
J. Fluid Mech. (2015), vol. 768, pp. 5–50. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.70

5

Optimal control of energy extraction in
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In very large wind farms, the vertical interaction with the atmospheric boundary
layer plays an important role, i.e. the total energy extraction is governed by the
vertical transport of kinetic energy from higher regions in the boundary layer towards
the turbine level. In the current study, we investigate optimal control of wind-farm
boundary layers, considering the individual wind turbines as flow actuators, whose
energy extraction can be dynamically regulated in time so as to optimally influence
the flow field and the vertical energy transport. To this end, we use large-eddy
simulations of a fully developed pressure-driven wind-farm boundary layer in a
receding-horizon optimal control framework. For the optimization of the wind-turbine
controls, a conjugate-gradient optimization method is used in combination with
adjoint large-eddy simulations for the determination of the gradients of the cost
functional. In a first control study, wind-farm energy extraction is optimized in an
aligned wind farm. Results are accumulated over one hour of operation. We find that
the energy extraction is increased by 16 % compared to the uncontrolled reference.
This is directly related to an increase of the vertical fluxes of energy towards the
wind turbines, and vertical shear stresses increase considerably. A further analysis,
decomposing the total stresses into dispersive and Reynolds stresses, shows that
the dispersive stresses increase drastically, and that the Reynolds stresses decrease
on average, but increase in the wake region, leading to better wake recovery. We
further observe also that turbulent dissipation levels in the boundary layer increase,
and overall the outer layer of the boundary layer enters into a transient decelerating
regime, while the inner layer and the turbine region attain a new statistically steady
equilibrium within approximately one wind-farm through-flow time. Two additional
optimal control cases study penalization of turbulent dissipation. For the current
wind-farm geometry, it is found that the ratio between wind-farm energy extraction
and turbulent boundary-layer dissipation remains roughly around 70 %, but can be
slightly increased by a few per cent by penalizing the dissipation in the optimization
objective. For a pressure-driven boundary layer in equilibrium, we estimate that such
a shift can lead to an increase in wind-farm energy extraction of 6 %.
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6 J. P. Goit and J. Meyers

1. Introduction

In large wind farms, the effect of turbine wakes and the accumulated local
energy extraction from the atmospheric boundary layer (ABL) lead to a reduction in
wind-farm efficiency, with power generated by turbines in a wind farm being lower
than that of a lone-standing turbine by up to 50 % (see e.g. Barthelmie et al. (2010)
and Hansen et al. (2011) for detailed measurements in the Horns Rev wind farm,
in the North Sea, off the coast of Denmark). In very large wind farms or ‘deep
arrays’, the interaction of the wind farms with the planetary boundary layer plays
a dominant role in this efficiency loss. For such cases, Cal et al. (2010) and Calaf,
Meneveau & Meyers (2010) demonstrated that the wind-farm energy extraction is
dominated by the vertical turbulent transport of kinetic energy from higher regions
in the boundary layer towards the turbine level. Later, this was further corroborated
in a series of studies, relying on both simulations (see e.g. Lu & Porté-Agel 2011;
Yang, Kang & Sotiropoulos 2012; Abkar & Porté-Agel 2013; Andersen, Sørensen
& Mikkelsen 2013; Meyers & Meneveau 2013) and wind-tunnel experiments (cf.
Lebron, Castillo & Meneveau 2012; Markfort, Zhang & Porté-Agel 2012; Newman
et al. 2013). In the current study, we investigate the use of optimal control techniques
combined with large-eddy simulations (LES) of wind-farm boundary-layer interactions
for the increase of total energy extraction in very large ‘infinite’ wind farms. We
consider the individual wind turbines as flow actuators, whose energy extraction can
be dynamically regulated in time so as to optimally influence the flow field and the
vertical turbulent energy transport, maximizing the wind-farm power. Note that, in
contrast to control of conventional boundary layers with the aim of drag reduction
(see e.g. Bewley, Moin & Temam 2001; Kim 2003), wind-farm boundary-layer control
does not benefit from large reductions of turbulence levels or relaminarization of the
boundary layer, as the turbulent fluxes provide an important physical mechanism for
transport of energy towards the turbines and the wake regions.

In practice, modern wind turbines are controlled by the generator torque, and by a
blade pitch controller, which controls the aerodynamic torque by changing the angle of
attack of the turbine blades. Above rated wind speed, these controls are used to limit
the aerodynamic power extraction to the maximum generator power. Increasing power
extraction in this operating regime is not relevant, as it is limited by design constraints.
Below rated wind speed, generator torque control is used to keep the turbine at an
optimal tip-speed ratio, while the blade pitch is kept at its optimal design value. For
a lone-standing turbine, such an approach is aerodynamically optimal, and maximizes
energy extraction (Burton et al. 2001; Manwell, McGowan & Rogers 2002; Pao &
Johnson 2009). However, for wind turbines in a wind farm, this is not necessarily the
case.

A lot of studies have considered optimization of wind-farm performance, many of
them focusing on optimization of farm layout in both small farms (e.g. Kaminsky,
Kirchhoff & Sheu 1987; Kusiak & Song 2010; Chowdhury et al. 2012) and large
arrays (e.g. Newman 1976; Meyers & Meneveau 2012; Stevens 2015). Also farm
control has received considerable attention, focusing on various aspects of wind-farm
operation, such as reduction of structural loads, power regulation and grid support, or
increasing energy extraction (Spruce 1993; Hansen et al. 2006; Johnson & Thomas
2009; Soleimanzadeh, Wisniewski & Kanev 2012; Fleming et al. 2013). However, as
far as wind farm–flow interactions are included in these studies, they are all based on
fast heuristic models: e.g. models for wake interaction and merging such as presented
by Lissaman (1979) and Jensen (1983) or Rathmann, Frandsen & Barthelmie (2007)
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Optimal control of wind-farm boundary layers 7

(see also Sanderse, van der Pijl & Koren (2011) for a review), or models for boundary-
layer response in large farms (e.g. Frandsen 1992; Calaf et al. 2010; Meneveau 2012).
In the current work, we consider the optimal control of wind farms using LES of
the wind-farm boundary layer as the state model, allowing for a detailed optimization
of the dynamic interaction of the farm’s turbines with the boundary layer and its
large-scale three-dimensional turbulent structures.

To date, the combination of optimal control techniques with time-resolved turbulent
flow simulations such as direct numerical simulation (DNS) or LES has been mainly
used for drag reduction in boundary layers (see e.g. Chang & Collis (1999) and
Bewley et al. (2001), among others), noise control in jets (Wei & Freund 2006),
control of wakes (Li et al. 2003), or optimal nonlinear growth of mixing layers
(Delport, Baelmans & Meyers 2009, 2011; Badreddine, Vandewalle & Meyers 2014).
All of these cases are (partial differential equation) PDE-constrained optimization
problems with a large number of degrees of freedom in control space, and a huge
number in the state space. For instance, in the current study, the number of degrees
of freedom in control space is approximately 20 000, while the space–time state
space has approximately 1.5 billion degrees of freedom. In such a case, the only
viable optimization approach is gradient-based optimization in combination with
an adjoint-based gradient method. In the current work, we follow the approach by
Bewley et al. (2001), and combine the nonlinear Polak–Ribière conjugate-gradient
variant, with the Brent line-search algorithm (Press et al. 1996; Luenberger 2005;
Nocedal & Wright 2006). Moreover, similar to Bewley et al. (2001), we use optimal
model-predictive control (or optimal receding-horizon control), where the model
simply consists of the full LES equations. Such an optimal control framework
is not practicable for real wind-farm control, as the LES model is by orders of
magnitude too expensive for real-time control, further complicated by the need for
a state estimation based on a limited number of wind measurements in the wind
farm. However, the current work can serve as a benchmark framework for controller
development. Results also yield new insights into limits to energy extraction from
wind-farm boundary layers, and the related structure of the turbulent energy fluxes
towards individual turbines.

In LES of wind-farm boundary layers, it is computationally not feasible to fully
resolve blades and blade boundary layers on the mesh. Instead, simplified models
are used that provide the turbine forces on the LES flow field. Most common is the
actuator disk model (ADM), in which a uniform force in the turbine disk region is
smoothed onto the LES grid (Mikkelsen 2003; Jimenez et al. 2007; Ivanell et al.
2009; Calaf et al. 2010; Meyers & Meneveau 2010). We employ such an ADM
model, with a disk-based thrust coefficient that is dynamically controlled per turbine
in time, representing possible turbine pitch and torque control actions (cf. further
discussion in this paper). Furthermore, for the wind-farm boundary layer, only cases
with neutral stratification are considered, and two important simplifications are made
with respect to its representation. Firstly, following many of the studies in the field
(e.g. Lu & Porté-Agel 2011; Yang et al. 2012; Abkar & Porté-Agel 2013; Andersen
et al. 2013; Meyers & Meneveau 2013), we consider the asymptotic limit of a very
large ‘infinite’ wind farm in a fully developed wind-farm boundary layer, allowing the
use of periodic boundary conditions, and fast pseudospectral discretization methods.
As verified in wind-tunnel experiments by Chamorro & Porté-Agel (2011), for
example, such a regime becomes relevant for wind farms with horizontal extents
that exceed 10–20 times the height of the boundary layer. Secondly, we consider a
neutral pressure-driven boundary layer (PBL) with symmetry conditions at the top,
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8 J. P. Goit and J. Meyers

instead of a full conventionally neutral ABL that is driven by a geostrophic balance,
includes free atmosphere stratification, a capping inversion layer between the ABL
and the free atmosphere, etc. Such an approach is relatively common for simulations
of near-surface features in ABLs, and has been used also in the context of wind-farm
simulations by Calaf et al. (2010), Calaf, Parlange & Meneveau (2011), Yang et al.
(2012) and Andersen et al. (2013). It presumes that the turbines are situated in
the inner layer of the boundary layer (cf. Calaf et al. (2010) for a more detailed
discussion). This working hypothesis is limited by the fact that our turbines are close
to the upper limit of the inner layer, i.e. the hub height is 100 m, while the top
tip height is 150 m, for a boundary layer height of 1 km. Nevertheless, we believe
that such an approach is a good approximation for a first analysis of the optimal
control of wind-farm boundary layers, and results are carefully discussed in view of
differences from a real ABL.

The paper is further organized as follows. In § 2 LES of wind-farm boundary
layers is introduced, and a number of ‘uncontrolled’ reference cases are presented.
Subsequently, the optimal control methodology is discussed in § 3. In § 4, we present
results for a first optimal control case. Two additional optimal control cases that
include penalization of turbulent dissipation are presented in § 5. Finally, in § 6 the
main conclusions and future research directions are discussed.

2. Large-eddy simulation of a wind-farm boundary layer
2.1. Governing equations and boundary conditions

We consider a thermally neutral PBL, with constant pressure gradient ∇p∞/ρ ≡ f∞e1
(with e1 the unit vector in the streamwise direction). The governing equations are the
filtered incompressible Navier–Stokes equations for neutral flows and the continuity
equation, i.e.

∇ · ũ= 0, (2.1)
∂ũ
∂t
+ ũ · ∇ũ=− 1

ρ
∇p̃+ f∞e1 +∇ · τM + f , (2.2)

where ũ= [ũ1, ũ2, ũ3] is the resolved velocity field, p̃ is the remaining pressure field
(after subtracting p∞), τM is the subgrid-scale model, and the density ρ is assumed
to remain constant. Furthermore, f represents the forces (per unit mass) introduced
by the turbines on the flow (see discussion in § 2.2). Since the Reynolds number in
ABLs is very high, we neglect the resolved effects of viscous stresses in the LES.

The computational domain is schematically represented in figure 1. In the
streamwise and spanwise directions, periodic boundary conditions are used (i.e.
respectively on Γ1 and Γ2). At the top boundary (Γ +3 ), symmetry conditions are
imposed. At the ground surface (Γ −3 ), impermeability is imposed in combination with
Schumann’s (1975) wall-stress boundary conditions and Monin–Obukhov similarity
theory for neutral rough boundary layers. It relates the wall stress [τw1, τw2] to the
wall-parallel velocity components [ũ1, ũ2] at the first grid point using (Moeng 1984;
Bou-Zeid, Meneveau & Parlange 2005)

τw1 =−
(

κ

ln(z1/z0)

)2 (
ũ

2
1 + ũ

2
2

)0.5
ũ1, (2.3)

τw2 =−
(

κ

ln(z1/z0)

)2 (
ũ

2
1 + ũ

2
2

)0.5
ũ2, (2.4)
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Optimal control of wind-farm boundary layers 9

z
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FIGURE 1. Computational domain Ω and boundaries Γ .

where z0 is the surface roughness of the wall, and z1 is the vertical location of the first
grid point. Furthermore, the bar on ũ1 and ũ2 represents a local average obtained by
filtering the wall-parallel velocity [ũ1, ũ2] in directions parallel to the wall, avoiding
an overestimation of the wall stresses (Bou-Zeid et al. 2005). In the current work, we
use two successive one-dimensional Gaussian filters with filter width 4∆ (and ∆ the
grid spacing).

In view of the complexity associated with the formulation of the adjoint equations
and adjoint subgrid-scale model required for the optimal control (cf. § 3), we opt for
a relatively simple subgrid-scale model, i.e. the Smagorinsky (1963) model with wall
damping,

τM = 2`2(2S :S)1/2S, (2.5)

with S = (∇ũ+ (∇ũ)T)/2 the resolved rate-of-strain tensor. The Smagorinsky length
` (= Cs∆ far from the wall) is damped using Mason & Thomson’s (1992) wall
damping function, i.e. `−n = [Cs∆]−n + [κ(z + z0)]−n, with κ = 0.4 the von Kármán
constant, and where we take n = 3. Furthermore, ∆ = (∆1∆2∆3)

1/3 is the local grid
spacing, and Cs is the Smagorinsky coefficient. We employ Cs = 0.14, consistent
with the high-Reynolds-number Lilly value for cubical sharp cutoff filters (Meyers &
Sagaut 2006). Note that some other works have used more advanced subgrid-scale
models in LES of wind farms, such as the scale-dependent Lagrangian model of
Bou-Zeid et al. (2005) (Calaf et al. 2010, 2011; Abkar & Porté-Agel 2013). In Calaf
et al. (2010) a comparison was made between this model and the current Smagorinsky
implementation, and the differences in mean velocity and Reynolds stress distributions
were found to be small.

2.2. Actuator-disk model
Actuator-disk models add the axial forces exerted by the wind turbines on the
flow to the Navier–Stokes equations. Tangential forces are usually neglected (given
the tip-speed ratios at which turbines are operated, they are more than an order
of magnitude smaller). In a validation study, comparing ADM with and without
tangential forces (Wu & Porté-Agel 2011), it was demonstrated that standard ADMs
provide an accurate representation of the overall wake structures behind turbines
except for the very near wake (x/D < 3). Moreover, also Reynolds stresses were
found to be accurately predicted, thus yielding a good representation of the interaction
of the wind farms with the boundary layer. Later, this was further corroborated by
Meyers & Meneveau (2013) in a detailed analysis of energy fluxes in wind farms,
comparing models with and without tangential forces. In the current work, we employ
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10 J. P. Goit and J. Meyers

a standard ADM. It corresponds to the version used by Calaf et al. (2010), Meyers
& Meneveau (2010) and Meyers & Meneveau (2013), and is briefly reviewed below.

The axial force of a turbine i (= 1, . . . , Nt) on the flow field can be expressed as

Fi =− 1
2 C′T,iρV̂2

i A, (2.6)

with C′T,i the disk-based thrust coefficient, V̂i the average axial flow velocity at the
turbine rotor disk (see further below) and A=πD2/4 the rotor-disk surface. The disk-
based thrust coefficient C′T,i results from integrated lift and drag coefficients over the
turbine blades, taking design geometry and flow angles into account (cf. appendix A
for a detailed formulation). For an ideal design, and in the absence of any drag forces,
C′T,i=2. Moreover, below rated wind speed, conventional turbines use generator torque
control to keep the turbine at a constant optimal tip-speed ratio independent of wind
speed, while the blade pitch is kept constant at its optimal design value. In an ADM,
this corresponds to using a constant value for C′T,i (see also (A 5) in appendix A).

In an ideal turbine design, the force Fi is uniformly distributed over the disk area.
Therefore, in an ADM, a uniform force (per unit mass) is distributed over the LES
grid cells in the vicinity of the actuator disk using (Calaf et al. 2010; Meyers &
Meneveau 2010, 2013)

f (i) =− 1
2 C′T,iV̂

2
i Ri(x)e⊥, (2.7)

where e⊥ is the unit vector perpendicular to the turbine disk, and in (2.2) we employ
f =∑ f (i).

Further, Ri(x) is a geometrical smoothing function that distributes the uniform
surface force of turbine i over the surrounding LES grid cells. To this end, a
Gaussian filter is used, leading to (Meyers & Meneveau 2010)

Ri(x)=
∫
Ω

G(x− x′) δ[(x′ − xi) · e⊥]H(D/2− ‖y′‖) dx′, (2.8)

with G(x)= [6/(π∆2
R)]3/2 exp(−6‖x‖2/∆2

R) the Gaussian filter kernel, with filter width
∆R. Further, xi is the coordinate of the turbine rotor centre, δ(x) the Dirac delta
function, H(x) the Heaviside function, and where y′ = (x′ − xi) − ((x′ − xi) · e⊥)e⊥
is the projection of (x′− xi) on the rotor plane. Similar to earlier studies (Calaf et al.
2010; Meyers & Meneveau 2010, 2013), we select ∆R= 3∆/2, with ∆ the LES grid
resolution. Finally, note that by construction

∫
Ω

Ri(x) dx′ = A.
In order to determine the axial disk-averaged velocity V̂i, first spatial averaging of

the velocity is performed over the rotor disk using the geometrical rotor footprint
Ri(x), followed by a local time filter. Thus, first the disk-averaged velocity is defined
as

Vi(t)= 1
A

∫
Ω

ũ(x, t) · e⊥Ri(x) dx, (2.9)

and V̂i is obtained from Vi using a first-order time filter, i.e.

dV̂i

dt
= 1
τ
(Vi − V̂i), (2.10)

with τ the filter time scale. In our simulations, this ordinary differential equation is
discretized using an implicit Euler method, such that

V̂n
i = (1− α)V̂n−1

i + αVn
i , (2.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.70


Optimal control of wind-farm boundary layers 11

with α =1t/(τ +1t). We use τ = 5 s; combined with a time step 1t of 0.7 s (see
§ 2.3) this yields α ≈ 0.12.

Finally, the power that is extracted from the boundary layer by all turbines is
expressed as

P=−
∫
Ω

f · ũ dx=
∫
Ω

Nt∑
i=1

1
2

C′T,iV̂
2
i ũ · e⊥Ri(x) dx=

Nt∑
i=1

1
2

C′T,iV̂
2
i Vi A. (2.12)

This is not equivalent to the power Pax that is extracted at the turbine axle, which
is related to the torque and rotational velocity of the turbine. The drag forces on
the turbine blade increase the thrust force, but reduce the torque. Similar to C′T,i, a
disk-based power coefficient C′P,i may be defined that is based on projected forces
in the tangential direction. In the absence of drag, C′T,i = C′P,i (cf. appendix A for
details). In the current work, we focus on increasing P by controlling C′T,i (cf. § 3),
and do not explicitly take C′P,i into account. We just presume that C′T,i/C

′
P,i is roughly

constant, so that the extracted power from the boundary layer is representative of
the mechanical power at the turbine axle. Such an approximation does not take into
account deleterious effects that increased turbulence levels may have on local blade
lift and drag coefficients, in particular, as a result of increased occurrences of stall.
However, as further shown in §§ 4 and 5, in the considered optimal control cases,
turbulence levels do not increase in front of the turbines, so that the above working
assumption is reasonable. A more involved representation that more accurately models
the effect of turbulence levels on blade performance is a subject for further research
(see also discussion in § 6).

2.3. Discretization and case set-up
Simulations are performed in SP-Wind, an in-house research code that was developed
in a series of earlier studies on LES and wind-farm simulations, and flow optimization
(see e.g. Meyers & Sagaut 2007; Delport et al. 2009; Meyers & Meneveau 2010).
SP-Wind uses a pseudospectral discretization in the horizontal directions. The
nonlinear convective terms and the subgrid-scale stress are dealiased using the
3/2 rule (Canuto et al. 1988). Message passing interface (MPI) is used to run the
simulations in parallel mode, and the FFTW library is employed for Fourier transforms
(Frigo & Johnson 2005). In the vertical direction, a fourth-order energy-conservative
finite-difference discretization is used (Verstappen & Veldman 2003), while time
integration is performed using a classical four-stage fourth-order Runge–Kutta scheme.

We focus on the simulation and optimal control of an aligned wind farm,
i.e. turbines are aligned in rows that are parallel to the wind direction. Details
of the case set-up are summarized in table 1 using typical orders of magnitude
that are relevant for a wind farm. We take a boundary-layer height of H = 1 km,
and use a domain size of Lx × Ly × H = 7 km × 3 km × 1 km. Fifty turbines with
diameter D = 100 m are arranged in a 10 × 5 matrix, with streamwise spacing
Sx = 7D and spanwise spacing Sy = 6D. As routinely done, the set-up can also be
non-dimensionalized with turbine hub height or boundary-layer height, and with
friction velocity ( f∞H)1/2 (= 1 m s−1 here). The computational grid corresponds to
Nx×Ny×Nz= 256× 192× 80. For dealiasing, this is extended to 384× 288× 80 for
all operations in real space.

The resulting case resembles earlier aligned wind-farm simulations (cf. case A3 in
Calaf et al. (2010), and case 1 in Meyers & Meneveau (2013)), but we slightly altered
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12 J. P. Goit and J. Meyers

Domain size Lx × Ly ×H = 7 km× 3 km× 1 km
Driving pressure gradient f∞ = 10−3 m s−2

Turbine dimensions D= 0.1H = 100 m, zh = 0.1H = 100 m
Turbine arrangement 10× 5
Turbine spacing Sx = 7D and Sy = 6D
Surface roughness z0 = 10−4H = 0.1 m
Grid size Nx ×Ny ×Nz = 256× 192× 80
Cell size ∆x ×∆y ×∆z = 27.3 m× 15.6 m× 12.5 m
Time step 0.7 s

TABLE 1. Summary of the simulation set-up and the turbine arrangement parameters.
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4 8 12 16

5
6

7

(a) (b)

FIGURE 2. (a) Snapshot representing an instantaneous streamwise velocity field. (b) Zoom
on a subset of four turbines. The horizontal plane is taken at hub height, and turbines are
represented by small white disks.

the wind-farm parameters, so that the turbine spacings are integer multiples of the
rotor diameter, while keeping the ground surface per turbine roughly the same (Sx ×
Sy = 7.85D× 5.23D in the earlier studies, with 8× 6 turbines). Furthermore, we also
used a slightly finer mesh spacing. We refer the reader to Calaf et al. (2010) and
Meyers & Meneveau (2013) for the effects of domain size and grid refinement studies.
Finally, for the time integration, we use a fixed time step of 0.7 s, which corresponds
to a Courant–Friedrichs–Lewy (CFL) number of approximately 0.4.

For conventional simulations, i.e. those discussed in § 2.4, we first start from an
initial logarithmic velocity profile to which a set of random perturbations are added.
After an initial spin-up period of 16 h (corresponding to approximately 85 through-
flow times), during which the velocity profile and turbulence statistics evolve into
statistical equilibrium, we accumulate averaged flow properties for a time window of
21 h. Subsequent simulations (for parameter variations, cf. § 2.4) start from an earlier
statistically stationary field, and use a spin-up period of 6 h (30 through-flow times).

In figure 2, a snapshot of the instantaneous velocity fields is shown. In the
horizontal plane, we observe typical meandering of the turbine wakes. At the same
time, patches of high-speed wind can also be seen passing through the spaces between
turbine columns.

2.4. Boundary-layer response and optimal energy extraction using standard turbine
control

In the current subsection, we study the response of a wind-farm boundary layer to
static changes in C′T , while keeping the C′T value the same for all turbines. This

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.70


Optimal control of wind-farm boundary layers 13

will help in defining a reference case, as well as a starting point for the dynamic
optimization in § 3.

In order to discuss this further, we first introduce some concepts related to fully
developed wind-farm boundary layers with wind turbines situated in the inner layer.
In such boundary layers, a double log layer is observed (Frandsen 1992; Calaf
et al. 2010), one below the turbine level, characterized by the friction velocity
uτ l = (τw/ρ)

1/2, and the other above the turbine level, characterized by the total
friction induced by the ground surface and the turbines. Thus with friction velocity
(Calaf et al. 2010)

u2
τh = u2

τ l +
1
Nt

∑ 1
2
ρV̂2

i

C′T,i A
SxSy

, (2.13)

with A=πD2/4 the turbine rotor area. In a PBL, integration of the momentum balance
over the full height of the boundary layer further yields u2

τh = f∞H.
When considering a single turbine in idealized conditions, the optimal operating

condition of the turbine corresponds to C′T = 2 (cf. appendix A), corresponding
to the Betz limit. However, in an infinite wind-farm boundary layer, the boundary
layer responds to the surface roughness induced by the wind farm, and the wind
velocity at turbine hub height depends on parameters such as turbine spacing and
thrust coefficient. Therefore, when comparing different control cases, it is important
to normalize the total power extraction of the farm P by a correct reference value
that itself is not dependent on the control and remains constant in real conditions.
The logical reference to use for a wind farm in the ABL is the geostrophic wind G
in the free atmosphere above the ABL. This approach was followed by Meyers &
Meneveau (2012), for example, when investigating optimal turbine spacing for large
wind farms, thus optimizing P+ABL = P/G3.

An issue is that the boundary layer considered in the current study is a regular PBL.
However, we can use the main working hypothesis that the wind turbines are in the
inner layer of the boundary layer (cf. discussion in the introduction), and thus their
overall effect on the outer layer is characterized by the friction velocity uτh. By further
using basic momentum and energy conservation laws for an Ekman spiral, it is then
possible to obtain a simple heuristic relation between uτh and G, i.e. (cf. appendix B
for a derivation)

G= uτh

√
A2 +

(
D +P

u3
τh

)2

, (2.14)

with D the total turbulent dissipation per unit wind-farm area, and P the average
turbine power extraction per unit farm area (i.e. P = P/(LxLy), with P the time
average of P). Furthermore, A ≈ 12 is an empirical constant that depends on the
outer-layer behaviour of the ABL.

The response of the boundary layer to changes in C′T is now investigated. We do
not yet consider optimal coordinated control of C′T at farm level (cf. § 3 below), but
instead keep C′T constant in time, and the same for all turbines. Thirteen different
cases are considered, with 0.02 6 C′T 6 3.5. Results for the averaged total power
extraction are shown in figure 3. We show two normalizations, i.e. one using
P+

PBL = P/u3
τh, which is the standard normalization for a PBL, and the other

using P+
ABL =P/G3, as relevant for ABLs. For the second normalization, (2.14) is

used to determine uτh/G. These two normalizations reflect the different reactions of a
PBL and an ABL to a changing load. In figure 3, it is appreciated that the extracted
power depends strongly on the disk-based thrust coefficient. Furthermore, the selected
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FIGURE 3. Mean power output of an uncontrolled wind farm as a function of C′T . Power
P+ is normalized by either uτh (red circles), geostrophic wind G (green squares), or
driving power (blue triangles). Curves are further normalized by their maximum values
of P+.

normalization leads to quite different optimal values for C′T : using the maximum
of P/u3

τh leads to much lower optimal C′T values than using P+
ABL =P/G3. Thus,

presuming a constant pressure gradient, independent of the wind-farm load, does not
lead to the same optimum as presuming constant geostrophic wind.

In figure 3, we also consider a third normalization that is based on the total driving
power of the PBL, i.e. P+

DRP =P/( f∞UbH), with Ub the total bulk velocity. Thus,
such a normalization presumes a constant driving power in the boundary layer, which
is independent of the wind-farm load. It is observed that this third normalization leads
to an optimal C′T value that is close to the one found for P/G3, with C′T ≈ 1.33.

2.4.1. Discussion
As observed in figure 3, the optimal setting of C′T and the maximum normalized

wind-farm power output depend strongly on the impedance of the driving force. The
logical approach for wind farms is to use P+

ABL =P/G3 to determine the maximum
power that can be extracted from an ‘uncontrolled’ wind farm with static C′T values.
This maximal power can serve as a logical reference that optimal control (cf. § 3)
should improve upon. However, the results for PABL in figure 3 are based on a
heuristic relation for the ABL response (2.14). For instance, the empirical constant A
(cf. (B 9)) may itself depend in subtle ways on the wind-farm loading, etc. Also, the
evaluation of D in (2.14) requires the integration of total dissipation in the inner as
well as the outer layer. The latter is not the same in PBLs and ABLs.

In order to avoid these issues, and keep the approach internally consistent with the
idea of a PBL, we choose for the ‘uncontrolled’ reference in our work the case with
constant driving power that maximizes P+

DRP, i.e. with C′T ≈ 1.33. As observed in
figure 3, this maximum is close to that for P+

ABL. Moreover, the physical interpretation
as to how gains in power extraction are achieved is straightforward. In a statistically
stationary system, we find that

f∞UbH =P +D, (2.15)

with f∞UbH the total driving power per unit farm area. Thus, given constant total
driving power in a PBL, the only way that wind-farm output may be increased
is by increasing the ratio P/D , and reducing turbulent dissipation. In figure 4,
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FIGURE 4. Mean power output (blue triangles) and dissipation (red circles) as functions
of C′T for uncoordinated cases. Both power and dissipation are normalized by the driving
power.

P/( f∞UbH) and D/( f∞UbH) are shown as functions of C′T . For the current wind
farm and turbine arrangement, we observe that at the optimal point C′T = 1.33 only
40 % of the total power input is actually harvested by the wind farm, while 60 % is
dissipated by turbulence.

Finally, we remark that power optimization in a real ABL may involve more
than simply improving the ratio of wind-farm extraction to turbulent dissipation. In
particular, the entrainment at the top of the boundary layer may play an important
role in the total power that is available. For boundary layers that are thick compared
to the size of the wind turbines, we expect this to be a secondary effect. However,
for boundary layers that are shallow, or for internal boundary layers developing over
finite wind farms, entrainment will play an important role in the total power available,
and may be strongly influenced by the wind farm itself. Capturing this type of effect
in detail is beyond the scope of the current work, but may be interesting for future
research.

3. Optimal coordinated control: problem formulation, methodology and
case set-up

The optimal control approach used in the current study is now discussed. We
consider an optimal control problem in which the disk-based thrust coefficients can
dynamically change as a function of time and per turbine in the farm, and are
optimized to increase the overall energy extraction. Thus, we do not directly include
in our optimal control model the actual generator torque and blade pitch control
actions that would in reality determine the disk-based thrust coefficient. We just
presume that these actions are performed sufficiently fast for the required dynamical
changes to the thrust coefficient in the optimal control. As further shown in the paper,
these dynamic changes occur over time scales that are larger than 10 s, so that this is
a reasonable approximation. We employ a receding-horizon control approach (further
discussed in § 3.1) that splits the control problem into a number of optimal control
subproblems. The problem formulation of these subproblems is introduced in § 3.2.
Optimization is performed using a gradient-based approach, as further presented in
§ 3.3. The determination of the gradients based on an adjoint approach is elaborated
in § 3.4. The final computational set-up is presented in § 3.5.
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Flow simulation

Adjoint simulation
(Gradient calculation)

Flow advancement

FIGURE 5. Receding horizon optimal control approach.

3.1. Receding-horizon approach
We employ a receding-horizon optimal control approach for the control of wind-farm
boundary layer interaction. This essentially follows the standard paradigm of model-
predictive control (Rawlings & Mayne 2008), but where the model in our case consists
of the full LES equations (2.1) and (2.2), and where we do not have a state estimation
problem, i.e. in our simulations the flow state is perfectly known at each time step.
In the context of DNS-based and LES-based optimal control, a similar setting was
employed by Chang & Collis (1999) and Bewley et al. (2001).

In a receding-horizon optimal control approach, time is split into a number of
control windows with length T , also called the time horizon – a schematic overview
is presented in figure 5. Starting with the first time horizon, an optimization problem
is formulated (cf. § 3.2) in which the control parameters are optimized as a function of
time. To that end, an iterative gradient-based optimization approach is used (cf. § 3.3)
requiring several LES, combined with adjoint simulations for the determination of
the gradients (cf. § 3.4). Once a set of optimal controls is found for the interval
[0, T], they are effectively used as control inputs to advance the system over a time
window TA (see figure 5). Subsequently, a new optimization problem is formulated
that optimizes the controls for the time window [TA, TA + T], and so forth.

In standard receding-horizon optimal control, TA often just corresponds to the
control time step, so that with every time step a control optimization problem is
solved, leading to an optimization time horizon that smoothly moves forward with
the control inputs. In the context of DNS-based or LES-based optimal control, this
is not done, as every optimization problem itself requires very large computational
resources. Bewley et al. (2001) used TA = T to limit computational cost, though this
led to non-smooth transitions between time windows. They also looked at one case
with TA = T/2; and in a similar study, Collis et al. (2000) also explored TA = 3T/4
and TA=T/4. In the current work, we choose TA=T/2 as an ad hoc balance between
computational cost and control smoothness, and we will refer to time windows TA as
the control windows.
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3.2. Optimization problem formulation
We consider the optimal control of a wind-farm boundary layer. The control
parameters correspond to all disk-based turbine thrust coefficients ϕ≡[C′T,1(t),C′T,2(t),
. . . ,C′T,Nt

(t)] (with Nt the total number of turbines). The state variables in the optimal
control problem are q≡ [ũ(x, t), p̃(x, t), V̂(t)], i.e. corresponding to the LES velocity
field, pressure field and the time-filtered turbine-disk velocity fields V̂≡ [V̂1, . . . , V̂Nt ].

The optimal control problem is formulated as a minimization problem in which we
employ the following cost functional:

J (ϕ, q) =
∫ T

0
−P(t) dt+ γ

∫
Ω

[e(0)− e(T)] dx

=
∫ T

0

∫
Ω

Nt∑
i=1

−1
2

C′T,iV̂
2
i Ri(x)ũ(x, t) · e⊥ dx dt

+ 1
2
γ

∫
Ω

[ũ(x, 0) · ũ(x, 0)− ũ(x, T) · ũ(x, T)] dx. (3.1)

The first term corresponds to the amount of energy extracted from the boundary layer
by the wind turbines over the optimization time horizon T . The second term is a
penalization term (0 6 γ < 1) that is related to penalization of the total dissipation
DLxLy, but formulated in an alternative way that simplifies implementation. Details
are discussed in § 5, where results for γ > 0 are presented. In § 4, γ = 0 is discussed.

The optimal control problem under consideration is a PDE-constrained optimization
problem that corresponds to

min
ϕ,q

J (ϕ, q) (3.2)

s.t.

∂ũ
∂t
+ ũ · ∇ũ=− 1

ρ
∇p̃+ f∞e1 +∇ · τM + f + δ(x− z1e3)τw in Ω × (0, T],

∇ · ũ= 0 in Ω × (0, T],
dV̂
dt
= 1
τ
(V − V̂) in (0, T].

(3.3)

In (3.3), the wall-stress model is explicitly added to the momentum equation using
the Dirac delta function δ(x − z1e3) with z1 the location of the first grid point near
the wall, and where τw=[τw1, τw2, 0], with τw1 and τw2 defined by (2.3) and (2.4). For
the sake of further use, the state constraints (3.3) are written in short-hand notation
as B(ϕ, q)= 0, representing LES momentum and continuity equations, and the time
filter of the disk velocity.

Finally, we remark that we add some additional box constraints on the controls,
i.e. 0 6 C′T,i(t) 6 4. These are trivial to add, and are not formally included here so
as not to further complicate the equations. See § 3.5 for further discussion on these
constraints.

3.3. Optimization method
In the current work, we do not solve the PDE-constrained optimization problem
written in its standard form (3.2) and (3.3), where the PDE is explicitly formulated
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18 J. P. Goit and J. Meyers

as a constraint. Though it is possible and sometimes beneficial to do this for smaller
problems (see e.g. Hinze & Kunisch (2001) for a discussion), the size of the
space–time state space in our optimal control problem (of the order of 1 billion
degrees of freedom) does not allow such an approach. Instead, we reformulate the
problem in a reduced form, with a reduced cost functional, i.e.

min
ϕ

J̃ (ϕ)≡J (ϕ, q(ϕ)), (3.4)

where q(ϕ) is the solution to the state equations given the control inputs ϕ, implicitly
defined by B(ϕ,q(ϕ))≡0. Thus, in its reduced form the problem is unconstrained, but
at every step of the optimization algorithm the state constraints need to be explicitly
satisfied. The size of the optimization space in this reduced formulation corresponds
to the number of degrees of freedom on ϕ, which is approximately 2 × 104 in this
study.

To solve (3.4) the same approach is followed as first used by Bewley et al. (2001)
for DNS-based optimal control, i.e. the combination of a Polak–Ribière conjugate-
gradient method and the Brent line-search algorithm (Press et al. 1996; Luenberger
2005; Nocedal & Wright 2006). It is an iterative method for solving unconstrained
optimization problems. Given an intermediate estimate of the optimum ϕ(k), a search
direction δϕ(k) is determined using the Polak–Ribière conjugate-gradient direction

δϕ(k) =−∇J̃ (k) + βkδϕ
(k−1), (3.5)

where ∇J̃ (k) is the gradient of the cost functional (cf. § 3.4 for its determination
based on the adjoint equations), and βk is given by

βk = (∇J̃
(k) −∇J̃ (k−1)) · ∇J̃ (k)

∇J̃ (k−1) · ∇J̃ (k−1)
. (3.6)

Using the search direction δϕ(k), a new estimate of the optimum is obtained from

ϕ(k+1) = ϕ(k) + α δϕ(k), (3.7)

where α is the result of a line search that minimizes J̃ (ϕ(k)) in the direction δϕ(k).
To that end, an iterative gradient-free line-search method is used that is based on the
mnbrak and Brent algorithms (Press et al. 1996). Details on the implementation used
in our work can be found in Delport et al. (2009).

3.4. Gradient of the reduced cost functional and adjoint equations
An important element in the conjugate-gradient algorithm discussed above is the
determination of the gradient of the reduced cost functional ∇J̃ for a given set
of controls ϕ. The use of a simple finite difference approach is not feasible if the
design space ϕ is large, since this requires an evaluation of the state equations for
every possible dimension in ϕ. Instead, a mathematically equivalent formulation for
the determination of the gradient can be used that requires once the solution of an
additional set of partial differential equations, i.e. the adjoint equations, with a cost
that is roughly equivalent to that of the original state equations.

The derivation of the gradient of the reduced cost functional in terms of the adjoint
solution is straightforward, but lengthy. It follows standard approaches as discussed in
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Tröltzsch (2010) and Borzi & Schultz (2012), for example. We refer the reader to
appendix C for a detailed derivation. Here, we summarize the most important results
that are used in our optimization algorithm. First of all, the gradient of the reduced
cost functional may be expressed as (Borzi & Schultz 2012)

∇J̃ = ∂J
∂ϕ
+
[
∂B
∂ϕ

]∗
q∗, (3.8)

with [∂B/∂ϕ]∗ the adjoint of ∂B/∂ϕ (cf. § C.1) and q∗= (ξ ,π,χ) the solution of the
adjoint equations (see further below). For the current cost functional (3.1), this leads
to

∇J̃ = ∂J
∂ϕ
+ 1

2

∫
Ω

V̂
◦2 ◦RRR(x) [ξ · e⊥] dx= 1

2

∫
Ω

V̂
◦2 ◦RRR(x) [(−ũ+ ξ) · e⊥] dx, (3.9)

with RRR ≡ [R1, . . . ,RNt ], and where ◦ is used to denote the entry-wise product (or

Hadamard product), and V̂
◦2

is the entry-wise square of V̂. Furthermore, ξ(x, t) is the
adjoint velocity field that is obtained by solving the adjoint equations.

The derivation of the adjoint equations for the standard transient Navier–Stokes
equations is well documented in the literature (see e.g. Choi, Hinze & Kunisch (1999),
Bewley et al. (2001), Wei & Freund (2006) and Delport et al. (2009), among others).
The main extension here is the addition of adjoints for the Smagorinsky model and
wall-stress model, and the adjoint of the ADM. The reader is referred to appendix C
for details of their derivation. The resulting adjoint equations correspond to

−∂ξ
∂t
− ũ · ∇ξ − (∇ξ)T · ũ=− 1

ρ
∇π+∇ · τ ∗M + f ∗ + δ(x− z1e3)τ

∗
w,

∇ · ξ = 0,

−dχi

dt
= 1
τ

[
−χi +C′T,iV̂i

∫
Ω

Ri(x) (ũ− ξ) · e⊥ dx
]
, for i= 1, . . . ,Nt,


(3.10)

and with

f ∗ =
Nt∑

i=1

(
1
2

C′T,iV̂
2
i +

χi

A

)
Ri(x)e⊥, (3.11)

τ ∗w,i =−
[

κ

log(z1/z0)

]2


(

ũ
2
1 + ũ

2
2

)1/2
ξi + ũ1ξ1 + ũ2ξ2(

ũ
2
1 + ũ

2
2

)1/2 ũi

, for i= 1, 2 (3.12)

and τ ∗w = [τ ∗w,1, τ ∗w,2, 0]. Further

τ ∗M = 2`2
s

(
2S : S∗

(2S : S)1/2
S + (2S : S)1/2S∗

)
, (3.13)

where S∗ = (∇ξ + (∇ξ)T)/2.
The spatial boundary conditions of the adjoint equations are equivalent to those of

the forward equations. In the x1 and x2 directions, periodic boundary conditions are
required. In the normal direction, impermeability is required at the top and bottom

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

70
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.70


20 J. P. Goit and J. Meyers

walls, and symmetry boundary conditions at the top wall. For the ‘initial conditions’, it
is important to realize that the adjoint equations are solved backwards in time (cf. the
sign of the time derivatives), so that the ‘initial’ conditions should be provided at t=T .
They correspond to

ξ(x, T)= γ ũ(x, T), (3.14)
χi(T)= 0 for i= 1, . . . ,Nt. (3.15)

The adjoint equations (3.10) show some similarity to the flow equations of the
forward problem, e.g. time derivatives and convective terms can be recognized
(though with different signs), continuity looks the same, and there is also an adjoint
pressure variable. Therefore, much of the discretization of the forward problem can
be reused, with the same pseudospectral discretization in the horizontal directions,
in combination with a fourth-order energy-conservative discretization in the vertical
direction. For the time integration, a fourth-order Runge–Kutta method is also used.
Note that the adjoint equations follow from a linearization of the governing equations
around a state (ũ, p̃, V̂). In the adjoint equations, this state is also required (cf. (3.10)).
To this end, the nonlinear forward problem is solved first, and the full space–time
state is stored on disk. Subsequently, it is used during the solution of the adjoint
equations.

Finally, for the discretization of the filter equation, we choose a time discretization
that is equivalent to the discrete adjoint of the discrete forward filter equation (2.11).
This corresponds to

χ n−1
i = (1− α)χ n

i + αC′T,iV̂
n−1
i

∫
Ω

Ri(x) (ũ− ξ) · e⊥ dx. (3.16)

3.5. Computational set-up
The geometrical set-up, grid, time step, etc., remain the same as in § 2.3 (cf. table 1).
The optimal control is started from a statistically stationary field of an ‘uncontrolled’
wind farm with C′T,i = 1.33, and ϕ(0) = 1.33 is used for the starting value of the
optimization algorithm.

As already introduced in § 3.2, we use box constraints on the controls, i.e. 0 6
C′T,i(t) 6 4. The lower constraint prevents the turbine from starting to operate as a
fan, even if the optimization algorithm would ask for this. For the upper boundary,
we do not a priori want to limit C′T to the Betz limit (C′T = 2), but at the same
time we cannot leave it free, as C′T → ∞ is not very practicable from a turbine
construction point of view. Therefore, we selected an ad hoc limit of C′T = 4, which
corresponds to a wind turbine that is constructed with double blade chord lengths
compared to Betz-optimal blade design (cf. § A.2 for details). Moreover, we have
further investigated an extra case with optimal control over one control window
without box constraints on C′T (and using γ = 0). For this case, we found that C′T
fluctuates between −19 and +24, but compared to the case with box constraints this
leads to no significant additional energy extraction (i.e. 17.7 % extra energy for the
case without versus 17.66 % for the case with box constraints, averaged over the first
control window).

For the optimal receding-horizon control cases considered here, we select an
optimization time horizon T = 280 s. This corresponds approximately to 0.4 times the
through-flow time, or the average convection time for the flow to pass four rows of
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FIGURE 6. Typical convergence history of the conjugate-gradient optimization for three
different control windows [(n− 1)TA, (n− 1)TA+ T]:p, control window n= 1;q, control
window n= 13;u, control window n= 20. Open symbols (E,@,A) correspond to adjoint
simulations required for gradient evaluations, and are plotted at the same cost-functional
level as the previous forward simulation.

turbines. In this way, we avoid any interaction between the optimal control approach
and the periodicity of the streamwise boundary conditions. Once the optimization of
the controls is converged, they are used for TA = 140 s, before the next optimization
problem is started. This process is repeated for a total of 25 control windows, totalling
3500 s (approximately 1 h) of wind-farm operation.

Finally, in order to limit computational costs, we do not fully converge the
conjugate-gradient algorithm or the line-search algorithms. Instead, we stop after
five conjugate-gradient iterations, and use a maximum of eight forward function
evaluations per line search. This leads to a maximum of 45 PDE simulations per
control window (40 forward and five adjoint), or 1125 PDE simulations in total, where
one PDE simulation takes approximately 90 min of wall time on 32 processors.

In figure 6, we show a typical convergence history of an optimization (using
γ = 0) for three different control windows. On the x axis the number of subsequent
PDE simulations during the iterative conjugate-gradient optimization algorithm is
shown. Closed symbols refer to standard LES, while open symbols refer to adjoint
simulations. It is appreciated that the cost function does not decrease monotonically
with the number of simulations. This is related to the line-search algorithm (cf. § 3.3),
which sometimes overshoots the optimal step length along a conjugate-gradient search
direction. In figure 6 it is appreciated that cost functionals decrease significantly
during the optimization, but optimization is stopped after five conjugate-gradient
iterations, so they are not formally converged to ∇J̃ = 0.

4. Case 1: optimal control without penalization of turbulent dissipation (γ = 0)
In this section, we present the optimal control results for the wind-farm control case

in which we do not penalize turbulent dissipation, i.e. γ = 0 in (3.1). First, we show
some characteristics of the adjoint solution, and the controls in § 4.1. Subsequently, a
detailed analysis of energy budgets in the wind-farm boundary layer is presented in
§§ 4.2 and 4.3. Flow statistics are presented in § 4.4 and compared to the uncontrolled
case. Finally, in § 4.5, the results are further discussed.
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FIGURE 7. Contours of instantaneous streamwise adjoint fields: (a) T − t= 14 s; (b) T −
t= 70 s; (c) T − t= 174 s; (d) zoom of (b). Horizontal planes are taken at hub height.

4.1. Adjoint fields and optimal controls
In figure 7, snapshots of the instantaneous adjoint fields are shown. Unlike the flow
field, the adjoint equations evolve backwards in time, and propagate in the upstream
direction. The adjoint field depends strongly on the definition of the cost functional,
and the forward flow state around which the equations are linearized. The fields that
are shown in figure 7 belong to the first adjoint equations in the optimization sequence
of the first optimal control time horizon (see figure 5): at this point, the equations
are linearized around a flow state that is obtained for initially constant controls at
all turbines with C′T,i(t) = 1.33 (i = 1, . . . , Nt). The initial condition for the adjoint
equations (with γ = 0) corresponds to ξ(x, T) = 0. This is also visible in the first
snapshot at T − t= 14 (figure 7a), where the field is still largely zero.

The adjoint equations are driven by the cost function of the optimization problem
(i.e. ∂J /∂q in (C 13)). They essentially express where possible changes in the cost
function J may be originating from (thus the equations evolve backwards in time
and in the reverse flow direction). When looking at the first two snapshots in figure 7
(at T − t = 14 and 70), we see that changes to the cost functional in the last time
interval of the optimal control time horizon originate from a tube upstream of the
turbine rotors. At this point, only changes to the flow velocity in this region affect
the later energy extraction at the turbine rotor. When looking earlier in time (T −
t= 174), the ‘tube’ observed in figure 7(b) has ‘hit’ the previous row of turbines, so
that upstream turbines have the potential to influence the energy extraction of their
downstream neighbours. Looking at figure 7(c) (at T − t = 174), it is observed that
the adjoint field has become fully turbulent in the whole domain. This shows that it
is the full interaction with the boundary layer that influences the wind-farm energy
extraction.
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FIGURE 8. Time evolution of the thrust coefficient of one of the turbines in the farm.

In figure 8 the behaviour of the optimal thrust coefficient is shown for one of
the turbines in the controlled wind farm. Approximately 1 h of time is shown,
corresponding to subsequent optimal control in 25 control windows. It is appreciated
that C′T is strongly changing in time, but remains limited by the box constraints
used during the optimization (cf. § 3.5). A further zoom in the figure reveals that the
changes in C′T are well resolved in time; no additional smoothing of the gradients
used in the optimization was required for this. Moreover, typical time scales with
which the controls change remain above 10 s.

4.2. Optimized power output
In the current subsection, the energy balance and power extraction are discussed in
detail. In figure 9 the total wind-farm power extraction per unit wind-farm area PΩ

(= P/(LxLy)) and the total gains and losses per unit area are shown. To this end, the
total kinetic energy equation is horizontally averaged and integrated over the boundary
layer height, leading to

dEΩ
dt
≡ d

dt

∫ H

0

1
2
〈ũ · ũ〉Γ dx3 = f∞UbH −PΩ −DΩ, (4.1)

where we use 〈· · ·〉Γ to denote horizontal averages, and the subscript Γ to indicate
that averages are taken over a finite-domain horizontal plane Γ ⊂ Ω . In contrast to
P and D in § 2.4, PΩ and DΩ are not averaged in time, so that they still fluctuate
significantly from one time step to another (i.e. the horizontal extent of our domain is
not large enough to obtain statistical convergence based on horizontal averaging only).

In figure 9(a) the power extraction is shown before control (t< 0) and after the start
of the optimal model predictive control. It is seen that overall the power extraction
increases, but starts to fluctuate significantly more than before coordinated optimal
control. On average, a gain in energy extraction of 16 % is achieved (integrated
between t= 0 and t= 3500 s). In figure 9(b) gains and losses to the boundary layer
are shown. Here, the wind-farm power is plotted as a loss term, together with the
dissipation DΩ . We observe that the increase in power extraction is mainly balanced
by an overall deceleration of the flow. In addition, also the dissipation DΩ increases
(recall that dissipation is not penalized, i.e. γ = 0).
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FIGURE 9. Time evolution of (a) total wind-farm power output and (b) gains and
losses: – – –, driving power by pressure force; —— (grey), rate of change of kinetic
energy; —— (black), farm power; -·-·-, dissipation.

In figure 9(b) the driving power f∞UbH is also plotted. It is observed that the
driving power slowly decreases during the optimal control. This is directly related
to the fact that f∞ is kept constant during the optimization, while the flow slowly
decelerates. Returning to the discussion in § 2.4, we remark here that f∞UbH is not
explicitly kept constant during optimization. This would require adding a non-trivial
state constraint to (3.2), requiring the solution of an additional set of adjoint equations
for every gradient evaluation. However, it is appreciated that changes in the driving
power remain small. Moreover, we also remark that the average level of C′T in
the optimal control moves to higher values, and thus away from the constant C′T
optimum observed in figure 3 for the constant-forcing case. This clearly indicates
that the optimal controls found here do not lead to a statistically stationary optimal
situation, but instead purely exploit transient boundary-layer deceleration.

4.3. Energy balance in the turbine region

The energy balances in the wind farm are further investigated. To smooth the results,
they are additionally integrated per control window TA. Next to the balance integrated
over the whole height of the computational domain Ω (cf. (4.1)), we also look at the
balance in the turbine region, i.e. integrated from zh−D/2 to zh+D/2, and we denote
this horizontal slab of the computational domain with ΩD (note that, for numerical
evaluation, we take the integration bounds slightly wider, to ensure that all filtered
turbine forces (cf. (2.7)) are included in ΩD).

The following notation is used for the horizontal and time average (here for ũ)

〈ũ〉TA

Γ =
1

TALxLy

∫ (n+1)TA

nTA

∫ Ly

0

∫ Lx

0
ũ dx1 dx2 dt, (4.2)

using · TA to denote the time average over a time window with length TA. Moreover,
define ũ′′= ũ−〈ũ〉TA

Γ , e= ũ · ũ/2 and e′′= e−〈e〉TA

Γ = ũ′′ · ũ′′/2+ ũ′′ · 〈ũ〉TA

Γ . The energy
balance for ΩD is then expressed as
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FIGURE 10. Gains and losses per unit wind-farm area averaged over control windows for
(a) the whole computation domain Ω and (b) the disk region ΩD:f, rate of change of
kinetic energy 1EΩ/TA;p, driving power FΩ,TA ;q, wind-farm power extraction PΩ,TA ;

u, dissipation DΩ,TA ; +, total transport T ′′(z+D/2)− T ′′(z−D/2).

1EΩD

TA
≡
∫ zh+D/2

zh−D/2
〈de/dt〉TA

Γ dx3

= −〈ũ′′3(e′′ + p′′/ρ)〉TA

Γ

∣∣∣zh+D/2

zh−D/2︸ ︷︷ ︸
T ′′(z+D/2)−T ′′(z−D/2)

+
∫ zh+D/2

zh−D/2
f∞〈ũ1〉TA

Γ dx3︸ ︷︷ ︸
FΩD,TA

+
∫ zh+D/2

zh−D/2
〈 f · ũ〉TA

Γ dx3︸ ︷︷ ︸
PΩD,TA=PΩ,TA

−
∫ zh+D/2

zh−D/2
〈τM : ∇ũ〉TA

Γ dx3︸ ︷︷ ︸
DΩD,TA

. (4.3)

Here we have also further introduced the following notation: turbulent (and dispersive)
transport T ′′, driving power FΩD,TA , wind-farm power extraction PΩ,TA and dissipation
DΩD,TA , all per unit farm area. The terms of (4.3) are plotted in figure 10(b). For
reference, in figure 10(a) the same terms are shown integrated for the whole domain:
this corresponds to the balance shown in figure 9(b), but in addition averaged in time
per control window.

Looking at figure 10(b), it is observed that the turbine region is in equilibrium for
t>5TA, i.e. in this region 1EΩD(t) is approximately zero. The farm power extraction is
the largest sink in this region, followed by the dissipation, which amounts to 37 % of
the dissipation in the whole boundary layer. The main source of energy is the turbulent
transport T ′′(z+D/2) at the top boundary of the region.

The results in figure 10 suggest that the inner region of the boundary layer has
found a new statistical equilibrium after roughly five control windows (which is
roughly equivalent to one through-flow time), and only the outer layer is decelerating.
Moreover, the energy is transported from the outer region towards the turbine region
by increased turbulent and dispersive transport. This is further investigated next.

4.4. Flow profiles in the controlled wind farm
In the current subsection, we investigate time-averaged and horizontally averaged
profiles. First of all, we look at the streamwise velocity profile averaged over five
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FIGURE 11. Streamwise mean velocities: ——, uncontrolled case; -·-·-, optimal control
case averaged over the time interval [0, 5TA]; – – – (see also inset), averaged over later
intervals.

different time windows, i.e. corresponding to the windows [5(n − 1)TA, 5nTA] with
n = 1, . . . , 5. Results are shown in figure 11, together with the velocity profile for
the uncontrolled case. For all cases, we observe two distinct logarithmic regions,
one above and one below the turbines. This is consistent with observations by Cal
et al. (2010) and Calaf et al. (2010) for uncontrolled wind farms. The control in the
current work does not change these features. It is further observed in figure 11 that
the velocity profile for the controlled cases are lower than for the uncontrolled case.
When looking at the inner layer (z/H < 0.15), it is seen that the velocity profiles
of the middle three averages cluster around a new equilibrium position (see inset
in figure). The first average [0, 5TA] is found to be somewhat higher (closer to the
uncontrolled case), while the last average [20TA, 25TA], is somewhat lower than the
three previous averages. For the current case, we pushed the optimal control a bit
further, i.e. up to 33 control windows (results not shown in the plots), and this
further confirms that the inner layer starts to decelerate again after about 20 to 25TA.
When looking higher up in the wind-farm boundary layer and close to the top, it is
appreciated that the velocity profiles keep decreasing in all control windows. This is
consistent with the observations in figure 10. Therefore, for analysis of higher-order
moments, we will mainly show averages over the middle time window [5TA, 20TA],
which extends over 35 min of wind-farm operation, during which we presume that
the flow is in statistical equilibrium in the inner layer.

In figure 12 the total, dispersive and Reynolds stresses are shown for the different
cases. Recall that these stresses are constructed based on horizontal averages over a
domain that is horizontally periodic, but not homogeneous. We first look at the total
shear stress in figure 12(a), averaged over different windows in the controlled case,
and for the uncontrolled case. For the latter it is seen that −〈ũ′′1ũ′′3〉 = (1− z/H)f∞H
above the turbines, as can be expected from the plane-averaged momentum balance
in a conventional channel-flow boundary layer. Below the turbine level, the turbine
forces and subgrid-scale stresses (close to the wall) take over the role of the turbulent
shear stress in the total balance.

Looking at the total shear stresses 〈ũ′′1ũ′′3〉 for the controlled cases in figure 12(a),
the picture changes. Now the boundary layer is no longer in equilibrium, so that
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FIGURE 12. Vertical profiles of (a) total stresses and (b–e) total stresses, Reynolds
and dispersive components. In panel (a): —— (black), uncontrolled case; -·-·- (blue),
– – – (black) and —— (green), controlled case, respectively averaged over time windows
[0, 5TA], [5TA, 20TA] and [20TA, 25TA]. In panels (b–e): —— (black), —— (orange) and
—— (cyan), respectively the total stresses, Reynolds stresses and dispersive stresses for
the uncontrolled case; – – – (black), – – – (orange) and – – – (cyan), respectively the total
stresses, Reynolds stresses and dispersive stresses for the controlled case averaged over
[5TA, 20TA].
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FIGURE 13. Vertical profiles of horizontally averaged mean-flow kinetic energy flux.
Uncontrolled case: —— (black), total kinetic energy flux; —— (orange), flux due to
Reynolds stress; —— (cyan), flux due to dispersive stress. Optimal control case averaged
over time window [5TA, 20TA]: – – – (black), total kinetic energy flux; – – – (orange), flux
due to Reynolds stress; – – – (cyan), flux due to dispersive stress.

uτh 6= f∞H, but rather

uτh = f∞H − dUb

dt
, (4.4)

with −dUb/dt the deceleration of the bulk flow. Since dUb/dt is roughly constant for
t ∈ [5TA, 20TA] (cf. figure 10), we can expect uτh also to be roughly constant in this
region, but higher than f∞H. This is observed in figure 12(a) for the average over
the interval [5TA, 20TA]. Note that for this case the deceleration mainly takes place in
the outer layer of the boundary layer, while the inner layer (z/H < 0.15) is in a new
equilibrium (cf. discussion above). For the average over [0, 5TA], this is not yet the
case, and this is also apparent from figure 12(a).

In figure 12(b–e) we further decompose the total stresses (both the shear stress
and the normal stresses) into dispersive stresses (〈ũ′′i ũ

′′
j 〉) and plane-averaged Reynolds

stresses (〈ũ′iũ′j〉), averaged over the time window [5TA, 20TA], i.e. (e.g. following Calaf
et al. 2010) 〈ũ′′i ũ′′j 〉 = 〈ũ′′i ũ

′′
j 〉 + 〈ũ′iũ′j〉, with ũ′i = ũi − ũi. First of all, in figure 12(b), it

is very interesting to notice that the increase in total stress is caused by an increase
of dispersive shear stresses, which are roughly doubled, while the plane-averaged
Reynolds stresses decrease. The same trends are observed in figure 12(c) for the
streamwise stresses: dispersive stresses increase significantly, but Reynolds stresses
decrease. For the spanwise and vertical stresses, we observe that dispersive stresses
also increase significantly, while Reynolds stresses remain largely unchanged, except
in the turbine-tip region, where they slightly increase.

Looking at fluxes of horizontally averaged mean-flow energy in figure 13, the same
trends are observed. It is seen that the energy flux at the top of the farm (z= zh+D/2)
is considerably higher for the controlled case than for the uncontrolled case. Below
the farm, the inverse is observed. Here the energy flux towards the flow below the
farm is decreased compared to the uncontrolled case. Thus, as a result of the optimal
control, the energy flux towards the farm increases, while at the same time this energy
is better captured by the turbines. We further also looked at total kinetic energy fluxes
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FIGURE 14. (a–d) Contours of mean streamwise velocity field averaged over control
windows and turbine elements: (a,b) in a horizontal plane through the hub; (c,d) in a
vertical plane through the turbine. (e,f ) Contours of ũ

′′
1 ũ
′′
3 in a vertical plane through the

turbine. (a,c,e) Uncontrolled case; (b,d, f ) the optimal control case averaged over time
window [5TA, 20TA].

(not shown here), which contain additional elements of triple dispersive correlations,
and turbulent and pressure diffusion, but these are minor effects, and the differences
from the fluxes in figure 13 are small.

In order to further understand the increase of dispersive stresses and decrease of
Reynolds stresses observed above, we first look at elements of the dispersive stress
in figure 14 averaged in time and over the 10 × 5 turbine subdomains (each with
horizontal size Sx× Sy). First of all, in figure 14(a,b) the mean streamwise velocity is
shown in a horizontal plane at hub level. It is appreciated that the inflow velocities of
the turbines in the controlled and uncontrolled cases are more or less equal. However,
the wake velocity in the controlled case is much lower than for the uncontrolled case,
which is clearly related to the fact that more energy is extracted in the controlled
case. In spite of the lower wake velocity in the controlled case, the wake recovers
faster than the uncontrolled wake. This is also visible in figure 14(c,d), where the
streamwise velocity is shown in a vertical streamwise plane through the turbine centre.
Here it is appreciated that, over the rotor height, the turbine inflow in the controlled
case is even a bit higher than for the uncontrolled case. In figure 14(e, f ) a vertical
streamwise plane of −ũ

′′
1ũ
′′
3 is shown, which contributes to the dispersive shear stress
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(i.e. −〈ũ′′1ũ
′′
3〉) when averaged over horizontal planes. It is observed that positive −ũ

′′
1ũ
′′
3

regions increase in strength for the controlled case, while negative regions are not
much altered. Given the distribution of the horizontal velocity in figure 14(c,d), it is
clear that these positive −ũ

′′
1ũ
′′
3 regions are associated with a correlation of low mean

streamwise velocity with upward mean motion. In the high-speed channels between
the turbines, we also observe (not shown here) increased positive −ũ

′′
1ũ
′′
3 correlations

in the controlled case, which is here associated with high mean streamwise velocity
transported downwards by mean negative vertical motion.

In figure 15, the Reynolds stresses are further investigated in a turbine subdomain.
In figure 15(a,b) the Reynolds shear stresses are shown in a horizontal plane through
the turbine rotor tip (this is the region where the Reynolds stresses are largest in
figure 12). We observe that, in the controlled case, the Reynolds shear stresses
increase significantly above the turbine-wake region, which can explain the faster
wake recovery observed in figure 14(b). On average, the increased effect of Reynolds
shear stresses is compensated by lower shear stresses in the regions between the
turbine rows when comparing controlled and uncontrolled cases, leading to lower
horizontally averaged values (cf. figure 12b). Also, in a vertical plane (figure 15c,d),
it is appreciated that Reynolds shear stresses increase significantly in the wake region
for the controlled case. However, they do not increase in front of the turbine.

In figure 15(e–j), the normal Reynolds stresses are shown in a vertical plane. All
normal stresses increase significantly in the wake region for the controlled case. When
looking 1D upstream of the turbine, we observe that the streamwise stresses ũ′1ũ′1
decrease in the controlled case compared to the uncontrolled case. This is possibly
beneficial for reducing turbine loading and local blade stall (cf. also discussion at end
of § 2.2). The spanwise stresses ũ′2ũ′2 remain roughly unchanged in front of the turbine,
while the vertical stresses ũ′3ũ′3 slightly increase. Nevertheless, overall, compared to the
uncontrolled case, the turbulent kinetic energy ũ′iũ′i/2 in the controlled case decreases
by almost 9 % in front of the turbines (measured 1D upstream). We should remark that
our simulations do not resolve turbulent fluctuations of the size of the turbine blade
chord. It has been demonstrated experimentally that the energy exchange is dominated
by turbulent scales with size of the rotor diameter (Hamilton et al. 2012). However,
smaller scales can be very relevant for the local blade performance, e.g. having an
effect on local blade stall. In a classical turbulent energy cascade, it is expected that
such smaller scales follow the larger scales (that are here resolved), but this has to be
further established using better turbine representations (e.g. using actuator line models)
and finer resolutions. This is subject of further research (cf. discussion in § 6).

Given the fact that the turbulence levels decrease in front of the turbines, the
increased fluctuations in power output observed in figure 9 all result from fluctuations
in the control C′T . It is possible to make a Reynolds decomposition of the extracted
power, using (2.12), and defining C′T,i ≡ C′T,i + ∆[C′T,i] and V̂2

i Vi ≡ V̂2
i Vi + ∆[V̂2

i Vi].
Thus,

P=
Nt∑

i=1

1
2

C′T,i V̂2
i Vi A+

Nt∑
i=1

1
2
∆[C′T,i]∆[V̂2

i Vi]A. (4.5)

In the uncontrolled case, the second term on the right-hand side is zero. In the
controlled case, we find that C′T is slightly anticorrelated with V̂2

i Vi, leading to a
negative value for the second term, with an observed magnitude that is approximately
6 % of the total extracted power P (the first term on the right-hand side is 106 %
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FIGURE 15. Contours of Reynolds stresses averaged over control windows and turbine
elements: (a,b) horizontal plane at the turbine-tip level; (c–j) x–z planes through the rotor
centre. (a,c,e,g,i) Uncontrolled case; (b,d, f,h, j) the optimal control case averaged over time
window [5TA, 20TA].

of P). Consequently, the second term is a source in the turbulent kinetic energy
equation. This may explain the locally increased turbulence levels observed in the
turbine wakes above.

4.5. Discussion

As shown above, the average power extraction by the wind farm increases by 16 %
averaged over [0, 25TA], corresponding to 1 h of wind-farm operation. This results
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directly from a large increase of vertical transport of energy by dispersive stresses,
together with a local increase of Reynolds stresses in the wake region of the turbines.

In the current set-up, the increased transport of energy towards the inner layer
cannot be sustained by the driving power, and the outer layer is decelerating. Thus,
it is clear that it will not be possible to sustain these increased levels of power
extraction indefinitely. However, for boundary layers that are characterized by a
top boundary condition with entrainment, such as developing internal boundary
layers above finite farms, or shallow ABLs, the situation may be entirely different.
In such cases, entrainment is typically proportional to u2

τh, such that increased
levels of inner-layer vertical transport may well be sustained by higher entrainment
levels at the boundary layer top. Note, for instance, that, for a finite farm with an
extent of 20 km, the characteristic through-flow time at a wind speed of 10 m s−1

corresponds approximately to 30 min, which is of the same order of magnitude as the
sustained inner-layer equilibrium realized in our current case, so that boundary-layer
entrainment may not even need to fully compensate increased wind-farm extraction.
This discussion is very speculative, but, given the current results, it points to very
promising tracks for future research.

Finally, even in a boundary-layer context without entrainment at the top, a
temporary increase of power extraction by 16 % over a period of 1 h as covered
in figure 9 is potentially quite relevant in the context of ancillary services for the
power grid, where reserve power is often required for similar time spans. Moreover,
for a shorter time interval covering the first 12 min only ([0, 5TA]), which is also
relevant for ancillary services, power extraction increases even by 19 %.

5. Cases 2 and 3: optimal control with penalization of turbulent dissipation

In this section, we present the optimal control results for a wind-farm optimal
control case where turbulent dissipation is penalized, i.e. γ 6= 0 in (3.1). Given the
fact that the total energy difference in (3.1) also corresponds to the sum of dissipation
and power extraction, we can rewrite the cost functional as

J (ϕ, q)= (1− γ )
∫ T

0
−P(t) dt+ γDΩLxLy. (5.1)

Thus γ > 0 leads to an optimization problem that penalizes DΩ . Moreover, γ < 1 is
required, as γ =1 leads to a cost functional that reduces dissipation, but has no impact
any more on wind-farm energy extraction, while γ > 1 starts penalizing wind-farm
energy extraction.

As observed in the previous section for γ = 0, optimal control leads to a
deceleration of the boundary layer, and over the length of our optimal control
wind-farm simulations (i.e. t ∈ [0, 25TA]) we did not converge to a new statistical
equilibrium. Moreover, even if we would do so by continuing the procedure further in
time, we do not expect that the problem formulation with γ = 0 leads to good optima
for such a new stationary equilibrium. To that end, the length of our optimal control
time horizon T , which is limited by practical restrictions (cf. § 3.5), is much too
short compared to the slow dynamics of the boundary layer. Therefore, in the current
section, we penalize turbulent dissipation with the aim to trigger different overall
energy balances that possibly force the flow much faster into a new equilibrium,
while also improving the ratio P/D . Two different penalties γ = 1/2 and γ = 2/3
are used. From (5.1) it is seen that γ = 1/2 corresponds to giving an equal weight to
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FIGURE 16. Contours of instantaneous streamwise adjoint field for γ =2/3, obtained from
the first gradient calculation in control window 1: (a) T − t = 14 s: (b) T − t = 174 s.
Horizontal planes are taken at the hub height.
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FIGURE 17. Time evolution of the thrust coefficient of one of the turbines in the farm:
(a) γ = 1/2; (b) γ = 2/3.

decreasing dissipation and increasing power extraction, while γ = 2/3 gives a double
weight to decreasing dissipation.

Below, first some features of the adjoint solution and the optimal controls are
presented in § 5.1. Subsequently, energy balances are discussed in § 5.2, and mean
profiles are presented in § 5.3.

5.1. Adjoint solutions and optimal controls

In figure 16, a snapshot of an instantaneous adjoint field is shown for γ = 2/3.
Different from the adjoint fields for the unpenalized case (cf. figure 7), in the current
case, the initial condition for the adjoint equations differs from zero, and corresponds
to ξ(x, T) = 2/3u(x, T) instead. This is visible in figure 16 early in the adjoint
simulation.

Figure 17 shows the behaviour of the thrust coefficient for one of the turbines in the
controlled wind farm. Both γ = 1/2 and γ = 3/2 cases show strong response to the
turbulent flow field. However, in comparison to figure 8, the changes are less extreme.
It can also be seen from this figure that C′T mostly stays within the lower and upper
limits, i.e. 0 and 4, although occasionally it still hits the upper bound.
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FIGURE 18. Time evolution of gains and losses, for (a) γ = 1/2 and (b) γ = 2/3: – – –
(grey), driving power by pressure force; —— (grey), rate of change of kinetic energy;
—— (black), farm power; -·-·- (black), dissipation.

5.2. Discussion of energy balances
Figure 18(a,b) show the time series of the total instantaneous gains and losses in
the boundary layer for γ = 1/2 and γ = 2/3, respectively. It can be appreciated for
both cases that the overall deceleration of the boundary layer remains limited, and
the optimal control case with γ = 2/3 even slightly accelerates for t > 1000. Also,
compared to figure 9, it is observed that now dissipation does not increase much in
the controlled case.

In order to assess the precise gains and losses for the different cases, we assemble
the time-integrated gains and losses in tables 2 and 3. Time averaging is performed
from [0, 20TA], i.e. the time window for which the inner layer of the γ = 0 case
remains in equilibrium. The uncontrolled case is averaged over the same time window.
First of all, in table 2, gains and losses are normalized with the total power extracted
from the system by the wind farm and dissipation (i.e. P + D). Looking at the
results in the table, it is observed that the respective contributions of P and D to
the total energy extraction from the boundary layer shift only slightly for the different
cases. For the γ = 0 case, which does not penalize dissipation, the ratio P/D ≈ 0.65
deteriorates compared to the uncontrolled case for which P/D ≈ 0.68. For γ = 1/2
and γ = 2/3, the ratios slightly improve, i.e. P/D ≈ 0.72 for both cases. We remark
that for γ = 2/3 the ratio is slightly lower than for γ = 1/2 (cf. table 2), even though
γ = 2/3 penalizes dissipation more. However, given the limited averaging time, this
difference is probably not significant. Moreover, the cost functional (5.1) does not
directly optimize the ratio P/D .

In table 3, the relative gains (changes) compared to the uncontrolled reference case
are listed. It can be seen that all three cases increase wind-farm power extraction
compared to the uncontrolled reference. Also dissipation increases for the three cases,
but much less for γ = 1/2 and γ = 2/3. Any increase in P +D (compared to the
reference) leads to an equal increase in the sum of power input and energy balance
– the latter is also listed in table 3. Only for the optimal control case with γ = 2/3
does the total power extracted from the system remain close to that of the uncontrolled
reference. The gain in wind-farm power extraction in this case is limited to 6 %. Note
that, if we were to assume a system that remains perfectly in equilibrium, then a
change of P/D from 0.68 to 0.72 (cf. above) would be equivalent to an increase
of wind-farm power extraction of 5.8 %.
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Power in, Balance, Power out
f∞UbH (%) −dE/dt (%) P (%) D (%)

No control (C′T = 1.33) 101.1 −1.1 40.4 59.6
Control γ = 0 84.4 15.6 39.4 60.6
Control γ = 1/2 96.9 3.1 42.0 58.0
Control γ = 2/3 101.9 −1.9 41.8 58.2

TABLE 2. Overview of gains and losses averaged over [0, 20TA] of different control cases
normalized by total power extracted from the system (i.e. by P + D). As a result of
normalization, both the sum of the left two columns, as well as the sum of the right two
columns, add up to 100 %.

Power in and balance, Power out
f∞UbH − dE/dt (%) P (%) D (%)

Control γ = 0 +18.7 +15.8 +20.6
Control γ = 1/2 +7.1 +11.3 +4.4
Control γ = 2/3 +2.6 +6.1 +0.3

TABLE 3. Overview of control gains, expressed as differences from the uncontrolled
reference case, and averaged over [0,20TA]. Each difference is normalized by its respective
uncontrolled property (e.g. (P −Pref )/Pref ).

Finally, we remark that the order of magnitude of statistical errors in the discussion
above is approximately 1 % – this is appreciated from dE/dt 6= 0 for the uncontrolled
case in table 2.

5.3. Averaged flow profiles
Similar to the case without penalization, it is observed here that the inner region of
the boundary layer is in statistical equilibrium after a short transition period. To assess
averaged flow profiles in the current section, we will simply use the same averaging
window [5TA, 20TA] as proposed for γ = 0.

Average velocity profiles are shown in figure 19. Only the uncontrolled case and
the averages over [5TA, 20TA] are shown for γ = 1/2 and γ = 2/3. We observe that
the wind at turbine level decelerates a bit compared to the uncontrolled case, but now
the outer layer slightly accelerates. This results from the fact that overall the driving
power in these cases remains approximately constant (cf. figure 18), so that, with
constant driving force, also the bulk velocity remains constant.

In figure 20, we further look at total, Reynolds and dispersive stresses. In contrast
to the unpenalized case, the peaks of total shear stresses in figure 20(a) (just above
the wind farm) remain close to the uncontrolled case. For γ = 1/2 it is a little higher,
and for γ = 2/3 a little lower, than the uncontrolled case, but this difference is
statistically not significant in view of the limited temporal averaging time. Similar to
before, dispersive stresses increase while Reynolds stresses decrease. When looking
at the normal stresses in figure 20(b–d), some further differences are observed
compared to optimal control with γ = 0. First of all, similar to γ = 0 (cf. figure 12),
all dispersive stresses increase compared to the uncontrolled case (though not as much
as for γ = 0). However, in contrast to γ = 0, the streamwise total stresses decrease
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FIGURE 19. Streamwise mean velocities: ——, uncontrolled case; – – –, γ = 1/2; -·-·-,
γ = 2/3. The optimal control cases are averaged over the time window [5TA, 20TA].

compared to the uncontrolled case as a result of a significant decrease in streamwise
Reynolds stresses. Looking at the vertical transport in the penalized cases (figure not
shown here), we observe that the total transport remains largely unchanged, but is
carried more by dispersive stresses (i.e. by mean flow transport) and less by turbulent
stresses.

When further analysing the spatial distribution of mean velocity profiles and
Reynolds stresses (not further shown here), we observe again important changes
between the controlled cases and the uncontrolled cases. Similar to γ = 0, the turbine
inflow improves, with a slightly higher mean velocity, and lower turbulence intensity.
However, the wake deficit is much less pronounced as less energy is extracted. Now,
Reynolds stresses only slightly increase in the wake regions, but they significantly
decrease between the turbine rows.

6. Conclusions
In the current study, we investigated optimal control of wind-farm boundary layers

in LES with the aim to increase wind-farm energy extraction. In order to simplify
the problem, the asymptotic limit of an ‘infinite’ wind farm in a PBL was considered,
allowing the use of periodic boundary conditions and pseudospectral discretization
of the LES equations. Wind turbines are modelled using an ADM. For the optimal
control, individual turbines were considered to be flow actuators, whose energy
extraction can be dynamically regulated in time so as to optimally influence the
flow field in the boundary layer. Using the ADM, this is consistent with dynamically
controlling the turbine thrust coefficients in time, and per wind turbine.

We considered a wind-farm boundary layer that is well documented (Calaf et al.
2010; Meyers & Meneveau 2013), and consists of an aligned wind farm, with 10× 5
turbines on a 7 km × 3 km × 1 km simulation domain. For the optimal control, a
receding-horizon approach was employed, in which the turbine thrust coefficients
were optimized over a time horizon of 280 s, and then used during the first half
of that period, before continuing with the next optimization window. This led to
a series of PDE-constrained optimization problems (one per control window) with
approximately 20 000 degrees of freedom in the control space, and 1 billion in the
space–time LES solution space. These optimization problems were solved with a
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FIGURE 20. Vertical profiles of total, Reynolds and dispersive stresses: —— (black),
—— (orange) and —— (cyan) respectively total stresses, Reynolds stresses and dispersive
stresses for the uncontrolled case; – – – (black), – – – (orange) and – – – (cyan) respectively
total stresses, Reynolds stresses and dispersive stresses for the controlled case with γ =1/2
averaged over [5TA, 20TA]; -·-·- (black), -·-·- (orange) and -·-·- (cyan) same for case with
γ = 2/3.

nonlinear conjugate-gradient method, where adjoint LES equations were used for the
identification of cost-functional gradients. In order to limit computational costs, the
number of PDE simulations per optimization problem was limited to 45, and optimal
control was performed for 25 consecutive optimal control problems, leading to 1 h
of accumulated wind-farm operation.

A first optimal control case focused on direct maximization of wind-farm energy
extraction. We found that energy extraction increases up to 16 % (for 1 h) or even
19 % (for 12 min), but overall the boundary layer decelerates, and also dissipation
levels increase. The increased energy extraction is directly related to an increase of
vertical fluxes of kinetic energy. A detailed decomposition of stresses in dispersive and
Reynolds stresses revealed that dispersive stresses (and fluxes) increase drastically,
while Reynolds stresses decrease overall, but increase locally in the wake region,
inducing better wake recovery. A further analysis of the inner layer and turbine region
of the boundary layer showed that boundary-layer deceleration mainly occurred in
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the outer layer, while the inner layer remained more or less in equilibrium. For the
current PBL, the driving power is not sufficient to keep the system in balance given
the increase of power extraction. In other types of boundary layers, e.g. the internal
boundary layer above a finite farm, boundary-layer entrainment may change this
picture. This is an interesting topic for further research.

Two more optimal control problems looked into maximizing power extraction, but
at the same time penalizing turbulent dissipation, with the aim to trigger different
overall energy balances with lower levels of vertical turbulent fluxes. We found that,
depending on the penalization level, total gains in energy extraction decrease, and so
do vertical fluxes of energy. For a pressure-driven boundary layer in equilibrium, we
estimate that increases in energy extraction are of the order of 6 %. This is related to
a small shift in the ratio of wind-farm power extraction to total turbulent dissipation
from 68 % to 72 %. Currently, these are estimates based on accumulated operation of
1 h. Further research is warranted, with longer averaging, and with different types of
penalization. For instance, boundary-layer deceleration may be directly penalized, and
adaptive penalization may be considered to keep acceleration or deceleration within
acceptable bands, etc.

The current study presented optimal wind-farm boundary-layer control,
demonstrating considerable gains in energy extraction. Nevertheless, many challenges
remain before this can be translated to real wind-farm application. First of all, it will
be interesting to investigate optimal control of finite farms in real ABLs that include
Coriolis forcing and a capping inversion layer. Moreover, the effects of boundary layer
stratification will also be important. Further, different wind-farm topologies are of
interest, including possible terrain effects, or effects of propagating waves in offshore
farms (see e.g. Yang, Meneveau & Shen 2014a,b). Also, the turbine representation in
the large-eddy simulation can be refined, e.g. using an actuator line model with finer
simulation resolutions. This allows for a better representation of turbulence effects
on blade performance, and may further include dynamic stall models (cf. e.g. Larsen,
Nielsen & Krenk 2007) to describe blade lift and drag coefficients as functions of
time-varying local flow conditions. Next to that, details of the control description
should be refined, using a formulation in terms of generator torque and blade pitch
control, which takes into account rotor and blade pitch inertia. The inclusion of turbine
yaw settings, which can be used to change the direction of wakes (Soleimanzadeh
et al. 2012), may also be relevant. The optimal control methodology can also be
further developed, for example, using more efficient gradient-based approaches (see
e.g. Badreddine et al. 2014), investing more computational resources in converging
the optima, and including multiple starting points in the optimization algorithms to
explore possible multiple local optima. Finally, the current optimal control approach
allows one to benchmark control potential, but is not practicable for use as a real-time
controller. Development of real-time controllers that approximate the performance of
our idealized optimal control is an interesting future challenge.
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FIGURE 21. Velocity and force components at a cross-section of a blade element.

Appendix A. Blade element analysis of turbine-disk thrust coefficient

In the current appendix, we briefly relate the disk-based thrust coefficient C′T to
the turbine-blade characteristics using blade element analysis (§ A.1). In addition, this
relationship is further used to estimate a reasonable order of magnitude for the upper
bound on C′T used in the optimal control (§ A.2).

A.1. Blade element analysis
Given the disk-based velocity Vd and the turbine rotation speed ω, the local
velocity triangles around the turbine blades can be constructed – see figure 21.
This corresponds to the conventional velocity triangles in blade element momentum
theory (see e.g. Burton et al. 2001), but based here on disk velocity. Thus

sin φ = Vd

W
and cos φ = ωr(1+ at)

W
, (A 1a,b)

with W the relative velocity to the blade and at the tangential induction factor (further
details follow). Moreover,

W = {V2
d + [ωr(1+ at)]2}1/2 = Vd{1+ [λ′µ(1+ at)]2}1/2, (A 2)

where λ′ = ωR/Vd (the tip-speed ratio based on disk velocity) and µ = r/R (with R
the turbine radius).

Given an annular ring with thickness dr (cf. figure 21), the force exerted on the
flow in this ring by N blades with chord c corresponds to

δF = 1
2ρW2Nc(cL cos φ + cD sin φ) dr, (A 3)

= 1
2ρV2

d Nc{1+ [λ′µ(1+ at)]2}1/2[cLλ
′µ(1+ at)+ cD]Rδµ, (A 4)

where cL(r) and cD(r) are the lift and drag coefficients of the blade profiles.
By definition C′T ≡ 2F/(ρV2

d A). Thus, we can integrate δF along the radius to obtain

C′T =
∫ 1

0

Nc
πR
{1+ [λ′µ(1+ at)]2}1/2[cLλ

′µ(1+ at)+ cD] dµ. (A 5)
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This expression depends only on the turbine blade geometry, the blade lift and drag
coefficients, and the selected tip-speed ratio λ′ at which the turbine is operated. A
further unknown is the tangential induction factor at, but this is straightforward to
express in terms of the same parameters, as shown next.

The torque exerted by the turbine on the flow in the same annular ring with
thickness dr (cf. figure 21) can be similarly expressed as

δT = 1
2ρV2

d Nc{1+ [λ′µ(1+ at)]2}1/2[cL − cDλ
′µ(1+ at)]R2µ dµ. (A 6)

This torque induces a change of angular momentum of the flow passing through
the annular ring, leading to a difference in tangential velocity 1Vθ before and
after the turbine. Thus the change in angular momentum corresponds to δM =
2πr dr ρVd1Vθr = 4πρVdωatr3 dr, where by convention at ≡ 1Vθ/(2ωr). Since
δM = δT , we find an implicit expression for at(µ), i.e.

8λ′µ2at = Nc
πR
{1+ [λ′µ(1+ at)]2}1/2[cL − cDλ

′µ(1+ at)], (A 7)

that also depends only on blade geometry, aerodynamic coefficients and tip-speed
ratio.

Finally, since C′P ≡ 2Tω/(ρV3
d A), and integrating (A 6) over the radius, we find

C′P =
∫ 1

0

Nc
πR
{1+ [λ′µ(1+ at)]2}1/2[cL − cDλ

′µ(1+ at)]λ′µ dµ. (A 8)

The ratio C′P/C
′
T < 1. For the ideal case that cD= 0, and that no swirl is added to the

wake (at= 0), it is readily seen that C′T =C′P. For the idealized case of the Betz limit,
we know that Vd = 2V∞/3 (Burton et al. 2001), so that further C′T =C′P = 2.

A.2. Estimate of an upper value for C′T
In the current section, we estimate a reasonable upper value for C′T that can be
used as a constraint in the optimal control algorithm. Given a turbine design, it
is straightforward to decrease C′T by pitching the blades. However, increasing C′T
beyond its original design value is simply not possible without losing a lot of
efficiency (e.g. by stall). Nowadays, turbines are designed to have C′T values that are
maximum around 2. Higher values do not make sense, as these are above the optimal
Betz value. However, for the optimal control in the current work, we do not want to
restrict C′T a priori to a maximum of 2. Here we briefly investigate how C′T relates
to design choices such as the turbine blade chord, and the operational tip-speed ratio
for a real turbine.

As a reference, we consider the specifications (geometry, tabulated lift and drag
coefficients, etc.) of the ‘NREL offshore 5 MW baseline wind turbine’ (Jonkman et al.
2009). Using (A 5) and (A 7), C′T is calculated for a range of tip-speed ratios λ′ and
chord lengths c, keeping all other parameters unchanged. The results are shown in
table 4. Given those results, we choose a maximum value for C′T of 4 in the optimal
control. This value is arbitrary, but is merely intended to give an order of magnitude
of what could be technically feasible.
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λ′ Chord, c C′T
10.5 Original 1.60
12.15 Original 1.80
12.15 +30 % 2.50
12.15 +50 % 2.80
13.9 +50 % 3.20
13.9 +80 % 3.75
13.9 +100 % 4.20

TABLE 4. Blade element evaluation of C′T for a range of λ′ and c values, using the
NREL 5 MW turbine (Jonkman et al. 2009) as a baseline.

Appendix B. Geostrophic wind

In the current appendix, we derive a relation between uτh and the geostrophic wind
speed G for ‘infinite’ wind-farm ABLs, partly inspired by the work of Zilitinkevich
(1989). The ABL is driven by the geostrophic balance above the boundary layer,
where, in the absence of any friction terms, the pressure gradient is balanced by
Coriolis forces, i.e. (Tennekes & Lumley 1972; Stull 1988)

1
ρ

∂p∞
∂x1
= fcG sin α and

1
ρ

∂p∞
∂x2
=−fcG cos α, (B 1a,b)

with fc the Coriolis parameter, G the magnitude of the geostrophic wind and α the
angle between the geostrophic wind and the wind in the surface layer (which is in
the x1 direction).

The Navier–Stokes momentum equations with Coriolis forces now correspond to

∂u
∂t
+ u · ∇u=− 1

ρ
∇(p+ p∞)+ fcu× e3 + ν∇2u+ f , (B 2)

where p represents the remaining part of the pressure (after removing p∞), ν is the
kinematic viscosity and fc is the Coriolis parameter.

Multiplying (B 2) with u, averaging over horizontal planes and integrating over the
height of the ABL yields the total energy balance. For statistically stationary boundary
layers, and using (B 1) and continuity, this leads to

∫ H

0
fc(−G sin α 〈u1〉 +G cos α 〈u2〉) dx3 =

∫ H

0
ν〈∇u : ∇u〉 dx3 −

∫ H

0
〈 f · u〉 dx3, (B 3)

= D +P, (B 4)

where 〈· · ·〉 is used to denote horizontal averages (statistically converged over ‘infinite’
horizontal planes). Furthermore, D is the total dissipation by turbulence per unit wind-
farm area, and P is the average turbine power extraction per unit farm area.
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The left-hand side of (B 4) can be further elaborated by horizontal averaging and
integrating of the u1 and u2 momentum equations (B 2). For u1, this leads to

− fcG sin αH +
∫ H

0
fc〈u2〉 dx3 = τw −

∫ H

0
〈 f · e1〉 dx3, (B 5)

= u2
τh (using (2.13)). (B 6)

For u2, we obtain

fcG cos αH −
∫ H

0
fc〈u1〉 dx3 = 0. (B 7)

(Recall that x is aligned with the flow direction in the surface layer, so that the wall
stress has no average component in the integrated y-momentum equation.)

Equations (B 6) and (B 7) are now used in (B 4) to eliminate 〈u1〉 and 〈u2〉, leading
to

G cos α u2
τh =D +P. (B 8)

Finally, the angle α can be further eliminated by using a similarity relation for the
wind profile, i.e. following Tennekes & Lumley (1972)

G sin α
uτh

=−A, (B 9)

where A ≈ 12 is an empirical constant (Tennekes & Lumley 1972; Frandsen 1992).
Combining this with (B 8) yields

G= uτh

√
A2 +

(
D +P

u3
τh

)2

. (B 10)

Appendix C. Derivations of gradient of the reduced cost functional and
adjoint equations

In the current appendix, we derive the gradient of the cost functional, and the
adjoint equations that can be used for the determination of the gradient. To that
end, first some definitions are introduced, i.e. a proper definition of inner products, a
definition of the gradient of a functional, the linearization of the state equations and
the adjoint of a linear operator.

C.1. Some definitions
First of all, define the inner product between state variables q1 and q2 and control
variables ϕ1 and ϕ2 (all in suitable Hilbert spaces H) as

(q1, q2)=
∫ T

0

∫
Ω

ũ1 · ũ2 dx dt+
∫ T

0

∫
Ω

p̃1p̃2 dx dt+
∫ T

0
V̂1 · V̂2 dt, (C 1)

(ϕ1, ϕ2)=
∫ T

0
ϕ1 · ϕ2 dt. (C 2)

Using these definitions of inner products, and the associated functional spaces, the
gradient of a differentiable functional is now defined as the Riesz representation of
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its derivative (see e.g. Tröltzsch 2010; Borzi & Schultz 2012). Thus, for the reduced
cost functional and using the definition of the Gateau derivative in the direction δϕ
this leads to

J̃ϕ(δϕ)≡ d
dα

J̃ (ϕ + αδϕ)
∣∣∣∣
α=0

= (∇J̃ , δϕ) ∀ δϕ ∈H. (C 3)

Since the derivative is a linear functional, the Riesz representation theorem ensures
that the form on the right-hand side can always be found.

The state equations B(ϕ, q) = 0 can be linearized around (ϕ, q) in a direction
(δϕ, δq), leading to a set of linear (partial) differential equations,

∂B
∂ϕ
δϕ + ∂B

∂q
δq= 0, (C 4)

where ∂B/∂ϕ and ∂B/∂q are linear operators.
Finally, the adjoints of these linear operators can be defined. For the operator

∂B/∂q, the adjoint is defined through(
q∗,

∂B
∂q
δq
)
≡
([
∂B
∂q

]∗
q∗, δq

)
+ BT1, (C 5)

where [∂B/∂q]∗ is typically found using integration by parts (cf. further below for
practical derivations), and BT1 are boundary terms that arise as a result of this.
Similarly, (

ϕ∗,
∂B
∂ϕ
δϕ

)
≡
([
∂B
∂ϕ

]∗
ϕ∗, δϕ

)
+ BT2. (C 6)

This second identity is usually trivial. In the current work, it is easily found that
∂B/∂ϕ = [∂B/∂ϕ]∗ and BT2 = 0. Further elaboration follows in § C.2.

C.2. Gradient of the reduced cost functional
Using (C 3) and (3.4), the gradient of the reduced cost functional can be expressed as

(∇J̃ , δϕ)=
(
∂J

∂ϕ
, δϕ

)
+
(
∂J

∂q
,
∂q
∂ϕ
δϕ

)
=
(
∂J

∂ϕ
, δϕ

)
+
(
∂J

∂q
, δq
)
. (C 7)

However, straightforwardly using this formulation leads to very expensive gradient
evaluations, as δq requires the solution of (a linearized version of) the governing
partial differential equations (i.e. given by (C 4)) for every possible direction δϕ
represented in the gradient. Instead, an adjoint-based approach is usually followed
for the gradient calculation. This has long been established in problems related to
aerodynamic design (see Pironneau 1974; Jameson 1988), and has also been adapted
to transient Navier–Stokes simulations (see Choi et al. (1999) and Bewley et al.
(2001), among others).

To formulate the gradient of the reduced cost functional ∇J̃ using an adjoint
formulation, we follow the formal Lagrangian method (see e.g. Tröltzsch 2010; Borzi
& Schultz 2012). To this end, we first introduce the Lagrangian associated with the
problem formulation used in (3.2) and (3.3). Introducing a set of Lagrange multipliers
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q∗ = (ξ , π, χ) for each state constraint, with state variables q= (ũ, p̃, V̂), this leads
to

L (ϕ, q, q∗) = J (ϕ, q)+ (q∗,B(ϕ, q)) (C 8)

≡ J (ϕ, q)+
∫ T

0

∫
Ω

π∇ · ũ dx dt+
∫ T

0

[
τ

dV̂
dt
− (V − V̂)

]
· χ dt

+
∫ T

0

∫
Ω

[
∂ũ
∂t
+ ũ · ∇ũ+ 1

ρ
∇p̃− f∞e1 −∇ · τM

− f − δ(x− z1e3)τw

]
· ξ dx dt. (C 9)

If we now consider the reduced optimization problem, we trivially find (see e.g.
Borzi & Schultz 2012)

J̃ (ϕ)=L (ϕ, q(ϕ), q∗)=J (ϕ, q(ϕ))+ (q∗,B(ϕ, q(ϕ))), (C 10)

since by definition the implicit relation q(ϕ) is equivalent to B(ϕ, q(ϕ)) ≡ 0. Thus,
applying the chain rule of differentiation, and using the Riesz representation theorem,
this leads to

(∇J̃ , δϕ) =
(
∂J

∂ϕ
, δϕ

)
+
(

q∗,
∂B
∂ϕ
δϕ

)
+
(
∂J

∂q
,
∂q
∂ϕ
δϕ

)
+
(

q∗,
∂B
∂q

∂q
∂ϕ
δϕ

)
(C 11)

=
(
∂J

∂ϕ
, δϕ

)
+
([
∂B
∂ϕ

]∗
q∗, δϕ

)
+
({

∂J

∂q
+
[
∂B
∂q

]∗
q∗
}
, δq
)
+ BT1.

(C 12)

Now, provided that

Lq(δq)=
(
∂L

∂q
, δq
)
=
({

∂J

∂q
+
[
∂B
∂q

]∗
q∗
}
, δq
)
+ BT1 = 0, (C 13)

which defines the adjoint equations, and boundary conditions (cf. further § C.3), we
can identify the gradient of the cost functional as

∇J̃ = ∂L
∂ϕ
= ∂J
∂ϕ
+
[
∂B
∂ϕ

]∗
q∗. (C 14)

This can be evaluated at the cost of one adjoint LES simulation, and does not need
a direct evaluation of δq. Using (C 14), (C 9), (3.1) and (2.7), this leads to (3.9).

C.3. Derivation of the adjoint equations
From (C 13), it is clear that the adjoint equations can be found by expressing
Lq(δq)= 0 in its Riesz representation form (∂L /∂q, δq)= 0. Thus, based on (C 9),
we express
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Lq(δq) = Lũ(δũ)+Lp̃(δp̃)+LV̂(δV̂) (C 15)

= Jũ(δũ)+
∫ T

0

∫
Ω

(∇ · δũ)π dx dt−
∫ T

0
Vũ(δũ) · χ dt

+
∫ T

0

∫
Ω

[
∂δũ
∂t
+ (ũ · ∇)δũ+ (δũ · ∇)ũ

−∇ · (τM ũ(δu))− δ(x− z1e3)τwũ(δũ)
]
· ξ dx dt︸ ︷︷ ︸

Lũ(δu)

+
∫ T

0

∫
Ω

ξ · ∇δp̃ dx dt︸ ︷︷ ︸
Lp̃(δp̃)

+ JV̂(δV̂)−
∫ T

0

∫
Ω

f V̂(δV̂) · ξ dx dt+
∫ T

0

[
τ

d(δV̂)
dt
+ δV̂

]
· χ dt,︸ ︷︷ ︸

LV̂(δV̂)

(C 16)

further taking Jp̃(δp̃)= 0 (cf. (3.1)).
Casting (C 16) in the form (∂L /∂q, δq) = 0 is now a matter of exchanging

δq and q∗ by partial integration, and similar algebraic manipulations. The adjoint
equations are then identified with ∂L /∂q, and boundary conditions are defined by
the requirement that the boundary terms originating from partial integration are equal
to zero. This procedure is well known, and for details regarding the derivation of
the adjoint equations for the standard Navier–Stokes equations, we refer the reader
to Choi et al. (1999), Bewley et al. (2001) and Delport et al. (2009), among others.
Here, we only discuss the derivation of the adjoints with respect to the additional
terms that do not appear in the standard DNS adjoint equations, i.e. the adjoint
forcing term f ∗ ((3.10) and (3.11)), the adjoint time-filtered velocity, the adjoint
wall-stress model and the adjoint Smagorinsky model.

C.3.1. Adjoint forcing term
The adjoint forcing term f ∗ is identified from (using (C 16), (3.1) and (2.9))

(−f ∗, δũ) = Jũ(δũ)−
∫ T

0
Vũ(δũ) · χ dt (C 17)

=
∫ T

0

∫
Ω

Nt∑
i=1

−1
2

C′T,iV̂
2
i Ri(x) e⊥ · δũ dx dt

−
∫ T

0

Nt∑
i=1

(
1
A

∫
Ω

χi Ri(x)e⊥ · δũ dx
)

dt. (C 18)

Thus, (3.11) follows.

C.3.2. Adjoint of the time-filtered velocity
The adjoint of the velocity time filter corresponds to ∂L /∂V̂= 0, and follows from

expressing the Riesz representation of LV̂(δV̂). Thus, substituting for J and f yields
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∂L

∂V̂
, δV̂

)
=
∫ T

0

∫
Ω

Nt∑
i=1

C′T,iV̂i Ri(x)(−ũ+ ξ) · e⊥δV̂i dx dt

+
∫ T

0

Nt∑
i=1

[
τ

dδV̂i

dt
+ δV̂i

]
· χi dt

=
∫ T

0

Nt∑
i=1

{
−τ dχi

dt
+ χi +C′T,iV̂i

∫
Ω

Ri(x)(−ũ+ ξ) · e⊥ dx
}
δV̂i dt

+
Nt∑

i=1

τ
[
δV̂ i · χi

]T

0
. (C 19)

This identifies the adjoint time filter (cf. (3.10)). The boundary term [δV̂ i · χi]T0
vanishes provided that χi(T) = 0 (at t = 0, δV̂i(0) = 0 is given). This yields the
boundary condition for the adjoint time filter in (3.15).

C.3.3. Adjoint of the wall-stress boundary condition
The wall-stress model (2.3) and (2.4) has two wall-parallel components, while

the third component equals zero. Starting from (C 16), the adjoint can be identified
through

(τ ∗w, δũ)=
∫ T

0

∫
Ω

[
κ

ln(z1/z0)

]2
‖ũ‖12δũiξi +

ũiδũi

(
ũ1ξ1 + ũ2ξ2

)
‖ũ‖12

 δ(x− z1e3) dx dt,

(C 20)
using the Einstein summation convention over repeated indices (i=1,2), and the short-
hand notation ‖ũ‖12 = (ũ2

1 + ũ
2
2)

1/2. Furthermore, the wall-parallel filtering is defined
as

ũi =
∫∫

Ω

G(x− x′) ũi(x′1, x′2, x3) dx′1 dx′2, (C 21)

with G(x− x′)= [6/(π∆2)] exp(−6‖x− x′‖2
12/∆

2).
Further elaboration of (C 20) requires the transfer of wall-parallel filter operations

from δũi to ξi. This is straightforward, since the selected Gaussian filter is self-adjoint,
i.e. for any two fields ψ and φ,

(ψ, φ) =
∫ T

0

∫
Ω

ψ · φ dx dt

=
∫ T

0

∫∫∫
Ω

(∫∫
Ω

G(x− x′)ψ(x′1, x′2, x3) dx′1 dx′2

)
· φ(x) dx1 dx2 dx3 dt

=
∫ T

0

∫∫∫
Ω

(∫∫
Ω

G(x− x′)φ(x) dx1 dx2

)
·ψ(x′1, x′2, x3) dx′1 dx′2 dx3 dt

= (ψ, φ). (C 22)

Using this in (C 20) leads to

(τ ∗w, δũ)=
∫ T

0

∫
Ω

[
κ

ln(z1/z0)

]2
‖ũ‖12ξi δũi +

(
ũ1ξ1 + ũ2ξ2

‖ũ‖12
ũi

)
δũi

 δ(x− z1e3) dx dt,

(C 23)
yielding the adjoint wall stress in (3.12).
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C.3.4. Adjoint of the subgrid-scale model
The adjoint of the subgrid-scale stresses are identified through (cf. (C 16) and (2.5))

(∇ · τ ∗M, δũ) =
∫ T

0

∫
Ω

∇ · (τM ũ(δũ)) · ξ dx dt (C 24)

=
∫ T

0

∫
Ω

∇ ·

(
2`2

[
(2S : δS)S

(2S : S)1/2
+ (2S : S)1/2δS

])
· ξ dx dt, (C 25)

with δS = (∇δũ+ (∇δũ)T)/2. Using integration by parts on (C 25), and the fact that
S and δS are symmetric tensors, leads to

(∇ · τ ∗M, δũ)=
∫ T

0

{
BT −

∫
Ω

(
2`2

[
(2S : δS)S

(2S : S)1/2
+ (2S : S)1/2δS

])
: S∗ dx

}
dt,

(C 26)
with S∗= (∇ξ + (∇ξ)T)/2. The boundary term BT = 0, since ` equals zero at x3= 0,
S equals zero at the top boundary, and periodic boundary conditions are used in the
other directions. A second integration by parts yields

(∇ · τ ∗M, δũ)=
∫ T

0

{
BT ′ +

∫
Ω

∇ ·

(
2`2

[
(2S : S∗)S
(2S : S)1/2

+ (2S : S)1/2S∗
])
· δũ dx

}
dt.

(C 27)
The boundary term BT ′= 0, provided that S∗= 0 at the top boundary (consistent with
a symmetry boundary condition), and periodic boundary conditions are used for ξ in
wall-parallel directions. Then (C 27) identifies the adjoint subgrid-scale stresses (3.13).
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