
J. Plasma Phys. (2019), vol. 85, 905850303 c© Cambridge University Press 2019
doi:10.1017/S0022377819000345

1

Constraints on ion versus electron heating by
plasma turbulence at low beta

A. A. Schekochihin1,2,3,†, Y. Kawazura1,‡ and M. A. Barnes1,4,5

1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory,
Parks Road, Oxford OX1 3PU, UK

2Merton College, Oxford OX1 4JD, UK
3Niels Bohr International Academy, Blegdamsvej 17, 2100 Copenhagen, Denmark

4University College, Oxford OX1 4BH, UK
5United Kingdom Atomic Energy Authority, Culham Science Centre, Abington OX14 3DB, UK

(Received 23 December 2018; revised 5 April 2019; accepted 8 April 2019)

It is shown that in low-beta, weakly collisional plasmas, such as the solar corona,
some instances of the solar wind, the aurora, inner regions of accretion discs, their
coronae and some laboratory plasmas, Alfvénic fluctuations produce no ion heating
within the gyrokinetic approximation, i.e. as long as their amplitudes (at the Larmor
scale) are small and their frequencies stay below the ion-Larmor frequency (even
though their spatial scales can be above or below the ion Larmor scale). Thus,
all low-frequency ion heating in such plasmas is due to compressive fluctuations
(‘slow modes’): density perturbations and non-Maxwellian perturbations of the ion
distribution function. Because these fluctuations energetically decouple from the
Alfvénic ones already in the inertial range, the above conclusion means that the energy
partition between ions and electrons in low-beta plasmas is decided at the outer scale,
where turbulence is launched, and can be determined from magnetohydrodynamic
(MHD) models of the relevant astrophysical systems. Any additional ion heating must
come from non-gyrokinetic mechanisms such as cyclotron heating or the stochastic
heating owing to distortions of ions’ Larmor orbits. An exception to these conclusions
occurs in the Hall limit, i.e. when the ratio of the ion to electron temperatures is as
low as the ion beta (equivalently, the electron beta is order unity). In this regime,
slow modes couple to Alfvénic ones well above the Larmor scale (viz., at the ion
inertial or ion sound scale), so the Alfvénic and compressive cascades join and then
separate again into two cascades of fluctuations that linearly resemble kinetic Alfvén
and ion-cyclotron waves, with the former heating electrons and the latter ions. The
two cascades are shown to decouple, scalings for them are derived and it is argued
physically that the two species will be heated by them at approximately equal rates.
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1. Introduction
One of the most fundamental questions in plasma astrophysics is what determines

the temperatures of different particle species, ions (Ti) and electrons (Te). We
know that a system with different Ti and Te is not in equilibrium and so must
have an intrinsic (although not necessarily overwhelming) tendency to relax to an
equi-temperature state. We do not, however, know of any mechanisms other than
Coulomb collisions that would equalise the temperatures. There are no instabilities
of a spatially homogeneous equilibrium with Ti 6= Te Maxwellian ions and electrons
and so there is no obvious way in which, e.g. turbulence could result and quickly
equalise the temperatures. In the absence of such fast dynamical processes, collisions
are all that remains. In a large class of astrophysical and space plasmas where
collisions are not very frequent, temperature equalisation by collisions is extremely
slow: the relevant collision frequency is the ion–electron one, νie, which is a factor of
mass ratio, me/mi, smaller even than the electron collision frequency and a factor of
(me/mi)

1/2 smaller than the ion one. This means that, for most practical purposes, an
‘incomplete’ equilibrium with Ti 6= Te must be assumed (e.g. Braginskii 1965) – and
that is indeed what is observed in the solar wind (see, e.g. Cranmer et al. (2009),
and references therein). It is not, however, known what determines the ratio Ti/Te
– a question that is also of great interest in the context of extragalactic plasmas,
e.g. accretion discs, where only Te is measured, but knowledge of Ti is required for
the understanding of basic plasma processes and model building (e.g. Quataert 2003;
Sharma et al. 2007; Ressler et al. 2017; Rowan, Sironi & Narayan 2017, 2019; Chael,
Narayan & Johnson 2019; Chael et al. 2018; Chandran, Foucart & Tchekhovskoy
2018).

Collisions aside, Ti and Te can be changed via heating or cooling processes
resulting from energy exchange between the mean (equilibrium) particle distributions
and fluctuations (or waves), which are ubiquitously present in space and astrophysical
plasmas – while temperature difference does not drive fluctuations, there are plenty of
free-energy sources that do (background gradients, large-scale stirring, etc.). The free
energy of these fluctuations is processed through phase space by various nonlinear
(e.g. turbulence) and linear (e.g. phase mixing) mechanisms, brought to suitably small
scales and thermalised, giving rise to ion or electron heating (see, e.g. Schekochihin
et al. 2008, 2009, 2016; Kawazura, Barnes & Schekochihin 2019; Meyrand et al.
2019). The interesting question then is what fraction of the free energy injected at
large scales is deposited into the thermal energy of each species.

Much of the turbulence actually observed or theoretically expected in magnetised
astrophysical plasmas is in the form of low-frequency, magnetohydrodynamic
(MHD)-scale Alfvénic or compressive (‘slow-mode’) fluctuations. They are at low
frequencies because they are typically excited by large-scale mechanisms and because
their cascade to smaller scales is anisotropic with respect to their local magnetic field,
k‖ � k⊥, implying that the Larmor scales (ρi, ρe) in the perpendicular direction are
reached before the Larmor frequencies (Ωi, Ωe) (see Schekochihin et al. (2009), and
references therein; this paper is henceforth referred to as S09). Thus, opportunities
for transferring the energy of the turbulent cascade into ion thermal energy via
the Landau damping of compressive fluctuations (throughout the inertial range; see
S09–§ 6 and Meyrand et al. 2019) or via the ion-entropy cascade (starting at the
ion-Larmor scale; see S09–§ 7 and Kawazura et al. 2019) occur before (i.e. at
larger scales than) the cyclotron heating can take place (Howes et al. 2008a). All
of these low-frequency heating routes can be treated in the so-called gyrokinetic
(GK) approximation (Frieman & Chen 1982; Howes et al. 2006, the latter paper is
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Ion versus electron heating by low-beta plasma turbulence 3

henceforth referred to as H06). This has the twin advantages of greater analytical
tractability than the full Vlasov–Maxwell kinetics and very much greater feasibility
of three-dimensional (3-D) direct numerical simulations (Howes et al. 2008b, 2011;
TenBarge, Howes & Dorland 2013; Told et al. 2015; Bañón Navarro et al. 2016;
Li et al. 2016; Kawazura et al. 2019).1 The goal of such analytical and numerical
inquiries is to parametrise ion and electron heating in terms of the two main plasma
parameters, Ti/Te and plasma beta, the latter defined to be the ratio of the ion
thermal and magnetic energies, βi = 8πniTi/B2 (where ni is the ion density and B is
the magnetic field).

Analytically, determining ion heating in anything like a definitive fashion has so far
turned out to be a rather difficult task, except in the linear approximation (Quataert
1998; Quataert & Gruzinov 1999). While progress can be made via modelling
based on physically reasonable conjectures (e.g. Breech et al. 2009; Chandran et al.
2009, 2010; Chandran 2010; Howes 2010, 2011), it is very useful to have some
non-negotiable constraints on the answer, valid under clearly stated assumptions, such
as the GK regime adopted here. In this paper, we show that it is possible to establish
such constraints in a fairly straightforward way for low-beta plasmas, a subset that,
while very far from being exhaustive, does include some observationally accessible
cases, e.g. the solar corona (Aschwanden, Poland & Rabin 2001; Cranmer 2009),
some episodes of the solar wind at 1 AU (Smith et al. 2001), the aurora (Chaston
et al. 2008), maybe, in the near future, certain regions of accretion discs (Chael et al.
2019, 2018) and, finally, laboratory plasmas such as the LAPD, custom-made for
studies of Alfvén waves (AW) (Carter et al. 2006; Gekelman et al. 2011).

In what follows, we will first, in § 2, give a qualitative physical outline of our
argument and its implications. A reader uninterested in theoretical rigour need not
read anything else. The subsequent three sections are dedicated to providing a
systematic calculation to back up the statements made in § 2. Section 3 is a quick
recapitulation of the GK formalism needed in what follows. Section 4 contains
the derivation of a reduced set of equations satisfied by plasma turbulence in the
low-beta limit and the proof, based on those equations, that, in low-beta plasmas,
there is no ion heating due to Alfvénic fluctuations and that all ion heating that
does occur is due to compressive fluctuations found in the inertial range. Section 5
(whose length is perhaps incommensurate with its importance in the grand scheme
of things) deals with a particular type of low-beta plasma where ions are much
colder than electrons (the ‘Hall limit’), where it turns out that the conclusion of § 4
must be substantially revised and the ion- and electron-heating rates are likely to
be comparable (on the way, some conceptually interesting results on Hall turbulence
emerge: see § 5.5). Finally, in § 6, there is a brief closing discussion, in particular of
possible self-regulation mechanisms for ion heating.

2. Epitome

When turbulence in a plasma is stirred up by some large-scale mechanism, this
amounts to ion and electron distribution functions being perturbed away from
equilibrium. If these perturbations are low-frequency (ω � Ωi) and large-scale

1Three-dimensional is the only relevant kind of simulation in this context because only in three dimensions
can both the dominant nonlinearity and wave propagation be captured simultaneously (see, e.g. Howes 2015).
It is only in the last year that 3-D full-Vlasov-kinetic simulations of the problem have become possible (Cerri,
Kunz & Califano 2018; Franci et al. 2018; Grošelj et al. 2018; Arzamasskiy et al. 2019; Zhdankin et al.
2019).
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(kρi � 1, where ρi is the ion-Larmor radius), they will, via nonlinear interactions,
generate further, smaller-amplitude smaller-scale higher-frequency fluctuations. Just as
in ordinary fluid turbulence, this process can be conceptualised as a cascade of energy
– in the case of kinetic (collisionless or weakly collisional) plasma, a cascade of free
energy associated with the perturbed distribution functions and electromagnetic fields
(see Schekochihin et al. (2008) and references therein). In the presence of a strong
magnetic field, the fluctuations produced by this cascade are expected – and, indeed,
observed, in numerical simulations (Cho & Vishniac 2000; Maron & Goldreich 2001)
and in the solar wind (Horbury, Forman & Oughton 2008; Podesta 2009; Wicks et al.
2010; Chen et al. 2011; Chen 2016) – to be ever more scale anisotropic at ever
smaller scales, viz., long along the field, short across it: k‖� k⊥.

In this anisotropic limit, the fluctuations at scales greater than ρi can be classified
into two kinds:

(i) Alfvénic, i.e. incompressible perpendicular MHD perturbations of the velocity
and magnetic field, u⊥ and b⊥ – these correspond to Maxwellian perturbations
of the ion distribution function with flow velocity u⊥ = cE×B0/B2

0, where E is
the perturbed electric field and B0 the mean magnetic field (see S09–§ 5);

(ii) compressive, i.e. perturbations of plasma density δne (= δnine/ni by quasineutral-
ity), field strength δB and general perturbations of the ion distribution function
involving parallel flow velocity, temperature and higher moments (see S09–§ 6);
these perturbations are the kinetic version of the MHD slow modes.2

It is then possible to prove (S09–§ 5, 6), for any βi and Ti/Te and assuming that the
equilibrium distribution function is either Maxwellian or satisfies certain constraints
(Kunz et al. 2015), that these two types of fluctuations are energetically decoupled
from each other: the cascade of the free energy splits into an MHD ‘Alfvén-wave
cascade’ and a cascade of compressive fluctuations, passively advected by the Alfvén-
wave turbulence but unable to exchange energy with it. In a weakly collisional plasma,
i.e. one in which collision rates are small compared to the characteristic frequencies
of the turbulent fluctuations, the latter cascade is potentially subject to Landau–Barnes
damping (Barnes 1966), which will give rise to (parallel) ion heating at all scales in
the ‘inertial range’ (k⊥ρi < 1). However, the nonlinear cascade rate is comparable to
the Alfvén frequency, k‖vA, where vA = B0/

√
4πmini is the Alfvén speed (Goldreich

& Sridhar 1995, 1997), whereas the damping rate cannot be much larger than ∼ k‖vthi,
where vthi =

√
2Ti/mi is the ion thermal speed (S09–§ 6.2.2). In low-beta plasmas,

vthi =
√

2Ti/mi =
√
βivA� vA, so the damping is expected to be negligible compared

to the rate of nonlinear transfer of the fluctuation energy towards the Larmor scale3

(cf. Lithwick & Goldreich 2001).

2High-frequency modes, such as fast magnetosonic waves (at inertial-range scales) or whistlers (at sub-ion-
inertial scales), can be self-consistently ignored in the anisotropic regime that we are considering – and indeed
are ordered out in the GK approximation (see H06–§ 2.2). This does not mean that they cannot exist, just that
they can not-exist, i.e. that they would not be triggered by the motions and fields that are retained. Observations
of solar-wind turbulence in the inertial range suggest that fast-wave energy is indeed negligible (Howes et al.
2012). Around the ion-Larmor scale, an energetically subdominant population of non-GK perturbations, viz.,
whistler and ion-cyclotron waves with large k‖, is observed in the solar wind (Wicks et al. 2010; He et al.
2011, 2012; Podesta & Gary 2011; Klein et al. 2014; Lion, Alexandrova & Zaslavsky 2016) and may be due
to pressure-anisotropy instabilities, which are not captured by GK, but are not a significant danger at low beta
(e.g. Hellinger et al. 2006; Bale et al. 2009; Kunz et al. 2018).

3Interestingly, it turns out that even at βi ∼ 1, Landau damping in the inertial range can be effectively
suppressed by a nonlinear effect, the stochastic echo (Meyrand et al. 2019), and the compressive free-energy
cascades mostly unimpeded towards the Larmor scale.
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This means that (in a weakly collisional plasma) no thermalisation of any of that
energy can occur until the fluctuations have reached k⊥ρi ∼ 1. At this point, the free-
energy cascade is, in general, no longer split into Alfvénic and compressive, the two
types of fluctuations can couple and the free energy can be shown to be cleanly split
again into two decoupled cascades only at k⊥ρi�1. These two sub-Larmor dissipation
channels are the cascades of kinetic Alfvén waves (KAW) and of ion entropy (S09–
§ 7; that the sub-Larmor-range turbulence in the solar wind is indeed predominantly of
the KAW kind appears to be settled: see Salem et al. 2012, Chen et al. 2013, and the
references in footnote 2). The KAW eventually thermalise into electrons, via Landau
damping and/or via various dissipation effects at or below the electron Larmor scale.4
The ion-entropy cascade is a nonlinear mixing process in phase space, resulting in
fine-scale structure in the ion distribution function and eventually thermalised into ions
by collisions – as large gradients in v⊥ form alongside large spatial gradients, even
very low collisionality is enough to dissipate non-Maxwellian perturbations at a finite
rate (S09–§§ 7.9 and 7.10).

Thus, how much energy goes into ions and how much into electrons is decided
when the free-energy cascade reconstitutes itself and then splits again at the
ion-Larmor scale. Therefore, any analytical treatment of this problem requires
a theoretical description uniformly valid for k⊥ρi small, large and order unity.
Gyrokinetics is such a theory, requiring low frequencies (ω � Ωi) but not long
wavelengths (see H06 for a tutorial). However, in its general form, it does not make
the problem of energy partition between species any more analytically tractable
(although it does make numerical simulations of this process more feasible: Howes
et al. 2008b, 2011; TenBarge et al. 2013; Told et al. 2015; Bañón Navarro et al.
2016; Li et al. 2016; Kawazura et al. 2019, the latter paper being the closest that we
have got to an actual solution of the problem, at least within the GK approximation).

A dramatic simplification occurs if βi is assumed small. In this limit, vthi/vA =√
βi� 1, so ions cannot stream along the field lines fast enough to couple properly

to the electromagnetic fields associated with the Alfvén waves, MHD or kinetic, and
so perturbations of the ion distribution function (other than the Maxwellian E × B
drift) stay decoupled from the Alfvénic cascade.5 As we shall demonstrate below, this
makes it possible to prove that, in the low-beta limit, compressive perturbations of

4Because k‖ � k⊥, the frequency of the turbulent fluctuations at k⊥ρi ∼ 1 is still much smaller than
Ωi. If the cyclotron frequency is reached by the KAW cascade at sub-Larmor scales, cyclotron heating can
result, linearly, but the wavenumber range in which it occurs is quite narrow (see Appendix of Howes et al.
2008a) and it remains to be seen whether it would be effective at all in a nonlinear situation (see, however,
Arzamasskiy et al. 2019). In any event, this heating mechanism is outside the scope of our treatment here;
we acknowledge its possible contribution as a source of additional ion heating but remain agnostic about the
amount of such heating.

5It is perhaps worth emphasising that it is the ion beta, βi, that must be low, while βe may or may not be
(the possibility that it is not is covered by the Hall limit; see the end of this section and § 5). The regime in
which βi∼ 1 but βe� 1, i.e. electrons are colder than ions, ZTe/Ti� 1, is covered by the theory for order-unity
or high βi, which we do not attempt here (for a numerical study of what happens there, see Kawazura et al.
2019). The only difference between this regime and βe ∼ βi ∼ 1 is that, since de = ρe/

√
βe� ρe, the electron

inertial effects come in before the KAW cascade reaches the electron Larmor scale. This modifies the structure
of the KAW cascade (Chen & Boldyrev 2017; Passot, Sulem & Tassi 2017), but should not change the fact
that all the energy that is processed through it goes into electrons. Such a physical situation is observable
in the Earth’s magnetosheath (Chen & Boldyrev 2017). Interesting changes in the energy partition may be
possible if βe is so low that de & ρi, even though βi ∼ 1. This is possible if ZTe/Ti ∼ βe ∼me/mi, perhaps
too extreme a limit. We shall not consider it here. Note that the case of βe ∼me/mi and βi� 1 (considered
by Zocco & Schekochihin (2011) and easy to simulate; see Loureiro, Schekochihin & Zocco 2013; Loureiro
et al. 2016; Grošelj et al. 2017) is no different, as far as energy partition is concerned, from the standard
low-beta regime – Alfvénic fluctuations heat electrons, compressive ones heat ions (see § 4.7).
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the ion distribution function will cascade from the inertial range, through the ion-
Larmor scale and turn into the ion-entropy cascade at sub-Larmor scales and then
into ion heat without exchanging any energy with the Alfvénic fluctuations. All of
the energy of the latter turns into KAW energy, which includes density perturbations
at sub-Larmor scales, but cascades separately from the ion entropy and is eventually
dissipated on electrons. Proving this analytically is accomplished by showing that a
certain form of the free-energy invariant, which reduces to the energy of Alfvénic and
KAW perturbations in the long- and short-wavelength limits, respectively, is conserved
across the ion-Larmor-scale transition and thus no Alfvénic energy can leak into ion
heat (see § 4). Therefore, only the energy of what started out as compressive cascade
in the inertial range will contribute to ion heating, at least to the extent that the
GK approximation holds. Any further ion heating will have to come from non-GK
mechanisms such as cyclotron heating (Gary, Smith & Skoug 2005; Kasper, Lazarus
& Gary 2008; Marsch & Bourouaine 2011; Kasper et al. 2013; Arzamasskiy et al.
2019) or stochastic orbit deformations (Chandran 2010; Chandran et al. 2010; Vech,
Klein & Kasper 2017; Mallet et al. 2019; Arzamasskiy et al. 2019, see § 6.1).

The key ‘practical’ (in astrophysics, this means relevant to large-scale modelling)
conclusion from all this is that at low βi, the energy partition between ions and
electrons is determined already at the outer scale of the MHD cascade, where the
energy flux splits into Alfvénic and compressive. Once this separation occurs, the
ratio between ion- and electron-heating rates is fixed. Thus, what in principle is a
microscale kinetic effect is in fact fully constrained by fluid dynamics.6 Since all the
action is at the outer scale, the ion-to-electron heating ratio may depend on various
non-universal circumstances, e.g. presence of equilibrium temperature stratification
(which will produce temperature perturbations), shear, rotation, configuration of
magnetic field, etc.

These conclusions hold provided βe∼βi�1. When βi�1 but βe∼1, i.e. when ions
are much colder than electrons, ZTe/Ti � 1 (the so-called Hall limit; S09–§ E), the
situation changes substantially (§ 5). The physical difference between the ZTe/Ti ∼ 1
and ZTe/Ti� 1 cases is that in the latter limit, slow magnetoacoustic waves are faster
than the ions (because both the Alfvén speed and the sound speed cs =

√
ZTe/mi are

larger than vthi), remain undamped, and join happily with the AW cascade at a certain
transition scale that is larger than ρi (it is either the ion inertial or ion sound scale; see
(5.19)). At this transition scale, the Alfvénic and compressive cascades re-couple and,
below the transition scale, turn into cascades of higher-frequency KAW (or, as they are
sometimes called in the context of Hall MHD, whistlers) and lower-frequency oblique
ion-cyclotron waves (ICW). In § 5.5, we argue, with some support from numerical
simulations (Meyrand et al. 2018), that the two cascades are energetically decoupled
and critically balanced, enabling one to predict their scalings easily: the KAW scalings
(see (5.47)) are the usual ones, as derived in S09–§ 7.5 and Cho & Lazarian (2004);
the ICW scalings (see (5.52)) are the same as the scalings for the inertial-wave
turbulence proposed by Nazarenko & Schekochihin (2011) (both sets of scalings can
be related to some of the spectra previously posited by Krishan & Mahajan (2004)
and by Galtier & Buchlin (2007), and seen numerically by Meyrand & Galtier (2012)).

6This is, of course, only true assuming that the outer scale is collisional, so the Alfvénic and compressive
cascades split within the MHD approximation and the transition to collisionless regime occurs within the
compressive cascade (see S09–§ 6). If the plasma is collisionless already at the outer scale, how the cascades
separate is a fully kinetic problem, even if still a large-scale one. Furthermore, in such a plasma, if δB/B∼ 1
at the outer scale and beta is low, the fluctuation energy far exceeds the thermal energy and one can hardly
assume that a two-temperature Maxwellian equilibrium would either be established or survive. We are not
addressing here the ‘violent relaxation’ of such situations.
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It is then possible to prove rigorously that the KAW cascade will heat electrons and
the ICW cascade will heat ions – because the latter turns into the ion-entropy cascade
(S09–§ 7.10), whereas the former transitions through the ion-Larmor scale without
coupling to ions and turns into the sub-Larmor KAW cascade (this is all worked
out in detail and further discussed in § 5.7). We also argue, on physical grounds
rather than rigorously, that the partition of energy flowing into the two cascades and,
therefore, into the two species, should be approximately equal, independently of how
much of the original MHD cascade is Alfvénic and how much compressive (§ 5.5.4).
Here again, the energy partition is decided at fluid scales, but at the Hall transition
scale rather than at the outer scale.

The following sections are mostly technical in nature (except for §§ 5.5.1, 5.5.2
and 5.5.4) and dedicated to proving the statements made above. In the process, we
also derive a number of simple and appealing reduced models of various types of
kinetic turbulence, which can be studied analytically and numerically using these
models, either for its own sake or with some applied purpose. A reader uninterested
in analytical detail can now skip to § 6.

3. Gyrokinetic primer
This section is an extended recapitulation of the GK formalism that is required for

subsequent developments. In principle, all of this is already available from H06 and
S09 (and, in a form generalised to non-Maxwellian equilibria, from Kunz et al. 2015,
2018), but we provide this refreshed version for the convenience of the reader and as
an opportunity to adjust notation, to deal with some subtleties, and to cast some of
the derivations in what we now consider a more optimal form. A reader familiar with
H06 and S09 may wish to skip (or skim) this section and then refer back to it as
required during the reading of the rest of the paper.

3.1. Notation: Alfvénic fields
The electric and magnetic fields are described by the scalar potential φ and vector
potential A. It is convenient to introduce dimensionless versions of φ and of the
component of A parallel to the equilibrium magnetic field B0 = B0ẑ:

ϕ =
Zeφ
Ti
=

2Φ
ρivthi

, A=
A‖
ρiB0
=−

Ψ

ρivA
, (3.1)

where −e is the electron charge, Ze the ion charge, Ti the ion equilibrium temperature,
vthi =

√
2Ti/mi the ion thermal speed, mi the ion mass, ρi = vthi/Ωi the ion

Larmor radius, Ωi = ZeB0/mic the ion-Larmor frequency, c the speed of light,
vA = B0/

√
4πmini the Alfvén speed and ni the equilibrium ion density. In what

follows, we shall drop the ion species index everywhere except for some iconic
quantities (e.g. ρi) or where there is a possibility of ambiguity (e.g. Ti versus Te).

In the above, we have also introduced the stream function Φ (= cφ/B0) of the E×B
flow associated with φ and the flux function Ψ giving (in velocity units) the magnetic-
field perturbation perpendicular to B0:

u⊥ = ẑ×∇⊥Φ, b⊥ = ẑ×∇⊥Ψ . (3.2)

Physically these perturbations are Alfvén waves (AW). In the inertial range of
magnetised plasma turbulence, they decouple from all other modes (the fast modes,
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which are ordered out in the GK approximation, and the slow, or compressive, modes)
and satisfy the ‘reduced MHD’ equations (RMHD, first derived by Kadomtsev &
Pogutse (1974) and Strauss (1976); for a GK derivation, see S09–§ 5.3):

∂Ψ

∂t
= vA∇‖Φ,

d
dt
∇

2
⊥
Φ = vA∇‖∇

2
⊥
Ψ . (3.3)

Here the nonlinearities are hidden in the convective time derivative and in the spatial
derivative along the perturbed field lines:

d
dt
=
∂

∂t
+ u⊥ · ∇⊥ =

∂

∂t
+ {Φ, . . .} =

∂

∂t
+
ρivthi

2
{ϕ, . . .}, (3.4)

∇‖ =
∂

∂z
+

b⊥
vA
· ∇⊥ =

∂

∂z
+

1
vA
{Ψ , . . .} =

∂

∂z
− ρi{A, . . .}, (3.5)

where { f , g} = (∂xf )(∂yg) − (∂xg)(∂yf ). These derivatives will appear ubiquitously in
what follows.

3.2. Gyrokinetic equation
Our starting point is standard, slab, Maxwellian gyrokinetics (see the derivation in H06
or a summary in S09–§ 3). In it, the ion distribution function is represented as

f = F0 + δf , δf =−ϕ(r)F0 + h(R), R= r+ ρ, ρ =
v⊥ × ẑ
Ω

, (3.6)

where R is the GK spatial coordinate (centre of Larmor ring), whereas r is the usual
spatial coordinate (position of the particle). Then the GK equation for the evolution
of h is

∂h
∂t
+ v‖

∂h
∂z
+
ρivth

2
{〈χ〉R, h} =

∂〈χ〉R

∂t
F0 +C[h] +

2v‖〈aext〉R

v2
th

F0. (3.7)

Here the GK potential gyroaveraged at constant R (an operation denoted by angle
brackets) is

〈χ〉R =
Ze
Ti

〈
φ −

v ·A
c

〉
R
= Ĵ0ϕ − 2v̂‖Ĵ0A+ v̂2

⊥
Ĵ1
δB
B
, (3.8)

where v̂‖= v‖/vth, v̂⊥= v⊥/vth, δB is the perturbation of the magnetic field along itself
(related to A⊥), which is also the perturbation of the field’s strength; the gyroaveraging
Bessel operators are defined in terms of their Fourier space representations:

Ĵ0↔ J0(a)=1−
a2

4
+· · · , Ĵ1↔

2J1(a)
a
=1−

a2

8
+· · · , a=

k⊥v⊥
Ω
= v̂⊥k⊥ρi. (3.9)

Obviously, a2
↔ −v̂2

⊥
ρ2

i ∇
2
⊥
= −v̂2

⊥
∇̂

2
⊥

, where we denote ∇̂⊥ = ρi∇⊥. We shall use
the Ĵ notation (Kunz et al. 2018) interchangeably with 〈. . .〉R (or with 〈. . .〉r, the
gyroaverage of an R-dependent quantity at constant r), as proves convenient.

The last term in (3.7) represents energy injection by means of an external parallel
acceleration aext. This will be a convenient model of the excitation of compressive
perturbations for further calculations dealing with free-energy budgets. Finally, the
collision operator C[h] contains both the ion–ion and ion–electron collisions, but the
latter are negligible in the mass-ratio expansion adopted below.

https://doi.org/10.1017/S0022377819000345 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000345
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3.3. Isothermal electron fluid
We supplement the ion GK equation (3.7) with two fluid equations arising from the
isothermal approximation for electrons, which is a result of expansion in the electron–
ion mass ratio and holds at k⊥ρe � 1,7 and with field equations that follow from
quasineutrality and Ampère’s law in the same approximation (this system of equations
was derived in S09–§ 4, implemented numerically by Kawazura & Barnes (2018) and
simulated to some useful effect by Kawazura et al. (2019)):

∂A
∂t
+
vth

2
∇‖ϕ =

vth

2
∇‖

Z
τ

δn
n
+ η∇2

⊥
A, (3.10)

d
dt

(
δn
n
−
δB
B

)
+∇‖u‖e =−

ρivth

2

{
Z
τ

δn
n
,
δB
B

}
, (3.11)

δn
n
=−ϕ + Ĵ0h, (3.12)

u‖e
vth
=

1
βi
∇̂

2
⊥
A+ v̂‖Ĵ0h+Jext, (3.13)

2
βi

δB
B
=

(
1+

Z
τ

)
ϕ −

Z
τ

Ĵ0h− v̂2
⊥Ĵ1h. (3.14)

Here τ =Ti/Te, δn/n is the relative electron density perturbation (which is the same as
the ion one, by quasineutrality), u‖e the parallel electron flow velocity, and overlines
denote velocity integrals: (. . .) = (1/ni)

∫
d3v(. . .); note that the integrals are taken

at constant r and so R-dependent quantities under them must be gyroaveraged at
constant r, hence the appearance of the Ĵ0 and Ĵ1 operators. In the above system,
(3.10) is the parallel component of Ohm’s law (electron’s momentum equation), (3.11)
is the electron continuity equation, (3.12) is the statement of quasineutrality, (3.13)
and (3.14) are the parallel and perpendicular components, respectively, of Ampère’s
law (the perpendicular one is equivalent to the statement of perpendicular pressure
balance; see S09–§ 3.3).

On the right-hand side of (3.13), we have added a forcing term for the Alfvénic
perturbations, which can be viewed as arising from a model external (non-dimensiona-
lised) ‘AW-antenna’ current Jext ≡ j‖ext/enevth (e.g. TenBarge et al. 2014). On
the right-hand side of (3.10), we have added a resistive term (η is the magnetic
diffusivity) to represent dissipation of energy into electron heat and to allow flux
unfreezing at small scales (an important concern: see Eyink 2015, 2018; Boozer 2018).

7This is as good a place as any to address a certain resentment that a reader with a predilection for
mathematical rigour (e.g. Eyink 2015, 2018) might experience towards approximate equations valid in restricted
scale subranges. Generally speaking, nonlinear solutions of such approximate equations will not stay within
their own bounds of validity and develop gradients on scales that are smaller than allowed by the assumed
ordering. This is, of course, what turbulence does, or, indeed, is: a cascade to smaller scales, in pursuit of
dissipation. In such a cascade, the smallest scales are typically reached in ∼ one turnover time, regardless of
how wide the full range of available scales is. Therefore, formally, any system of equations restricted to a
subrange of scales is only valid for ∼ one turnover time; ‘non-ideal’ effects associated with dissipation at
smaller scales come in after that (e.g. ideal-MHD solutions do not stay ideal for long, however small is the
resistivity or other flux-unfreezing effects; see, e.g. Boozer 2018). This limited validity is, however, sufficient for
analysing basic linear and nonlinear interactions that govern the transfer of energy through the scale subrange
that is under consideration, as long as this transfer can be assumed local to this subrange. The approximate
equations can also be usefully simulated numerically as long as some regularisation at small scales is provided
and assuming that the nature of this regularisation is unimportant – i.e. that as long as a free-energy sink is
present at the smallest scale of the considered subrange, its detailed microphysics does not affect the behaviour
of larger scales (this, of course, does not always have to be the case, but tends to be).
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10 A. A. Schekochihin, Y. Kawazura and M. A. Barnes

Formally, this effect is outside the mass-ratio ordering that gave us the hybrid
equations introduced above and would have to be brought in alongside electron
inertia and electron-collisional effects (see S09–§ 7.12 and Zocco & Schekochihin
2011), but we can treat the resistive term as a representative for all of that as far
as magnetic reconnection and free-energy thermalisation on electrons are concerned.8
This is reasonable because the precise details of how the energy is removed from the
system should not matter, so long as it happens at scales smaller than the ion Larmor
scale and does not introduce artificial coupling between ions and electrons.9 These
features – forcing and resistivity – will be useful in working out free-energy budgets.

3.4. Free-energy budget
The δf gyrokinetics conserves (except for explicit sources and sinks) a quadratic norm
of the perturbations, known as the free energy (see S09–§ 3.4 and references therein),

W =
∫

d3r
V

(∑
s

∫
d3v

Tsδf 2
s

2F0s
+
|δB|2

8π

)
, (3.15)

where V is the volume of the plasma. Here the perturbed ion distribution function
is given by (3.6), the perturbed electron distribution function under the mass-ratio
expansion is δfe = (δn/n)F0e (see S09–§ 4.4), and so, in our notation,

W =
v2

th

4

∫
d3r
V

[
〈h2〉r

F0
− ϕ2
− 2ϕ

δn
n
+

Z
τ

δn2

n2
+

2
βi

(
|∇̂⊥A|2 +

δB2

B2

)]
, (3.16)

where we have dropped the prefactor of mini.
Since

∫
d3r〈h2〉r/F0 =

∫
d3R h2/F0, we may derive the evolution equation for W

by multiplying (3.7) by h/F0, integrating over the entire GK phase space and using
(3.10)–(3.14) opportunely. The result is

dW
dt
= εAW + εcompr −Qi −Qe, (3.17)

where the sources are the injection rates of the Alfvénic and compressive perturbations,

εAW = v
2
th

∫
d3r
V
∂A
∂t

Jext =−

∫
d3r
V

E · jext, (3.18)

εcompr =

∫
d3r
V

aextv‖Ĵ0h=
∫

d3r
V

aextu‖i, (3.19)

8Equation (3.10) is the electron parallel momentum equation, representing the force balance between the
parallel electric field (the left-hand side), parallel pressure gradient (the first term on the right-hand side) and
the collisional drag force, which is the resistive term. Technically speaking, the latter is proportional to the
difference between the electron velocity u‖e and the ion velocity u‖i = v‖Ĵ0h, which is worked out from (3.13).
Including normalisations, the resistive term is then νei(u‖e − u‖i)cme/eρiB0 = η(∇

2
⊥
A+ βiJext/ρ

2
i ), where νei

is the electron–ion collision frequency and η = νeid2
e . However, if η is small, it will only matter when it

multiplies ∇2
⊥

, as A develops small-scale structure. Since we assume Jext to be a large-scale quantity, it can
be dropped wherever it multiplies η.

9A minor nuance is that, in numerical practice, resistivity alone is usually insufficient to terminate a
turbulent cascade described by (3.10) and (3.11) – one must have a small-scale regularisation term in (3.11) as
well (Kawazura & Barnes 2018). Formally, such a term would represent collisionless and/or collisional electron
damping at and below the electron Larmor scale. This too is electron heating. For the purposes of analytical
energy budgets considered in this paper, the resistive term is a sufficient representative for it.
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and the sinks are the ion- and electron-heating rates10

Qi = −
v2

th

2

∫
d3R
V

hC[h]
F0

> 0, (3.20)

Qe = η
v2

th

βiρ
2
i

∫
d3r
V
|∇̂

2
⊥
A|2 = η

∫
d3r
V
|∇

2
⊥

A‖|2

4πmini
> 0. (3.21)

We have restored dimensions these expressions to make their physical meaning more
transparent. Note that in (3.18), the final expression – the work done by the electric
field against the external current – is obtained by noticing that there is a perpendicular
current associated with j‖ext, which is small in the GK expansion (because, to avoid
injecting charges, ∇ · jext = 0) and so, to lowest order in k‖/k⊥,∫

d3r
V

1
c
∂A‖
∂t

j‖ext =

∫
d3r
V

1
c
∂A
∂t
· jext =

∫
d3r
V

(
1
c
∂A
∂t
+∇φ

)
· jext, (3.22)

with the expression for −E able to be completed with ∇φ under the integral because
∇ · jext = 0.

In steady state, equation (3.17) is the overall free-energy budget, which says that
the total injection is equal to the total dissipation. The main purpose of this paper is
to work out more restrictive energy budgets that constrain Qi and Qe separately.

3.5. Separating Alfvénic perturbations
We now rearrange the perturbed distribution function in a way that has the effect of
separating the Alfvénic part of the distribution function from its ‘compressive’ part:11

h= 〈ϕ〉RF0 + g= Ĵ0ϕF0 + g ⇒ δf = (〈ϕ〉R − ϕ)F0 + g, g= 〈δf 〉R. (3.23)

The field equations (3.12)–(3.14) become

δn
n
=−(1− Γ̂0)ϕ + Ĵ0g, (3.24)

u‖e
vth
=

1
βi
∇̂

2
⊥
A+ v̂‖Ĵ0g+Jext, (3.25)

2
βi

δB
B
=−

Z
τ

δn
n
+ (1− Γ̂1)ϕ − v̂

2
⊥Ĵ1g, (3.26)

where two more Bessel operators have arisen:

Γ̂0↔ J2
0(a)F0 = I0(α)e−α = 1− α + · · · , α =

k2
⊥
ρ2

i

2
↔−

1
2
∇̂

2
⊥
, (3.27)

Γ̂1↔ v̂2
⊥

2J1(a)J0(a)
a

F0 =−[I0(α)e−α]′ = 1−
3
2
α + · · · . (3.28)

10If we had retained the ηJext term in (3.10) (dismissed in footnote 8) and the ion–electron part of C[h], the
electron-heating term would have turned out to be Qe = νei(Zme/mi)

∫
d3r(u‖e − u‖i)2/V = (4πη/c2)

∫
d3rj2
‖
/V ,

the total Ohmic heating. This is the same as (3.21) if we drop all terms that are small in the mass-ratio
expansion, only retaining instances of η multiplying the highest spatial derivatives of A.

11Note that this is a different rearrangement than in S09–§ 5.1 and so the subsequent derivation, while
similar in spirit to S09–§ 5, is different in detail. We shall see that this is a more convenient approach.
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12 A. A. Schekochihin, Y. Kawazura and M. A. Barnes

The GK equation (3.7), rewritten in terms of g, becomes

∂

∂t

(
g− v̂2

⊥
Ĵ1
δB
B

F0

)
+
ρivth

2

({
〈ϕ〉R, g− v̂2

⊥
Ĵ1
δB
B

F0

}
+

{
v̂2
⊥

Ĵ1
δB
B
, g
})

+ v‖

〈
∇‖

(
g+

Z
τ

δn
n

F0

)
+ ρi{A− 〈A〉R, ϕ − 〈ϕ〉R}F0

〉
R

=C
[
g+ 〈ϕ〉RF0

]
+

2v‖〈aext〉R

v2
th

F0. (3.29)

This has been derived by using (3.10) to express 〈∂A/∂t〉R and after some
manipulation of gyroaverages.12

In terms of g, the free energy (3.16) becomes

W =
v2

th

4

∫
d3r
V

[
〈g2〉r

F0
+ ϕ(1− Γ̂0)ϕ +

Z
τ

∣∣∣(1− Γ̂0)ϕ − Ĵ0g
∣∣∣2 + 2

βi

(
|∇̂⊥A|2 +

δB2

B2

)]
,

(3.30)

where, by definition, (1/V)
∫

d3rϕ(1− Γ̂0)ϕ =
∑

k(1− Γ0)|ϕk|
2.

For some upcoming derivations, it will be useful to have the zeroth moment of
(3.29). We integrate (3.29) over velocities at constant r, use (3.24) to express Ĵ0g and
subtract (3.11) from the resulting equation, using (3.25) for u‖e and so far neglecting
nothing. The outcome is

d
dt

[
(1− Γ̂0)ϕ + (1− Γ̂1)

δB
B

]
− vth∇‖

(
1
βi
∇̂

2
⊥
A+Jext

)
= ρi〈{〈A〉R −A, v‖g}〉r

−
ρivth

2

[〈{
〈ϕ〉R − ϕ, g− v̂2

⊥Ĵ1
δB
B

F0

}
+

{
v̂2
⊥Ĵ1

δB
B
, g
}〉

r
−

{
Z
τ

δn
n
,
δB
B

}]
+〈C[g+ 〈ϕ〉RF0]〉r. (3.31)

Note that (3.10) and (3.31) have the makings of the RMHD system (3.3): this emerges
from any long-wavelength approximation where one can neglect the δn term in (3.10),
as well as (1 − Γ̂1)δB/B and all of the right-hand side of (3.31). This is indeed
how RMHD is derived from gyrokinetics in the limit of k⊥ρi� 1 (S09–§§ 5.2, 5.3).
Below, we shall apply somewhat different orderings to work out the reduced dynamics
at low beta.

4. Reduced dynamics and heating at low beta
We shall now show that no ion heating occurs in the low-beta regime, viz., at

βi � 1. The problem has two governing parameters, βi and βe = Zβi/τ . There are
two interesting limits:

12If we are to be consistent, we must retain in (3.29) a forcing term associated with the resistive term
in (3.10). As we explained in footnote 8, the full form of this resistive term is νei(u‖e − u‖i)cme/eρiB0 =
νie(u‖e − u‖i)/vth, where νie = (mene/mini)νei is the ion–electron collision frequency. The additional term that
belongs on the left-hand side of (3.29) is, therefore, 2νiev‖〈u‖e − u‖i〉RF0/v

2
th, which is minus the ion–electron

friction force. But this is cancelled by the linearised ion–electron collision operator, which, to lowest order in
the mass-ratio expansion, is just the ion–electron friction (see, e.g. Helander & Sigmar 2005). Thus, from now
on, we may drop the resistive term in (3.29) as long as the collision operator in this equation is understood
to contain the ion–ion collisions only.
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(i) βe ∼ βi� 1 (Z/τ ∼ 1) – this section,
(ii) βe ∼ 1 and βi� 1 (Z/τ ∼ β−1

i � 1, cold ions) – § 5.

In considering these limits, we shall make use of the notation and equations
introduced in § 3. Namely, our starting point is the system consisting of the six
equations (3.10)–(3.11), (3.24)–(3.26) and (3.29) for six fields A, ϕ, δn, δB, u‖e
and g.

4.1. Ordering
Working in the limit βe ∼ βi� 1, we let

Z
τ
=
βe

βi
∼ 1, k⊥ρi ∼ 1, (4.1)

the latter assumption meaning that we are able to treat the Larmor-scale transition
directly.

Since we wish to be able to handle Alfvénic perturbations, and since we wish their
linear frequency (k‖vA) and their nonlinear interaction rate (k⊥u⊥) to be able to be
comparable, we stipulate

δB⊥
B
∼

u⊥
vA
∼

k‖
k⊥
∼ ε, (4.2)

where ε is the basic GK expansion parameter, with no further βi-related factors, of
which we shall now keep a close watch. In view of (4.1), this assumption implies

δB⊥
B
∼

k⊥A‖
B0
∼ k⊥ρiA ⇒ A∼ ε, (4.3)

u⊥
vA
∼

ck⊥φ
vAB0

∼ k⊥ρi

√
βi ϕ ⇒ ϕ ∼

ε
√
βi
. (4.4)

Examination of (3.24)–(3.26) then suggests that

δn
n
∼

g
F0
∼ ϕ ∼

ε
√
βi
,

δB
B
∼ ε
√
βi. (4.5)

4.2. Equations
With this ordering, the kinetic equation (3.29) becomes, to lowest order in βi,

∂g
∂t
+
ρivth

2
{〈ϕ〉R, g} =C[g+ 〈ϕ〉RF0] +

2v‖〈aext〉R

v2
th

F0. (4.6)

If we ignore collisions and assume no external forcing (aext = 0), then g = 0 is a
good solution of this equation (these assumptions will be relaxed in § 4.5). The field
equations (3.24)–(3.26) turn into simple constitutive relations

δn
n
=−(1− Γ̂0)ϕ,

u‖e
vth
=

1
βi
∇̂

2
⊥
A+Jext,

δB
B
=
βi

2

[
Z
τ
(1− Γ̂0)+ (1− Γ̂1)

]
ϕ. (4.7)

Using the first two of these in (3.10)–(3.11), we find that the latter become, to lowest
order,

∂A
∂t
+
vth

2
∇‖

[
1+

Z
τ
(1− Γ̂0)

]
ϕ = η∇2

⊥
A, (4.8)

d
dt
(1− Γ̂0)ϕ =

vth

βi
∇‖∇̂

2
⊥
A+ vth∇‖Jext. (4.9)
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These equations are the same as those derived by Zocco & Schekochihin (2011) in
the limit of ultra-low beta (βe ∼me/mi), except the electron inertia and the coupling
to non-isothermal electron kinetics have now been lost – the price (painless to pay,
in the context of present study, because energetics are not affected) for considering
somewhat higher βe.

The system of (4.8)–(4.9) turns into RMHD (3.3) when k⊥ρi � 1: this is shown
by using 1 − Γ̂0 ≈ −∇̂

2
⊥
/2 (see (3.27)). In the opposite limit k⊥ρi � 1, using 1 −

Γ̂0 ≈ 1, one obtains the β � 1 limit of the ‘electron RMHD’ equations (ERMHD;
see S09–§ 7.2 or Boldyrev et al. 2013). In the more conventional notation involving
stream and flux functions (defined in (3.1)), they are

∂Ψ

∂t
= vA

(
1+

Z
τ

)
∇‖Φ + η∇

2
⊥
Ψ ,

∂Φ

∂t
=−

vA

2
∇‖ρ

2
i ∇

2
⊥
Ψ (4.10)

(we have dropped Jext because it occurs at large scales). The relationship between
the magnetic field and Ψ is still the same as in (3.2). While Φ is still the stream
function for the E×B velocity, this is now the velocity of the electron flow (ions are
much slower because of gyroaveraging). These equations describe what is sometimes
referred to as the turbulence of kinetic Alfvén waves (KAW) – although, like the
Alfvénic (RMHD) turbulence in the inertial range, it is expected to be strong and
critically balanced and so does not literally consist of waves (see S09–§ 7.5 and Cho
& Lazarian 2004, 2009, Boldyrev & Perez 2012, TenBarge & Howes 2012, TenBarge
et al. 2013, Boldyrev & Loureiro 2019).

If we consider cold ions, Z/τ � 1 (but not so cold as to break βe� 1), there is an
intermediate regime with

Z
τ
(1− Γ0)≈ k2

⊥
ρ2

s ∼ 1, ρs =

√
Z
2τ
ρi =

cs

Ω
, cs =

√
ZTe

mi
, (4.11)

where cs is the sound speed and ρs � ρi is the ‘sound radius’, setting a transition
scale. In this regime, the electron-pressure-gradient term (the right-hand side of (3.11))
is non-negligible and so the AW dynamics become dispersive: using (3.1) and (4.11)
in (4.8)–(4.9), we arrive at a simple modification of RMHD equations (3.3) (cf. Bian
& Tsiklauri 2009):

∂Ψ

∂t
= vA∇‖(1− ρ2

s∇
2
⊥
)Φ,

d
dt
∇

2
⊥
Φ = vA∇‖∇

2
⊥
Ψ . (4.12)

There is then a second transition in (4.8)–(4.9) at k⊥ρi ∼ 1, to ERMHD (4.10).

4.3. Linear theory
These transitions become particularly transparent if we consider the linear dispersion
relation for the system (4.8)–(4.9):

ω2
= k2
‖
v2

A
k2
⊥
ρ2

i

2

(
1

1− Γ0
+

Z
τ

)
≈


k2
‖
v2

A(1+ k2
⊥
ρ2

s ), k⊥ρi� 1,
1+ Z/τ

2
k2
‖
v2

Ak2
⊥
ρ2

i , k⊥ρi� 1.
(4.13)
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The k⊥ρi � 1 limit is the Alfvén wave with the dispersive correction due to the
electron-pressure gradient. The k⊥ρi � 1 limit is the KAW dispersion relation with
β� 1 (see S09–§ 7.3). When Z/τ� 1, it becomes ω2

≈ k2
‖
v2

Ak2
⊥
ρ2

s and so the transition
between the long- and short-wavelength frequencies is seamless. Thus, in this limit,
the transition between the AW and KAW cascades occurs at k⊥ρs ∼ 1.

4.4. Free-energy budget
The nonlinear system (4.8)–(4.9) has a conserved energy

W =
v2

th

4

∫
d3r
V

[
ϕ(1− Γ̂0)ϕ +

Z
τ
|(1− Γ̂0)ϕ|

2
+

2
βi
|∇̂⊥A|2

]
, (4.14)

which is the appropriate low-beta, g= 0 limit of (3.30). Note that, whereas δn/n does
appear in (4.14) (the second term), δB is energetically (and dynamically) insignificant
(see (4.7)).

At k⊥ρs� 1, equation (4.14) reduces to the energy of Alfvén waves

WAW =
1
2

∫
d3r
V
(|∇⊥Φ|

2
+ |∇⊥Ψ |

2)=
1
2

∫
d3r
V
(|u⊥|2 + |b⊥|2), (4.15)

conserved by RMHD (3.3). When k⊥ρs ∼ 1 but k⊥ρi� 1,

W =
1
2

∫
d3r
V
(|∇⊥Φ|

2
+ ρ2

s |∇
2
⊥
Φ|2 + |∇⊥Ψ |

2), (4.16)

the energy of the system (4.12). At k⊥ρi�1, W becomes the energy of low-beta KAW
perturbations described by (4.10):13

WKAW =

∫
d3r
V

[(
1+

Z
τ

)
Φ2

ρ2
i
+

1
2
|∇⊥Ψ |

2

]
. (4.17)

The existence of the invariant (4.14), valid uniformly at small, order-unity and large
k⊥ρi, means that no damping of anything and, therefore, no ion heating occurs at
any wavenumber, until resistivity kicks in and causes electron heating: it is easy to
ascertain that

dW
dt
= εAW −Qe, (4.18)

where εAW is given by (3.18) and Qe by (3.21). In steady state, Qe = εAW.

4.5. Energy partition in the presence of compressive cascade
In the above, we assumed the g = 0 solution for the kinetic equation (4.6). This
corresponds to a situation in which only Alfvénic perturbations are stirred up at the
largest scales: indeed, the relations (4.7) imply that the compressive fields δn and
δB peter out at k⊥ρi � 1. Let us now relax this assumption. Mathematically, this
would correspond, e.g. to restoring the external parallel acceleration term in (4.6).

13Note the typo in S09–§ 7.8, where this is derived: a missing factor of 2 in front of Φ2 in equation (246).
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The variance of the forced kinetic scalar described by (4.6) with aext 6= 0 is conserved
by the nonlinearity:

d
dt
v2

th

4

∫
d3r
V
〈g2〉r

F0
−
v2

th

2

∫
d3r
V

〈
gC[g+ 〈ϕ〉RF0]

F0

〉
r
=

∫
d3r
V

aext〈v‖g〉r = εcompr, (4.19)

where εcompr is the energy flux in the compressive cascade (cf. (3.19)). In steady state
(d/dt=0), we have a balance between this compressive input power and the collisional
terms (cf. (3.17)):

εcompr =Qi +Qx, Qx =
v2

th

2

∫
d3r
V
〈〈ϕ〉RC[h]〉r =

v2
th

2

∫
d3r
V
ϕ〈C[h]〉r, (4.20)

where Qi is given by (3.20). Thus, all the compressive energy becomes ion heat, with
the exception of the collisional energy exchange Qx with Alfvénic perturbations, which
is, as we are about to argue, small when collisions are weak. The implication is that
all the Alfvénic energy is destined, via the AW cascade smoothly transitioning into
the KAW cascade, to be dissipated into electron heat,

εAW = εKAW =Qe. (4.21)

We will confirm this directly in § 4.6.
If the collision frequency is small compared to the forcing or nonlinear-advection

time scales in (4.6), the only way for the collision terms to balance the finite energy
flux is for g to develop small scales in phase space, thus activating large derivatives
in C[h]. This is indeed what happens, as the nonlinear term successfully pushes g
towards small scales in both R and v⊥, viz., towards δv⊥/vth ∼ (k⊥ρi)

−1
� 1, via a

process known as the entropy cascade (see S09–§ 7.9). This is a route to ion heating
that requires no parallel streaming and is, therefore, the only feasible one for the
effectively 2-D kinetic equation (4.6), where the parallel streaming has been ordered
out due to low βi (cf. Tatsuno et al. 2009; Plunk et al. 2010). Recent numerical results
by Kawazura et al. (2019) appear to confirm the presence of such an ion-heating route
in low-beta GK turbulence.

The ion-heating rate Qi (see (3.20)) is positive definite and by this process it will
be rendered finite, i.e. independent of the ion collision rate, however small the latter
is. Let us estimate the size of Qx in comparison to Qi. Clearly, only the parts of ϕ
and h that vary on fine scales in position and velocity space matter in Qx and Qi, the
contribution from large scales being small because the collision frequency is small.
The GK collision operator is a diffusion operator both in velocity and position (see,
e.g. Abel et al. 2008), with the size of the position and velocity gradients comparable
in the entropy cascade. At k⊥ρi� 1, when collisions become important,

Qi ∼ v2
thνii(k⊥ρi)

2 h2

F2
0
, (4.22)

Qx ∼ v2
thνii(k⊥ρi)

3/2 h
F0
ϕ ∼ v2

thνiik⊥ρi
h2

F2
0
, (4.23)
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where νii is the ion collision frequency. Thus, Qx�Qi. Here Qx loses out compared
to Qi by one factor of (k⊥ρi)

1/2 because of the gyroaveraging under the velocity
integral of C[h] and by another factor of (k⊥ρi)

1/2 because, as will be evident from
(4.24)–(4.25), we must order ϕ ∼ Ĵ0g ∼ (k⊥ρi)

−1/2h/F0 in order for the compressive
perturbations to have any relevance. In fact, (4.23) is probably an overestimate
because Qx is not sign definite and so there will also be a tendency for the small-scale
variation within it to average out under integration. In any event, it is clear that when
collisions are weak, the collisional energy exchange can be neglected.

4.6. Effect of compressive cascade on Alfvénic cascade
For completeness, let us ascertain that the notion that non-zero g has no energetic
effect on the AW and KAW cascades is consistent with the dynamical equations
for the latter. We allow g/F0 ∼ ϕ as per (4.5). In this case, v‖Ĵ0g is still one-order
subdominant in (3.25) and δB/B is still small compared to δn/n, but there is now
a contribution from g to δn/n in (3.24). The resulting pair of equations, replacing
(4.8)–(4.9), is

∂A
∂t
+
vth

2
∇‖

{
ϕ +

Z
τ

[
(1− Γ̂0)ϕ − Ĵ0g

]}
= η∇2

⊥
A, (4.24)

d
dt

[
(1− Γ̂0)ϕ − Ĵ0g

]
−
vth

βi
∇‖∇̂

2
⊥
A= vth∇‖Jext, (4.25)

coupled to (4.6).
The quantity in the square brackets in (4.24) and (4.25) is −δn/n, so these equations

can be thought of as evolution equations of A and δn/n, the latter’s relationship to ϕ
now involving g. Alternatively, (4.25) can be recast as

d
dt
(1− Γ̂0)ϕ −

vth

βi
∇‖∇̂

2
⊥
A= vth∇‖Jext −

ρivth

2
〈{〈ϕ〉R − ϕ, g}〉r + 〈C[g+ 〈ϕ〉RF0]〉r

(4.26)
if one uses the evolution equation for Ĵ0g derived by integrating (4.6) over the velocity
space ((4.26) can also be obtained by applying the ordering (4.5) to (3.31)).14 This
emphasises the nonlinear FLR coupling of ϕ to g.

These equations support a generalised version of the (collisionless) invariant (4.14):

W̃ =
v2

th

4

∫
d3r
V

[
ϕ(1− Γ̂0)ϕ +

Z
τ

∣∣∣(1− Γ̂0)ϕ − Ĵ0g
∣∣∣2 + 2

βi
|∇̂⊥A|2

]
, (4.27)

which is the low-beta limit of (3.30), excluding the variance of g, which is still
conserved independently (see (4.19)). Indeed, using (4.26) to work out the time
derivative of the first term and (4.24) and (4.25) for the other two terms, we get

dW̃
dt
= εAW −Qe +Qx, (4.28)

14Our choice of forcing in (4.6) has ensured that the contribution of g to density is not affected and so
the compressive driving does not stir up Alfvénic perturbations.
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where εAW is given by (3.18), Qe by (3.21) and Qx in (4.20). The nonlinear terms
have vanished by cancellation and because

∫
d3r
V
ϕ〈{〈ϕ〉R − ϕ, g}〉r =

∫
d3R
V
〈ϕ〉R {〈ϕ〉R, g} = 0 (4.29)

(after swapping the order of the v and r integration and changing the integration
variable from r to R).

Combining (4.28) and (4.19), we recover the overall conservation law (3.17), as
indeed we must, because the free energy is

W = W̃ +
v2

th

4

∫
d3r
V
〈g2〉r

F0
. (4.30)

However, we now have more restrictive and, therefore, more informative energy
balances (4.20) and (4.28) (with dW̃/dt = 0 in steady state). Since, as we argued in
§ 4.5, Qx is small, we conclude that

Qi = εcompr, Qe = εAW, (4.31)

so compressive energy goes into ions, Alfvénic into electrons. Thus, while non-zero
g does insinuate itself into the dynamics of Alfvénic perturbations, there is no energy
exchange between the two cascades.

4.7. Ultra-low beta

Formally, there is an interesting very-low-beta limit that is outside the validity of our
theory so far. Namely, if βe ∼ me/mi, we can no longer use the isothermal-electron-
fluid approximation introduced in § 3.3. The equations in this case are quite similar
to (4.6) and (4.24)–(4.25), except in (4.24) there is now an electron-inertia term
and a piece of parallel pressure gradient that contains a non-zero parallel electron
temperature perturbation. The latter has to be calculated from the electron drift-kinetic
equation, thus opening up an electron-heating route via parallel heat transport and
Landau damping. With g= 0, the appropriate equations were worked out by Zocco &
Schekochihin (2011) and proved to be a useful model for numerical experimentation
(Loureiro et al. 2013, 2016; Grošelj et al. 2017); they can be generalised to g 6= 0
in exactly the same way as the system (4.8)–(4.9) was generalised in §§ 4.5 and 4.6.
There is no change in the energy partition: by the same arguments as above, the
energy of compressive perturbations goes into ions, the energy of Alfvénic ones into
electrons.

5. Reduced dynamics and heating in the Hall limit

Let us now consider the case of βe∼ 1 and βi� 1. This is the so-called Hall limit
and the derivation in §§ 5.1–5.4 is a reworking (in a slightly different order) of the
‘Hall RMHD’ (S09–§ E), which we will need for what follows and which turns out to
have some interesting consequences for the energy partition, detailed in §§ 5.5 and 5.7.
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5.1. Ordering
In this limit, since βe = Zβi/τ , the ions are cold and, as we anticipate based on § 4,
the AW physics will become dispersive at k⊥ρs ∼ 1,

Z
τ
∼

1
βi
� 1, k⊥ρs ∼ 1 ⇒ k⊥ρi ∼

√
τ

Z
∼
√
βi� 1 ⇒ k⊥di ∼ 1, (5.1)

where di = ρi/
√
βi = ρs

√
2/βe is the ion inertial scale, which is of the same order as

ρs in this limit.
We must adjust all expansions and equations accordingly. Instead of (4.3) and (4.4),

we have
A∼

ε

k⊥ρi
∼

ε
√
βi
, ϕ ∼

ε

k⊥ρi
√
βi
∼
ε

βi
. (5.2)

Since the sound speed and the Alfvén speed are of the same order in this limit, viz.,

cs =

√
ZTe

mi
= vth

√
Z
2τ
= vA

√
βe

2
∼ vA, (5.3)

the AW and the compressive modes (slow waves) have similar frequencies. This
allows us to handle both cascades simultaneously. To avoid prejudice, we order the
compressive perturbations to have similar amplitudes to the Alfvénic ones:

δn
n
∼

u‖i
vA
∼
δB
B
∼
δB⊥

B
∼ ε, (5.4)

where u‖i = v‖Ĵ0g is the parallel ion flow velocity. The requirement that (3.24)–(3.26)
be consistent with (5.4) implies that we ought to order

g
F0
∼

ε
√
βi
, Ĵ0g∼ ε, (5.5)

i.e. to lowest order, the distribution function should have no density moment.

5.2. Equations
With these orderings, (3.24)–(3.26) become, to lowest order in βi (and τ ),

g=
δn
n
−

1
2
∇̂

2
⊥
ϕ, u‖e = u‖i + vth

(
1
βi
∇̂

2
⊥
A+Jext

)
,

δn
n
=−

2
βe

δB
B
. (5.6)

The last of these equations is the balance between the magnetic and electron pressure,
ions being too cold to matter. Using this relationship in (3.10)–(3.11), we get15

∂A
∂t
+
vth

2
∇‖

(
ϕ +

2
βi

δB
B

)
= η∇2

⊥
A, (5.7)(

1+
2
βe

)
d
dt
δB
B
=∇‖

[
u‖i + vth

(
1
βi
∇̂

2
⊥
A+Jext

)]
. (5.8)

15The resistive term in (5.7) can, in fact, be legitimately retained only if resistivity becomes important
before the Larmor scale is reached. This is possible formally, but unlikely in reality.
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So all four fields A, ϕ, δB and u‖i (the latter representing g) are coupled and we need
two more equations to close the system.

One of these is (3.31), where applying the ordering of § 5.1 leads to the
disappearance of the entire right-hand side, as well as of the δB term under the
time derivative. To lowest order, therefore, we are left with a rather familiar equation
(cf. the second RMHD equation in (3.3)):

d
dt

1
2
∇̂

2
⊥
ϕ +

vth

βi
∇‖∇̂

2
⊥
A=−vth∇‖Jext. (5.9)

The last required equation is the lowest-order version of the kinetic equation (3.29):

dg
dt
= v‖∇‖

2
βi

δB
B

F0 +C[g] +
2v‖aext

v2
th

F0, (5.10)

where we again used the last equation in (5.6). This is consistent with g= 0 to lowest
order, as anticipated in (5.5). If we split off the velocity moment from g, viz.,

g=
2u‖iv‖
v2

th
F0 + G, G = 0, v‖G = 0, (5.11)

then (5.10) becomes

du‖i
dt
= v2

A∇‖
δB
B
+ aext, (5.12)

dG
dt
= C[G]. (5.13)

The first of these is the final equation that we needed to close the system comprising
already (5.7)–(5.9). The second equation, (5.13), describes a passively advected kinetic
field, which, however, is not coupled to anything and so can be safely put to zero16 –
it is the kinetic version of the MHD entropy mode, whereas the rest of our equations
describe linearly and nonlinearly coupled AW and slow waves (SW). Note finally
that (5.9) is needed because it is not possible to calculate ϕ from the first and last of
the field equations (5.6) and the kinetic equation (5.10). This is because, as assumed
in (5.5), the density moment g comes from the next-order part of g not captured
in (5.10).

It is instructive to rewrite the Hall-RMHD equations (5.7)–(5.9) and (5.12) in ‘fluid’
notation, dropping the forcing terms and resistivity (cf. Gómez, Mahajan & Dmitruk
2008):

∂Ψ

∂t
= vA∇‖(Φ + vAρHB), (5.14)

dB
dt
=∇‖(vs U − ρH∇

2
⊥
Ψ ), (5.15)

d
dt
∇

2
⊥
Φ = vA∇‖∇

2
⊥
Ψ , (5.16)

dU
dt
= vs∇‖B, (5.17)

16Unless it is explicitly forced. The forcing that we have chosen for compressive perturbations has ended
up only driving parallel ion flows. To model energy injection into G, we would need to inject, e.g. temperature
perturbations – physically this can happen if there is an equilibrium temperature gradient (see, e.g. Schekochihin
et al. 2016 or Xu & Kunz 2016), but we shall not consider such equilibria here.
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where Φ and Ψ are defined by (3.1), we have denoted

B=
δB
B

√
1+

2
βe
, U =

u‖i
vA
, (5.18)

and introduced the Hall transition scale

ρH =
di

√
1+ 2/βe

=
ρs

√
1+ βe/2

= ρi

√
Z/τ

2+ βe
(5.19)

and the SW phase speed

vs =
vA

√
1+ 2/βe

=
cs

√
1+ βe/2

. (5.20)

At k⊥ρH� 1, the Alfvénic and the SW-like perturbations decouple from each other
and revert to standard RMHD equations (see S09–§ 2.4): the AW equations (5.14) and
(5.16) become (3.3) and the SW equations (5.15) and (5.17) become

dB
dt
= vs∇‖U ,

dU
dt
= vs∇‖B (5.21)

(passively advected by the AW via d/dt and ∇‖, without energy exchange). Thus, our
new system of equations (5.14)–(5.17) captures the RMHD regime and describes its
transformation, at the Hall transition scale ρH, into one in which all four fields Φ, Ψ ,
B and U are coupled.

The system (5.14)–(5.17) also contains the low-βe limit (4.12). This corresponds to
taking the limit vs→ 0. Combining (5.15) and (5.16), we get

d
dt

(
B+

ρH

vA
∇

2
⊥
Φ

)
= vs∇‖U→ 0 ⇒ B=−

ρH

vA
∇

2
⊥
Φ. (5.22)

Using this in (5.14) and setting ρH = ρs, we get the first equation in (4.12). The
second is the same as (5.16). The parallel velocity in this limit decouples and cascades
independently:

dU
dt
= 0, (5.23)

just like G does in (5.13) and like g did in (4.6).

5.3. Free energy and heating
The conserved free energy for (5.14)–(5.17) (equivalently, for (5.7)–(5.9) and (5.12)) is

W̃ =
1
2

∫
d3r
V
[|∇⊥Φ|

2
+ |∇⊥Ψ |

2
+ v2

A(U 2
+B2)]

=

∫
d3r
V

[
v2

th

4

(
1
2
|∇̂⊥ϕ|

2
+

2
βi
|∇̂⊥A|2

)
+

u2
‖i

2
+

δB2

8πmini

(
1+

2
βe

)]
. (5.24)

The free energy has no access to G, whose variance is individually conserved, as
is obvious from (5.13). If we forced G (without breaking the ordering of § 5.1),
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the free energy injected in this way would remain decoupled and travel all through
the Hall range of scales unconcerned with the wave dynamics, eventually arriving at
k⊥ρi ∼ 1 and transiting into the sub-Larmor-scale ion-entropy cascade and eventually
into ion heat (see § 5.7.4). As we already mentioned in footnote 5.13, a natural
physical way in which G might be forced is by the presence of an ion temperature
gradient. However, there cannot be net heating of the plasma by turbulence produced
by temperature gradients: any energy thus ‘borrowed’ from the ion thermal bath may
only be redistributed between species (Abel et al. 2013). In the present case, all of
it is destined for ions.

The first two terms in (5.24) are the Alfvénic energy (4.15), conserved by the
RMHD (3.3); the last two terms are the slow-wave energy

WSW =
v2

A

2

∫
d3r
V

(
U 2
+B2

)
, (5.25)

conserved by (5.21). When βe� 1, the substitution of (5.22) turns (5.24) into (4.16),
with the U 2 part of the free energy splitting off, destined for ion heating. In contrast,
at βe ∼ 1, the decoupling between the Alfvénic and compressive cascades is broken
at k⊥ρH ∼ 1, so we can no longer conclude that the former must heat electrons and
the latter ions. In order to work out what happens (see § 5.5.4 for a preview of the
answer), we must shift our focus to k⊥ρi ∼ 1 (§ 5.7), but for that, we must first
investigate into what kind of turbulence the Hall turbulence turns at k⊥ρH� 1 (§ 5.5).
In working this out, we will find linear theory to be a valuable guide.

5.4. Linear theory
The dispersion relation is

(ω2
−ω2

AW)(ω
2
−ω2

SW)=ω
2ω2

KAW, (5.26)

where ωAW = k‖vA is the AW frequency, ωSW = k‖vs the SW frequency and
ωKAW = k‖vAk⊥ρH the KAW frequency in the Z/τ � 1 limit (cf. S09–§ 7.3). There is
no damping of anything here because ions cannot stream along the field lines as fast
as waves propagate (see (5.10)).

At k⊥ρH � 1, ωKAW � ωAW, ωSW and we recover from (5.26) four low-frequency
MHD waves

ω=±ωAW, ω=±ωSW. (5.27)

At k⊥ρH� 1, if ω�ωAW, ωSW, the linear response assumes its KAW form:17

ω=±ωKAW =±k‖vAk⊥ρH. (5.28)

This is not particularly surprising: the KAW response is the Alfvénic response with
(nearly) immobile ions – and the ion-flow terms in the two magnetic-field equations
(5.14) and (5.15) do indeed become subdominant at k⊥ρH� 1. Linearly, the KAW are
then described by

∂Ψ

∂t
= v2

AρH
∂B
∂z
,

∂B
∂t
=−ρH

∂

∂z
∇

2
⊥
Ψ . (5.29)

17As it did in the βe� 1 limit treated in § 4.3. It is also not hard to see that, at βe� 1, ωSW�ωAW
and the Alfvénic branch in (5.26) obeys the k⊥ρi� 1 version of (4.13).
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FIGURE 1. Solutions (5.33) of the Hall dispersion relation (5.26) with βe = 1.

In the Hall limit, there is nothing particularly kinetic about kinetic Alfvén waves, so
they should probably be called Hall Alfvén waves (but are sometimes called whistlers);
we shall keep the KAW moniker to avoid multiplying entities beyond necessity.

There is more to the story at k⊥ρH� 1. In this limit, besides the two KAW, (5.26)
has two other, low-frequency, solutions:

ω=±
ωAWωSW

ωKAW
=±

k‖vs

k⊥ρH
=±Ω

k‖
k⊥
≡±ωICW. (5.30)

These are oblique ion-cyclotron waves (ICW; cf. Sahraoui, Galtier & Belmont 2007).
For these perturbations, (5.14) and (5.15) become quasistatic, viz.,

B=−
Φ

vAρH
, ∇2

⊥
Ψ =

vs

ρH
U =Ω U , (5.31)

and, consequently, the linearised versions of (5.16) and (5.17) turn into

∂

∂t
∇

2
⊥
Φ =Ω

∂u‖i
∂z
,

∂u‖i
∂t
=−Ω

∂Φ

∂z
. (5.32)

It is more transparent here to go back from U (defined in (5.18)) to u‖i as the
Alfvénic normalisation is no longer physically relevant. These equations, and the
corresponding dispersion relation (5.30), are mathematically the same as the equations
and the dispersion relation for inertial waves in rigidly rotating (with angular velocity
Ω/2) neutral fluids (see, e.g. Nazarenko & Schekochihin 2011; Davidson 2013). We
shall see momentarily that the analogy survives also nonlinearly and that, therefore,
ICW turbulence displays some familiar features.

Finally, figure 1 shows the full solutions of (5.26),

ω2
=

k2
‖
v2

A

2

{
1+ σ 2

+ k2
⊥
ρ2

H ±

√
[k2
⊥ρ

2
H + (1+ σ)2][k2

⊥ρ
2
H + (1− σ)2]

}
, (5.33)

where
σ =

vs

vA
=

1
√

1+ 2/βe
(5.34)

(the only parameter in the problem). Note that there is no mode conversion, the AW
continuously turn into KAW and SW into ICW. The two curves separate ever further
at smaller βe, tending towards the limit described by (4.12) and (5.22).
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5.5. Hall turbulence at short wavelengths
The nature of Hall turbulence at k⊥ρH� 1 is determined by the the way in which fast
(KAW) and slow (ICW) perturbations interact with themselves and (potentially) with
each other.

We are dealing with a two-time-scale problem, so let us split all our fields into slow
and fast components, with ‘slow’ defined as the average of the relevant field over the
KAW period and ‘fast’ as the difference between that and the exact field:

Ψ =Ψ + Ψ̃ , Φ =Φ + Φ̃, B=B+ B̃, U = U + Ũ . (5.35)

In everything that follows, overbar will mean KAW-time-scale averaging and overtilde
will designate KAW-time-scale quantities, which average to zero (with apologies to
the reader, who should now forget what overbars and overtildes have been used for
previously). The slow quantities will represent the ICW turbulence and the fast ones
the KAW turbulence.

We shall venture an a priori guess that the two cascades will decouple completely
at k⊥ρH � 1, work out the scalings of all the fields on that basis and then confirm
a posteriori that those are consistent with such a decoupling. Namely, we anticipate
that the nonlinear version of the KAW equations (5.29) will be

∂Ψ̃

∂t
= v2

AρH∇̃‖B̃,
∂B̃
∂t
=−ρH∇̃‖∇

2
⊥Ψ̃ , ∇‖ =

∂

∂z
+

1
vA
{Ψ̃ , . . .}, (5.36)

and the nonlinear version of the ICW equations (5.32)

d
dt
∇

2
⊥
Φ =ΩvA

∂ U
∂z
,

dU
dt
=−

Ω

vA

∂Φ

∂z
,

d
dt
=
∂

∂t
+ {Φ, . . .}. (5.37)

In each case, the other two fields play a subordinate role: for KAW turbulence, from
(5.16) and (5.17),

∂

∂t
∇

2
⊥
Φ̃ = vA∇̃‖∇

2
⊥Ψ̃ ,

∂ Ũ
∂t
= vs∇̃‖B̃, (5.38)

for ICW turbulence, (5.31) hold nonlinearly, viz.,

B=−
Φ

vAρH
, ∇2

⊥
Ψ =Ω U . (5.39)

The physics of these ‘constitutive relations’ will be made transparent in (5.86). Note
that the first equation in (5.38) combined with the second equation in (5.36) also turns
into a ‘constitutive relation’ between B̃ and Φ̃ (cf. (5.22)):

∇
2
⊥
Φ̃ =−

vA

ρH
B̃. (5.40)

The pieces of the free energy (5.24) individually conserved by the systems (5.36)
and (5.37) are, respectively,

WKAW =
1
2

∫
d3r
V
[|∇⊥Ψ̃ |

2
+ v2

A B̃2
], (5.41)

WICW =
1
2

∫
d3r
V
[|∇⊥Φ|

2
+ v2

A U 2
]. (5.42)
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Here WICW is just the kinetic energy of the ion motion, perpendicular plus parallel,
whereas WKAW is the total magnetic energy plus the free energy of the electron
distribution – the latter is the δn2/n2 term in (3.16), now absorbed into B̃2 by way
of the last equation in (5.6).

We are now going to work out all the relevant scalings for KAW (§ 5.5.1) and ICW
(§ 5.5.2) turbulence, then use these scalings to confirm that (5.36)–(5.39) are correct
(§ 5.5.3), and finally propose what the energy partition in these circumstances should
be (§ 5.5.4).

5.5.1. KAW scalings
The scalings for a critically balanced cascade of KAW-like fluctuations are a

standard proposition (see S09–§ 7.5 and Cho & Lazarian 2004).18 The magnetic
energy has a constant flux εKAW, with the cascade time scale set by the magnetic
nonlinearity inside ∇‖ in, e.g. the first equation in (5.36):

(k⊥Ψ̃ )2τ−1
nl ∼ εKAW, τ−1

nl ∼ vAρHk2
⊥
B̃. (5.43)

The relationship between B̃ and Ψ̃ , and hence the scaling of field amplitudes, is then
fixed by the second equation in (5.36):

B̃∼ω−1
KAWρHk‖KAWk2

⊥
Ψ̃ ∼

k⊥Ψ̃
vA
∼

(
εKAW

ρHv
3
A

)1/3

k−2/3
⊥ , (5.44)

the last relation following from (5.43). Finally, the relationship between the wave
frequency ωKAW (and, therefore, k‖KAW) and the nonlinear decorrelation rate τ−1

nl (and,
therefore, k⊥) is set by the critical-balance conjecture:

ωKAW = k‖KAWvAk⊥ρH ∼ τ
−1
nl ⇒ k‖KAW ∼

(
εKAW

ρHv
3
A

)1/3

k1/3
⊥ . (5.45)

The two subordinate fields are found from (5.38):

Φ̃ ∼ω−1
KAWk‖KAWvAΨ̃ =

Ψ̃

k⊥ρH
, Ũ ∼ω−1

KAWk‖vsB̃=
vs

vA

B̃
k⊥ρH

. (5.46)

It follows from all this that the magnetic and velocity spectra are

EB̃ ∝ k−7/3
⊥ , Eũ ∝ k−13/3

⊥ (5.47)

(cf. Galtier & Buchlin 2007; Meyrand & Galtier 2012).

18Various theoretical considerations (Boldyrev & Perez 2012; Boldyrev et al. 2013; Meyrand & Galtier 2013;
Loureiro & Boldyrev 2017; Boldyrev & Loureiro 2019), prompted by observational evidence (Alexandrova et al.
2009; Sahraoui et al. 2010; Chen 2016), suggest that these ‘naïve’ scalings may need some subtle corrections.
We shall opt for simplicity over modernity and ignore those subtleties. We need these scalings as a vehicle
for estimating the size of KAW and ICW perturbations relative to each other and we do not believe that a
more sophisticated theory of the KAW cascade will change our conclusions in any essential way.
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5.5.2. ICW scalings
The scalings for a critically balanced ICW cascade are perhaps less well established,

but also known, in the guise of the scalings for rotating hydrodynamic turbulence
(Nazarenko & Schekochihin 2011). Assuming constant energy flux εICW and using the
first equation in (5.37), we find the Kolmogorov scaling (which is no surprise, the
nonlinear coupling being hydrodynamic):

(k⊥Φ)2τ−1
nl ∼ εICW, τ−1

nl ∼ k2
⊥
Φ ⇒ k⊥Φ ∼ ε

1/3
ICWk−1/3

⊥ . (5.48)

From either equation in (5.37),

U ∼
k⊥Φ
vA

. (5.49)

The critical-balance conjecture implies

ωICW =Ω
k‖ICW

k⊥
∼ τ−1

nl ⇒ k‖ICW ∼
ε

1/3
ICW

Ω
k5/3
⊥ . (5.50)

Interestingly, it follows from (5.50) that ICW turbulence becomes less anisotropic at
smaller scales.19 Finally, the subordinate fields (5.39) are

B∼
Φ

vAρH
∼

U
k⊥ρH

,
k⊥Ψ
vA
∼
vs

vA

U
k⊥ρH

. (5.51)

The velocity and magnetic energy spectra are, therefore,

Eu ∝ k−5/3
⊥ , EB ∝ k−11/3

⊥ (5.52)

(cf. Krishan & Mahajan 2004; Galtier & Buchlin 2007; Meyrand & Galtier 2012).

5.5.3. Decoupling of cascades
The above scalings appear to be consistent with the numerical evidence recently

reported by Meyrand et al. (2018), who solved the traditional Hall-MHD equations
that effectively describe the βe� 1 limit of our system (vs = vA and ρH = di). They
did see Eũ � EB � EB̃ � Eu ∝ k−5/3

⊥ ; the k−7/3
⊥ and k−11/3

⊥ spectra of the magnetic
perturbations associated with the two different wave modes (see (5.47) and (5.52))
had previously been extracted numerically from Hall MHD by Meyrand & Galtier
(2012) (and from a shell model by Galtier & Buchlin 2007). Unlike us, Meyrand
et al. (2018) think that the KAW turbulence is weak, rather than critically balanced,
but we consider the evidence that they present in fact consistent with the possibility
of a critically balanced KAW cascade: in particular, both their KAW fluctuations and
their ICW fluctuations have broad frequency spectra and are spatially anisotropic in a
scale-dependent way, the former becoming more anisotropic and the latter less, as k⊥
increases – in agreement with (5.45) and (5.50). They also see striking evidence that
k‖KAW� k‖ICW, which is indeed what (5.45) and (5.50) imply. Finally, and crucially,
they show quite unambiguously that energy exchange between velocity and magnetic

19Isotropy is achieved at k⊥ ∼Ω3/2ε
−1/2
ICW , known as the Zeman (1994) scale in the context of inertial

waves. This scale is, however, outside the GK ordering and so is formally smaller than any scale present in
our considerations.
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fields (and, therefore, between ICW and KAW fluctuations) peters out at k⊥di� 1, i.e.
the two cascades are energetically decoupled.

As promised above, we now confirm that the scalings of §§ 5.5.1 and 5.5.2, if
adopted as orderings, do indeed allow the two cascades to decouple (an impatient
reader willing to trust us may skip to § 5.5.4). Let

ε =
(εICWρH)

1/3

vA
∼
(εKAWρH)

1/3

vA
, δ =

1
(k⊥ρH)1/3

. (5.53)

Here ε is just the GK expansion parameter that must enter all field amplitudes.
The only non-trivial choice about ε is that εKAW ∼ εICW, i.e. that the KAW and
ICW fluctuations receive a priori comparable amounts of energy – equivalently, we
assume that the KAW and ICW amplitudes are similar at the Hall transition scale
(at k⊥ρH ∼ 1). We now use δ as a subsidiary ordering parameter for the Hall-MHD
equations (5.14)–(5.17):

k⊥Φ
vA
∼ U ∼ εδ,

k⊥Ψ
vA
∼ εσδ4, B∼ εδ4, (5.54)

k‖ICWρH ∼ εσ
−1δ−5,

ωICW

Ω
∼ εσ−1δ−2, (5.55)

k⊥Ψ̃
vA
∼ B̃∼ εδ2,

k⊥Φ̃
vA
∼ εδ5, Ũ ∼ εσδ5, (5.56)

k‖KAWρH ∼ εδ
−1,

ωKAW

Ω
∼ εσ−1δ−4, (5.57)

where σ is defined in (5.34).
Applying the decomposition (5.35) and the above ordering to (5.14), we get,

keeping two lowest orders,

∂Ψ̃

∂t
= vA

∂

∂z
(Φ + vAρHB)+ v2

AρH∇‖B̃, ∇‖ =
∂

∂z
+

1
vA
{Ψ̃ , . . .}. (5.58)

Averaging this equation over the KAW time scale gives us

vA
∂

∂z
(Φ + vAρHB)+ vAρH{Ψ̃ , B̃} = 0. (5.59)

Subtracting this from (5.58), we end up with the first KAW equation in (5.36).
Retaining the lowest order only in (5.59) results in the first ICW constitutive relation
in (5.39), assuming that we can ignore any additive corrections to this that are
constant along the magnetic field.

From (5.17), again keeping only two lowest orders, we get

dU
dt
+
∂ Ũ
∂t
= vs

(
∂B
∂z
+∇‖B̃

)
,

d
dt
=
∂

∂t
+ {Φ, . . .}. (5.60)

Averaging and using (5.59) gives us

dU
dt
= vs

(
∂B
∂z
+

1
vA
{Ψ̃ , B̃}

)
=−

vs

vAρH

∂Φ

∂z
, (5.61)
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which is the second ICW equation in (5.37). Subtracting (5.61) from (5.60) leaves us
with the second equation in (5.38), describing small parallel ion flows associated with
KAW.

Continuing in the same vein, we find that (5.15) becomes, to two lowest orders,

∂B̃
∂t
=
∂

∂z
(vsU − ρH∇

2
⊥
Ψ )− ρH∇‖∇

2
⊥
Ψ̃ . (5.62)

The average of this is

∂

∂z
(vsU − ρH∇

2
⊥
Ψ )−

ρH

vA
{Ψ̃ ,∇2

⊥Ψ̃ } = 0, (5.63)

which, to lowest order, becomes the second ICW constitutive relation in (5.39) (again
ignoring any contributions that do not vary along the magnetic field). Subtracting
(5.63) from (5.62) gets us the second KAW equation in (5.36).

Finally, (5.16) to two lowest orders is

d
dt
∇

2
⊥
Φ +

∂

∂t
∇

2
⊥
Φ̃ = vA

(
∂

∂z
∇

2
⊥
Ψ +∇‖∇

2
⊥
Ψ̃

)
. (5.64)

Its average is, via (5.63),

d
dt
∇

2
⊥
Φ = vA

∂

∂z
∇

2
⊥
Ψ + {Ψ̃ ,∇2

⊥Ψ̃ } =
vsvA

ρH

∂ U
∂z
, (5.65)

which is the first ICW equation in (5.37). Subtracting (5.65) from (5.64), we get the
first equation in (5.38) for the small perpendicular flows present in KAW.

Thus, the equations for decoupled KAW and ICW cascades, (5.36)–(5.39), which
were our basis for developing the scalings in §§ 5.5.1 and 5.5.2, can indeed
be extracted from Hall equations (5.14)–(5.17) if those scalings are assumed.20

Consistency is the least – and the most – that we can ask for in this approach.

5.5.4. Energy partition
We anticipate, and will prove in § 5.7, that the sub-Hall-scale KAW cascade all goes

into the sub-Larmor-scale KAW cascade and thence to electron heating, whereas the
ICW cascade is destined for ion-entropy cascade and thence to ion heating. Thus, in
the Hall regime, the energy partition is decided at the Hall scale ρH. While we do not
know how to determine this energy partition rigorously, a plausible conjecture can be
made.

The only parameter in the problem is the ratio σ = vs/vA (equivalently, βe: see
(5.34)). As explained at the end of § 5.2, (5.14)–(5.17) reduce to (4.12) in the limit of
σ � 1 (low βe). This happens because, sufficiently far into that limit, the finite-k⊥ρH
contribution to B from the Alfvénic fluctuations overwhelms the SW part of B (see
(5.22)), while what remains of the SW cascades independently according to (5.23),
unbothered by the Hall-scale transition. The result is again (4.31): the Alfvénic energy
goes into electrons, the compressive one into ions.

20Turbulence-theory literati might appreciate an amusing mathematical similarity between the situation that
has emerged here and the rigidly rotating MHD turbulence at large scales, which also features two co-existing
cascades – of inertial and magnetostrophic waves – with dispersion relations and, therefore, scalings similar to
ICW and KAW, respectively (Galtier 2014; Bell & Nazarenko 2019).
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In contrast, when σ ∼ 1, there are no small parameters left in the problem and all
time scales and all parts of the free energy (5.24) are of the same order at k⊥ρH ∼ 1.
At k⊥ρH � 1, Φ and Ψ fluctuations carry εAW, while U and B fluctuations carry
εcompr. On the other side of the transition, at k⊥ρH � 1, the Ψ and B fluctuations
(the magnetic energy) are picked up by the KAW cascade (εKAW) and the Φ and
U fluctuations (the kinetic energy) by the ICW cascade (εICW). It is then natural to
conjecture an equal split of the power of the original MHD cascade between εKAW and
εICW, and, therefore, between electron and ion heating – independently of the relative
size of εAW and εcompr:

Qe ∼ εKAW ∼
εAW + εcompr

2
∼ εICW ∼Qi. (5.66)

Numerical simulations of the full system (5.14)–(5.17) with external driving are
needed (and will be done) to test this reasoning. A parameter scan in σ should reveal
a gradual transition from

[
Qi/Qe

]
σ→0→ εcompr/εAW to

[
Qi/Qe

]
σ→1→ 1.

5.6. Helicities
Before, as promised, moving on to the Larmor-scale dynamics, let us, for the sake of
completeness and for the benefit of those readers who might be interested in Hall-
RMHD turbulence per se, offer some discussion of other invariants of the system
(5.14)–(5.17). Famously, Hall-MHD equations conserve two helicities, magnetic and
‘hybrid’ (Turner 1986; Mahajan & Yoshida 1998). However, in Hall RMHD, owing to
the presence of a strong background magnetic field, magnetic helicity is not conserved,
except in two dimensions:

H =
∫

d3r
V
ΨB,

dH
dt
=

∫
d3r
V

(
vsΨ

∂ U
∂z
+ vAB

∂Φ

∂z

)
(5.67)

(see S09–§ F.4 and references therein for a discussion of helicity non-conservation in
a system with a mean field). What is conserved, however, is the sum of three other
‘helicities’ present in the system, viz., the Alfvénic cross-helicity, the compressive
cross-helicity and the kinetic helicity (note that ∇2

⊥
Φ is the z component of the

vorticity of the plasma motions):

X =
∫

d3r
V

[
(∇⊥Φ) · (∇⊥Ψ )+

v3
A

vs
U
(
B+

ρH

vA
∇

2
⊥
Φ

)]
. (5.68)

Note that the Hall-MHD ‘hybrid’ helicity referred to above is then just H− (ρH/vA)X
(not conserved because H is not conserved).

In the RMHD limit (k⊥ρH� 1), X loses its last term (the kinetic helicity) and turns
into the standard RMHD cross-helicity, whose conservation reflects the energetic
decoupling of the cascades of the four Elsasser fields Φ ± Ψ and U ± B (see
S09–§ 2.7). In the opposite limit, k⊥ρH� 1, when Hall-RMHD splits into the KAW
equations (5.36) and the ICW equations (5.37), each of these systems conserves its
own piece of X:

XKAW =

∫
d3r
V
Ψ̃ B̃, XICW =

v2
A

Ω

∫
d3r
V

U∇2
⊥
Φ. (5.69)
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The first of these is the helicity of the KAW turbulence, which is in fact the cross-
helicity (5.68) by way of (5.40) and integration by parts (cf. S09–§ F.3); the second
is the kinetic helicity of the ICW turbulence – the last term in (5.68), dominant when
k⊥ρH� 1.

While XKAW or XICW being non-zero would indicate an imbalance between
counterpropagating KAW-like or ICW-like perturbations, respectively, there is no
corollary that such counterpropagating perturbations have energetically decoupled
cascades in the way that Elsasser fields do in RMHD. This is because while the
conserved quantity X is the difference between the ‘energies’ of the generalised
Elsasser fields Φ ± Ψ and U ± (B + ρH∇

2
⊥
Φ/vA), the sum of these ‘energies’ is not

the free energy (5.24) and is not conserved, and neither, therefore, are these ‘energies’
conserved individually. Note also that these fields are not the eigenfunctions associated
with the counterpropagating modes: in the k⊥ρH� 1 limit, those are vAB̃ ∓ k⊥Ψ̃ for
ω = ±ωKAW and vAU ± k⊥Φ for ω = ±ωICW. The energies of these fields are not
individually conserved either.

The presence of extra invariants does open the possibility of dual or even triple
cascades in Hall-RMHD turbulence: in particular, XKAW will cascade to larger scales if
it is injected at small scales (see S09–§ F.6; Cho & Kim 2016 and references therein),
whereas XICW is expected to cascade forward, together with the free energy (Chen,
Chen & Eyink 2003; Banerjee & Galtier 2016). Thus, the Hall-RMHD system can
offer some considerable rewards to a devoted turbulence theorist.

5.7. Larmor-scale transition
We are now going to prove that, once the KAW and ICW cascades hit the Larmor
scale, the former will be channelled into electron heating (via a sub-Larmor KAW
cascade) and the latter into ion heating (via an electrostatic ion-entropy cascade).
What follows is formally necessary, as due diligence, but a reader who is not a
particular GK aficionada need not read it if she trusts our algebra.21 Qualitative
physics discussion resumes in § 6.

5.7.1. Ordering
We continue to assume the Hall ordering of the temperature ratio versus plasma beta

(see (5.1)), but focus on scales that are of the order of the Larmor radius, a regime
that does not appear to have been studied before:

Z
τ
∼

1
βi
� 1, k⊥ρi ∼ 1 ⇒ k⊥ρH ∼ k⊥ρi

√
Z
τ
∼

1
√
βi
� 1. (5.70)

The ordering of the time scales and amplitudes must now be adjusted. How to do
this can be deduced a priori from the k⊥ρH � 1 orderings (5.53)–(5.57) by taking
them to the illegitimate extreme k⊥ρH ∼ 1/

√
βi, or δ ∼ β1/6

i . Having obtained the
orderings, we will then backtrack to the hybrid ion–electron equations of §§ 3.3
and 3.5 and derive a new set of equations valid under our new ordering.

Reverting to our old notation, we convert the δ orderings (5.54)–(5.57) into βi

orderings using δ ∼ β1/6
i , σ ∼ 1, k‖ρH ∼ k‖ρi

√
βi, and

k⊥Φ
vA
∼

k⊥ρivth

vA
ϕ ∼ ϕ

√
βi, U ∼

u‖i
vth

√
βi,

k⊥Ψ
vA
∼ k⊥ρiA∼A, B∼

δB
B

(5.71)

21This said, (5.86) and (5.89) are perhaps of some technical interest, showing the electrostatic nature of
the ICW cascade.
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(recall (3.1) and (5.18)). The resulting ordering is

ϕ ∼
u‖i
vth
∼

g
F0
∼ εβ

−1/3
i , A∼

δB
B
∼
δn
n
∼ εβ

2/3
i ,

ωICW

Ω
∼

k‖ICWvth

Ω
∼ εβ

−1/3
i , (5.72)

ϕ̃ ∼
ũ‖i
vth
∼

g̃
F0
∼ Ã∼

δB̃
B
∼
δñ
n
∼ εβ

1/3
i ,

ωKAW

Ω
∼ εβ

−2/3
i ,

k‖KAWvth

Ω
∼ εβ

1/3
i , (5.73)

where bars and tildes continue to mean averaged and fluctuating quantities over the
KAW time scale. Note that for ICW, the wave frequency and the ion streaming rate
have turned out to be the same size, whereas for KAW, the former is much larger than
the latter. This is the basic physical reason why ICW will couple into ion kinetics and,
eventually, ion heating, while KAW will not.

5.7.2. Field equations
The field equations (3.24)–(3.26) are linear, so can be split cleanly into slow- and

fast-varying parts. To lowest order (in all cases, ∼β−1/3
i for the slow fields and ∼β−2/3

i
for the fast ones), they are22

(1− Γ̂0)ϕ̃ =−
δñ
n
+

1
ni

∫
d3vĴ0g̃, (5.74)

ũ‖e
vth
=

1
βi
∇̂

2
⊥
Ã+ J̃ext, (5.75)

Z
τ

δñ
n
=−

2
βi

δB̃
B
, (5.76)

(1− Γ̂0)ϕ =
1
ni

∫
d3vĴ0g, (5.77)

u‖e
vth
=

1
βi
∇̂

2
⊥
A+

u‖i
vth
+J ext, (5.78)

Z
τ

δn
n
=−

2
βi

δB
B
+ (1− Γ̂1)ϕ −

1
ni

∫
d3vv̂2

⊥
Ĵ1g. (5.79)

The external energy-injecting currents are, in fact, supposed to represent energy
arriving from much larger scales. It is then a logical choice to set J ext = 0 and treat
J̃ext as representing the incoming KAW energy (see (5.84)). In a similar vein, we
shall, in (5.91), let ãext = 0 and treat aext as representing the incoming ICW energy.

5.7.3. Electron equations
The treatment of the electron equations (3.10) and (3.11) is completely analogous

to the treatment of their counterparts (5.14) and (5.15) in § 5.5.3. We retain terms to
two leading orders, β−2/3

i and β−1/3
i :

∂Ã
∂t
+
vth

2
∂

∂z

(
ϕ −

Z
τ

δn
n

)
=
vth

2
∇‖

Z
τ

δñ
n
+ η∇2

⊥
Ã, (5.80)

∂

∂t

(
δñ
n
−
δB̃
B

)
+
∂u‖e
∂z
=−∇‖ũ‖e, where∇‖ =

∂

∂z
− ρi{Ã, . . .}. (5.81)

22Note that since we are now using overbars to denote time averages, we have suspended the overbar
notation for ion velocity integrals and reverted to writing them explicitly.
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If these are averaged over the KAW time scale and then its average is subtracted from
each equation, we obtain, using also (5.75) and (5.76),

∂Ã
∂t
=−

vth

βi

˜
∇‖
δB̃
B
+ η∇2

⊥
Ã, (5.82)

∂

∂t

(
1+

2
βe

)
δB̃
B
= vth

˜
∇‖

(
1
βi
∇̂

2
⊥Ã+ J̃ext

)
. (5.83)

These are just the KAW equations (5.36) in different notation, but now they are valid
at k⊥ρi∼ 1, i.e. both above and below the Larmor scale. They are entirely decoupled
from ion dynamics and so the KAW energy will cascade right through the Larmor
scale and eventually dissipate into electron heat.

To restate the last point in terms of a free-energy budget, the system (5.82)–(5.83)
obeys

dWKAW

dt
+Qe = v

2
th

∫
d3r
V
∂Ã
∂t

J̃ext = εKAW, (5.84)

where WKAW is given by (5.41) (it is the same as the last two terms of (3.30), after
using (5.76)), Qe is given by (3.21) (with A→ Ã) and J̃ext now represents the KAW
cascade from k⊥ρi� 1. In steady state,

Qe = εKAW. (5.85)

Returning to the averaged versions of (5.80) and (5.81) and retaining only the
lowest order, we find

∂

∂z

(
ϕ −

Z
τ

δn
n

)
= 0,

∂u‖e
∂z
= 0. (5.86)

With the aid of (5.78) and (5.79), these are readily seen to be the k⊥ρi∼1 counterparts
of the ICW ‘constitutive relations’ (5.39). When they are written in the form (5.86),
their physical meaning becomes particularly transparent: these are statements of
Boltzmann (‘adiabatic’) electrons and zero electron current, usually associated with
the electrostatic approximation. We shall see in § 5.7.4 that the ion dynamics on ICW
time scales are indeed electrostatic.

5.7.4. Ion equations
Finally, we treat the ion GK equation (3.29) in the same manner as we did the

electron equations in § 5.7.3. To two lowest orders, it is

∂g
∂t
+
ρivth

2
{〈ϕ〉R, g} +

∂

∂t

(
g̃− v̂2

⊥
Ĵ1
δB̃
B

F0

)
+ v‖

〈
∂

∂z

(
g+

Z
τ

δn
n

F0

)
+∇‖

Z
τ

δñ
n

F0

〉
R

=C[g+ g̃+ 〈ϕ + ϕ̃〉RF0] +
2v‖〈aext + ãext〉R

v2
th

F0. (5.87)

Taking the KAW-time-scale average of (5.87) and then subtracting it from the
equation, we get

∂

∂t

(
g̃− v̂2

⊥
Ĵ1
δB̃
B

F0

)
= v‖

〈 ˜
∇‖

2
βi

δB̃
B

〉
R

F0 +C[g̃+ 〈ϕ̃〉RF0], (5.88)
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where have used also (5.76) and set ãext = 0 as promised at the end of § 5.7.2. This
is an (irrelevant) imprint of the KAW turbulence on the ion distribution function –
the FLR version of (5.38).23 Note that there is no phase mixing here, either parallel
or perpendicular, so, in a weakly collisional plasma, these small perturbations of
the ion distribution function have no means of accessing the collision operator and
thermalising.

Returning to the KAW-time-scale average of (5.87), retaining the lowest-order terms
and using the first equation in (5.86), we get

∂g
∂t
+
ρivth

2
{〈ϕ〉R, g} + v‖

∂

∂z
(g+ 〈ϕ〉RF0)=C[g+ 〈ϕ〉RF0] +

2v‖〈aext〉R

v2
th

F0. (5.89)

Together with (5.77), this is a closed system – the standard electrostatic GK equation
supporting ion hydrodynamics (5.37) at long scales (k⊥ρi� 1)24 and the ion-entropy
cascade at sub-Larmor scales (see S09–§ 7.10 and Schekochihin et al. 2008). There
is no coupling to any other dynamics and so the ICW energy arriving from k⊥ρi� 1
flows into the ion entropy cascade at k⊥ρi� 1, to become, upon reaching collisional
phase-space scales, ion heat.

For the reference of a meticulous reader, the dispersion relation that follows from
(5.89) and (5.77) is

1+ ζZ(ζ )= 1−
1
Γ0
, ζ =

ω

|k‖|vth
, (5.90)

where Z(ζ ) is the plasma dispersion function (Fried & Conte 1961). When k⊥ρi� 1
and (consequently) ζ�1, the right-hand side of (5.90) is ≈−k2

⊥
ρ2

i /2 and the left-hand
side is ≈−1/2ζ 2 (the ‘fluid’ limit). The result is the ICW dispersion relation (5.30).
When k⊥ρi∼ 1, we must have ζ ∼ 1 and the solutions of (5.90) contain heavy Landau
damping on the ions – the linear signature of ion heating.

Finally, the free-energy budget of the system (5.89) and (5.77) is

d
dt
v2

th

4

∫
d3r
V

[
1
ni

∫
d3v
〈g2
〉r

F0
+ ϕ(1− Γ̂0)ϕ

]
+Qi =

∫
d3r
V

1
ni

∫
d3v aext〈v‖g〉r = εICW,

(5.91)
where Qi is given by (3.20) (with h → h) and, as promised in § 5.7.2, aext now
represents the energy flux into the ICW cascade. In the long-wavelength limit
k⊥ρi� 1, the individually conserved piece of free energy appearing on the left-hand
side turns into the ICW free energy (5.42) plus the variance of the passive kinetic field
G (see (5.13)). The difference between (5.91) and the analogous low-βe equation (4.19)
is that the ‘kinetic-energy’ term ϕ(1 − Γ̂0)ϕ has now migrated into the ion-heating
balance (cf. (4.27) and (3.30)) (removing also the technical complications associated
with Qx). In steady state, (5.91) tells us that

Qi = εICW, (5.92)

restating again that all the ICW energy goes into ion heating.

23The first and second equations of (5.38) are recovered by taking the density and parallel-velocity moments,
respectively, of (5.88), using, in the case of the density moment, (5.83), and going to the k⊥ρi� 1 limit.

24This is again derived by taking the density and parallel-velocity moments of (5.89).
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6. Discussion
The physics of turbulent heating of low-beta GK plasmas was already summarised

and discussed at length in § 2, so we need not repeat that discussion. The headline
result is the clean separation between the Alfvénic cascade heating the electrons and
the compressive cascade the ions, at low βi and low βe (§ 4). One practical implication
is that it becomes an interesting question, not just in itself, but also for large-scale
modelling of, e.g. detectable emission from astrophysical objects (e.g. Ressler et al.
2017; Chael et al. 2019, 2018), how any particular type of MHD turbulence present
in these objects splits itself into these two cascades – the answer to this question
for, e.g. magnetorotational turbulence, is not known, although it can, in principle,
be obtained via standard fluid simulations. In the solar wind, the answer is known
observationally, if not necessarily understood theoretically: the compressive cascade
carries approximately 10 % of the energy (Howes et al. 2012; Chen 2016).

Obviously, it must be appreciated that our prediction for the energy partition is
only as good as the GK (low-frequency) approximation that has been used to make it.
The most developed theoretical scheme that breaks this approximation and provides
some significant ion heating is the so called ‘stochastic heating’, caused by turbulent
fluctuations distorting ions’ Larmor orbits (Chandran et al. 2010); other possibilities
involve various forms of cyclotron heating of the ions (e.g. Gary et al. 2005; Kasper
et al. 2008, 2013; Marsch & Bourouaine 2011; Arzamasskiy et al. 2019). Thus, our
prediction of ion heating should perhaps be viewed as a lower bound.

Let us discuss very briefly the conditions under which the stochastic heating might
take over (a more sophisticated recent take on this topic can be found in Mallet et al.
2019).

6.1. Stochastic heating
The fraction of the Alfvénic energy flux arriving to the ion-Larmor scale that gets
converted into ion heat via the stochastic heating mechanism is (Chandran et al. 2010)

Q(stoch)
i ∼ εAWe−1/δ, δ ∼

u⊥ρi

vthi
∼

1
√
βi

δB⊥ρi

B0
∼

1
√
βi

δB⊥L

B0

(ρi

L

)1/3
, (6.1)

where u⊥,ρi and δB⊥ρi are the typical velocity and magnetic perturbations at the
Larmor scale. The last estimate comes from assuming a k−5/3

⊥ spectrum of the
Alfvénic cascade (replace the exponent 1/3 with 1/4 if you prefer k−3/2

⊥ ), to refer δ
to the magnetic-field variation δB⊥L at the outer scale L. Given L and δB⊥L, which
are independent, system-specific properties, setting δ∼ 1 in (6.1) gives us an estimate
of the limitations of both the GK and low-beta limits: indeed, in the ordering of
§ 4.1, δ ∼ ε/

√
βi, so δ ∼ 1 is when these two limits clash. In the solar wind, usually,

δB⊥L/B0∼ 1 and ρi/L∼ 10−4, so, if we were to err on the side of caution, we would
start disbelieving the GK predictions for βi . 10−2, although it is not hard to play
with numbers and lower this by another factor of 10 in specific circumstances. More
careful estimates of the validity of the GK approximation can be found in Howes
et al. (2008a) and of the importance of stochastic heating in Chandran et al. (2010)
and Chandran (2010). Our purpose here is to emphasise that the constraints that we
have placed on the ion heating are pessimistic (from the ions’ viewpoint) and may
become unreliable when βi is too low.25

25Note the recent observational analysis by Vech et al. (2017) and theoretical arguments by Mallet et al.
(2019) and Hoppock et al. (2018), which suggest that stochastic heating may, quantitatively, be more important,
at higher values of βi, than previously believed.
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An interesting corollary is that there might be an intrinsic mechanism that would
prevent βi from being much lower than the stochastic-heating threshold: indeed, if
βi did drop lower, stochastic heating would become significant and channel turbulent
energy into ions, which would increase βi and shut down stochastic heating. One
could imagine some equilibrium hovering around that threshold in a system where
ions, starved of heating in the GK approximation, were able to cool down and thus
lower βi until stochastic heating turned on.

It is perhaps useful to mention two other plausible self-regulation mechanisms
implied by our considerations above.

6.2. Energy redistribution in the Hall regime
At the price of the rather long derivation in § 5, we learned that the clean energy
partition that holds at low βe breaks down at βe & 1. If, in a given low-βi system,
electrons are heated preferentially and if that preferential heating leads to electron
temperature increasing, then the system will be nudged towards the Hall limit.26 Once
Ti/Te ∼ βi (equivalently, βe ∼ 1), electrons will have to start sharing turbulent energy
with ions, probably equally (§ 5.5.4). This may mean, effectively, that Ti/Te cannot
decrease further and/or that βi will be pushed up. Thus, low-βi plasma is intrinsically
averse to electrons getting too hot.

6.3. Collisional heating
In all of the above (and, in particular, in § 4.5), we have assumed that ion collisions
are sufficiently infrequent for the collision operator to become important only at sub-
Larmor scales. If, however, ions are starved of heating and are, as a result, cooled
by some competing mechanism, their collision frequency will increase. The typical
rate at which collisional heating happens is (cf. (4.22)) τ−1

ν ∼ νii(k⊥ρi)
2. This is to

be compared with the turbulent-cascade rate: for Alfvénic turbulence, τ−1
nl ∼ k⊥u⊥ ∼

ε
1/3
AWk2/3

⊥ . Balancing the two rates gives us a ‘Kolmogorov scale’:

τ−1
ν ∼ τ

−1
nl ⇒ k⊥νρi ∼

ε
1/4
AW

ρ
1/2
i ν

3/4
ii

∝ ε
1/4
AWn−3/4

i B1/2T7/8
i . (6.2)

If Ti is so low that k⊥νρi . 1, the cascade will be dissipated by ion (perpendicular)
viscosity and ion heating will result. Again, one can imagine an equilibrium hovering
around the transition between the two regimes – collisional and collisionless.

While it is not our purpose here to propose macroscopic thermodynamic models
of any specific object, we hope that we have given a more object-oriented reader
some food for thought and perhaps even some useful information, while a fellow
kinetic-theory enthusiast might have enjoyed the ride. Some of the ideas, loose ends
and opportunities for numerical verification identified above will be picked up in our
own future work.
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