hand side of (3.9)) and a
second contribution due to curvature (second term on the right-hand side of (3.9)).

The leading terms (3.5) and (3.6) of the asymptotic expansion of (3.4) are expressed
in terms of conventional derivatives, so that (3.5) and (3.6) may be employed directly,
without resorting to tensor calculus. The equations explicitly involve the flame stretch
χ and the flame curvature c as parameters. Therefore, employing (3.5) and (3.6)
directly yields the solutions in terms of χ and c. Both parameters represent intrinsic
geometric properties of the flame surface. Specifically, χ represents temporal surface
area changes and c measures the current shape of the flame. We use the term intrinsic
disturbed flame equations for (3.5) and (3.6), as in Klimenko & Class (2000) where the
energy equation and the concentration equation were introduced in a form similar
to (3.4). Similarly, we introduce the term intrinsic disturbed flame jump conditions for
(3.7) and (3.8). However, since short-wave perturbations of the flame were neglected
in Klimenko & Class (2000), but are considered here, the transverse derivative does
not appear in Klimenko & Class (2000). For the momentum equations, which were
not considered in Klimenko & Class (2000), the transverse derivative term in (3.6)
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Flames as gasdynamic discontinuities 27

also cannot be neglected and represents an essential part of the intrinsic disturbed
flame equations.

We derived the first two terms (3.5), (3.6), in an asymptotic expansion of the
intrinsic disturbed flame equations. From the leading-order equations we first derive
the leading-order solution and jump conditions. From the O(Pe−1) equations we
then derive perturbative corrections of the jump conditions and also the flame speed
relation for unsteady flames of general shape.

3.1. Leading-order fluid equations and jump conditions

At leading order the fresh and burned densities are ρf (0) = 1 and ρb(0) = 1/Tb.
The fluid equations have no source term Q(Φ). Thus, the leading-order

equation (3.5) implies that the normal fluxes J 1
(0)(Φ) are independent of the normal

coordinate X:

m1
f (0) = const, J 1

f (0)(ρvili) = const, (3.10)

m1
b(0) = const, J 1

b(0)(ρvili) = const, (3.11)

M1
(0) = const, J 1

(0)(RV ili) = const. (3.12)

Applying the intrinsic disturbed flame jump condition (3.7) implies that at leading
order the normal fluxes do not jump and thus are constant within the flame region,

M1
(0) = m1

f (0) = m1
b(0) ≡ m(0), (3.13)

J 1
(0)(RV ili) = J 1

f (0)(ρvili) = J 1
b(0)(ρvili) = J 1∗

(0)(ρvili). (3.14)

In order to be consistent with the notation in the introduction we write m(0) for the
normal mass flux at the discontinuity surface rather than m1∗

(0). Though there are no
variations across the flame zone, variations in the tangential direction are permitted.

We summarize this result by writing the leading-order jump conditions (2.33) and
(2.34) for the hydrodynamic model: [

m(0)

]
= 0, (3.15)[

m(0)v
i
(0) + gi1∗p(0)

]
l∗
i = 0. (3.16)

Since the parallel vector field is arbitrary, the momentum jump must hold separately
for the normal and tangential components, i.e.[

m(0)v
1
(0) + p(0)

]
=0, (3.17)[

m(0)v
α
(0)

]
= 0, so that

[
vα

(0)

]
=0. (3.18)

Note that these are exactly the jump conditions that appear in the Darrieus–Landau
model. The last relation states that the tangential velocity is continuous across the
flame so that vα

f (0) = vα
b(0) = vα∗

(0). Employing the definitions of the mass fluxes in the
hydrodynamic and reactive models, Mi = R(V i − ui) and mi = ρ(vi − ui), respectively,
yields the normal velocities

V 1
(0) = m(0)

/
R(0) + u1∗

(0), v1
f (0) = m(0) + u1∗

(0), v1
b(0) = m(0)

/
ρ∗

b(0) + u1∗
(0), (3.19)

so that the jump of the hydrodynamic model normal velocity is [v1
(0)] = m(0)[1/ρ(0)].

Since we employ a coordinate system which is convected along the flame with the
local tangential flow velocity, i.e.

vα∗
(0) = uα∗

(0), (3.20)
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28 A. G. Class, B. J. Matkowsky and A. Y. Klimenko

the hydrodynamic model tangential mass flux vanishes in both the fresh and burned
mixtures, mα

f (0) = mα
b(0) =mα∗

(0) = 0. In our coordinate system the flame element is iden-
tical to the element of surface area g1/2∗ so that the flame stretch at leading order is

χ = χ∗ =
1

√
g

∗
∂

√
g

∗

∂t
. (3.21)

Now, employing the definitions of J 1(RV ili) and J 1(ρvili) given by (2.24) and (2.27),
as well as (3.14) which states that the fluxes are identical, yields

m(0)

(
V 1

(0)l
∗
1 + V α

(0)l
∗
α

)
+ l∗

1P(0) − PrΛ(0)

(
∂V α

(0)

∂X
l∗
α +

4

3

∂V 1
(0)

∂X
l∗
1

)
= J 1∗

(0)(ρvili), (3.22)

m(0)

(
v1

(0)l
∗
1 + vα

(0)l
∗
α

)
+ l∗

1p(0) = J 1∗
(0)(ρvili), (3.23)

where ∂V 1
(0)/∂X = m(0)∂

(
1/R(0)

)
/∂X. Note that we have decomposed summation on

the repeated index i, into its normal (i = 1) and tangential contributions (i = α =2, 3).
Subtracting (3.22) from (3.23) and equating the terms which multiply the tangential
component of l∗

α yields

0 = m(0)

(
vα∗

(0) − V α
(0)

)
+ Pr Λ(0)

∂V α
(0)

∂X
. (3.24)

Solutions of this equation that match the solution in the fresh region have the form

V α
(0) = vα∗

(0) + B exp
(
Pr−1m(0)ζ

)
, ζ =

∫ X

0

1

Λ(0)

dX, (3.25)

where the constant B is chosen to yield the appropriate behaviour as X → ∞, i.e. in
the non-reactive burned region. Exponentially growing solutions must be excluded as
they grow without bound. Thus, the tangential velocity is constant at leading order:

V α
(0) = vα∗

(0). (3.26)

Substituting this into the definition of the reactive model tangential mass flux yields

Mα
(0) = R(0)

(
vα∗

(0) − uα
(0)

)
= 0. (3.27)

Subtracting (3.23) from (3.22) and equating the terms which multiply the normal
component of l∗

1 yields

P(0) − p(0) = m(0)

(
4

3
Pr Λ(0)

∂

∂X

(
1

R(0)

)
+ m(0)

(
1

ρ(0)

− 1

R(0)

))
. (3.28)

This relation determines the difference between the pressure in the two models
(discontinuous pressure in the hydrodynamic model and continuous pressure in the
reactive model).

Finally, we calculate the tangential fluxes J α(RV ili) and J α(ρvili) defined in (2.24)
and (2.27) as

J α
(0)(RV ili) =

(
P(0) +

2

3
PrΛ(0)

∂V 1
(0)

∂X

)
gαβ∗l∗

β, (3.29)

J α
(0)(ρvili) = p(0)g

αβ∗l∗
β. (3.30)
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Note that there is no term involving l∗
1 in (3.29) and (3.30). After eliminating the

pressure using (3.28), we have

J α
(0)(RV ili) − J α

(0)(ρvili) = m(0)Πgαβ∗l∗
β, (3.31)

where

Π = 2Pr Λ(0)

∂

∂X

(
1

R(0)

)
+ m(0)

(
1

ρ(0)

− 1

R(0)

)
, (3.32)

which defines the difference between the tangential momentum fluxes in the reactive
and hydrodynamic models.

In this section we derived solutions to the leading-order flow equations and jump
conditions. The leading-order solution is independent of the flame curvature and
flame stretch and does not involve time derivatives. Therefore, the leading-order
solution corresponds to a steadily propagating planar flame, except that the leading-
order flame speed has not yet been determined. The leading-order solution enters
the O(Pe−1) equations where the effects of unsteadiness, curvature and stretch are
accounted for and therefore must be determined before these effects can be properly
accounted for.

3.2. O(Pe−1) fluid equations and jump conditions

At this order we are not interested in the profiles of the variables within the flame
region. We merely wish to determine perturbative corrections to the jump conditions
of the flow variables. The intrinsic disturbed flame jump condition (3.8) for the mass
flux yields (

∂

∂t
+ χ

)
IR +

[
m(1)

]
= 0, (3.33)

where we have used Mα
(0) = mα

(0) = Q(R) = 0, and introduced

IR =

∫ 0

−∞

(
R(0) − ρf (0)

)
dX +

∫ ∞

0

(
R(0) − ρb(0)

)
dX. (3.34)

Below, we will choose the location for the discontinuity surface by requiring that
IR = 0. Similarly, the intrinsic disturbed flame jump condition (3.8) for the momentum
is (

∂

∂t
+ χ

) (
l∗
i

∫ ∞

−∞

(
R(0)V

i
(0) − ρvi

(0)

)
dX

)

+
1

√
g

∗
∂

∂xα

∫ ∞

−∞

√
g

∗ (
J α

(0)(RV ili) − J α
(0)(ρvili)

)
dX +

[
J 1

(1)(ρvili)
]
= 0. (3.35)

From M
j

(0) − m
j

(0) = 0, it follows that R(0)V
i
(0) − ρvi

(0) = ui∗
(0)(R(0) − ρ(0)), so that the first

integral can be expressed in terms of IR . Employing (3.31) simplifies the second
integral so that

[
J 1

(1)(ρvili)
]
+

(
∂

∂t
+ χ

) (
ui∗

(0)l
∗
i IR

)
+

1
√

g
∗

∂

∂xα

(√
g

∗
gαβ∗

l∗
βm(0)Iσ

)
= 0, (3.36)

where Iσ =
∫ 0

−∞ Πf dX +
∫ ∞

0
Πb dX. Since we will chose IR ≡ 0 below, we can write

Iσ = Iσ + aIR where a is an arbitrary constant. In particular, we may select a = −m(0)Tb

where the kernels of the integrals ahead of and behind the flame become identical
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and thus can be written as a single integral:

Iσ − m(0)TbIR = 2Pr

∫ Tb

1

T 1/2 dT + m(0)

∫ ∞

−∞
(T − 1)(Tb/T − 1) dX, (3.37)

where we have employed Λ = T 1/2 and the ideal gas law. Obviously Iσ − m(0)TbIR is
positive as the kernels of the integrals are positive.

Since lj is a parallel vector, the divergence of the vector gji lj = li vanishes, i.e.

0 =
1

√
g

∂

∂xi
(
√

ggji lj ) =
1

√
g

∂

∂xα
(
√

ggαβlβ) +
1

√
g

∂

∂x1
(
√

gg11l1), (3.38)

where 1/
√

g∂(
√

gg11l1)/∂x1 = −2cl1 since g11 = 1 and ∂l1/∂x1 = 0 as shown in (2.23).
Perturbative corrections of the normal momentum flux, defined in (2.27), may be

expanded as [
J 1

(1)(ρvili)
]

=
[
m(0)v

i
(1) + m(1)v

i
(0) + gi1∗p(1) − σ i1

(1)

]
l∗
i . (3.39)

Substituting (3.38) and (3.39) into (3.36) finally yields the perturbative corrections of
the momentum jump conditions

[
m(0)v

i
(1) + m(1)v

i
(0) + gi1∗p(1) − σ i1

(1)

]
l∗
i

= −
(

∂

∂t
+ χ

) (
ui∗

(0)l
∗
i IR

)
−

(
2cl1 + gαβ∗

l∗
β

∂

∂xα

)
m(0)Iσ . (3.40)

The momentum jump condition (3.40) yields the momentum jump in the direction
of l∗

i , which is arbitrary. The right-hand side results from compressibility effects
inside the flame. It is not trivial to decompose this jump condition into its normal
and tangential contributions since ∂l∗

i /∂t is non-zero as the discontinuity surface
propagates and deforms. Moreover, both IR and Iσ depend on the precise location of
the discontinuity surface. Below, we use relation (3.33) to define the precise location
of the discontinuity surface by requiring that each term in (3.33) vanishes. Then, we
decompose the momentum jump condition (3.40) into normal and tangential jump
conditions.

3.3. Flame location

The hydrodynamic model mass flux exhibits O(Pe−1) variations within the flame
zone which depend on the curvature c and on the flame stretch χ . The slope of
the mass flux is in general different on either side of the surface as the densities
differ. There is, however, a specific location where the hydrodynamic model mass
fluxes in the fresh and burned mixture are identical, though not equal to the reactive
model mass flux at this location. Figure 1(a) shows this schematically. The solid line
indicates the reactive model mass flux, while the dashed and the dotted lines indicate
the hydrodynamic model mass flux in the fresh and burned mixtures (and their
continuations), respectively. Also shown is the reaction zone. The difference between
the heights of the hydrodynamic model mass flux curves corresponds to the jump in
the mass flux across the flame, i.e. the excess surface mass. If we use the intersection
of the hydrodynamic model mass flux curves as the definition of the flame surface
position, then the excess surface mass vanishes so that the mass flux is continuous at
the discontinuity surface, though its slope is discontinuous. The flame position where
[m] = 0 is determined from equation (3.33) and requires that the integral IR defined
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Flame surface position

Reaction zone

Reaction zone

Reaction zone

Flame surface position

X

X

X

�

� �f

�f

�b

�b

IR

A

B

mf 
1

(1)

m1
(1)

mb 
1
(1)

(a)

(b)

(c)

m1
(1)

Figure 1. (a) Definition of the flame surface position from the intersection of the
hydrodynamic model mass fluxes. (b, c) The density integral IR for two different flame positions
((b) surface located at reaction zone, (c) surface located to yield continuous mass flux).

by (3.34) vanishes:

IR =

∫ 0

−∞

(
R(0) − ρf (0)

)
dX +

∫ ∞

0

(
R(0) − ρb(0)

)
dX ≡ 0. (3.41)

Note that IR = 0 for other choices of the flame surface location. Figure 1(b, c) shows
this schematically. Again, the solid line indicates the reactive model’s continuous
density, the dashed line indicates the fresh density and the dotted line indicates
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the burned density. In Figure 1(b) the reaction zone is chosen as the flame surface
position, so that the reactive model density is larger than the hydrodynamic model
density throughout the preheat zone and the integral IR corresponds to the shaded
region. In Figure 1(c) the flame surface position is chosen according to relation (3.41).
Now the hydrodynamic model density is larger than the reactive model density ahead
of the flame surface position and vice versa behind. The shaded regions correspond
to the difference between the two models solutions. Here, the areas of the two shaded
regions are identical so that the integral IR vanishes.

To calculate χ without employing our special coordinate system in which g11 = 1,
we use g11 = |∇T |2 instead. Then, employing

u(0) = n × V × n − ∂T

∂t

1

|∇T | n + o(1) (3.42)

and replacing
√

g
∗ in (3.9) by

√
g
√

g11 yields a formula for the flame stretch:

χ =
1

√
g

∗
∂
(√

g
∗
u

j

(0)

)
∂xj

∣∣∣∣∣
x1 = 0

=
1√
g11g

∂
(√

g11gu
j

(0)

)
∂xj

∣∣∣∣∣
x1 = 0

=
1

|∇T |∇ ·
(
|∇T | u(0)

)∣∣∣∣
T = T ∗

,

(3.43)

which can easily be evaluated. Here, T ∗ is the temperature at the discontinuity surface.
Note that at the flame surface there is a difference between the reactive model

mass flux (point B in figure 1a) and the hydrodynamic model mass flux (point A in
figure 1a) which we derive. The difference may be calculated as

M1∗

(1) − m(1) =

(
∂

∂t
+ χ

) ∫ ∞

0

(
R(0) − ρb(0)

)
dX = −

(
∂

∂t
+ χ

) ∫ 0

−∞

(
R(0) − ρf (0)

)
dX.

(3.44)
After combining the results from the leading order and O(Pe−1) we find

m =M1∗ −
(

∂

∂t
+ χ

) ∫ ∞

0

(R − ρb) dx1 + O(Pe−2). (3.45)

The difference M1∗ − m between the normal mass flux in the hydrodynamic model
(m) and the reactive model mass flux (M1∗

) is proportional to the density integral∫ ∞
0

(R−ρb) dx1 which itself is proportional to the thickness of the flame. The thickness
of the flame depends on the current flame speed, so that time derivatives of the
integral are mainly due to changes of the flame speed. Also, the difference M1∗ − m is
proportional to flame stretch. Note that the integral

∫ ∞
0

(R − ρb) dx1 is small as the

flame is thin so that the difference M1∗ − m is O(Pe−1).
In § 2.2 we derived the jump condition for the normal mass flux (2.33). We defined

the location of the discontinuity surface such that the excess surface mass vanishes
so that the normal mass flux is continuous across the discontinuity surface. For thin
flames, relation (3.41) allows us to explicitly calculate the precise location of the flame
front which ensures continuous normal mass flux across the flame. We describe how
the location of the discontinuity surface and how the normal mass flux through the
discontinuity surface may be calculated. We also provide a simple formula to calculate
the flame stretch at the discontinuity surface.

We next consider the reaction sheet approximation, in which the flame position can
be determined explicitly.
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3.3.1. Flame location in the reaction sheet approximation

The flame location is determined by the requirement that IR , which is an integral
over the spatial variable, vanishes. We note that if the flame speed changes by
O(1), the spatial profiles of the fluid variables also change by O(1). However, in the
reaction sheet approximation, typical of combustion, it is possible to convert integrals
with respect to space into integrals with respect to temperature, which allows us to
explicitly determine the flame location as a function of temperature.

At leading order, the intrinsic disturbed flame equation (3.5) requires that the
normal flux J 1

(0)(RT ) given by (2.17) is independent of X, i.e. J 1
(0)(RT ) = const, where

the constant is readily determined from the fresh mixture, so that we have

m(0)T(0) − Λ(0)

∂T(0)

∂X
= m(0). (3.46)

We may now calculate the integrals IR and Iσ , given as functions of X, in terms of
the temperature using the relation

dX =
Λ(0)

m(0)

dT(0)(
T(0) − 1

) . (3.47)

For an ideal gas the density is R = 1/T and the conductivity is Λ = T 1/2. Employing
(3.47) in the condition for the flame surface position (3.41) yields

0 =

∫ T ∗
(0)

1

T −1/2 dT − 1

Tb

∫ Tb

T ∗
(0)

T −1/2 Tb − T

T − 1
dT

= 2/Tb

(√
Tb − Tb + (Tb − 1)

(√
T ∗

(0) + tanh−1
√

Tb − tanh−1
√

T ∗
(0)

))
(3.48)

which may be solved for the temperature T ∗
(0) which defines the position of the

discontinuity surface.
Equation (3.48) is independent of the normal mass flux m(0), so that the discontinuity

surface is an isotemperature surface T = T ∗
(0) of the reactive model. We note that in

the conventional definition the temperature at the flame surface is near the burned
temperature Tb, while our definition, based on fluid mechanical considerations, leads
to a flame surface located at a position where the temperature is lower.

This has a significant effect on the flame speed relation. This becomes obvious if we
consider a flame subjected to strong flame stretch, a case beyond the validity of our
model, but nevertheless instructive. Consider a planar flame stabilized in a symmetric
opposed-jet configuration. Here, the plane of symmetry represents a stagnation plane
where the normal flow vanishes. For strong stagnation point flow, i.e. strong flame
stretch, the reaction zone may move to the opposite side of the stagnation plane.
The conventional definition of the flame speed, based on the maximum reaction rate,
results in a negative flame speed. In contrast, our definition of the flame position
(3.34), which defines the flame speed as the mass burning rate at a position where
the temperature is only weakly elevated, ensures a positive flame speed. The flame
speed relation shows a much weaker dependence on the flame stretch compared to
the conventional definition.

We now compute the integral Iσ in (3.37) which arises in the perturbative correction
of the momentum jump condition (3.40). Employing (3.47) and IR = 0 we find
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that

Iσ =

∫ Tb

1

T 1/2 (2Pr + Tb/T − 1) dT = 4
3
(Pr + 1)

(
T

3/2
b − 1

)
− 2 (Tb − 1) . (3.49)

The integral Iσ > 0 vanishes for constant-density flow, i.e. Tb =1, and Iσ strongly
grows with increasing thermal expansion.

3.4. Fluid equations and jump conditions in the reaction sheet approximation

The flow ahead of and behind the flame is governed by equations (2.9) and (2.10),
which are the incompressible Navier–Stokes equations. The flow fields are related by
a set of jump conditions across the flame. In contrast to the Darrieus–Landau jump
conditions, the jump conditions now include O(Pe−1) corrections.

In the hydrodynamic model a surface of discontinuity, a mathematical construct,
replaces the continuous flame structure. We choose this surface based on the
requirement that IR = 0. Due to our definition of the flame surface position the jump
conditions (3.33) and (3.40) simplify substantially compared to the jump conditions
obtained using a different flame surface position, e.g. Matalon & Matkowsky (1982).
Moreover, we also consider the effect of m(0) − 1 = O(1), i.e. flame speeds which differ
by O(1) from the propagation speed of a uniformly propagating planar flame when
Le is not near unity. This results in new terms in the jump conditions, not present
in Matalon & Matkowsky (1982). We combine the leading-order jump conditions
(3.15) and (3.16) with the perturbative corrections (3.33) and (3.40). Furthermore,
we decompose the jump condition for the momentum vector into its normal and
tangential components. This can be done easily if we set the arbitrary parallel vector
l∗
i equal to the normal or tangential vector. Since IR = 0 the time derivatives of l∗

i ,
which make the decomposition complicated, are no longer present. We obtain

[m] = 0, (3.50)

[mv1 + p − σ 11] = −Pe−12cmIσ + o(Pe−1), (3.51)

[mvα − σ 1α] = −Pe−1gαβ∗ ∂

∂xβ
(mIσ ) + o(Pe−1). (3.52)

In the coordinate-free form described in the introduction, vn = v · n and v⊥ = n × v × n
correspond to v1 and vα , respectively, so that the momentum jumps are

[mvn + p − σnn] = −Pe−12cmIσ + o(Pe−1), (3.53)

[mv⊥ − σ n⊥] = −Pe−1∇⊥(mIσ ) + o(Pe−1). (3.54)

Here, the tangential derivative is ∇⊥( ) = n × ∇( ) × n, and the stresses σnn and σn⊥ at
the discontinuity surface are σnn = n · σ · n and σn⊥ = n × (σ · n) × n, respectively. We
note that the jump conditions are represented in a form which readily allows for
physical interpretation.

The jump condition (3.50) states that the mass flux is continuous across the flame.
Though our analysis covers only a first perturbative correction of the jump conditions
for thin flames, we claim that it is possible to define the flame surface position such
that the normal mass flux is continuous at the flame surface to any accuracy desired.
Note that the flame surface position used in the analysis does not coincide with
the maximum reaction rate. In the reaction sheet approximation it is shown that
the surface position is an isotherm of the reactive model, where the temperature is
approximately T ∗ = 1 + 0.2(Tb − 1).
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The normal momentum flux is discontinuous across the flame according to (3.51).
The jump is proportional to the curvature of the flame. Relation (3.51) shows an
analogy to the corresponding relation for a fluid interface separating two immiscible
fluids:

[p − σnn] = 2cσs, (3.55)

where σs > 0 represents the surface tension of the interface. If we allow for mass
transfer m across the surface, for example by evaporation, then a term [mvn] must be
added to the left-hand side, so that

[mvn + p − σnn] = 2cσs. (3.56)

Comparing (3.51) to (3.56) we see that the term −Pe−1mIσ in our problem, with Iσ

defined in (3.49), is the analogue of surface tension in the immiscible fluid problem.
As discussed above, the integral Iσ is positive so that the ‘surface tension’ of the flame
is negative. We therefore refer to it as surface compression. This distinguishes the term
from conventional surface tension. Also, the term surface compression accounts for
the fact that it arises due to compressibility effects. In particular, surface compression
results from variable density in the stress tensor, and from dynamic pressure changes
due to acceleration as the density decreases. With increasing thermal expansion the
surface compression rapidly grows in absolute value. Clearly, surface compression has
strong implications for the stability of a flame. While surface tension stabilizes fluid
interfaces, i.e. it requires energy to increase the area of a fluid interface, we expect
that surface compression destabilizes the flame. This effect will be significant if the
surface compression is large, i.e. for large thermal expansion. However, the stability
of a flame also depends on the flame speed relation, which is the subject of the next
section.

From (3.52) we conclude that the tangential momentum (3.52) is in general not
continuous across the flame. There are tangential forces, which are proportional
to the tangential derivative of surface compression. The derivative of the surface
compression is analogous to Marangoni forces which are observed if surface tension
is non-uniform along a fluid interface. However, it should be noted that for near-
equidiffusional flames, as considered in Matalon & Matkowsky (1982), the flame
structure is to leading order constant along the flame, so that this effect is negligibly
small.

All the results obtained in the previous sections are valid for arbitrary chemistry
and arbitrary dependence of the transport coefficients on the temperature. Therefore,
the results are applicable for complex chemical kinetics as well.

4. Asymptotic derivation of the flame speed relation
In the previous sections we discussed the flow. We now determine the flame speed

relation. We consider a first-order (n= 1) single-step Arrhenius reaction

fuel → product + heat (4.1)

with high activation energy. The reaction is limited by a single deficient reactant of
normalized concentration Y , so that Y is unity in the fresh mixture and zero in the
burned mixture since it has been completely consumed. Similarly, the normalized
temperature in the fresh mixture is unity and the normalized adiabatic combustion
temperature is Tb which is attained in the burned mixture behind the flame. The
activation energy of the reaction is assumed to be large, i.e. the Zeldovich number
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Ze is assumed to be large, so that the reaction zone is thin. At temperatures lower
than Tb − O(1/Ze) the reaction rate is exponentially small. Within the reaction zone
complete conversion is attained, since the reaction rate is appreciable at temperatures
close to the adiabatic combustion temperature Tb. In the limit Ze → ∞ the reaction
zone shrinks to a surface. Analysis of the reaction zone (Matkowsky & Sivashinsky
1979) allows us to rewrite the reaction term in terms of the Dirac delta function δ as

W =Pe Wrδ(X − Xr ), Wr = exp(Ze(Tr − Tb)(Tb − 1)−1), (4.2)

where Xr is the position of the reaction surface in our moving system of coordinates
whose origin does not coincide with the reaction zone, and Tr is the temperature at
the reaction surface. In terms of the reduced enthalpy H , the strength of the delta
function in the reaction term becomes

Wr = exp(Ze(1 − Le−1)Hr ), (4.3)

where Hr is H evaluated at the reaction zone. It should be noted that the analysis
of the reaction zone (Matkowsky & Sivashinsky 1979) was carried out only for Le
near 1, though it was also employed in Sivashinsky (1976). The result is also valid for
near-planar flames for arbitrary Le. In this paper we consider O(1) flame curvature
on the hydrodynamic length scale, so that the radius of curvature viewed on the flame
structure length scale is O(Pe), i.e. we effectively consider nearly planar flames, so
that the result is valid here as well.

The flame speed relation is derived from the conservation equations for the reduced
enthalpy H and the fuel concentration Y . Due to the scaling of H the enthalpy is
O(1) for any Le, so that it is not necessary to consider the case Le ≈ 1 separately.
We recall that the reduced enthalpy replaces the temperature equation. However,
since in previous theories the temperature and enthalpy were considered, rather than
concentration and enthalpy, we will still solve for the leading-order temperature and
express the results in terms of the temperature, even though the temperature could
be omitted.

To derive the desired flame speed relation we first solve the leading-order
temperature, concentration and enthalpy equations, employing the intrinsic disturbed
flame equation (3.5) and the corresponding fluxes (2.17)–(2.19). The leading-order
solutions are substituted into the intrinsic disturbed flame jump conditions (3.7) and
(3.8) to yield the enthalpy at the discontinuity surface and the propagation speed of
the discontinuity surface.

Integrating the leading-order intrinsic disturbed flame equation (3.5) for the
concentration, temperature, and enthalpy from X = −∞ to arbitrary X we obtain

J 1
(0)(RY ) − m(0) = −Wr(0)U (X − Xr ), (4.4)

J 1
(0)(RT ) − m(0) = (Tb − 1) Wr(0)U (X − Xr ), (4.5)

J 1
(0)(RH ) = 0, (4.6)

where U denotes the Heaviside unit step function and m(0) represents the contribution
from the left-hand boundary (X → −∞) where Y(0) = T(0) = 1 and H(0) = 0. The fluxes
are

J 1
(0)(RY ) = m(0)Y(0) − Le−1Λ∂Y(0)/∂X, (4.7)

J 1
(0)(RT ) = m(0)T(0) − Λ∂T(0)/∂X, (4.8)

J 1
(0)(RH ) = m(0)H(0) − Λ

(
∂
(
H(0) + Y(0)

)/
∂X

)
. (4.9)
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Ahead of the reaction surface the right-hand side vanishes and we thus obtain
homogeneous first-order ordinary differential equations to determine the con-
centration, temperature, and enthalpy as functions of X. The mass flux m(0) is still
undetermined. The leading-order solutions are

Y(0) = 1 − exp
(
Lem(0)(ζ − ζr )

)
, ζ =

∫ X

0

1

Λ
dX, (4.10)

Θ =
(
T(0) − 1

)
(Tb − 1)−1 = exp

(
m(0)(ζ − ζr )

)
. (4.11)

The concentration may be expressed in terms of the temperature as Y(0) = 1 − ΘLe .
Similarly, the reduced enthalpy may be written as

H(0) = (1 − Le−1)−1(Θ − ΘLe). (4.12)

Note that H(0) > 0 for any Lewis number. Behind the reaction surface T(0) = Tb

and Y(0) = H(0) = 0. Behind the reaction surface the hydrodynamic model enthalpy
h is identical to the reactive model enthalpy H so that we conclude that h(0) = 0
everywhere.

Applying the intrinsic disturbed flame jump condition (3.7) for the concentration
yields

m(0) = Wr(0), (4.13)

where we used [J 1
(0)(ρy)] = −m(0) and

∫ ∞
−∞ Q(0)(RY ) dX = −Wr(0). The corresponding

jump condition for the enthalpy shows that indeed

hr(0) = Hr(0) = 0. (4.14)

At O(Pe−1) it is sufficient to analyse the intrinsic disturbed flame jump conditions
(3.8) for concentration and enthalpy since we are not interested in the actual solutions
of the reactive model. Note that the tangential fluxes J α

(0)(RY ), J α
(0)(RT ), and J α

(0)(RH )
vanish at leading order, due to the specific choice of our coordinate system so that
the second integral in (3.8) vanishes:(

∂

∂t
+ χ∗

)∫ ∞

−∞

(
R(0)Y(0) − ρ(0)y(0)

)
dX − m(1)

=

∫ ∞

−∞

(
Q(1)(RY ) − 2cXQ(0)(RY )

)
dX, (4.15)

(
∂

∂t
+ χ∗

) ∫ ∞

−∞

(
R(0)H(0) − ρ(0)h(0)

)
dX +

[
J 1

(1)(ρh)
]

= 0, (4.16)

where
∫ ∞

−∞(Q(1)(RY )−2cXQ(0)(RY )) dX = −(Wr(1) −2cXrWr(0)), h(0) = 0 for any X, and
ρ(0)y(0) = 1 for X < 0 and ρ(0)y(0) = 0 otherwise. Thus, we obtain(

∂

∂t
+ χ∗

)(∫ Xr

−∞

(
1 − R(0)Y(0)

)
dX −

∫ Xr

0

dX

)
+ m(1) = Wr(1) − 2cXrm(0), (4.17)(

∂

∂t
+ χ∗

)∫ Xr

−∞
R(0)H(0) dX +

[
J 1

(1)(ρh)
]
=0. (4.18)

The jump [J 1
(1)(ρh)] = m(0)h

∗
b(1), where h∗

b(1) = Hr(1) since gradients of h are O(Pe−2)
in the burned region and since the enthalpies of the hydrodynamic and the reactive
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models are identical behind the reaction surface. After introducing the integrals

IY = m(0)

∫ Xr

−∞

(
1 − R(0)Y(0)

)
dX = m(0)

∫ Xr

−∞
R(0)

(
1 − Y(0)

)
dX + m(0)

∫ Xr

−∞

(
1 − R(0)

)
dX,

IH = m(0)

∫ Xr

−∞
R(0)H(0) dX,

IX = m(0)Xr =m(0)

∫ Xr

−∞
dX,

which will be shown to be constants, we obtain

m(1) + (IY − IX)(∂/∂t + χ)
(
1
/
m(0)

)
+ 2cIX = Wr(1), (4.19)

m(0)h
∗
b(1) + IH (∂/∂t + χ)

(
1
/
m(0)

)
= 0, (4.20)

which together with (4.3), h∗
b(1) =Hr(1), and the leading-order solutions (4.13) and

(4.14), determine the mass flux and the enthalpy at the flame.
The quantity Xr = IX/m(0) is the distance between the discontinuity surface and

the reaction surface, which in general is not constant. Since the density integral IR

defined in (3.41) vanishes, IX = IX − IRm(0)Tb/(Tb − 1)). Now the integrals have the
same kernel in the fresh and the burned mixtures and we obtain

IX =m(0)Tb/(Tb − 1))

∫ Xr

−∞
(1 − 1/T ) dX.

To determine Xr we employ (3.47) to convert the integral into one with respect to
temperature. Similarly, we express the integrals IY and IH in terms of the tempera-
ture Θ using dX =Λ(0)/(Θm(0)) dΘ , R(0) = T −1

(0) = ((Tb − 1) Θ + 1)−1, and Λ(0) = T
1/2
(0) =

((Tb − 1) Θ + 1)1/2. This yields

IY =

∫ 1

0

((Tb − 1) Θ + 1)−1/2ΘLe−1 dΘ + 2
(
T

1/2
b − 1

)
, (4.21)

IH =
1

1 − Le−1

∫ 1

0

((Tb − 1) Θ + 1)−1/2
(
1 − ΘLe−1

)
dΘ, (4.22)

IX = 2Tb

(
T

1/2
b + 1

)−1
. (4.23)

Note that the integrals IY , IH and IX are independent of the mass flux m(0).
Let us briefly discuss the behaviour of the integrals IY , IH and IX . The integral

IY is positive. Typically, the second term 2(T 1/2
b − 1) is dominant; typical values

for the first term are between 0.2 for large Lewis numbers and 2 for small Lewis
numbers.

The integral IH > 0 only weakly depends on the parameters. Its value decreases
with increasing Lewis numbers and reaches an asymptote as Le → ∞. For Tb → 1
the integral IH → 1 and IH decreases with growing Tb. Typical values of IH are
approximately 0.7.

The integral IX > 0 grows with thermal expansion. For typical combustion
conditions IX ≈ 3.

Since the form of the flame speed relation will change depending on the relative
sizes of the parameters Pe, Ze, and (Le−1 − 1), we first write the relations in terms of
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these parameters, retaining both the O(1) and the O(Pe−1) terms. We thus have

m +Pe−1((IY − IX)(∂/∂t + χ)(1/m) + 2cIX) = exp(Ze(1 − Le−1)h∗
b) + o(Pe−1), (4.24)

mh∗
b + Pe−1IH (∂/∂t + χ)(1/m) = 0 + o(Pe−1). (4.25)

The time derivative in (4.24) may be neglected, as the Pe−1 term is relevant only for
near-equidiffusional flames where m ≈ 1 + O(Pe−1), so that the time derivative term
is O(Pe−2). Eliminating h∗

b, the hydrodynamic model enthalpy in the burned region
behind the discontinuity surface, results in the general flame speed relation

CIH (∂/∂t + χ)(1/m) + m ln(m + Pe−1((IY − IX) χ/m + 2cIX)) = 0, (4.26)

where

C =Pe−1Ze(1 − Le−1) (4.27)

is a non-dimensional number which accounts for the combined effects of the Lewis,
Péclet and Zeldovich numbers. Note that Le > 1 corresponds to C > 0. The parameter
C depends on Le and Ze, which are associated with the flame, and on Pe, which is
associated with the fluid flow. It may be interpreted as the ratio of the transverse
length scale of the flame to the hydrodynamic length scale, and is related to
the Markstein number. Alternatively, C may be interpreted as the ratio of the
response time of the flame to hydrodynamic disturbances to the hydrodynamic
time l̃/s̃0

F .
The various limits discussed in the literature can easily be obtained from (4.26).

4.1. The effect of short wavelengths

Before discussing the flame speed relation for various parameter regimes, we first
modify the relation. We recall that in deriving the flame speed relation we only
considered variations with O(1) wavelength, tacitly neglecting short-wave variations.
We now include the effect of short waves, which will be important for stability
considerations.

In order to analyse the effect of short waves we must redo the analysis with modified
scalings. We first define appropriate scalings, then derive modified intrinsic disturbed
flame equations, next discuss the jump conditions and finally derive a modified flame
speed relation.

We assume that the short-wavelength flame wrinkles are very small in amplitude,
thus effectively assuming that the flame curvature is small. We wish to determine their
effect on the flame speed relation (4.26). The length scale of short-wave perturbations
is o(1). A distinguished limit corresponds to perturbations whose transverse length
scale is O(Pe−1/2). We introduce the stretched transverse variables ξα = Pe1/2xα , so
that derivatives with respect to ξα are O(1).

As the problem now involves fractional powers of the Péclet number we expand the
dependent variables in powers of Pe−1/2, i.e. F ∼ F(0) + Pe−1/2F(1/2) + Pe−1F(1) + · · ·,
where F denotes any of the variables which are expanded. We still expand the
quantities associated with the coordinate system

√
g, gij into Taylor series in powers

of Pe−1. This might seem to represent a contradiction, as short-wave changes along
the flame should also induce normal variations of the coordinate system on a short
length scale. However, this is only the case if the amplitude of the short-wave wrinkles
of the flame is O(1). If we expanded

√
g, gij in powers of Pe−1/2 as well, we would

recover the previous analysis exactly, where now all the previous results would appear
at O(Pe−1/2). Now that we have assumed that the outer flow varies on an O(Pe)
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length scale, we may ask how it is possible that we observe O(Pe1/2) variations along
the flame. They are due to variations of the direction of the normal vector in the
presence of short-wave wrinkles. To illustrate, consider a uniform outer flow and
an initially flat flame. Now consider short-wave wrinkles along the flame without
modifying the outer flow. Since the flame is no longer flat, the normal direction on
the flame is no longer eqnarrayed with the flow direction. The local tangential and
normal components of the flow depend on the direction of the normal vector so that
we observe variations in the components on the length scale of the wrinkles, even
though the outer flow does not exhibit any variations.

Having defined the appropriate scalings we now modify the intrinsic disturbed
flame equations. Employing the new scalings, the intrinsic disturbed flame equations
become

∂

∂X

(
J 1

(0)(Φ)
)

= Q(0)(Φ), (4.28)

1
√

g
∗

∂

∂ξα

(√
g

∗
J α

(0)(Φ)
)

+
∂

∂X

(
J 1

(1/2)(Φ)
)

= Q(1/2)(Φ), (4.29)

(
∂

∂t
+ χ

)
Φ(0) +

1
√

g
∗

∂

∂ξα

(√
g

∗
J α

(1/2)(Φ)
)

+
∂

∂X

(
J 1

(1)(Φ) − 2cXJ 1
(0)(Φ)

)
= Q(1)(Φ) − 2cXQ(0)(Φ). (4.30)

Similarly, we write three terms of the intrinsic disturbed flame jump conditions

[
J 1

(0)(φ)
]

=

∫ ∞

−∞
Q(0)(Φ) dX, (4.31)

∫ ∞

−∞

1
√

g
∗

∂

∂xα

(√
g

∗ (
J α

(0)(Φ) − J α
(0)(φ)

))
dX +

[
J 1

(1/2)(φ)
]

=

∫ ∞

−∞
Q(1/2)(Φ) dX, (4.32)

[
J 1

(1)(φ)
]

=

∫ ∞

−∞

(
Q(1)(Φ) − 2cXQ(0)(Φ)

)
dX −

(
∂

∂t
+ χ∗

)∫ ∞

−∞

(
Φ(0) − φ(0)

)
dX

−
∫ ∞

−∞

1
√

g
∗

∂

∂xα

(√
g

∗ (
J α

(1/2)(Φ) − J α
(1/2)(φ)

))
dX. (4.33)

When we consider short-wave perturbations of the flame the equations and jump
conditions (4.28)–(4.33) replace (3.5)–(3.8).

Employing the modified intrinsic disturbed flame equations we next discuss the
effect of short waves on the flow. Since the flame thickness is O(Pe−1), i.e. variations
across the flame are much stronger than variations along the flame, the analysis of
the leading-order equations remains unchanged. Comparing the intrinsic disturbed
flame jump conditions (4.32) for short waves to (3.8) for O(1) waves, we observe that
the equations for the O(Pe−1/2) quantities are similar to the equations for O(Pe−1)
quantities. However the (∂/∂t + χ) operator and the curvature c do not yet appear.
Thus, solutions of the flow equations at O(Pe−1/2) are identical to the previous
O(Pe−1) solutions if we drop the terms multiplying (∂/∂t + χ) and c.

The continuity equation now implies that the normal mass flux
M1

(1/2) = m1
(1/2) = m(1/2) is constant across the flame. Note that at O(Pe−1/2) there is no

need to specify the precise location of the discontinuity surface. In the momentum
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jump condition (3.40 ) the curvature term no longer appears so that it simplifies to[
m(0)v

i
(1/2) + m(1/2)v

i
(0) + gi1∗p(1/2) − σ i1

(1/2)

]
l∗
i = −

(
gαβ∗

l∗
β

∂

∂ξα

)
m(0)Iσ , (4.34)

which is easily decomposed into normal and tangential jump conditions. Since
curvature is too weak, there are no normal forces due to surface compression at
O(Pe−1/2). However, there are tangential forces along the flame, due to the rapid
change in surface compression. Thus, here the Marangoni effect dominates surface
compression. Combining the leading-order and O(Pe−1/2) terms of the fluid jump
conditions yields

[mv1 + p] = o
(
Pe−1/2

)
, [mvα] = −Pe−1gαβ∗ ∂

∂xβ
(mIσ ) + o

(
Pe−1/2

)
so that we do not find any terms that were not already present in (3.50)–(3.52). Note
that the additional terms in (3.50)–(3.52) are negligible for the case of short-wave
perturbations. Thus, the fluid jump conditions (3.50)–(3.52) are applicable for both
O(1) and short-wave wrinkles of the flame front.

Before considering the first three terms of the enthalpy and concentration equations
to derive the flame speed equation, we must discuss the tangential mass flux, which
enters the equations. The Marangoni effect results in a jump of the tangential flow
[vα

(1/2)] so that vα
(1/2) = V α

(1/2) in the flame zone. As the tangential flow changes within
the flame structure, the tangential mass flux Mα

(1/2) = R(0)(V
α
(1/2) − uα∗

(1/2)) becomes non-
constant as well at O(Pe−1/2). Here, uα∗

(1/2) is the tangential speed of the coordinate
system, which is constant across the flame structure. At the leading order we choose
the tangential speed of the coordinate system such that the tangential mass flux
vanishes. At O(Pe−1/2), the tangential flow speed changes along the normal direction
while the speed of the coordinate system is constant in this direction. Thus, Mα

(1/2)

cannot be made to vanish at all points along the normal direction. However, we are
free to choose uα∗

(1/2) at our convenience. Below, it will be chosen to make a certain
term (cf. (4.39)) vanish.

The final step is to derive the flame speed equation. We are interested, in particular,
in the case where variations of the flame speed are O(1) along the flame, i.e. C =O(1).
In this limit the problem is governed by the leading-order equations for the fluid
flow and the concentration and by the enthalpy equation including a perturbative
correction. Therefore, it is sufficient to consider the enthalpy equation. Perturbative
corrections in the other equations are important only when the new terms that
we derive below are negligibly small. However, perturbative corrections of the flow
variables enter the enthalpy equation through the transverse flux term and thus are
considered. We will not discuss all the details of the analysis since most of the steps
are identical to the previous analysis. Rather, we discuss the key steps and point out
the differences.

The fluxes in the enthalpy equation become

J 1
(0)(RH ) = m(0)H(0) − Λ

∂

∂X

(
H(0) − Y(0)

)
, J α

(0)(RH ) = 0, (4.35)

J 1
(1/2)(RH ) = m(1/2)H(0) + m(0)H(1/2) − Λ

∂

∂X

(
H(1/2) − Y(1/2)

)
, (4.36)

J α
(1/2)(RH ) = Mα

(1/2)H(0) − Λgαβ ∂

∂ξβ

(
H(0) − Y(0)

)
, (4.37)

J 1
(1)(RH ) = M1

(1)H(0) + m(1/2)H(1/2) + m(0)H(1) − Λ
∂

∂X

(
H(1) − Y(1)

)
. (4.38)
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From (4.29) we conclude that J 1
(1/2)(RH ) = 0 and that the enthalpy H(1/2) vanishes

within the flame structure, and at the reaction surface in particular. The mass flux
m(0) is as yet undetermined.

At O(Pe−1) the intrinsic disturbed flame jump condition (4.33) becomes(
∂

∂t
+ χ

) ∫ Xr

−∞
R(0)H(0) dX +

1
√

g
∗

∫ Xr

−∞

∂

∂ξα

(√
g

∗
J α

(1/2)(RH )
)
dX + m(0)h

∗
b(1) = 0. (4.39)

where we have employed the fact that the hydrodynamic model’s contributions to the
integrals vanish. The flux J α

(1/2)(RH ) which appears in (4.38), is defined in (4.36) and
involves Mα

(1/2), which is as yet undetermined. However, it is not necessary to calculate
Mα

(1/2) if we choose uα∗
(1/2) such that∫ Xr

−∞

∂

∂ξα

(√
g

∗
Mα

(1/2)H(0)

)
dX = 0, (4.40)

which can be done without loss of generality. The integral (4.39) is part of the term∫ Xr

−∞(∂(g1/2∗J α
(1/2)(RH ))/∂ξα) dX in (4.38) and is the only term which involves Mα

(1/2).
This term now vanishes. For our analysis it is not necessary to calculate the value
of uα∗

(1/2) since we are not interested in calculating perturbative corrections to the
flame stretch. Note that our definition uα∗

(0) = vα∗
(0) at leading order may also be written

in a form similar to (4.39). The tangential speed uα∗ of the coordinate system at
the discontinuity surface, and thus the flame stretch, is now defined by an enthalpy
integral. This approach may even be applied to define the flame stretch of thick
flames.

Consider the transverse derivative term in (4.38) which was not present in the
analyses of Matalon & Matkowsky (1982), Sivashinsky (1976) and Klimenko & Class
(2000):∫ Xr

−∞

∂

∂ξα

(√
g

∗
J α

(1/2)(RH )
)
dX

=

∫ Xr

−∞

∂

∂ξα

(
√

g
∗
Mα

(1/2)H(0) − √
g

∗
g

αβ∗
(0) Λ(0)

∂

∂ξβ

(
H(0) − Y(0)

))
dX + o(1), (4.41)

where the term involving Mα
(1/2) vanishes due to (4.39). We note that H(0) − Y(0) can

be expressed in terms of the temperature or Θ = (T − 1) / (Tb − 1), i.e.

∂

∂ξβ

(
H(0) − Y(0)

)
=

(
∂

∂Θ

(
H(0) − Y(0)

)) ∂Θ

∂ξβ
, (4.42)

where
∂

∂Θ

(
H(0) − Y(0)

)
=

1 − ΘLe−1

1 − Le−1
. (4.43)

For convenience, we henceforth drop the index (0) in m(0), Λ(0), H(0), Y(0) and g
αβ∗
(0) .

The derivative ∂Θ/∂ξβ is calculated from Θ = exp(m(ζ − ζr )), where m is a function
of ξβ . Finally, ∂Θ/∂ξβ = (∂Θ/∂(1/m))(∂(1/m)/∂ξβ) where ∂Θ/∂(1/m) = Θ ln(1/Θ)m.

Similarly,

∂

∂ξα

√
g

∗
gαβ∗Λ

∂

∂ξβ
(H − Y )

=
∂

∂ξα

(
Λ

1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)m

√
g

∗
gαβ∗ ∂(1/m)

∂ξβ

)
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=
∂

∂Θ

(
Λ

1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)

)
Θ ln(1/Θ)m

(
m

√
g

∗
gαβ∗ ∂(1/m)

∂ξα

∂(1/m)

∂ξβ

)

+ Λ
1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)m

(
1

m

∂

∂ξα

(
m

√
g

∗
gαβ∗ ∂(1/m)

∂ξβ

))

=

(
∂

∂Θ

(
Λ

1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)

)
− Λ

1 − ΘLe−1

1 − Le−1

)
Θ ln(1/Θ)m

×
(

m
√

g
∗
gαβ∗ ∂(1/m)

∂ξα

∂(1/m)

∂ξβ

)
+ Λ

1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)m

×
(

∂

∂ξα

(
√

g
∗
gαβ∗ ∂(1/m)

∂ξβ

))
, (4.44)

so that∫ Xr

−∞

∂

∂ξα

√
g

∗
gαβ∗Λ

∂

∂ξβ
(H − Y ) dX

= I�

∂

∂ξα

(
√

g
∗
gαβ∗ ∂(1/m)

∂ξβ

)
− I∇2

(
m

√
g

∗
gαβ∗ ∂(1/m)

∂ξα

∂(1/m)

∂ξβ

)
. (4.45)

The quantities I� and I∇2 denote the integrals

I� =

∫ Xr

−∞
Λ ln(1/Θ)

1 − ΘLe−1

1 − Le−1
Θm dX, (4.46)

I∇2 = I� −
∫ Xr

−∞
ln(1/Θ)

∂

∂Θ

(
Λ

1 − ΘLe−1

1 − Le−1
Θ lnΘ

)
Θm dX. (4.47)

Now, replacing integration with respect to X by integration with respect to Θ using
dX = Λ/(Θm) dΘ and Λ = T 1/2 = ((Tb − 1) Θ + 1)1/2 yields

I� =

∫ 1

0

Λ2 ln(1/Θ)
1 − ΘLe−1

1 − Le−1
dΘ

= 1 + Le−1 + (Tb − 1) Le (3 + Le) /(4(1 + Le)2), (4.48)

I∇2 = I� −
∫ 1

0

Λ ln(1/Θ)
∂

∂Θ

(
Λ

1 − ΘLe−1

1 − Le−1
Θ ln(1/Θ)

)
dΘ

= (Tb − 1) (7 + Le (4 + Le)) Le/(8(1 + Le)3). (4.49)

The integrals I� and I∇2 are positive constants, independent of m.
Collecting all O(Pe−1) terms of the intrinsic disturbed flame jump condition (4.33)

for the enthalpy finally yields

IH (∂/∂t + χ) (1/m) − I�

1
√

g
∗

∂

∂ξα

(
√

g
∗
gαβ∗ ∂(1/m)

∂ξβ

)

+ I∇2

(
mgαβ∗ ∂(1/m)

∂ξα

∂(1/m)

∂ξβ

)
+ mh∗

b(1) = 0. (4.50)

Note that h∗
b(1) is the jump of the enthalpy across the discontinuity surface. In

coordinate-invariant form g−1/2∗∂(g1/2∗gαβ∗(∂(1/m)/∂ξβ))/∂ξα becomes

Pe−1∇2
⊥(1/m) = Pe−1∇ · (n × ∇(1/m) × n) (4.51)
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and mgαβ∗(∂(1/m)/∂ξα)(∂(1/m)/∂ξβ) becomes

Pe−1m(∇⊥(1/m))2 = Pe−1m(n × ∇(1/m) × n) · (n × ∇(1/m) × n). (4.52)

The operator ∇2
⊥ is the surface Laplacian. Neighbouring points on the flame cannot

propagate at arbitrary speeds. The spatial coupling of neighbouring flame elements
is ensured by the diffusive nature of ∇2

⊥, which prohibits the development of very
short-wavelength wrinkles along the flame. The second new term is nonlinear and
provides a second mechanism for the coupling of neighbouring flame elements. It is
more pronounced for large flame speed gradients along the flame. Now, the flame
speed relation becomes the partial differential equation

C
(
IH (∂/∂t + χ) (1/m) − Pe−1I�∇2

⊥(1/m) + Pe−1I∇2m (∇⊥(1/m))2
)

+ m ln(m + Pe−1((IY − IX)χ/m + 2cIX)) = 0. (4.53)

Note that we could derive similar terms for the concentration equation. However,
these do not contribute to the final result, as the O(Pe−1) term in the concentration
equation is important only for near-equidiffusional flames, where m = 1 at leading
order, so that the new term is negligible. The relation (4.52) generalizes the flame
speed relation (4.26) to include the effect of short waves. We refer to it as the unified
flame speed relation. Note that in all previous analyses the transverse coupling terms
did not appear, since only O(1) wavelength perturbations of the flame front were
considered. We note that the terms involving I� and I∇2 are both stabilizing. We next
analyse (4.52) in various parameter ranges. Before doing so, we show that density
variations in the burned region are indeed negligible. The order to which each term
must be calculated is not immediately apparent, since our model is applicable for
a wide parameter range. The necessary accuracy can be determined from the flame
speed m. The relation (4.52) determines the deviation of m from the adiabatic flame
speed 1, i.e. m − 1, which may be O(1) or o(1). In either case, all other quantities in
the model must be calculated to O(m−1). We will show that constant density may be
assumed in the burned region, which is the case if ρ −ρb = o(m−1). We determine the
asymptotic orders of m − 1 and ρ − ρb in terms of the other parameters and compare
them. Except for Pe and C all the parameters in (4.52) are O(1). C may be either
O(1) or o(1). Thus, m =O(1) if C = O(1) and m = 1 + O(Pe−1) if C = O(Pe−1), so in
either case m − 1 =O(C). In the burned region ρ − ρb = ρ − 1/Tb is of the same order
as ϑ − Tb, i.e. ρ − ρb =O((1 − Le−1)h) where enthalpy h has been employed rather
than temperature. From H(0) = H(1/2) = 0 we conclude that h = O(Pe−1) in the burned

region so that ρ − ρb =O(Pe−1(1 − Le−1)) = O(Ze−1C) = o(C). However, ρ − ρb must
only be calculated to O(m − 1) = O(C), verifying the constant-density assumption
employed in the hydrodynamic model, ahead of and behind the flame surface.

4.2. Near-equidiffusional flames: weak flame speed variations (C =O(Pe−1))

If the Lewis number is close to unity and the Zeldovich number is large, then
C = Pe−1Ze(1 − Le−1) = O(Pe−1), i.e. C = Pe−1C(1) where C(1) is O(1).

Substituting this into (4.52) and expanding in powers of Pe−1 yields

m =1 − Pe−1
(
2cIX +

(
IY + C(1)IH − IX

)
χ

)
+ o(Pe−1). (4.54)

Since m is unity at leading order the transverse coupling terms become O(Pe−2)
and thus are negligibly small. The result is identical to the result of Matalon &
Matkowsky, except for the terms multiplying IX which originate from the different
definitions of the origin of the coordinate system employed in our approach and in
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their approach. Recall that for curved flames the normal mass flux m1
(1) changes along

the normal direction, which yields the curvature term. Therefore, the coefficients of
curvature and flame stretch in the flame speed relation change with the location of the
discontinuity surface, The flame speed relations appearing in previous analyses can be
easily compared to our relation, since the definition of the flame position only enters
in the integral IX , which may be evaluated for any flame position. In particular, if the
reaction zone is used to define the flame position, then IX vanishes. It is interesting
to note that a term involving curvature was present in the Markstein model. Since
IX is always positive, our curvature term is always stabilizing, as anticipated in the
Markstein model if the Markstein length lM is positive. However, there is a second
term at O(Pe−1) in (4.53) which may be either negative or positive. To study the
relative importance of the two terms we investigate the coefficient IY + C(1)IH − IX .
We find that it is relatively small for a wide range of parameters, so that the flame
speed often depends more strongly on curvature than on flame stretch. This is in
contrast to what is found in Matalon & Matkowsky (1982), where the flame speed
depends on flame stretch alone. To be sure, the difference is small, O(Pe−1). Though
both results are correct, this difference is due to the different definitions of the flame
position, which themselves differ by O(Pe−1). It is not surprising that there is a
difference in the flame speed relations corresponding to different flame positions since
the flame speed is the speed of the discontinuity surface relative to the speed of the
moving gas and the latter varies within the flame region on an O(Pe−1) length scale.
Put another way, the Matalon–Matkowsky result can be obtained from the unified
result in the near-equidiffusional limit, by Taylor expansion. Thus, the mass flux
through the reaction surface depends on stretch alone, as in Matalon & Matkowsky
(1982), while the mass flux at any other surface depends on both curvature and
stretch.

In the near-equidiffusional limit the flame speed relation (4.53) may be written as
m = 1 − Mrχχ − Mr c2c, where Mrχ = CIH + Pe−1 (IY − IX) is the Markstein number

for stretch and Mr c = Pe−1IX is the Markstein number for curvature. The effect of
stretch becomes increasingly important with growing C.

4.3. Strong flame speed variations (C = O(1))

If the Lewis number differs from unity by O(1) and the Zeldovich number is large then
C = Pe−1Ze

(
1 − Le−1

)
= O(1). Substituting this into (4.52) and neglecting O(Pe−1)

terms yields

(∂/∂t + χ)(1/m) − Pe−1 I�

IH

∇2
⊥(1/m) + Pe−1 I∇2

IH

m(∇⊥(1/m))2 +
1

CIH

m lnm =0. (4.55)

Note that the transverse coupling terms are retained, since they are O(1) for short-
wave perturbations where ∇2

⊥(1/m) = O(Pe) and m (∇⊥(1/m))2 =O(Pe). Note further
that O(Pe−1) terms have been omitted, so that m represents the leading-order mass
flux. Higher-order terms cannot be obtained from (4.52) for C = O(1). In this case
the leading-order enthalpy equation yields Hr(0) = 0, which does not provide any
information about m. The leading-order concentration equation yields the reaction
rate Wr(0) as a function of Hr(1) and m(0). Therefore, in order to calculate the leading-

order mass flux we would need to consider the enthalpy equation at O(Pe−1). The
concentration equation at O(Pe−1) yields the reaction rate Wr(1) as a function of Hr(2)

and m(1). Therefore, perturbative corrections of m can only be obtained after solving

the enthalpy equation at O(Pe−2), which has not been done here.
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If we were to ignore the effect of short waves, i.e. if we were to restrict the
analysis to flame front corrugations which have an O(1) length scale, then the surface
Laplacian and the square of the gradient in (4.54) become negligible and we recover
the time-dependent flame speed relation of Sivashinsky (1976):

(∂/∂t + χ)(1/m) + (CIH )−1m lnm =0. (4.56)

The flame speed relation (4.54) represents a generalization of the flame speed relation
of Sivashinsky (1976) and accounts for the coupling of neighbouring flame elements
which damps short-wave corrugations of the flame.

4.4. Moderate flame speed variations (C = O(Pe−1/2))

For near-equidiffusional flames the flame speed is unity at leading order, so that
the time-derivative term, which is present when C = O(1) or Le − 1 =O(1), becomes
negligibly small and drops out of the flame speed relation. Recall that this term
was dismissed by Sivashinsky due to stability considerations. Here, we discuss an
intermediate limit which reduces to the result of Matalon & Matkowsky (1982)
as the Lewis number approaches unity, but which still contains the time-derivative
term as well as the nonlinearity of Sivashinsky’s result, though it does not require
consideration of terms O(Pe−2).

Let C = Pe−1Ze(1−Le−1) = O(Pe−1/2), i.e. C = Pe−1/2C(1/2) where C(1/2) is O(1), and

expand in powers of Pe−1/2 so that

m ∼ m(0) + Pe−1/2m(1/2) + Pe−1m(1) + · · · . (4.57)

Now the flame speed relation (4.52) yields

m =1 − Pe−1/2C(1/2)IHχ − Pe−1

(
2cIX + (IY − IX)χ +

(
C(1/2)IH

)2

×
(

∂χ

∂t
− I�

IH

Pe−1∇2
⊥χ +

3

2
χ2

))
+ o(Pe−1), (4.58)

where the transverse diffusion term is retained since Pe−1∇2
⊥χ is O(1) for short-

wave perturbations. Clearly, this equation has properties which were present in
the limits previously considered. In particular, if C(1/2) becomes small, so that
C(1/2) = O(Pe−1/2) then the nonlinear term and the time-derivative term become
negligible and the O(Pe−1/2) term becomes O(Pe−1), so that we recover the result of
Matalon–Matkowsky (4.53). Similarly, if we let C become small in (4.54) we recover
the O(Pe−1/2) term in (4.57), and the terms containing IH at O(Pe−1). In (4.57) the
time derivative is present as is the curvature term. In contrast to (4.53), the flame
speed relation (4.57) contains the time derivative which may result in the well-known
pulsating instability. Finally, the nonlinear term ∼ χ2 leads to symmetry breaking,
i.e. positive and negative stretch have opposite effects on the flame speed. This is
a well-known feature. In particular, for cellular flames it is known that curvature
is much stronger at the cold crests than it is at the hot cell centres, which is a
manifestation of this asymmetry. The transverse diffusion term ∇2

⊥χ results in the
coupling of neighbouring flame elements.

It should also be noted that for flames with C = O(Pe−1/2) subjected to moderately
large flame stretch, χ =Pe1/2χ(−1/2) where χ(−1/2) =O(1), the unified flame speed
relation (4.52) reduces to the stationary form of equation (4.54),

C(1/2)IHχ(−1/2) + m2 lnm =0 + o(1), (4.59)
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which is the stationary relation of Sivashinsky (1976). The transverse diffusion terms
are O(Pe−3/2) and thus are neglected. An illustrative example where strong stretch is
relevant is the Bunsen flame. In a Bunsen flame the gas speed in the fresh mixture is
above the adiabatic flame speed, so that the flame adjusts and forms a cone. Suppose
we have a stable flame with a closed tip. At the tip the flame is normal to the flow
direction, and it is required to propagate at a speed which is well above the adiabatic
flame speed. The flame may adjust by a strong curvature and thus a strong flame
stretch.

5. Conclusions
Darrieus and Landau proposed a model that describes a premixed flame as a

gasdynamic discontinuity which propagates at a given flame speed, whose mass
and momentum are continuous across the discontinuity, and showed that uniformly
propagating planar flames governed by this model are unconditionally unstable. Since
then there have been numerous attempts to both phenomenologically propose and
analytically derive improved models that better explain the behaviour of flames.
Among the analytically derived approaches, two separate and distinct cases have
been considered, namely Lewis numbers close to unity and Lewis numbers bounded
away from unity. An approach that simultaneously covers both cases has not been
presented. Furthermore, no theory exists that describes the large-wavenumber cutoff
of the pulsating instability for Lewis numbers greater than unity when O(1) thermal
expansion is present.

In this paper we derived a unified model which is valid for arbitrary Le. It captures
all the instabilities and exhibits the large-wavenumber cutoff for each. The model
includes the effects of transverse diffusion, which is not present in earlier theories.

Our model consists of the incompressible Navier–Stokes equations in both the
unburned and burned mixtures, the jump conditions (3.50)–(3.52) relating the fluid
fields on the two sides of the flame surface, and the flame speed relation (4.52). The
density ahead of and behind the flame surface is constant. The expressions for the
jump conditions and the flame speed relation depend on the precise location of the dis-
continuity surface within the flame structure. Defining the flame position by a density
integral (3.41) yields vanishing excess surface mass, leading to continuity of the mass
flux across the flame. Continuity of the mass flux also simplifies the jump conditions
substantially and allows for simple physical interpretation. Compressibility effects
within the flame structure result in an additional pressure jump which is proportional
to curvature, and thus physically may be interpreted as an analogue of surface tension.
We refer to the term −Pe−1mIσ as surface compression since its sign is opposite to
that of surface tension. Variations of the surface compression along the flame result
in tangential forces which act on the flow.

The unified flame speed relation (4.53) is a nonlinear partial differential equation,
containing a time derivative, a transverse diffusion term, and a nonlinear term
involving the transverse spatial gradient, i.e. the flame requires a characteristic time
to adjust to new conditions and neighbouring flame elements cannot propagate at
uncorrelated flame speeds. Neighbouring flame elements are able to communicate
with one another via the transverse diffusion term and the nonlinear term. If we
restrict consideration to O(1) variations along the flame, i.e. if we ignore the effect
of short-wavelength variations, the unified flame speed relation reduces to the flame
speed relations previously derived by Sivashinsky (1976), and Matalon & Matkowsky
(1982) in the appropriate limits. We also present a new intermediate case. The jump
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conditions (3.50)–(3.52) are valid for arbitrary chemistry. The flame speed relation
(4.53) is valid for flames with thin reaction zones.

Our model is presented in coordinate-free form, which in particular is suitable for
use in numerical calculations employing either the level set method (see Sethian 1996;
Osher & Fedkiw 2002), where a partial differential equation for a scalar is introduced
which measures the distance from the flame surface, or the G-equation where a partial
differential equation for a phase function is introduced which determines the state of
the mixture, i.e. burned or fresh. In both methods the speed of the propagating surface
must be prescribed, which is the case for our model. Both methods are described in
the book by Peters (2000). Both methods require continuity of mass flux across the
flame, which is ensured by our definition of the flame location. We plan to implement
numerical codes for the computation of flames based on our model in terms of these
methods.

This paper is dedicated to Professor U. Müller on his retirement. This research was
supported by NSF grant DMS 00-72491 and DFG grant SFB 606.
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