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We consider the trailing-edge vortex produced in an inviscid fluid by the start-up motion of
a two-dimensional flat plate. A general starting motion is studied that includes the initial
angle-of-attack of the plate (which may be zero), individual time power laws for plate
translational and rotational speeds and the pivot position for plate rotation. A vortex-sheet
representation for a start-up separated flow at the trailing edge is developed whose
time-wise evolution is described by a Birkhoff–Rott equation coupled to an appropriate
Kutta condition. This description includes convection by the outer flow, rotation and
vortex-image self-induction. It admits a power-law similarity solution for the (small-time)
primitive vortex, leading to an equation set where each term carries its own time-wise
power-law factor. A set of four general plate motions is defined. Dominant-balance
analysis of this set leads to discovery of three distinct start-up vortex-structure types
that form the basis for all vortex motion. The properties of each type are developed
in detail for some special cases. Numerical and analytical solutions are described and
transition between solution types is discussed. Singular and degenerate vortex behaviour
is discovered which may be due to the absence of fluid viscosity. An interesting case is
start-up motion with zero initial angle of attack coupled to power-law plate rotation for
which time-series examples are given that can be compared to high Reynolds number
viscous flows.

Key words: vortex dynamics, vortex shedding

1. Introduction

The form of the trailing-edge vortex generated when a flat-plate airfoil is accelerated
from rest is a classic flow problem in fluid mechanics (Prandtl 1924). For two-dimensional
inviscid flow, Wagner (1925) developed a linear theory describing flat-plate starting flow
at small angles of attack. But linear theory cannot generally describe the true starting
vortex at sufficiently small times for a finite initial angle of attack. A nonlinear similarity
description was developed by Anton (1939) (see also Anton 1956) who modelled the true
starting vortex in an inviscid fluid by a vortex sheet whose growth – for impulsive start
up at a finite angle of attack – followed a 2/3-power suggested earlier by Kaden (1931).

† Email address for correspondence: dpullin@caltech.edu
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For starting flow past a semi-infinite plate, improvements and refinements were made by
Wedemeyer (1961), Blendermann (1967) and Pullin (1978), while Rott (1956) developed an
analytical solution based on a single-vortex-cut model. Tchieu & Leonard (2011) analysed
a discrete-vortex model for the arbitrary motion of a finite-chord thin airfoil based on
impulse conservation. They found point-vortex motion parallel to the plate at the trailing
edge. Regularized vortex blob and vortex particle methods have been applied to the
flat-plate start-up in various settings by Koumoutsakos & Shiels (1996), Krasny (1991),
Jones (2003), Eldredge (2007), Michelin, Smith & Llewellyn (2009) and others.

Experimental studies of the starting vortex at the trailing edge include Pierce (1961),
Pullin & Perry (1980) and Auerbach (1987). These show a viscous starting vortex for a flat
plate whose centre initially moves nearly normal to the plate near the edge of separation.
Luchini & Tognaccini (2002) reported numerical Navier–Stokes solutions of viscous
starting flow about a semi-infinite plate in the self-similar reference frame suggested
by inviscid theory. They identified several flow stages that include the formation of an
attached, viscous Rayleigh layer at very early times, followed by a period of self-similar
vortex growth, after which finite-plate geometry modifies the growth profile. Nitsche &
Xu (2014) and Xu & Nitsche (2015) confirmed these findings and investigated the detailed
scaling and duration of the self-similar growth period. At sufficiently large Reynolds
number, both experimental (Pierce 1961) and some viscous simulations (Koumoutsakos &
Shiels 1996; Luchini & Tognaccini 2002) show shear-layer instabilities on the separating
spiral shear layer. Luchini & Tognaccini (2017) compared these motions with their
counterpart found in inviscid starting-vortex simulations. Xu, Nitsche & Krasny (2017)
made detailed comparisons of regularized, inviscid spiral-like solutions with viscous
simulations for the impulsive, non-rotating starting flow of a finite flat plate at Reynolds
numbers between 250 and 2000. Good agreement was reported for large-scale features of
the flow.

We consider the trailing-edge vortex produced in an inviscid, incompressible fluid
by the start-up motion of a two-dimensional flat plate. The plate moves with general
and prescribed start-up kinematics with respect to a laboratory frame. This is described
by parameters that include independent power-law translational velocity and rotational
angular velocity time dependencies and an arbitrary initial angle of attack that includes
zero angle. The centre of rotation may be any fixed point on the plate. This general
starting motion will be seen to produce a surprisingly diverse set of starting vortices whose
qualitative and quantitative structures vary within the kinematic parameter space.

Our focus is strictly on the ‘primitive’ start-up vortex at the trailing edge. By this we
mean the unique vortex structure produced at sufficiently small but positive times after
commencement of the plate starting motion in an inviscid fluid, that cancels the velocity
singularity at the plate edge. Later corrections to the vortex shape and trajectory caused
by increasingly strong interaction with the global outer flow are not considered. The
leading edge is expected to exert no influence on the primitive trailing-edge vortex, as
demonstrated for a flat plate with no rotation (Pullin & Wang 2004), and is ignored.

In § 2, we define the plate start-up motion and analyse the singular form of the
attached-flow velocity field near the trailing edge. Section 3 develops a vortex-sheet
model whose dynamics is defined by a Birkhoff–Rott equation (Rott 1956; Birkhoff
1962; Saffman 1992) in a way that satisfies a Kutta condition that the fluid velocity at
the trailing edge remains finite. A time power-law similarity solution is presented in § 4
that involves a priori unknown powers of time for both the vortex profile and circulation
growth. Using dominant balance for infinitesimally small dimensionless time (appropriate
for the primitive vortex), these powers are calculated for the four most general plate
start-up motions in § 5. This includes a discussion of degenerate behaviour for vanishing
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FIGURE 1. (a) Schematic of flat rigid plate in starting flow, showing cartoon of the trailing-edge
starting vortex. Rotation is about the plate centre, i.e. d = 0, and plate translation is at finite
angle of attack, α(t). The z-plane is fixed to the moving frame of the plate. (b) Unit circle in the
ζ = ξ + iη plane, used to calculate the starting vortex.

plate rotation. The most detailed case analysed is start-up motion with zero initial angle
of attack with rotation away from the three-quarter chord point. In § 6, time-series snap
shots are provided for the special case of start-up motion with uniform linear acceleration,
zero initial angle of attack but with finite rotational angular velocity. These can be
directly compared to high Reynolds number viscous flows, with the corresponding limits
considered in § 7. Finally, discussion and conclusions are presented in § 8.

Table 1 summarizes all vortices generated by the four general plate motions, which are
the principal findings of this study.

2. Start-up motion for a two-dimensional translating and rotating plate

The problem is formulated in the moving (non-inertial) frame of the flat and rigid
two-dimensional plate; the Cartesian coordinates (x, y) are referenced to this frame.
The plate is immersed in an unbounded inviscid fluid and located at

{(x, y) | − a(1 + d) ≤ x ≤ a(1 − d) and y = 0} , (2.1)

where the plate length is 2a and d specifies the rotational pivot point. For t > 0, the plate
moves in the (fixed) laboratory frame with linear translational speed, U(t), directed at
angle of incidence, α(t), with respect to the plate surface; see figure 1. The initial angle of
attack is α0 = α(t = 0), where 0 ≤ α0 < π/2; we note that α0 = 0 is included. The trailing
edge is located at (x, y) = (a[1 − d], 0) where the distance, ad, is the offset of the pivot
point from the half-chord point. Rotation about the three-quarter chord point corresponds
to d = 1/2. The rotational (angular) speed of the plate in the laboratory frame is Ω(t),
which is taken as positive in the clockwise direction.

We are interested in the initial motion of the primitive start-up vortex shed at the plate
trailing edge, i.e. for very small times. In the presence of both translational and rotational
plate motion, this will be seen to produce novel classes of starting-vortex solutions.

2.1. Inviscid attached flow
The streamfunction for attached flow and d = 0 is developed in Milne-Thomson (1996)
§ 9.63, page 258. For general d, in the (non-inertial) frame of reference, the streamfunction
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FIGURE 2. Streamlines generated by a flat rigid plate with a = 1, U = 1, Ω = 3, d = 0 and
α = π/4, corresponding to a plate of length 2, instantaneous translational speed of 1, rotating
with instantaneous angular speed of 3, pivot point at the plate centre and instantaneous angle of
attack of π/4, respectively. Streamlines shown in reference frame of the moving plate.

can be written as

ψ(x, y, t) = Im {Wa(z, t)} − 1
2Ω(t)(x

2 + y2), (2.2)

where z = x + iy with i being the imaginary unit, and

Wa(z, t) = A(t)
ζ

+ B(t)
ζ 2

+ U(t)(z + ad) exp(−iα(t)), (2.3a)

A(t) = ia[−aΩ(t)d + U(t) sin(α(t))], B(t) = i
4
Ω(t)a2, (2.3b)

ζ(z) = z
a

+ d +
( z

a
+ d − 1

)1/2 ( z
a

+ d + 1
)1/2

, (2.3c)

where the time dependence is due only to the plate’s kinematics in this inviscid
formulation. The subscript of Wa refers to attached flow, ζ(z) maps the exterior of the flat
plate located at C ≡ {z = x + iy | − a(1 + d) ≤ x ≤ a(1 − d) and y = 0}, to the exterior
of the unit circle, C ≡ {ζ = ξ + iη | |ζ | = 1}. An appropriate branch can be defined by
a cut connecting the branch points, z = (−a[1 + d], 0) and (a[1 − d], 0). The points,
ζ = (−1, 0) and (1, 0), map to the plate edges at z = (−a[1 + d], 0) and (a[1 − d], 0),
respectively. On C, ζ = exp(iχ) maps to the plate surface, z = a(cosχ − d). It is easily
verified that on the plate, the streamfunction is ψ = − 1

4 a2Ω(1 + 2d2) which depends on
time only. Streamlines are shown in figure 2 for translational speed, U = 1, angular speed,
Ω = 3, pivot position at the plate centre, d = 0 and angle of attack, α = π/4.
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On the starting vortex of a plate 906 A9-5

In the translating and rotating reference frame of the plate, the velocity components at a
field point, z, can be written as

u − iv = dWa

dz
− iΩ z̄, (2.4)

where the overline denotes the complex conjugate. The vorticity is zero.
In this reference frame, the x and y fluid velocity components at the plate surface are,

respectively,

u = aΩ[d cosχ − 1
2 cos(2χ)] − U sin(α − χ)

sinχ
, v = 0. (2.5a,b)

Generally, u is singular at the plate trailing edge χ = 0 (i.e. z = a[1 − d]) and leading edge
χ = π (i.e. z = −a[1 + d]). A stagnation point on the plate surface occurs when u = 0,
giving

aΩ[d cosχ − 1
2 cos(2χ)] − U sin(α − χ) = 0. (2.6)

When d = 0, U = 0,Ω /= 0 (pure rotation about the plate centre), stagnation points occur
at cos(2χ) = 0 and so χ = π/4, 3π/4, 5π/4, 7π/4. This corresponds to x = ±a/

√
2,

y = 0+ and 0−, in agreement with Milne-Thomson (1996).

2.2. Attached flow near the trailing edge
The function, Wa(z, t), has a (z/a + d − 1)1/2 singularity at the trailing edge, z = a(1 − d),
where for attached flow, the fluid velocity and pressure are both singular. We consider
spatial points near z = a(1 − d) and write

z = a(1 − d)+ ẑ, ẑ = x̂ + iŷ = r exp(iθ), (2.7a,b)

where r =
√

x̂2 + ŷ2 and θ ∈ [−π,π) is the angle made by ẑ with the positive x̂-axis.
Expanding Wa(z, t) for small r, and any term that is purely a function of time (including
constants), gives

Wa(ẑ) = −2 i
(a

2

)1/2
ẑ1/2

(
aΩ

[
1
2

− d
]

+ U sinα
)

+ ẑ (iaΩ[1 − d] + U cosα)+ O(ẑ3/2). (2.8)

The branch cut for ẑ1/2 extends from ẑ = 0 along the negative x̂ axis, i.e. along the plate.
Using (2.4), the complex velocity for the attached flow (again denoted with subscript, a)
near the trailing edge is

ua − iva = −i
(a

2

)1/2
ẑ−1/2

(
aΩ

[
1
2

− d
]

+ U sinα
)

+ U cosα + O(|ẑ|1/2). (2.9)

For rotation about the three-quarter chord point, d = 1/2, the rotational contribution
to (2.9) vanishes. More generally, it can be seen that the coefficient of ẑ−1/2 is zero
when aΩ(1/2 − d)+ U sinα = 0. Streamlines for a flow with this property are shown
in figure 3 for translational speed, U = 3/(2

√
2), angular speed, Ω = 3, rotation about

the three-quarter chord point, d = 1/2, and angle of attack, α = π/4. The plate lies on
the interval, −3/4 ≤ x ≤ 1/4 and y = 0. It can be seen that there is smooth flow off the
trailing edge, z = x + iy = 1/4. This condition will be instantaneous at t = 0+.
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FIGURE 3. Streamlines generated by a flat rigid plate with a = 1, U = 3/(2
√

2), Ω = 3,
d = 1/2 and α = π/4. (a) Full-plate view. (b) Close up near trailing edge. These parameters are
similar to those used for the flow in figure 2, except the plate now rotates about its three-quarter
chord point (rather than its centre) and has a translational speed of U = 3/(2

√
2) ≈ 1.06 (rather

than 1). Streamlines again shown in the moving reference frame of the plate.

2.3. Power law in time motion of the plate
We consider a plate whose respective translational and rotational speeds are

U(T) = U0Tm, Ω(T) = Ω0Tp, (2.10a,b)

where U0 > 0 and Ω0 > 0 are the (constant) characteristic translational and angular
velocity scales, respectively, and dimensionless time is

T = tU0

a
. (2.11)

The constants, m ≥ 0 and p ≥ 0, in (2.10a,b) are key control parameters of the plate motion
that specify its translational and rotational time dependencies, respectively.

The instantaneous angle of attack, α(T), of the plate directly follows from (2.10a,b),

α(T) = α0 + β

1 + p
T1+p, (2.12)

where α0 is the initial angle of attack. The constant parameter,

β = Ω0a
U0

, (2.13)

specifies the relative rotational-to-translational plate motion.
Impulsive pure rectilinear motion at constant angle of attack, α(t) = α0, corresponds

to m = 0 (giving U = U0 > 0) and Ω0 → 0 (Prandtl 1924); this widely studied case is
discussed in § 5.6.
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On the starting vortex of a plate 906 A9-7

3. Vortex-sheet representation of separated flow

As ẑ → 0, the attached-flow velocity becomes singular, varying as r−1/2 away from
the trailing edge where r is distance from this edge; see (2.7a,b). This can be removed
by modelling boundary-layer separation using either a vortex-sheet or a cut-point-vortex
system emerging from ẑ = 0 for t > 0. Presently, we utilize a vortex-sheet model. Our aim
is to analyse the vortex structure in the (m, p, α0, d, β) parameter space corresponding to
the translational power law, rotational power law, initial angle of attack, pivot position and
relative strength of plate rotation to translation, respectively.

3.1. Self-induced velocity of vortex sheet
In the complex z-plane, we describe the separated vortex-sheet position and motion by
the function ẑ = ẑv(Γ, t), where Γ is a Lagrangian-like variable that measures the total
amount of circulation between a point on the vortex sheet and its free edge; the subscript
v refers to the vortex sheet. For a material point on the sheet, moving with the average
of the field velocities on either side of the sheet, Γ is conserved. The dynamical motion
of the sheet is described by the Eulerian–Lagrangian Birkhoff–Rott equation (Rott 1956;
Birkhoff 1962; Saffman 1992)(

∂ ¯̂zv
∂t

)
Γ

= ua − iva + uv − ivv, (3.1)

where uv − ivv is the self-induced, sheet-image velocity that satisfies the boundary
condition on the plate, guaranteeing total circulation of the vortex–plate system is zero.
Using the image-circle theorem (Milne-Thomson 1996) to construct an image system in
the circle in the ζ -plane, that satisfies the boundary condition of zero normal velocity on
the flat plate with zero total circulation, this velocity contribution can be expressed as

uv − ivv = −
(

dζ
dz

)
ẑv

1
2πi

−
∫ 0

Γ0(t)

⎛
⎜⎜⎝ 1
ζv − ζ ′

v

− 1

ζv − 1
ζ̄ ′
v

⎞
⎟⎟⎠ dΓ ′, (3.2)

where ζv(Γ, t) = ζ(zv(Γ, t)) is the vortex-sheet curve in the ζ -plane given by (2.3c) and
ζ ′
v = ζ(zv(Γ ′, t)). In (3.2), the integral denotes the Cauchy principal value. The upper limit

of integration corresponds to the vortex-sheet free edge which is the point on the sheet that
began the separation at t = 0; the lower limit of Γ0(t) is the total circulation shed at time
t > 0 and coincides with the plate trailing edge. The first term inside the integral represents
the self-induction of the shed vortex sheet while the second term is the complex velocity
induced by the image vortex sheet, or ‘bound’ circulation.

Using (2.3c) to expand the integrand in (3.2) to leading order for |ẑv| 
 a, and
substituting the result and (2.9) into (3.1), gives the required dynamical equation
describing the vortex-sheet motion to O(ẑ1/2

v ),(
∂ ¯̂zv
∂t

)
Γ

= U cosα − i
(a

2

)1/2
ẑ−1/2
v

(
aΩ

[
1
2

− d
]

+ U sinα
)

− 1
4πi

z−1/2
v −

∫ 0

Γ0(t)

(
1

z1/2
v − z′

v
1/2

− 1

z1/2
v + z′

v

1/2

)
dΓ ′. (3.3)
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The Kutta condition, that the complex velocity at the plate edge is always finite, can be
obtained by taking the limit, ẑv → 0. Requiring that the coefficient of the singular term on
the right-hand side vanishes then gives

1
4π

∫ 0

Γ0(t)

(
1

zv1/2
+ 1

zv1/2

)
dΓ +

(a
2

)1/2
(

aΩ
[

1
2

− d
]

+ U sinα
)

= 0. (3.4)

It can be seen that both (3.3) and (3.4) contain the term, aΩ[ 1
2 − d] + U sinα, where

the time dependence of Ω , U and α have been omitted. This term is generally non-zero
at t = 0. However, if it vanishes at t = 0, then for non-zero U(t), it cannot remain at
zero for all t > 0. The special limiting case, Ω(t) → 0 and α(t) → 0, corresponds to
no starting vortex because the Kutta condition is automatically satisfied; see § 5.6 for a
general discussion of the zero rotation limit.

4. Similarity solution

4.1. Formulation
Motivated by specified time dependencies of the plate motion in (2.10a,b) and (2.12), and
hence the flow boundary conditions, we search for similarity solutions for the vortex sheet
of the form

ẑv
a

= TqZ(λ), λ = 1 − 1
J Ts

Γ

U0a
, (4.1a,b)

where q ≥ 0 and s ≥ 0 are additional power-law constants and J is a dimensionless
constant related to the total shed circulation (see (4.3)), all of which are to be determined.
The form of the second equation in (4.1a,b) is now justified.

In (4.1a,b), λ is a similarity parameter defined to take the value λ = 0 at the plate trailing
edge (point of separation), i.e.

Z(0) = 0, (4.2)

while λ = 1 corresponds to the vortex-sheet free edge. The circulation, Γ , is constant at
any material point on the vortex sheet; see § 3.1. Defining Γ0(T) = Γ at the plate trailing
edge (λ = 0), from (4.1a,b) it then follows that the total shed circulation is

Γ0(T) = U0aJ Ts, (4.3)

where J is henceforth termed the ‘shed circulation constant’.
Substitution of (4.1a,b) into (3.3) and (3.4) and utilizing (2.13) and (2.10a,b) gives, after

some algebra

Tq−1

(
qZ̄ + s(1 − λ)dZ̄

dλ

)
= Tm cos

(
α0 + β

1 + p
T1+p

)

− i
Z1/2

(
1

21/2
T−q/2Q̃(T)+ J

4π
Ts−qI(Z)

)
, (4.4)

where

I(Z) = −
∫ 1

0

(
1

Z1/2 − Z′1/2 − 1

Z1/2 + Z′1/2

)
dλ′, (4.5a)

Q̃(T) = Tpβ

(
1
2

− d
)

+ Tm sin
(
α0 + β

1 + p
T1+p

)
, (4.5b)
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On the starting vortex of a plate 906 A9-9

and the Kutta condition becomes

J
4π

Ts−q/2
∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 1

21/2
Q̃(T), (4.6)

where Z′ ≡ Z(λ′). The left-hand side of (4.4) is the time derivative on the left-hand side
of (3.3). The first term on the right-hand side is the convective free stream, while the two
terms in brackets on the right-hand side are respectively the singular attached flow and the
vortex-sheet induced velocity.

Equation (4.4) forms the basis of our analysis of the starting vortex. The control
parameters are (m, p, α0, d, β) which are to be specified; see start of § 3 for their physical
meaning.

4.2. Dominant-balance analysis
As discussed in § 1, our focus is on the primitive start-up vortex. We thus consider the limit
of small convective time, T , when performing a dominant-balance analysis of (4.4)–(4.6).
In seeking a time-dependent solution, the unsteady term on the left-hand side of (4.4)
must be retained because it represents the highest-order time derivative in the system. We
now search for dominant terms on the right-hand side that will balance the unsteady term
in powers of T in the limit T → 0+. Owing both to the structure of Q̃(T) in (4.5b) which
contains two terms, and also the trigonometric functions of α(T) in (4.4) and (4.5b), which
also have two terms, different scenarios must be considered.

The parameter space can be explored with four distinct plate motions: (a) α0 = 0 with
(i) d /= 1/2 and (ii) d = 1/2; (b) α0 /= 0 with (i) d /= 1/2 and (ii) d = 1/2. Starting flows
with d = 1/2 (rotation about the three-quarter chord point) may differ from those with
d /= 1/2 because for the former, the coefficient of β in (4.5b) is zero. Likewise flows
with non-zero initial angle of attack, i.e. α0 /= 0, will have different start-up behaviour
from those with α0 = 0. The latter will be seen to be delicate because the trailing-edge
singularity can take a weak form. In the following, we consider these four classes
by obtaining the relevant power-law growth of both the starting-vortex trajectory and
circulation.

In the next section, a detailed solution of the flow generated by the first distinct plate
motion, α0 = 0 with d /= 1/2, corresponding to zero initial angle of attack and rotation
away from the plate three-quarter chord position, respectively, is developed together with
sample numerical solutions; see § 5.1. For brevity, cursory analyses of the other three
distinct plate motions are presented in §§ 5.2–5.4 with details and numerical case studies
left to the reader.

5. Four distinct plate motions

5.1. α0 = 0, d /= 1/2
This first distinct plate motion produces the most novel starting-vortex dynamics and
is documented in detail in this section. Here, the second term in Q̃(T) in (4.5b), of
order T1+m+p, can always be neglected compared to the first term. Further, we can
take cos(α(t)) = 1 + O(T2(1+p)) = 1 to the order required. To leading order, the Kutta
condition (4.6) is then

J
4π

Ts−q/2
∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 1

21/2
Tpβ̂, (5.1)
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where the following composite parameter naturally emerges,

β̂ = β
(

1
2 − d

)
. (5.2)

For finite shed circulation, (5.1) requires

s = q/2 + p. (5.3)

The parameter p, defined in (2.10a,b), is a key control parameter specifying rotational
motion of the plate, whereas q and s describe the vortex motion and are to be determined.
Equation (4.4) therefore becomes

Tq−1

(
qZ̄ + (q/2 + p)(1 − λ)dZ̄

dλ

)
= Tm − T−q/2+p i

Z1/2

(
1

21/2
β̂ + J

4π
I(Z)

)
. (5.4)

We consider three separate cases for the primitive start-up vortex, i.e. for T 
 1, which
we denote Type I, Type II and Type III, respectively.

5.1.1. Type I vortex sheet
We first examine when rotational motion of the plate dominates convection due to

its translation. For kinematic reasons, we expect the vortex-sheet roll-up centre to be
shed (approximately) normal to the plate’s trailing edge. This corresponds to a dominant
balance between the left-hand side and the second term on the right-hand-side of (5.4).
Equating powers of T and using (5.3) gives q = 2(1 + p)/3 and s = (4p + 1)/3. For the
first term on the right-hand side of (5.4) to remain subdominant, we require m > q − 1,
i.e. m > (2p − 1)/3. Substituting these results into (4.1a,b) and (4.3) provides the required
solution,

ẑv
a

= T2(1+p)/3Z(λ), Γ̃ ≡ Γ0(T)
U0a

= J T (1+4p)/3, for m >
2p − 1

3
, (5.5a,b)

where Z(λ) and the shed circulation constant, J , are now determined by the
integro-differential equation (IDE) obtained by retaining the dominant terms in (5.4),

2
3
(1 + p)

(
Z̄ + 4p + 1

2( p + 1)
(1 − λ)dZ̄

dλ

)
= − i

Z1/2

(
1

21/2
β̂ + J

4π
I(Z)

)
, (5.6)

subject to the initial condition, (4.2), and the Kutta condition

J
∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 2

√
2πβ̂. (5.7)

The change of variables

J = AJ, Z = Bω, (5.8a,b)

where

A =
(

3β̂4

1 + p

)1/3

, B = 1
2

(
3β̂

1 + p

)2/3

, (5.9a,b)
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On the starting vortex of a plate 906 A9-11

maps (5.6) and (5.7) into (35) and (36) of Pullin (1978) (with n = 1/2), reproduced here
as

ω̄ + 4p + 1
2( p + 1)

(1 − λ)dω̄
dλ

= − i
ω1/2

(
1 + J

2π
I(ω)

)
, (5.10)

with ω(0) = 0 (see (4.2) and (5.8a,b)) and the Kutta condition is

J
2π

∫ 1

0

(
1
ω1/2

+ 1
ω̄1/2

)
dλ = 1, (5.11)

which eliminates the composite parameter, β̂.

5.1.2. Numerical method
Numerical solutions displayed in figure 9(a) of Pullin (1978) show the starting-vortex

shape in the ω variable corresponding to Type I starting vortices. The solution for
impulsive start up was later independently verified by Jones (2003). Solutions are
re-calculated here using the numerical method of Pullin (1978), for which we now provide
a brief summary. The vortex sheet is divided into two parts. The first is a continuous
section in 0 ≤ λ ≤ λN represented by N straight segments with the first segment joined
to the plate trailing edge. The second is an inner section modelled by a point vortex of
strength, J(1 − λN), located at ω = ωN+1 that is joined to the end of the continuous section
by a cut in the ω-plane from ω(λN) to ωN+1. A finite-difference form of the IDE in (5.10)
is satisfied at the midpoint of each segment of the continuous sheet using a two-point rule
for derivatives and a trapezoidal rule for the Cauchy principal value integrals, giving 2N
equations. This involves some error owing to neglected logarithmic corrections arising
from proximity of a point on the sheet to nearby segments on adjacent spiral turns. This,
however, is mitigated by cancellation because most points lie inside a tightly wound spiral
with many individual turns on either side. On the inner portion, point-wise solution of
the IDE is replaced by implementing an integrated form of the IDE over λN ≤ λ ≤ 1,
providing two further equations. This is equivalent to requiring zero total force on the
cut-isolated vortex system (Rott 1956). A similar representation of the Kutta condition is
used leading a total of 2(N + 1)+ 1 equations.

The discrete implementation does not fix a discrete set, λi (i = 1, . . . ,N), and then
solve for ωj ( j = 1, . . . , 2(N + 1)) and J. Instead, on the inner portion of the sheet, a
transformation to polar coordinates centred on ωN+1 is utilized. With fixed polar angles
for points on the sheet (relative to this chosen but unknown centre), the 2(N + 1)+ 1
unknowns become a set of radii |ωN+1 − ωj| and λj, j = 1, . . . ,N, ωN+1 and J. This
method enhances robustness because the number of discrete points per sheet turn can
then be easily controlled. The set of 2(N + 1)+ 1 nonlinear equations are solved with a
Newton–Raphson method. The numerical method is implemented in Fortran, as originally
coded for Pullin (1978) (personal hard copy (1978), modified for the present work).

Numerical solutions are given in figure 4 for three cases: constant impulsive angular
speed, p = 0, linearly increasing angular speed, p = 1, and the asymptotic angular speed
limit, p → ∞. These are obtained with N = 2400 points on the vortex sheet and each
contain about 33 individual sheet turns (around the vortex core) with approximately 70–80
points on each turn. The inner portion of the rolled-up sheet is asymptotic to a tightly
wound algebraic spiral whose structure, including the spacing between turns, depends
on the plate rotational control parameter, p (Kaden 1931; Pullin 1978). The choice of 33
sheet windings is more than sufficient for numerical solutions to reach this asymptotic
form; see figure 5 and (22) of Pullin (1978). In the sheet shape depictions, we show a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.762


906 A9-12 D. I. Pullin and J. E. Sader

–0.4 –0.4 –0.40

0

0.2

0.4

0.6

0.8

0 0

Re(ω)

Im
(ω

)

Re(ω) Re(ω)

(b)(a) (c)

FIGURE 4. Examples of Type I vortex-sheet solutions. These are a family with parameter, p.
Solutions are given for (a) p = 0, (b) p = 1, (c) p → ∞. For the plate motion described in § 5.1,
this solution gives the sheet shape corresponding to zero initial angle of attack, α0 = 0, pivot
point away from the three-quarter chord position, d /= 1/2, and plate rotation dominating its
translation, m > (2p − 1)/3, where m and p are the plate translation and rotation power laws,
respectively. Results shown in the ω-plane, which is a uniformly scaled version of the Z-plane;
see (5.5a,b) and (5.8a,b).

straight line joining the end of the continuous part of the sheet to the central point vortex
located at ωN+1, which is taken as the centre of roll up. This can be seen in figure 4(a)
for p = 0. The branch cut starts at the point vortex, runs along this line to the free end
of the vortex sheet, then along the spiral sheet to the plate trailing edge and finally along
the plate to its leading edge. In figure 4(a), λ2400 = 0.8936 meaning that the (curved)
vortex sheet carries 89 % of the total circulation, while the central point vortex carries
the remaining 11 %. For p = 1 in figure 4(b), 1 − λ2400 = 0.0077 so that the central
point vortex carries less than 1 % of the total shed circulation. Figure 4(c) gives results
for p → ∞ with 1 − λ2400 = 1.4319 × 10−8; for comparison, 1 − λ2399 = 1.4397 × 10−8

illustrating the convergence with N. Details of numerical convergence with respect to
both mesh refinement along the sheet and the number of spiral turns are given in the
Appendix.

For the present case, plate rotation is dominant over its translation. Indeed, our finding
that (5.10) and (5.11) are independent of the composite parameter, β̂, is consistent with
this restriction, i.e. the geometrical structure of Type I vortex sheets do not depend on the
relative strength of plate rotation-to-translation speeds; they are also independent of the
rotational position, d.

We emphasize that Type I vortex sheets are a one-parameter family of curves and J
values that depend on the rotational power law, p. In addition to α0 = 0 studied here,
it will be seen in §§ 5.3 and 5.4 that these Type I vortex-sheet solutions describe all
possible starting vortices for non-zero angle of attack, 0 < α0 < π/2, with one exception
(discussed end of § 5.3).

5.1.3. Type II vortex sheet
Next, we study when translational convection dominates rotational motion of the plate.

This corresponds to a dominant-balance analysis between the left-hand side and the first
term on the right-hand side of (5.4). Equating powers of T in these terms then gives
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On the starting vortex of a plate 906 A9-13

q = 1 + m and hence s = p + (m + 1)/2 via (5.3). A sub-dominant second term on the
right-hand side of (5.4) requires m < −q/2 + p which is equivalent to m < (2p − 1)/3.
Hence,

ẑv
a

= T1+mZ(λ), Γ̃ ≡ Γ0(T)
U0a

= J Tp+((1+m)/2), for m <
2p − 1

3
, (5.12a,b)

where Z(λ) is determined by solution to the linear differential equation,

(1 + m)Z +
(

p + 1 + m
2

)
(1 − λ)dZ

dλ
= 1, (5.13)

subject to the initial condition in (4.2). Here, owing to the subdominant vortex-induction
term in (5.4), the Kutta condition (5.1) decouples from (5.13) and can be expressed as

J =
√

2πβ̂

(∫ 1

0
Z−(1/2) dλ

)−1

. (5.14)

Equations (5.13) and (5.14) have the exact solution

Z(λ) = 1
1 + m

(
1 − (1 − λ)b) , (5.15a)

J = β̂

√
2π

1 + m

Γc

(
1 + p

1 + m

)

Γc

(
3
2

+ p
1 + m

) , (5.15b)

where

b = 2(1 + m)
1 + m + 2p

, (5.16)

and Γc is the complete gamma function (not to be confused with the circulation Γ0). The
solution for Z(λ) in (5.15a) lies on the real axis and thus corresponds to a vortex sheet that
is strictly parallel to plate (even as it rotates). We now explore how this vortex-sheet rigid
body rotation arises.

Importantly, there is a weak singularity in the attached flow at the plate trailing edge
which must be cancelled by finite shed circulation. Since the effect of the shed circulation
and its image is still felt by the separated flow, this leads to rigid body rotation of the
vortex sheet in concert with that of the plate. The overall result is that the vortex-sheet
shape growth (5.15a) does not depend on the rotation parameter, β̂, but the shed circulation
retains dependence to order β̂. The separation is convection dominated but (rigid body)
rotational effects remain. The solution includes the limiting case of vanishing initial angle
of attack, α(t) → 0, and plate rotation, β̂ → 0, where the plate slices through the fluid
parallel to its plane with zero shed circulation. The vortex sheet still forms and moves with
the same speed, but its circulation is O(β̂), and thus vanishingly small as β̂ → 0.
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A (dimensional) circulation centroid can be calculated,

〈x̂〉 = aT1+m
∫ 1

0
Z(λ) dλ = aT1+m 3

3 + 3 m + 2p
, (5.17)

while the (dimensional) velocity jump at the trailing edge is

γ = U0J
(

p + 1 + m
2

)
Tp−((1+m)/2), (5.18)

and is finite.
Type II vortex sheets are similar but not identical to point-vortex solutions obtained

by Tchieu & Leonard (2011) who use an impulse-conserving formulation. Importantly,
Type II solutions exist only for zero angle of attack, α0 = 0 (the case studied here), with
one exception discussed in the last paragraph of § 5.3.

5.1.4. Type III vortex sheet
The form of Type I and Type II vortex-sheet solutions above shows that, for fixed and

finite β̂, the solution changes discontinuously and remarkably as a state point in the (m, p)
plane crosses the line, m = (2p − 1)/3:

(a) Type I (m > (2p − 1)/3): a vortex-induction dominated, separated, spiral sheet
exists, whose line joining the centre of roll-up to the plate trailing edge makes an
angle with the positive x axis greater than π/2, i.e. the vortex core sits over the
plate.

(b) Type II (m < (2p − 1)/3): a flat vortex sheet arises that separates parallel to the plate
that undergoes rigid body rotation with the plate.

On the line, m = (2p − 1)/3, a third class of vortex sheet exists that forms an
intermediate vortex-state transition (VST) between Types I and II. This is referred to
as a Type III vortex sheet. With m = (2p − 1)/3, all terms in (5.4) then have the same
power exponent of T and balance, i.e. the contributions of translational convection and
rotational motion of the plate balance precisely. The governing equation for Type III is
nearly identical to (5.6), except it contains an extra term equal to unity on the right-hand
side. Again using the change of variables in (5.8a,b), (5.4) becomes

ω̄ + 4p + 1
2( p + 1)

(1 − λ)dω̄
dλ

=
(
(1 + p)β̂2

3

)−(1/3)

− i
ω1/2

(
1 + J

2π
I(ω)

)
, (5.19)

while the Kutta condition (5.1) remains identical to (5.11). Here, the composite
parameter, β̂, cannot be scaled out, and so solutions will depend on its value. We
therefore immediately see that the flow at this singular condition, m = (2p − 1)/3, where
convection and rotation balance, produces novel separation-flow physics.

Numerical solutions to (5.11) and (5.19) are given in figures 5–7, for the example case
of impulsive and constant translational plate speed, m = 0, and a time varying angular
speed with p = 1/2. The numerical method described previously for Type I solutions is
used, where a vortex discretization of N = 1, 220 is found to be sufficient for convergence
(see the Appendix). Vortex sheets displayed in figures 5–7 have 15 turns on the continuous
sheet, which again is sufficient to capture the Kaden, inner asymptotic form. We show the
properties of solutions in both the (stretched) ω and (unscaled) Z planes. Although these
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0
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1 2 3 4 5
Re(ω)

Im
(ω

)

FIGURE 5. Type III vortex sheets (plate rotation balancing its translation) for zero initial angle
of attack, α0 = 0, impulsive and constant translational plate speed, m = 0, pivot point away from
the three-quarter chord position, d /= 1/2, with angular speed power law, p = 1/2. Vortex sheets
with visible cores (left to right): β̂ → ∞ and β̂ = 1, 0.5, 0.3, 0.2. Vortex sheets with cores not
visible at Re{ω} = 6 (top to bottom): β̂ = 0.1, 0.05, 0.01. Results shown in the ω-plane.

are simply rescaled versions of each other, we show both because – owing to their
respective divergences – the limiting solution for β̂ → ∞ cannot be depicted using the
Z(λ)-description, while the solution for β̂ → 0 cannot be shown graphically using the
ω(λ) function.

In figure 5, the vortex-sheet profiles are plotted in the ω-plane for β̂ → ∞ and
β̂ = 1, 0.5, 0.3, 0.2. The limit, β̂ → ∞, corresponds to a Type I solution, i.e. the plate
rotational motion dominates translational convection. As β̂ decreases, the vortex core
moves downstream while becoming more compact. When β̂ → 0, the vortex core moves
further downstream and approaches infinity on the real ω axis, with distance increasing
as β̂−2/3. This scaling relation follows from (5.8a,b), together with the result (to be shown
subsequently in this subsection), that at the vortex-sheet free edge (λ = 1), Z → 1 + 0i
as β̂ → 0. This shows the transition from rotation-dominated to convection-dominated
separation. It can also be observed in figure 5, that the height of the vortex centre appears
almost constant (occurring at Im{ω} ≈ 0.75) for solutions with β̂ = 0.5, 0.3, 0.2. As
β̂ decreases further, however, numerical solutions (not displayed) do show a weak but
definite decrease in this height (in the ω-plane), e.g. the centre of roll up when β̂ = 0.001
occurs at ω = 199.93 + 0.3240i.

Figure 6(a) shows vortex-sheet profiles in the Z-plane while figure 6(b) focuses on
behaviour near the plate trailing edge for very small β̂. In the Z-plane, the vortex-sheet
extent become infinitely large as β̂ → ∞. As β̂ decreases, the sheet contracts in extent
while the size of the rolled-up core reduces in size in comparison with the distance of
the roll-up centre from the trailing edge. When β̂ → 0, the centre approaches Z = 1 + 0i
which, from (5.15a), corresponds to the flat sheet edge for a Type II vortex sheet with
m = 0. For all finite β̂, there exists a tightly wound spiral section containing an infinite
number of sheet turns. This is where vortex self-induction remains locally dominant over
convection. Figure 7 shows two close-up portraits of the vortex-sheet profile in the Z-plane
for β̂ = 1 and 0.001. The general structure is similar. At the centre of roll up, both have
the form of a Kaden spiral with small elliptical corrections of the type discussed by Moore
(1975) and Guiraud & Zeytounian (1977).

Approach of Type III to the limiting Type II vortex sheet is illustrated in figure 8. This
shows Cartesian coordinates of the vortex sheets, X(λ) = Re{Z(λ)} and Y(λ) = Im{Z(λ)},
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FIGURE 6. Type III vortex sheets, as for figure 5, but now including smaller values of β̂ and
shown in the Z-plane. (a) Top left to bottom right: β̂ = 10, 5, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.01.
(b) β̂ = 0.1, 0.05, 0.01, 0.001, with dashed horizontal line provided for reference only.

Re(Z )

Im
(Z

)
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0.9995 0.9996 0.9997 0.9998

0.0015

0.0016
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(b)(a)

FIGURE 7. Close ups of Type III vortex sheets in figure 6, for (a) β̂ = 1, (b) β̂ = 0.001. For
comparison, the vortex sheets are plotted on identical square domains of size, 0.3β̂ × 0.3β̂.

where λ = 0 and 1 coincide with the plate trailing edge and vortex-sheet free edge,
respectively, as function of β̂. From (5.15a), the Type II solution is simply, Z = λ,
i.e. a horizontal line of finite length, for the plate control parameters studied in figures 5
and 6, i.e. m = 0 and p = 1/2. Approach of the Type III vortex sheet to the limiting Type II
sheet, as β̂ → 0, is clear in figure 8: X(λ) asymptotes to the required straight line of slope
one and Y(λ) approaches zero. Notably, for any small and non-zero β̂, there exists a small
region near λ = 1 where rapid and decaying oscillations occur. This corresponds to roll-up
near the vortex-sheet free edge, which approaches this free edge and vanishes in the limit
of small β̂. The small straight lines that can be seen in figure 8 near λ = 1 represent the
inner portion of the numerical sheet model, where its end is joined to the central point
vortex.

Finally, we study the shed circulation constant, J , defined in (4.3). For a Type II vortex
sheet, with the example control parameters, m = 0 and p = 1/2, used in this section,
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R
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FIGURE 8. Type III vortex sheets, as for figure 5, showing their Cartesian coordinates for
β̂ = 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.01. (a) X(λ) = Re{Z(λ)} with β̂ decreasing bottom to top,
(b) Y(λ) = Im{Z(λ)} with β̂ decreasing top to bottom. Limiting Type II solution: Z(λ) = λ+ 0i.

(5.15b) gives

J
β̂

∣∣∣∣
T ype II

=
√

π

2
Γc
(

3
2

)
Γc (2)

= π

2
√

2
≈ 1.11072. (5.20)

In contrast, the dependence of J on β̂ for a Type III vortex sheet follows from (5.8a,b)
and (5.9a,b),

J
β̂

∣∣∣∣
T ype III

= 1
2
β̂1/3J(β̂), (5.21)

where J(β̂) is determined numerically. Figure 9 gives numerical results for the Type II
solution in (5.21); the Type III formula, (5.20), is the dashed horizontal line. Again the
approach of the Type III formula to the limiting Type II solution as β̂ → 0 is clear. For
β̂ → ∞, J(β̂) → 2.3551 and so from (5.21) we obtain

J
β̂

∣∣∣∣
T ype III

≈ 1.178β̂1/3, β̂ � 1, (5.22)

which is shown as the dash-dot line in figure 9.

5.1.5. Special case: impulsive and constant translational plate speed
We consider the special case where the plate translates impulsively at constant speed,

i.e. m = 0, and examine the vortex transitions as the plate rotational power-law, p, is
varied. For a fixed relative strength of plate rotation to translation, β (and hence β̂), and
a rotational power law in the range, 0 ≤ p < 1/2, the starting vortex is always of Type I.
The numerical solutions in the ω-plane for Type I vortices in figure 4 are independent
of m and β̂, by definition, and thus applicable here. These show that the line joining the
vortex centre to the plate trailing edge is approximately normal to the plate, at an angle to
the plate that decreases slightly with increasing p. The vortex position above the plate and
its circulation grow with power laws of the dimensionless time equal to 2(1 + p)/3 and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.762


906 A9-18 D. I. Pullin and J. E. Sader

10210010–2
0

2

4

6

β̂

J/
β̂

FIGURE 9. Shed circulation constant, J , as a function of β̂ for a Type III vortex sheet, with
plate control parameters as specified in figure 5. Dots obtained using (5.21) for Type III vortex
sheet are valid for all β̂. Type III high β̂ solution is dot-dashed line. For comparison, Type II
solution in (5.20) is horizontal dashed line.

(1 + 4p)/3, respectively. As p → 1/2−, these Type I power laws both approach unity, i.e.
linear growth in time occurs.

The change from p → 1/2− to p = 1/2 provides a discontinuous transition to a
new state for which the Z(λ) profiles are of Type III as shown in figure 6, for two
particular values of β̂. For p = 1/2, both the vortex position and circulation growth remain
proportional to time, but the vortex shedding angle (to the plate) increases with β̂, i.e.
the vortex moves downstream. A further discontinuous transition occurs from p = 1/2 to
p → 1/2+. The vortex trajectory is then of Type II, i.e. parallel to and downstream of the
plate, and remains so for p > 1/2. Its flat Z(λ) profile is independent of β̂ in contrast to
its circulation. The circulation grows with a time power law of p + 1/2. This behaviour
is close, but not identical to that predicted by Tchieu & Leonard (2011). Moreover, in the
present model this transition occurs only for α0 = 0, i.e. zero initial angle of attack.

Consequently, the vortex trajectory and circulation growth are both twice discontinuous
as p passes through p = 1/2 with β̂ fixed. This vortex-state change Type I → Type III →
Type II with increasing p, appears to be a consequence of the change in strength of the
weak attached-flow singularity at the trailing edge. We give numerical results in § 6 that
may form the basis for future high Reynolds number viscous flows designed to test for the
existence of this vortex-state transition.

5.1.6. General case: accelerating translational plate motion
Finally in this section, we study the general case where the plate translational speed

varies with time, i.e. m ≥ 0; this includes constant translational speed explored in
§ 5.1.5. For a Type I vortex sheet, the ratio of the (neglected) convective term to the
vortex-induction term in (5.4), i.e. the first and second terms on the right-hand side of
(5.4), respectively, is R ∼ Tm−(2p−1)/3. Suppose p = (1 + 3m)/3 − 3ε/2 where 0 < ε 
 1,
i.e. near the VST point where the first and second right-hand side terms of (5.4) balance,
then R ∼ Tε . Now let T = 10−c where c > 0, giving R ∼ 10−cε . Dominance of vortex
self-induction over convection in a Type I vortex sheet, i.e. R 
 1, then requires c � ε−1.
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Hence, as the VST point is approached, i.e. ε → 0, we find c → ∞, leading to T → 0.
That is, a Type I vortex sheet can be uniquely distinguished only over a vanishingly small
start-up flow time. Nonetheless, this also shows that for any small but finite ε, i.e. a ‘finite
distance’ from the VST point, there exists a sufficiently small start-up time window where
a Type I vortex sheet will be observable. Similar arguments can be constructed for the
transition from a Type II to III vortex sheet, by choosing p = (1 + 3m)/3 + 3ε/2 for
finite β̂.

Next, we turn our attention to the three remaining distinct plate motions, but study them
in less detail than provided in the present section for α0 = 0, d /= 1/2.

5.2. α0 = 0, d = 1/2
This corresponds to a plate with zero initial angle of attack, α0 = 0, that is rotating about
its three-quarter chord point, d = 1/2. Here, the term in (4.4) that drives circulation growth
becomes, Q̃(T) = β(1 + p)−1T1+m+p, plus higher-order terms in the limit of small T (see
(4.5b)), and we similarly expand cos(α(t)) = 1 + O(T2(1+p)) = 1, to the order required.
Balancing the Kutta condition, (4.6), then gives

s = q
2

+ m + p + 1, (5.23)

and (4.6) becomes
J
4π

∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 1

21/2

β

1 + p
. (5.24)

Substituting (5.23) into (4.4) gives

Tq−1

(
qZ̄ +

[q
2

+ 1 + m + p
]
(1 − λ)dZ̄

dλ

)

= Tm − T−(q/2)+1+m+p i
Z1/2

(
1

21/2

β

1 + p
+ J

4π
I(Z)

)
. (5.25)

Again, there are three flow types. The first arises from a dominant balance between
the left-hand side and the second term on the right-hand side of (5.25), i.e. a plate
rotation-dominated flow. This gives q = 2(2 + m + p)/3 and s = (5 + 4m + 4p)/3 with

ẑv
a

= T (2/3)(2+m+p)Z(λ), Γ̃ = J T (1/3)(5+4m+4p), for m > 1 + 2p, (5.26a,b)

where Z(λ) and the shed circulation constant, J , are determined from the solution of an
integro-differential equation similar to (5.1) and (5.6).

A plate translation-dominated flow is obtained by performing a dominant balance
between the left-hand side and the first term on the right-hand side of (5.25), giving
q = 1 + m and s = 3(1 + m)/2 + p, with

ẑv
a

= T1+mZ(λ), Γ̃ = J T (3/2)(1+m)+p, for m < 1 + 2p, (5.27a,b)

where Z(λ) and J are obtained from solution of a linear system similar to (5.13) and
(5.14), giving a Type II vortex sheet. The balance, m = 1 + 2p, gives a Type III vortex
sheet similar to that described earlier but with different power laws and constants; details
are left to the reader.
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5.3. α0 /= 0, d /= 1/2
We now consider a plate with non-zero initial angle of attack, α0 /= 0, that is rotating away
from its three-quarter chord point, d /= 1/2. The Kutta condition, (4.6), to leading order in
T is

J
4π

Ts−(q/2)
∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 1

21/2

(
Tpβ̂ + Tm

[
sinα0 + T1+p β

1 + p
cosα0

])
.

(5.28)

We again consider three cases:

(a) p < m: Suppose the plate rotation power law is less than that for plate translation,
i.e. p < m, and recall that m, p ≥ 0. Then from (5.28), dominant balance gives
s = q/2 + p. The T power laws of the second and third terms in (4.4) are both
−q/2 + p. A dominant balance between the left-hand side of (4.4) and these two
terms now gives q = 2( p + 1)/3 and s = (4p + 1)/3. Thus, the Tm term in Q̃ in
(4.5b) is subdominant. The first term on the right-hand side of (4.4) again is always
subdominant for m > 0. This case is identical to (5.6) and (5.7) (zero initial angle of
attack) and gives a Type I vortex sheet, i.e. the start-up motion is rotation dominated.

(b) p > m: Now consider the opposite case. From (5.28), the first term on its
right-hand side is subdominant, giving s = q/2 + m. The T power-laws of the
second and third terms on the right-hand side of (4.4) are both −q/2 + m.
A dominant balance between the left-hand side of (4.4) and these two terms then
gives q = 2(m + 1)/3 and s = (4m + 1)/3; the first term on its right-hand side is
always subdominant for m > 0. This case is identical to (5.6) and (5.7) with p and
β̂ replaced by m and sinα0, respectively. This gives a Type I vortex sheet, but one
that is convection dominated due to non-zero angle of attack (rather than rotation
dominated). This is equivalent to a start-up flow with no plate rotation, β̂ = 0, and
non-zero angle of attack, α0 > 0 (Pullin 1978).

(c) p = m: This case is delicate, and we first consider β̂ + sinα0 /= 0. The T1+p term
on the right-hand side of (5.28) is subdominant. Both surviving terms on the
right-hand side of (5.28) balance while the term proportional to Tm in (4.4) remains
subdominant. This is the same as p < m in case (a) above with β̂ replaced by
β̂ + sinα0, i.e. a Type I vortex sheet that arises from a balance between convection
and rotation. As a parameter point in (m, p) space crosses the line m = p, the
T power laws and the Type I vortex sheet solution are continuous. However,
Z(λ) will always be twice discontinuous and the dominant physics will change
from rotation-dominated (case (a)) to rotation-convection balanced (this case) to
convection dominated (case (b)).

Next, we study p = m but now with β̂ + sinα0 = 0. Here, the right-hand side of (5.28)
and Q̃ in (4.5b) are proportional to T1+2p, to leading order. Equation (5.28) then gives,
s = q/2 + 2p + 1. Now consider a dominant balance between the left-hand side and the
second and third terms of (4.4). A short calculation gives

q = 4
3(1 + p), (5.29)

and s = (5 + 8p)/3. For the convective (first) term on the right-hand side of (4.4) to
be subdominant relative to its left-hand side, we require p > q − 1. Substituting (5.29)
into this inequality then gives p < −1, which violates the overriding constraint, p ≥ 0,
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in (2.10a,b). Hence, these solutions do not exist. The other possibility is a balance between
the left-hand side and the convective term on the right-hand side of (4.4). This gives
q = 1 + p and s = (3 + 5p)/2, leading to a Type II convective-dominated starting vortex.
This is the exceptional case where a Type II solution exists for α0 /= 0.

5.4. α0 /= 0, d = 1/2
Finally, we study d = 1/2 where the rotation pivot is at the three-quarter chord point, with
non-zero initial angle of attack, α0 /= 0. Here, the second terms in the arguments of the
cosα(t) and sinα(t) in (4.4) and (4.5b), respectively, can be neglected for T 
 1 while
the term, Tpβ(1/2 − d), in (4.5b) is zero. Equations (4.4) and (4.5b) then become

Tq−1

(
qZ̄ + s(1 − λ)dZ̄

dλ

)
= Tm cosα0

− T−(q/2)+m i
Z1/2

(
1

21/2
sinα0 + J

4π
I(Z)

)
, (5.30a)

J
4π

Ts−(q/2)
∫ 1

0

(
1

Z1/2
+ 1

Z̄1/2

)
dλ = 1

21/2
Tm sinα0. (5.30b)

From (5.30b), finite shed circulation requires s = q/2 + m. We seek a dominant
balance between the left-hand side and the (rotational) second and third terms on
the right-hand side of (5.30a), which gives q = 2(1 + m)/3 and s = (4m + 1)/3.
A subdominant first term on the right-hand side of (5.30a) requires m > q − 1, which upon
substitution of the preceding expression for q, gives m > −1. This inequality is always
satisfied since m ≥ 0; see (2.10a,b). The resulting equations are identical to (5.5a,b) and
(5.6) with p and β̂ replaced by m and sinα0, respectively. This is again a Type I vortex
sheet, but is convection dominated due to non-zero initial angle of attack. There exists no
solution with a dominant balance between the left-hand side and (convective) first term
on the right-hand side of (5.30a). This would require q = 1 + m while a subdominant
second-third term on the right-hand side needs q < 0. These two expressions for q imply
that m < −2 which is not allowed, notwithstanding that q ≥ 0 is required; see (4.1a,b).

5.5. Summary of vortex types
Table 1 summarizes the results of the analyses in §§ 5.1–5.4, the key points of which are:

(a) Type I vortex sheets appear in each of the four distinct plate motions, for certain
parameter ranges.

(b) Type II vortex sheets are restricted to zero initial angle of attack, α0 = 0, over certain
parts of the (m, p) plane, and also to α0 /= 0 under the condition that both, m = p,
and, β̂ + sinα0 = 0.

(c) Type III sheets appear only for zero initial angle of attack, α0 = 0, along the lines
(i) m = 1 + 2p for plate rotation about its three-quarter chord position, d = 1/2, and
(ii) m = (2p − 1)/3 for d /= 1/2.

The right-hand column of table 1 indicates the dominant physics that control the starting
vortex for each of the eleven flow regimes shown. Type I vortex sheets appear for both strict
rotation and convection-dominated flows, and in one case for a combination of rotation
and convection. Type II sheets occur only for convection dominated starting vortices.
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Plate orientation and Plate power-laws Type Vortex, q Vortex, s Physics
pivot position

m > 1
3 (2p − 1) I 2

3 (1 + p) 1
3 (1 + 4p) Rotation

α0 = 0, d /= 1
2 m = 1

3 (2p − 1) III 2
3 (1 + p) 1

3 (1 + 4p) Rotation–convection

m < 1
3 (2p − 1) II 1 + m p + 1

2 (1 + m) Convection

m > 1 + 2p I 2
3 (2 + m + p) 1

3 (5 + 4m + 4p) Rotation

α0 = 0, d = 1
2 m = 1 + 2p III 2(1 + p) 3 + 4p Rotation–convection

m < 1 + 2p II 1 + m p + 3
2 (1 + m) Convection

m > p I 2
3 (1 + p) 1

3 (1 + 4p) Rotation

m = p I 2
3 (1 + p) 1

3 (1 + 4p) Rotation–convection
(β̂ + sinα0 /= 0)

α0 /= 0, d /= 1
2 m = p II 1 + p 1

2 (3 + 5p) Convection
(β̂ + sinα0 = 0)

m < p I 2
3 (1 + m) 1

3 (1 + 4m) Convection

α0 /= 0, d = 1
2 All I 2

3 (1 + m) 1
3 (1 + 4m) Convection

TABLE 1. Summary of vortex sheets and time power laws, q ≥ 0 and s ≥ 0, of their similarity
solutions in (4.1a,b) for each of the four dominant plate motions. Plate motion is specified by four
control parameters: initial angle of attack, α0, plate pivot position, d, and time power laws, m ≥ 0
and p ≥ 0, for the plate translational and rotational speeds, respectively; see (2.1), (2.10a,b) and
(2.12). The far right column summarizes the dominant flow physics for each vortex sheet.

Because Type III vortex sheets describe a transition regime, these are always controlled by
a mix of rotation and convection.

5.6. Vanishing plate rotation and degenerate vortex sheets
The present theory assumes the plate always rotates, i.e. Ω0 > 0 and hence β > 0. It is
also of interest to study the limit of vanishing plate rotation, i.e. α(t) = α0 = constant,
because this can align with problems of practical interest. For example, the widely studied
start-up of a flat plate at constant translational speed and fixed non-zero angle of attack
(Prandtl 1924). Interestingly, some starting vortices in table 1 present singular solutions
for vanishing plate rotation, i.e. the limit β → 0+ differs from β = 0, while others are
continuous. Thus, care must be taken when applying such singular configurations in a
practical setting, because even a small amount of rotation can potentially change the
resulting shed (primitive) vortex.

We provide two examples for fixed non-zero angle of attack, α(t) = α0 > 0:

(a) Consider the above-mentioned flow of a plate moving with impulsive and constant
translational speed, m = 0 (Prandtl 1924). Regardless of the plate rotation power
law, p ≥ 0, table 1 shows that a Type I vortex sheet arises with vortex power law,
q = 2/3, as the plate rotation speeds approaches zero, i.e. β → 0+. This vortex
power law of 2/3 is identical to the result for identically zero rotation; see page
414 of Pullin (1978), who studied a semi-infinite plate, the results of which are
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applicable here because the leading edge of a finite plate does not affect its
primitive trailing-edge vortex; see § 1. That is, the solution is continuous in the limit,
β → 0+.

(b) Next, we study the related problem of a plate undergoing constant acceleration,
m = 1, with the rotation pivot point away from the three-quarter chord position,
d /= 1/2. If the plate rotation power law, p < m (= 1), table 1 shows that a
Type I (rotation dominated) vortex sheet emerges with a vortex power-law of q =
(2/3)(1 + p), as β → 0+. Thus, even though the plate angular speed approaches
zero, the vortex dynamics is still intimately controlled by plate rotation. In contrast,
if p > m (= 1), a Type I (convection dominated) vortex sheet emerges with a vortex
power law of q = 4/3, i.e. the vortex dynamics is independent of plate rotation;
the same vortex power law holds for p = m (= 1). Consequently, vortex dynamics
from this plate motion exhibits singular behaviour: (i) the limit of infinitesimal plate
rotation, β → 0+, depends on the plate rotation power-law, p, while (ii) identically
zero plate rotation, β = 0, is by definition independent of p.

This degeneracy in these (inviscid) vortex dynamics is likely resolved in a practical
setting through the influence of viscosity. The same holds for any degeneracy that may be
encountered for vanishing plate translation. These remain open questions.

6. Behaviour in the time domain

In this section, we provide sample vortex sheets in the time domain to facilitate future
comparison to high Reynolds number flows of the predicted phenomena. These highlight
(i) nascent vortex growth on the (laboratory) spatial scale of the plate half-chord, and
(ii) vortex sheet type transition. It is emphasized that the present study focuses on
asymptotic solutions for small times, i.e. the ‘primitive start-up vortex sheet’. Since the
vortex sheets are shown as a function of time, and hence of finite spatial size, some
may go beyond this strict asymptotic range of validity. Even so, they may be used to
guide experiments or viscous flow simulations that aim to test the theoretical predictions
reported.

We focus on vortex sheets produced by the first distinct plate motion, studied in § 5.1:
zero initial angle of attack, α0 = 0, and pivot point away from the three-quarter chord
position of the plate, i.e. d /= 1/2. We also specify that the plate translates impulsively
with uniform acceleration, m = 1. The plate rotation power-law, p, is varied to span the
VST point at p = (3m + 1)/2, which for m = 1 gives p = 2; where a transition from
Type I to Type III to Type II occurs. All sample flows show the vortex centre of
roll-up moving in a straight line trajectory, a fundamental property that follows directly
from the similarity solution in (4.1a,b); time, T , simply increases the magnitude of the
vortex coordinates, ẑv, about the plate trailing edge (without changing the vortex shape).
Moreover, the vortex size and position depend on the rotation-to-translation parameter,
β̂, dimensionless time, T and plate rotational power law, p. Results are provided in the
moving reference frame of the plate (not the laboratory frame), and are independent of the
rotation pivot position.

Type I vortex sheet ( p < 2). In figure 10, we show the vortex development for p = 1 for
several small convective times, T , which corresponds to uniform rotational acceleration
of the plate. A rotation-dominated Type I vortex-sheet results, whose shape is identical to
figure 4(b); the vortex cores move at an angle of 111.3◦ to the positive x axis, which is
independent of β̂. While the vortex shape is independent of the rotation parameter, β̂, its
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0.05
(x/a)v

(y
/a

) v

0–0.05–0.10

0

0.05

0.10

0.15
p = 1

FIGURE 10. Time series showing Type I vortex-sheet evolution, in moving reference frame of
the plate. Zero initial angle of attack, α0 = 0, constant translational plate acceleration, m = 1,
and constant plate rotational acceleration, p = 1. Times series corresponds to T = 0.0158,
0.0474, 0.1423, 0.3162 for β̂ = 5, which are identical to T = 0.05, 0.015, 0.45 and 1 for β̂ = 0.5,
respectively. Time series are independent of the plate pivot position, provided d /= 1/2. The
vortex centre trajectory makes an angle if 111.3◦ with the positive x-axis. This angle depends
only on p.

time evolution depends strongly on β̂. The vortex size and position grow as β̂2/3T4/3, and
the effect of varying β̂ is illustrated in the caption of figure 10. Specifically, the vortices in
figure 10 occur at T = 0.05, 0.015, 0.45, 1 for β̂ = 0.5, while the same vortex time series
is recovered for β̂ = 5 with T = 0.0158, 0.0474, 0.1423, 0.3162, respectively. In all cases,
the vortex size remains much smaller than the plate span, 2a, while being of a significant
(observable) size. This suggests that the time-series similarity predicted for the two sets of
(β̂, {T}) parameters in figure 10 should be testable experimentally or via simulation.

Type III vortex sheet ( p = 2). Figure 11 gives time series for Type III vortex sheets that
occur at the VST point, p = 2. Both the vortex core position and its spatial size now vary
as β̂2/3T2, and so the vortex growth is slow relative to the Type I vortex sheet in figure 10.
As discussed in § 5.1.4, this vortex type depends strongly on the rotation-to-translation
parameter, β̂. Results for β̂ = 5 are shown in figure 11(a). Here, the starting-vortex centre
or edge trajectory is just outboard of the normal to the plate trailing edge, with the core
trajectory at an angle of 81.5◦ to the positive x axis. Complementary time series for
β̂ = 0.5 are provided in figure 11(b). Owing to the decreasing effect of rotation and the
increasing influence of convection as β̂ decreases, the vortex structure becomes stretched
with a rolled-up core that is more compact than for β̂ = 5; the core trajectory is more
aligned with the translational flow, and now makes an angle of 24.6◦ to the plate. Again,
the spatial extent of the vortices are small relative to the plate span, but of sufficient size
to be observed, facilitating their measurement.

Type II vortex sheet ( p > 2). Here, the vortex sheet is parallel to the plate (even as it
rotates). Its (free) downstream edge position is given by (5.12a,b) and (5.15a) with λ = 1:
ẑv|edge = aT2/2 and is independent of both p and β̂. Choosing a dimensionless convective

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.762


On the starting vortex of a plate 906 A9-25
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FIGURE 11. Time series showing Type III vortex-sheet evolution, in moving reference frame
of the plate. Plate control parameters, α0 = 0 and m = 1, as for figure 10, except that the plate
rotation power law is now at the VST point, p = (3m + 1)/2 = 2. (a) β̂ = 5 with T = 0.0084,
0.125, 0.0177, 0.25, 0.354, 0.5; vortex core at 81.5◦ to the positive x axis. (b) β̂ = 0.5 with
T = 0.1021, 0.1435, 0.1715, 0.0205, 0.245, 0.2928, 0.35, 0.418, 0.5; vortex core at 24.6◦ to the
positive x axis. Both time series are independent of the plate pivot position, provided d /= 1/2.

time, T 
 1, in measurements ensures the vortex-sheet length is small relative to the plate
span, allowing for comparison using this simple formula for ẑv|edge.

7. Effect of finite Reynolds number

In this section, we examine the effect of viscosity, i.e. finite Reynolds number, on
the presented inviscid calculations. We focus on Type I and II vortex sheets, since they
arguably present the most interesting flow structures.

7.1. Type I vortex sheet
We first study Type I vortex sheets that are rotation dominated. A similar analysis for
other Type I solutions is straightforward. Near the leading edge of the flat plate, the outer
inviscid complex potential follows from (2.8),

W(ẑ, t) = −iAtpẑ1/2 + · · · , (7.1)

where A = D(a/2)3/2Ω0(U0/a)p and D = 1/2 − d. The dimensions of A are length3/2 ×
time−(1+p).

Consider some point-wise quantity that characterizes the vortex growth, such as the
(dimensional) centre of a vorticity distribution, ẑc. Because vorticity takes finite time to
diffuse from the plate, the outer flow remains essentially inviscid during the early-time
viscous vortex growth. It is then assumed that for a viscous flow at sufficiently small
times, where the starting vortex remains close to the leading edge, the dependence of ẑc
on the plate and flow parameters takes the functional form

ẑc = ẑc(A, t, ν | p), (7.2)

where ν is the kinematic viscosity of the fluid. That is, the vorticity distribution
centre depends on the rotational power law, p, but not the translational power law, m;
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see (2.10a,b). Dimensional analysis then gives

ẑc

A2/3t(2/3)(1+p)
= F(Ret | p), (7.3)

where F(Ret | p) is a dimensionless function (to be determined), and

Ret = A4/3t(1/3)(1+4p)

ν
, (7.4)

is a time-dependent Reynolds number.
For the shed circulation, Γs, at time, t, a similar analysis gives

Γs = A4/3t(1/3)(1+4p)G(Ret | p), (7.5)

where G(Ret | p) is another dimensionless function. From (4.1a,b), the vorticity
distribution centre is given by ẑc = ẑv(λ = 1, t), corresponding to the centre of the inviscid
vortex roll up. Equations (5.5a,b) and (5.9a,b) then give

F(Ret | p) =
(

3
1 + p

)2/3

ω(λ = 1, p), (7.6a)

G(Ret | p) = 4J( p)
(

3
1 + p

)1/3

, (7.6b)

which are both independent of Ret, where J( p) is defined in (5.8a,b).
For the rotation-dominated Type I vortex considered here, Ret is related to the plate

Reynolds number, Rec ≡ 2aU0/ν, by

Ret = Rec
1
8 β̂

4/3T (1/3)(1+4p). (7.7)

Two limits are of practical interest:

(a) Rec → ∞ at fixed and finite T . Equation (7.7) then gives Ret → ∞, i.e. both
Reynolds numbers are infinite. A reasonable but unproven hypothesis is that this
limit would produce a turbulent starting vortex whose structure may or may not be
related to the present inviscid similarity solution.

(b) Rec → ∞ and T → 0 such that Ret is fixed and moderately large. Importantly,
inviscid theory finds support from experiment and viscous simulation for moderately
large Rec and Ret. For example, figure 4(e) of Pullin & Perry (1980) shows
reasonable agreement between experiment and the inviscid theory (for zc) for wedges
and thin plates with Ret ∼ 103–106. Similarly, Xu et al. (2017) report good agreement
between viscous and inviscid solutions for the location, size and shape of the
vorticity spiral vortex cores, and also for the shed circulation as a function of time,
for Rec = 250–2000. These previous studies suggest that similar agreement may be
found for the present problem in this limit of very small convective time, T 
 1, at
moderately large Ret.
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7.2. Type II vortex sheet
For a Type II, convection-dominated vortex sheet, (7.2) is replaced by

ẑe = ẑe(a,U0, t, ν | p,m), (7.8)

where ẑe refers to the free end of the sheet. That is, the solution depends on both the
translational and rotational power laws, m and p, respectively. Dimensional analysis then
gives

ẑe

a
= H(T,Ret | p,m),

Γs

U0 a
= M(T,Ret | p,m), (7.9a,b)

where H(T,Ret | p,m) and M(T,Ret | p,m) are dimensionless functions, and

Ret = Rec
T
2
. (7.10)

From § 5.1.3, we then find

H(T,Ret | p,m) = 1
1 + m

T1+m, M(T,Ret | p,m) = J Tp+((1+m)/2), (7.11a,b)

which are again independent of Ret. A large Reynolds number limit analysis can be
performed, as for the Type I vortex sheet; this is left to the reader.

Experiments or viscous-resolved computational simulations that could distinguish the
formation Type I or Type II structures in the (m − p) plane for moderate Ret would seem
feasible.

8. Summary and conclusion

We have considered the primitive trailing-edge vortex produced by the start-up motion
of a flat plate in a inviscid fluid; see figure 1. The plate moves with a time power-law
translational speed of exponent, m ≥ 0, while simultaneously undergoing a clockwise
angular speed with time power law, p ≥ 0; see (2.10a,b). This rotation is about a pivot
point on the plate, whose position is specified by a dimensionless constant, d; see (2.1). The
plate motion is also specified by its initial angle of attack, α0; see (2.12). The dimensionless
constant, β > 0, characterizes the relative strength of plate rotation to translation; see
(2.13).

For almost all combinations of these parameters, there exists for T = 0+, a singularity
of the attached flow at the plate trailing edge. The exception is the limit of zero angle
of attack and zero rotation, i.e. α(t) → 0 and Ω0 → 0, respectively, for which the plate
motion does not disturb the fluid.

The appearance of an attached-flow singularity at the plate trailing edge is resolved by
the generation of a nascent vortex in the form of a separating vortex sheet, of a priori
unknown structure. A Birkhoff–Rott equation is formulated, together with an associated
Kutta condition that ensures finite velocity at this trailing edge, that describes the sheet
motion. The resulting equations admit similarity solutions for the primitive vortex – for
small time via dominant-balance analysis – that represents both the sheet profile shape
and the rate at which circulation is shed at the plate trailing edge. In so doing, the
Birkhoff–Rott equation contracts to either a nonlinear integral-differential equation or
to a linear ordinary differential equation, with the Kutta condition providing an integral
constraint.
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Vortex-sheet solutions are classified into three distinct types according to the contracted
form of the Birkhoff–Rott equation:

Type I represents separation with a strong rolled-up vortex of spatial extent given by the
distance of its centre to the plate trailing edge. Its centre moves approximately normal to
the plate. Where Type I vortex sheets appear, they can always be mapped to special cases of
known self-similar solutions (Pullin 1978). Their equivalent point-vortex representations
correspond to solutions obtained by Rott (1956). Type I vortex sheets occur for all plate
motion power laws, m, p ≥ 0, when the initial angle of attack is non-zero, α0 > 0; but
only for a subset of m and p when α0 = 0. They appear typically for (i) strong plate
rotation, regardless of the initial angle of attack, α0, and (ii) for α0 > 0 when translational
convection dominates.

Type II vortex sheets are strictly convection dominated and appear when α0 = 0, and
also under special circumstances for α0 > 0. Here, self-induction of the vortex sheet is
negligible compared with the local translational convection velocity near the plate edge.
The consequence is that the sheet is always flat and parallel to the plate at the trailing edge
– it rotates as a rigid body in tandem with the plate. Exact analytical solutions are found
for these cases. Type I and II vortex sheets dominate the (m, p) space.

Type III sheets occur only for zero initial angle of attack, α0 = 0, along (singular)
straight lines in the (m, p) plane. These lines divide Type I and II solutions. These
vortex sheets arise from a dynamic balance between translational convection and vortex
self-induction. As the plate control parameters are varied to cross these straight lines, the
nascent vortex solution is generally twice discontinuous, with a singular solution occurring
at the straight line. Even so, the vortex sheet is well defined for any set of given plate
control parameters.

Type III vortex sheets match their Type I and II counterparts in the respective limits of
β → ∞ and 0, where plate rotation and translation dominate, respectively.

The asymptotic limit of zero plate rotation was also explored. Some plate motions were
found to be not continuous relative to identically zero plate rotation, i.e. fixed angle of
attack, α(t) = α0 = constant. That is, the asymptotic limit of zero plate rotation is singular.
Resolution of this intriguing behaviour may lie in the inclusion of viscous effects, which
represents an avenue for future work. Similarly, viscosity may also affect other singular
behaviour exhibited in this inviscid formulation, such as the linear boundaries in (m, p)
space along which Type III vortex sheets occur.

Finally, we emphasize that existence of these inviscid solution types as appropriate
moderate to high Reynolds number limits of viscous, flat-plate starting flows remains
an open question. In §§ 6 and 7, we presented a set of flow parameters, time series of
vortex motions and viscous flow analysis that can be used for comparison to address this
important issue.
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Appendix. Convergence of numerical method

In this appendix, we present a convergence study of the numerical method discussed
in § 5.1.2. A refinement study as a function of N is performed for a Type I vortex sheet
with p = 1. CPU time per solution scales as N3 owing to the required inversion of full
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Case N Sheet turns λN J Re{ωN+1} Im{ωN+1}
A 1220 15 0.974544 2.24123 −0.126782 0.325594
B 2440 15 0.974262 2.24207 −0.126683 0.325730
C 2400 33 0.992301 2.24122 −0.126897 0.325390
D 4800 33 0.992178 2.24206 −0.126799 0.325526

TABLE 2. Numerical results showing the effect of discretization refinement on the rescaled shed
circulation constant, J, and position of the vortex centre in the ω-plane, ωN+1. Four cases are
shown for a Type I vortex sheet with p = 1.
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FIGURE 12. Numerical solution of Type I vortex sheet, p = 1, with coarsest and finest level of
discretization corresponding to Cases A and D in table 2, respectively. Case A (dashed line) and
Case D (solid line). (a) Complete vortex sheet. (b) Close up of core showing tightly wound sheet
profiles.

but generally well-conditioned Jacobian matrices at each stage of the Newton–Raphson
solution method. All solutions shown have averaged residuals of approximately 10−14. Four
different cases are shown in table 2.

Case Afighere fig13 of table 2 is a vortex sheet with 15 sheet turns, i.e. the vortex winds
around its core 15 times, with 60–90 points per sheet turn, giving N = 1220. Case B
uses the same number of turns with double the discretization, N. Cases C and D have
double the number of sheet turns and double the N-values as Cases A and B, respectively,
and thus use identical discretizations. For the main solution parameters, the rescaled shed
circulation constant, J, and position of the vortex centre in theω-plane,ωN+1, table 2 shows
that doubling the discretization produces differences in the fourth significant figure. The
majority of vortex-sheet solutions given this study thus use the Case A resolution level.

Figure 12 shows the calculated Type I vortex sheet (p = 1) in the ω-plane, for Cases A
and D, that use the coarsest and finest levels of discretization, respectively. Any differences
between Cases A and D are imperceptible on the global scale of the vortex sheet in
figure 12(a). Expanding the scale of the vortex core as in figure 12(b), shows very slight
differences between the two solutions. Note that the Case A vortex sheet stops winding at
a larger radius than Case D, as expected since Case A uses only 15 sheet turns (as opposed
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FIGURE 13. As for figure 12(b), but comparing Case D (finest discretization, solid line) to
(a) Case B (dashed line) and (b) Case C (dashed line).

to 33 turns for Case D). Even so, the vortex core is well described by both Cases A and D,
and differences between the two solutions away from the core are small.

Figure 13 compares the remaining Cases B and C, to Case D (finest discretization).
Notably, Cases B and D are indistinguishable in figure 13(a) apart from the departure
point from the sheet turns to the vortex core; the position of the core is identical in both
Cases B and D. This is as expected because these solutions are specified by an initial value
problem starting at λ = 0; using identical discretization must produce identical results
up to the maximum value of λ chosen. Figure 13(b) shows that small differences occur
between Cases C and D, which are similar to those reported in figure 12(b) (for Cases A
and D). Again, this is expected because the levels of discretization used in Cases A and C
are identical, as discussed above; the calculated core positions are identical.
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