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Global Navigation Satellite System (GNSS) observations contain various errors, the separation
and measurement of which is a popular research topic. Multipath effect on code measurements
is investigated through the multipath combination, but carrier multipath error is small, and it
is difficult to distinguish from other errors, such as hardware delay, carrier noise and satellite
inherent biases. However, as the number of frequency points increases during the rapid develop-
ment of GNSSs, it is possible to analyse the abovementioned errors in detail. Triple-frequency
combination can be used to eliminate the first order ionospheric error, and a quad-frequency
combination has one degree of freedom, which may be used to minimise carrier error effects. For
this reason, an optimum method has been developed for multi-frequency GNSS code-multipath
combination measurements, which has been verified by exploiting BeiDou System (BDS), three
frequency data from an International GNSS Service (IGS) station and a city canyon as well as
actual sampled quad-frequency data. By comparative analysis, we found that the fluctuations of
an optimum triple-frequency combination are smaller than that of the non-optimum combina-
tion, which decreases the influence of inherent errors and biases on carrier phase. At the same
time, second-order ionospheric error can be effectively eliminated as well. This provides a new
code-multipath combination measurement optimisation methodology for future multi-frequency
BDS and other GNSSs.
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1. INTRODUCTION. The pseudorange and carrier phase measurements in Global Nav-
igation Satellite Systems (GNSSs) contain various types of errors, among which multipath
error, ionospheric errors and other inherent errors are the main sources affecting satellite
navigation and positioning accuracy. Much work has been carried out to separate and
eliminate these errors.
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Anisotropic ionospheric plasma effects in phase and signal delays at high frequencies
can be represented as a series of rapidly decreasing data in an inverse function of frequency
(Bassiri and Hajj, 1992; Kim and Tinin, 2007a). The delays caused by ionospheric plasma
on pseudorange and carrier phase measurements are equal in size and opposite in direction,
which is different from multipath effect.

Multipath effects can be investigated through a combination of code range and carrier
phase observations. Certain characteristics of GNSS code observations can be analysed in
a combination of single-frequency code and dual-frequency phase observations, which is
called multipath observation. The multipath combination of code and carrier observations
has been employed to investigate multipath in a time series (Estey and Meertens, 1999;
Xia et al., 1999; Zhang and Ding, 2013). Multipath observation values may be affected
by the characteristics of the signal and the sensitivity of the receiver and antenna, which
was discussed in detail in Simsky (2006). The multipath combination contains both code
and carrier multipaths, and combinations of hardware delay and thermal noise (De Bakker
et al., 2012). Time series multipath observations are usually used to detect and describe
code multipath effects. The Global Positioning System (GPS), BeiDou System (BDS)
and Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) also use multipath
observations to monitor their multipath effects (Odolinski et al., 2015). The multipath
combinations of BDS observables contain not only real multipath effects but also other
multipath-like biases that are caused by reflections of the satellite components or internal
hardware delays, which are hard to verify but do exist (Zhao et al., 2016). Examples of
multipath analysis of BDS can be found in Shi et al. (2013) in precise positioning with
accurate ephemeris data and Wang et al. (2014) in code observation multipath analysis of
BDS geostationary satellites.

There is a close relationship between the elimination of multipath and ionospheric
errors, which will degrade the accuracy of positioning. The phase multipath is known
to be less than π/2 (roughly less than 5 cm for the GPS L1 signal), while the second-
and higher-order ionospheric terms can be up to several centimetres (Fritsche et al.,
2005). There was analysis of the multipath impact on positioning in Zhang et al.
(2013) and on dual-frequency ionospheric delay corrections in Zhao et al. (2013b). With
the demand of high accuracy positioning, traditional dual-frequency observation can-
not eliminate the higher-order ionospheric errors. Thus, with the increasing number of
GNSS frequencies, researchers have explored multi-frequency GNSS combination mea-
surement. Bassiri (1990) and Wang et al. (2005) have suggested the use of a GNSS
triple-frequency code-multipath combination to eliminate the second order ionospheric
error. However, considering the four BDS frequencies, there exist various observable
combinations.

Recently, researchers have found some other errors including multipath-like biases and
hardware delay in carrier multipath (Zhao et al., 2016). The non-optimal combination will
amplify these errors, making it hard to investigate the real code multipath effect. With the
improvement of positioning accuracy, the traditional method cannot distinguish the mul-
tipath, the second order ionospheric error and the biases from the main satellite signal.
To solve this problem, we have developed an optimal method for multi-frequency GNSS
code-multipath combination measurement by considering the different characteristics. The
optimum combination solution can eliminate the first order and second order ionospheric
error with minimum carrier errors and biases introduced. In the method proposed, the
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second order ionospheric error, multipath error and the bias from satellites can be separated
by using the optimum combinations.

Using BDS as an example of a GNSS, we first analyse the relationship between the
GNSS observation and the ionospheric error. Then, with regard to the first order ionospheric
error, the optimum combination solution is calculated by triple-frequency code-multipath
combination with one degree of freedom and compared with a dual-frequency combi-
nation. Next, as for the second order ionospheric error, the optimum combination of
quad-frequencies is calculated and compared with the triple-frequency combination, which
minimises the carrier phase measurement error. We have verified the optimisation algo-
rithms by exploiting three-frequency data from a BDS International GNSS Service (IGS)
station and a city canyon, as well as the actual BDS observation data collected from four
frequencies. Finally, the optimum and the non-optimum combinations are analysed and
compared, which separates the multipath on the code phase and the error or biases on the
carrier phase. The optimum combination provides the best way to evaluate the code mul-
tipath measurements of future multi-frequency BDS and can be extended to other future
GNSSs.

2. GNSS OBSERVABLES MODEL. The GNSS code observables and carrier phase
measurements from satellite p on the three frequencies (i, j, k) are as follows (Wang and
Rothacher, 2013):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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(1)

where Lp
i represents carrier phase output of the receiver from the satellite p on the i-th

frequency in metres; Pp
i and φ

p
i represent code and carrier phase observable output by

the receiver from the satellite p on the i-th frequency in metres; ρp represents the distance
between the receiver and the satellite p; dt and dTp represent the clock errors of the receiver
and the satellite p; I p

φi, I p
ρi represent the ionospheric delay on code and carrier phase on the

i-th frequency; Tp
i , εi, δi represent the tropospheric delay, carrier biases or noise error and

code noise error on the i-th frequency and MPi, MLi represent the multipath error on code
and carrier phase error including hardware delay and multipath-like biases. Ni represents
the integer ambiguity of the phase measurement in cycles.

When considering the higher order ionospheric delay component, we can derive the
ionospheric code delay Iρ and the carrier delay Iφ as (Feng and Li, 2008):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Iρ =
A1

f 2 +
A2

f 3 + · · · =
n∑

i=1

Ai

f i+1

Iφ = −A1

f 2 − A2

2f 3 − · · · = −
n∑

i=1

Ai

if i+1

(2)

https://doi.org/10.1017/S0373463319000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000158


1300 TIAN JIN AND OTHERS VOL. 72

Figure 1. The city canyon environment.

where Ai is the coefficient of the i-th order which represents the relationship between carrier
and code.

3. EXPERIMENT ENVIRONMENT AND DATA SET.
3.1. Observations from IGS station. We calculated the multipath time series from the

observations of BeiDou B1I, B2I and B3I detected at the static observatory (CUT0) in
Perth, Australia on 19 May 2013. The IGS observatory outputs the code phase and carrier
phase observations every 30 s in all three frequencies.

3.2. Observations from city canyon. The tri-frequency data from a city canyon envi-
ronment were collected from a small antenna on the roof top of the new main building at
Beihang University, as shown in Figure 1. The observations were recorded every 1 s.

3.3. Data sampling equipment. The four frequencies of BDS data were collected
from the small antenna at Beihang University on 15 April 2016. The BeiDou satellite PRN

Figure 2. Flow chart of four-frequency data analysis.
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Table 1. BDS signal frequency allocation.

B1I B1C B2a B2b(or B2I) B3I

Frequency 1,561·098 MHz 1,575·42 MHz 1,176·45 MHz 1,207·14 MHz 1,268·52 MHz

32 was taken as an example. The flow chart for data processing is shown in Figure 2. The
BDS signal was processed by down conversion, filtering and analogue to digital sampling.
The digital intermediate frequency signals were collected and stored in the form of PC files.
The data were collected from the same antenna, driven by the same atomic clock on the
four frequencies of B1/B2a/B2b/B3 in a synchronised sampler. A software receiver was
used to extract the code phase and carrier phase measurements, which was later calculated
by the triple-frequency and quad-frequency combination methods.

Currently, five navigation signals are broadcast on BDS B1I, B1C, B2a, B2b (or B2I)
and B3I frequencies (Feng et al., 2008). Our study takes BeiDou satellite navigation system
as an example, which also can be extended to future GPS and Galileo systems. The main
frequency values of BDS are shown in Table 1.

4. FIRST-ORDER IONOSPHERIC ERROR ELIMINATION METHOD. In order to
eliminate the first order ionospheric error, we calculate the dual-frequency and the optimum
solution of triple-frequency code-multipath combination methods. The comparison of these
two methods is discussed in this section.

4.1. Dual-frequency code-multipath combination method. Dual-frequency code-
multipath phase measurement provides a method to evaluate multipath effects on code
measurements. Dual-frequency code-multipath combination can be written as (Wanninger
and Beer, 2014):

M (Pi, Li, Lj ) = c1 · Pi + c2 · Li + c3 · Lj (3)

where Pi, Li and Lj are the code and carrier phase observations on i-th and j -th fre-
quencies of a satellite, and c1, c2 and c3 are constant coefficient terms. To obtain
geometry-independent observables, we set:

c1 + c2 + c3 = 0 (4)

In order to obtain the ionosphere independent observables, the first-order ionospheric error
can be eliminated by the following equation:

c2 − c1

f 2
i

+
c3

f 2
j

= 0 (5)

where fi and fj are the i-th and j -th frequencies. Taking into account the structure of the
code-multipath combination observations:

{
c1 = 1
c2

2 + c2
3 = �

(� as constant) (6)

where � is defined as the carrier amplifier factor, indicating an amplified ratio of the error
and noise in combination equations. A unique solution can be obtained by Equations (4)
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and (5), shown as: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2 =
f 2
j + f 2

i

f 2
j − f 2

i

c3 =
2f 2

j

f 2
i − f 2

j

(7)

When using two BDS frequencies, the constant coefficient terms c2, c3 and the amplifier
factor � can be obtained as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M (P1, L1, L2) = P1 − 3·974L1 + 2·974L2 � = 24·64
M (P1, L1, L3) = P1 − 4·887L1 + 3·887L3 � = 38·99
M (P2, L2, L3) = P2 + 20·179L2 − 21·179L3 � = 855·75
M (P2, L2, L1) = P2 + 3·974L2 − 4·974L1 � = 40·54
M (P3, L3, L1) = P3 + 4·887L3 − 5·887L1 � = 58·55
M (P3, L3, L2) = P3 − 20·179L3 + 19·179L2 � = 775·03

(8)

The dual-frequency code-multipath combination can be expressed as:

M (Pi, Li, Lj ) = (MPi + c2MLi + c3MLj ) + (δi + c2εi + c3εj ) (9)

When ML is neglected, the MP combination only reflect the code multipath. However,
when ML cannot be neglected, � reflects the amplifier ratio of the carrier error and bias.

The above dual-frequency code-multipath combination can eliminate the first-order
ionospheric error. Because the frequency difference between B2I and B3I is small, the
amplifier factor of this combination is increased to 855·75, which will introduce more error
to the multipath observation measurement.

4.2. Triple-frequency code-multipath combination method. The triple-frequency
code-multipath phase combination is similar to the dual-frequency combination. A com-
bination of three frequencies is used to eliminate the first order ionospheric error. The
triple-frequency code-multipath combination can be written as:

M1(Pi, Li, Lj , Lk) = c1 · Pi + c2 · Li + c3 · Lj + c4 · Lk (10)

where Pi, Li, Lj and Lk are the code and carrier phase observations on i-th, j -th and
k-th frequencies of a satellite; c1, c2, c3 and c4 are constant coefficient terms. To obtain
geometry-independent observables:

c1 + c2 + c3 + c4 = 0 (11)

To obtain the ionosphere independent observables, the first-order ionospheric error can be
eliminated by the following equation:

c2 − c1

f 2
i

+
c3

f 2
j

+
c4

f 2
k

= 0 (12)

where fi, fj and fk are the i-th, j -th and k-th frequencies. Taking into account the structure
of the code-multipath combination observations:{

c1 = 1
c2

2 + c2
3 + c2

4 = �
(� as constant) (13)
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The triple-frequency multipath combination can be expressed as:

M1(Pi, Li, Lj , Lk) = (MPi + c2MLi + c3MLj + c4MLk) + (δi + c2εi + c3εj + c4εk) (14)

If the amplifier factor � is large, the error and bias on the carrier phase will be amplified to
a large extent, which will greatly influence the code multipath combination.

If only Equations (11) and (12) are used to calculate the c2, c3, c4 coefficients, there are
infinite solutions. When considering the minimum � as the optimal condition, the solution
arg min

�

(c2, c3, c4) can be derived as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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−(f 4

i f 4
k + f 4

i f 4
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j f 4
k )

[f 4
i (f 2
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k )2 + f 4

k (f 2
i − f 2

j )2 + f 4
j (f 2

i − f 2
k )2]

c3 =
−(f 4

j f 4
i + f 4

j f 4
k − 2f 4

i f 4
k )

[f 4
i (f 2

j − f 2
k )2 + f 4

k (f 2
i − f 2

j )2 + f 4
j (f 2

i − f 2
k )2]
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−(f 4

k f 4
i + f 4

k f 4
j − 2f 4

i f 4
j )

[f 4
i (f 2

j − f 2
k )2 + f 4

k (f 2
i − f 2

j )2 + f 4
j (f 2

i − f 2
k )2]

(15)

For BDS, the relationship among the constant coefficient terms c2, c3, c4 and the amplifier
factor � can be obtained as:⎧⎨

⎩
M (P1, L1, L2, L3) = P1 − 4·167L1 + 2·348L2 + 0·818L3 � = 23·54
M (P2, L2, L1, L3) = P2 + 3·101L2 − 5·242L1 + 1·141L3 � = 38·40
M (P3, L3, L1, L2) = P3 + 1·065L3 − 4·990L1 + 2·924L2 � = 34·58

(16)

Compared with Equation (8), the amplifier factor � of the triple-frequency combinations
are reduced by 4·46%, 39·63%, 95·51%, 5·27%, 40·93% and 95·54% of the corresponding
dual-frequency combinations. The comparison histogram is shown in Figure 3.

5. SECOND-ORDER IONOSPHERIC ERROR ELIMINATION METHOD. The tradi-
tional ionospheric error correction method ignores the second order and higher-order terms
of propagation delay, because the method cannot eliminate the error introduced by the
higher order terms. Taking the higher-order terms into account, the code phase and carrier
phase of ionospheric delays are not a simple opposite relationship. By using the four BDS
frequencies, the optimum combination solution can eliminate the first and second order
ionospheric errors with minimum error introduced.

5.1. Triple-frequency code-multipath combination method. Considering the triple-
frequency code-multipath combination has eliminated the first and second order iono-
spheric error simultaneously, the equations are shown as:

M2(Pi, Li, Lj , Lk) = c1 · Pi + c2 · Li + c3 · Lj + c4 · Lk (17)

c1 + c2 + c3 + c4 = 0 (18)

c2 − 1
f 2
i

+
c3

f 2
j

+
c4

f 2
k

= 0 (19)

c2 − 2
f 3
i

+
c3

f 3
j

+
c4

f 3
k

= 0 (20)
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Figure 3. Comparison of � between dual-frequency and triple-frequency combinations.

{
c1 = 1
c2

2 + c2
3 + c2

4 = �
(� as constant) (21)

Three BDS frequencies are used in these equations, where the coefficient terms c2, c3, c4
and the amplifier factor � can be obtained as:

⎧⎨
⎩

M (P1, L1, L2, L3) = P1 − 8·133L1 − 10·573L2 + 17·705L3 � = 491·40
M (P2, L2, L1, L3) = P2 + 24·778L2 + 1·412L1 − 27·190L3 � = 1355·40
M (P3, L3, L1, L2) = P3 − 14·645L3 − 1·300L1 + 14·945L2 � = 439·52

(22)

These formulae have eliminated the second-order ionospheric error, but the coefficient in
front of the carrier phase is large. If the factor of the carrier is large, it will induce more
inherent error to the combination. In Equation (22), the � increases from 12·71 to 35·30
times more than those of Equation (16). As a result, in order to eliminate the second-order
ionospheric error with the minimum error on the carrier phase, it is suggested to use a
fourth frequency.

5.2. Quad-frequency code-multipath combination method. The quad-frequency
code-multipath combination can be written as:

M = c1 · Pi + c2 · Li + c3 · Lj + c4 · Lk + c5 · Lz (23)

where Pi, Li, Lj , Lk and Lz are the code and carrier phase observations of a satellite at a
specific frequency and c1, c2, c3, c4, c5 are constant coefficient terms. We assume that Li, Lj ,
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Lk and Lz are uncorrelated. To obtain geometry-independent observables, we get:

c1 + c2 + c3 + c4 + c5 = 0 (24)

To obtain the ionosphere independent observables, the first-order and second-order errors
can be eliminated by the following equations:

c2 − c1

f 2
i

+
c3

f 2
j

+
c4

f 2
k

+
c5

f 2
z

= 0 (25)

c2 − 2c1

f 3
i

+
c3

f 3
j

+
c4

f 3
k

+
c5

f 3
z

= 0 (26)

where fi, fj , fk and fz are the i-th, j -th, k-th and z-th frequencies. Taking into account the
structure of the code-multipath combination observations:

{
c1 = 1
c2

2 + c2
3 + c2

4 + c2
5 = �

(� as constant) (27)

Similarly, to minimise the error contained in carrier, the minimum � is considered as
the optimal condition. Then the solution arg min

�

(c2, c3, c4, c5) can be derived as:

⎧⎪⎨
⎪⎩

M (P1, L1, L2a, L2b, L3) = P1 − 7·726L1 − 7·056L2a + 1·758L2b + 12·0236L3 � = 257·13
M (P2a, L1, L2a, L2b, L3) = P2a + 2·043L1 + 17·361L2a + 0·318L2b − 20·722L3 � = 735·07
M (P2b, L1, L2a, L2b, L3) = P2b + 0·612L1 + 13·863L2a + 0·551L2b − 16·026L3 � = 449·70
M (P3, L1, L2a, L2b, L3) = P3 − 1·763L1 + 8·040L2a + 0·894L2b − 8·171L3 � = 135·31

(28)

The optimisation quad-frequency combination will significantly reduce the influence of
carrier error. The values of the amplifier factor � are reduced by 47·67%, 67·82% and
69·21% of those of the triple-frequency combinations. As a result, the quad-frequency
code-multipath combination can effectively eliminate the second order ionospheric error,
with less impact on multipath effects. The comparison of � is shown in Figure 4.

A comparison of different multi-frequency measurements to eliminate the first and
second order ionospheric error is shown in Table 2.

6. THE FIRST-ORDER IONOSPHERIC ERROR ELIMINATION DATA ANALYSIS.
To test and verify the theory, we used the measurement of BeiDou B1I, B2I, B3I from the
CUT0 IGS station at Perth, Australia. Data from PRN 1 was used as an example for optimal
analysis.

Considering that the multipath error on the code is two orders of magnitude higher
than that on the carrier phase, we can use the dual-frequency combination to subtract the
corresponding triple-frequency combination with the same code phase. In order to prove
that the coefficient of carrier phase in the combination will influence the detection of
code multipath, we compared the ratio between the coefficient of the carrier phase and
the subtraction of two MP values. The results were compared by standard deviation. The
corresponding relation between the standard deviation and the ratio of � is illustrated in
Table 3.
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Figure 4. Comparison of � between quad-frequency and triple-frequency.

Table 2. Comparison of different multi-frequency measurements.

Dual-frequency Triple-frequency Quad-frequency

First order ionospheric error One solution Optimal solution with
minimized �

Second order ionospheric error No solution One solution Optimal solution with
minimized �

Table 3. The standard deviation and the ratio of � between dual- and triple-frequency combinations.

	M Standard Deviation Ratio of �

M(P1,L1,L2)-M1(P1,L1,L2,L3) 0·00121 1·047
M(P1,L1,L3)-M1(P1,L1,L2,L3) 0·0039 1·656
M(P2,L2,L3)-M1(P2,L2,L1,L3) 0·02812 22·285
M(P2,L2,L1)-M1(P2,L2,L1,L3) 0·00144 1·056
M(P3,L3,L1)-M1(P3,L3,L1,L2) 0·00487 1·693
M(P3,L3,L2)-M1(P3,L3,L1,L2) 0·02676 22·413

We can see the fluctuations are different in each group, as shown in Figures 5–7. Accord-
ing to these figures, the fluctuation between different combination observations and the ratio
of amplifier factor � is proportional, which illustrates the proposed combination equation is
an important evaluation criteria. The larger the ratio of �, the bigger the fluctuation. This
verifies the feasibility of the triple-frequency combination in eliminating the first-order
ionospheric errors, consistent with the optimal results.

Considering no multipath error in the IGS station measurements, the triple-frequency
code-multipath combination can eliminate the second-order ionospheric error. It can also
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Figure 5. Code phase difference on BDS B1 between the dual- and triple-frequency combinations.

Figure 6. Code phase difference on BDS B2 between the dual- and triple-frequency combinations.

be used to detect the errors from satellites. In an urban area, multipath error always exists. It
can be extracted by a triple-frequency combination and compared with the dual-frequency
combination.
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Figure 7. Code phase difference on BDS B3 between the dual- and triple-frequency combinations.

7. THE SECOND-ORDER IONOSPHERIC ERROR ELIMINATION DATA ANALY-
SIS. In the same way, the difference between the quad-frequency and the triple-frequency
code-multipath combinations in eliminating the second-order of ionospheric error was anal-
ysed. Both of the methods can be used. The difference was calculated by the subtraction
of combinations from the two algorithms at the same epoch and compared with the ratio
of the amplifier factor �. As shown in Figure 8, we can see the fluctuations are different
in each group. The relation between the standard deviation and the ratio of � is shown in
Table 4.

According to the above results, the fluctuation between quad-frequency and triple-
frequency combination observations and amplifier coefficient is proportional. Among them,
the amplifier factor � of the quad-frequency code-multipath combination is minimised,
which is the optimum combination to eliminate the second-order ionospheric error.

The quad-frequency combination is used to eliminate the second order ionospheric error
and provides a degree of freedom. Thus, it can be used to analyse the multipath effects on
different frequencies.

8. DATA COMPARISON AND ANALYSIS ON OPTIMUM METHODS.
8.1. The comparative analysis of the optimum and the non-optimum solutions. In

order to compare the optimum and the non-optimum combinations, we used the BDS
measurements of three frequencies collected from the Perth IGS station for ten days. The
non-optimum combination was calculated with the c2 set as ten times larger than that of the
optimum combination. In traditional methods, it should not affect the code multipath com-
bination measurement, but in practice, the coefficient affected the carrier measurements,
and had a large influence on the multipath combination.
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Figure 8. Code phase difference between the quad- and triple-frequency combination.

Table 4. The standard deviation and the ratio of � between the quad-frequency and the triple-frequency
code-multipath combination.

	M Standard Deviation Ratio of �

M(P1,L1,L2a,L2b,L3)-M(P1,L1,L2,L3) 0·04423 1·911
M(P2,L1,L2a,L2b,L3)-M(P2,L2,L1,L3) 0·08332 3·014
M(P3,L1,L2a,L2b,L3)-M(P3,L3,L1,L2) 0·04782 3·248

The optimum and one of the non-optimum combinations are:

{
Moptinum(P2, L2, L1, L3) = P2 + 3·101L2 − 5·242L1 + 1·141L3
Mnon-optimum(P2, L2, L1, L3) = P2 + 31·010L2 + 3·325L1 − 35·335L3

(29)

The combinations are analysed and compared in Figures 9 and 10. The standard deviations
of Moptimum and Mnon-optimum have been increased from 0·378 m to 0·494 m and the peak-
peak values have been increased from 2·852 m to 3·562 m. The fluctuations of the optimum
combination were smaller than those of the non-optimum combination. The reason for this
is that some errors and the inherent biases in carrier phase multipath are amplified more by
a non-optimal combination (Zhao et al., 2016), making it hard to investigate the real code
multipath effect.

As shown in Figures 9 and 10, the multipath observations of B2 under the non-optimum
and the optimal combinations are different. These comparative results show the optimum
solution can minimise the errors and biases on the carrier phase, which will provide the
best method to evaluate the code measurements of the BDS and future multi-frequency
GNSSs. The non-optimum combinations can be used to detect the inherent error or biases
on the satellite carrier phase in the circumstance without code multipath. By using these
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Figure 9. Multipath observation of BDS B2 under the optimum combinations.

Figure 10. Multipath observation of BDS B2 under the non-optimum combinations.

different combination methods, the code multipath and the inherent carrier phase error can
be separated and analysed in detail.

To compare the multipath characteristics of the optimal and the non-optimal methods,
we also analysed the data in the city canyon environment. We used the BDS measurements
of three frequencies for one hour. The non-optimum combination was calculated with the
c2 set as ten times larger than that of the optimum combination.
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The optimum and some of the non-optimum combinations are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Moptinum(P1, L1, L2, L3) = P1 − 4·167L1 + 2·348L2 + 0·818L3

Mnon-optimum(P1, L1, L2, L3) = P1 − 6·167L1 − 4·167L2 + 9·334L3

Moptinum(P2, L2, L1, L3) = P2 + 3·101L2 − 5·242L1 + 1·141L3

Mnon-optimum(P2, L2, L1, L3) = P2 + 31·010L2 + 3·325L1 − 35·335L3

Moptinum(P3, L3, L1, L2) = P3 + 1·065L3 − 4·990L1 + 2·924L2

Mnon-optimum(P3, L3, L1, L2) = P3 + 10·655L3 − 7·242L1 − 4·413L2

(30)

As shown in Figures 11–13, for BDS B1, B2 and B3 frequencies, the fluctuations of
multipath error separated by the optimal method are smaller than those of the non-optimal
method. The results indicate that the optimisation method can separate multipath errors
more accurately in city canyon environments.

8.2. Data analysis on second order ionospheric error elimination. Equation (16)
contains the second-order ionospheric error, while the second-order ionospheric error is
eliminated in Equation (22). The second-order ionospheric error can be extracted by the
subtraction between Equations (16) and (22). The one-hour city canyon data of BDS B1I,
B2I and B3I are analysed in Figure 14.

As shown in Figure 14, the fluctuations of the second-order ionospheric error are
approximately 0·1 m. This is consistent with previous results (Wang et al., 2005). The

Figure 11. Multipath observation of BDS B1 under the optimum and the non-optimum combinations.
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Figure 12. Multipath observation of BDS B2 under the optimum and the non-optimum combinations.

Figure 13. Multipath observation of BDS B3 under the optimum and the non-optimum combinations.
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Figure 14. Code phase difference on B1, B2, B3 between two triple-frequency combinations.

results demonstrate that the proposed method can be used to eliminate the second-order
ionospheric errors effectively.

9. CONCLUSION. The multi-frequency BDS code-multipath combination measure-
ments were utilised to separate multipath and ionospheric errors. The multipath effect
on code measurements has been investigated extensively, while that on carrier phase is
not well investigated in the code-multipath combination. However, there are some other
errors, including the hardware delay, carrier measurement noises and biases from satel-
lites, which will influence the code multipath measurement. The different characteristics
of ionospheric error on code phase and carrier phase have been investigated to propose an
optimum method of multi-frequency BDS code-multipath combination measurement. We
have defined the carrier amplifier factor �, indicating an amplified ratio of error and biases
in combination equations. According to the data analysis, the optimum triple-frequency
combination solution can eliminate the first order ionospheric error and has the minimum
error on the carrier phase. Similarly, the quad-frequency optimum code-multipath combi-
nation can effectively eliminate the second order ionospheric error, with less impact on
the measurement of code multipath effect. By utilising the optimum combination, the code
multipaths of different frequencies can be detected accurately. The measurements of the
Perth BDS IGS station as well as the actual sampled three and four frequency signals
from a city canyon were used to validate the optimisation result. By comparative analy-
sis, we have found that the fluctuations of the optimum triple-frequency combination are
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smaller than those of the non-optimum combination. It was verified that the bias and error
of carrier phase were more amplified by the non-optimum combination, while the opti-
mum combination can minimise them. The multi-frequency code-carrier combination can
be also used to eliminate the second-order ionospheric error. Recently, BDS-3 has released
the Interface Control Document (ICD) of B1C, B2a and B3I. The proposed optimal solu-
tion of quad-frequency BeiDou code-multipath combination may be available soon. With
the development of GNSS, the number of navigation satellite signal frequencies will be
increased and the optimal combination may also be widely used in the future.
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