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Rayleigh–Taylor mixing in an otherwise stable
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We seek to understand the distribution of irreversible energy conversions (mixing
efficiency) between quiescent initial and final states in a miscible Rayleigh–Taylor
driven system. The configuration we examine is a Rayleigh–Taylor unstable interface
sitting between stably stratified layers with linear density profiles above and below.
Our experiments in brine solution measure vertical profiles of density before and
after the unstable interface is allowed to relax to a stable state. Our analysis
suggests that less than half the initially available energy is irreversibly released
as heat due to viscous dissipation, while more than half irreversibly changes the
probability density function of the density field by scalar diffusion and therefore
remains as potential energy, but in a less useful form. While similar distributions are
observed in Rayleigh–Taylor driven mixing flows between homogeneous layers, our
new configuration admits energetically consistent end-state density profiles that span
all possible mixing efficiencies, ranging from all available energy being expended as
dissipation, to none. We present experiments that show that the fluid relaxes to a state
with a significantly lower mixing efficiency than the value for ideal mixing in this
configuration, and deduce that this mixing efficiency more accurately characterizes
Rayleigh–Taylor driven mixing than previous measurements. We argue that the
physical mechanisms intrinsic to Rayleigh–Taylor instability are optimal conditions
for mixing, and speculate that we have observed an upper bound to fluid mixing in
general.
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1. Introduction
Understanding turbulent transport and energy conversion processes in stratified fluids

is an ongoing scientific challenge, and the implications of such processes reach well
beyond the confines of science. To take but one example, scalar transport – of both
temperature and salt – is fundamental to oceanic circulation, and fluctuations therein
strongly influence our climate. Our focus here is on how molecular-scale processes in
turbulent fluid systems, the intricate details of which are of interest only to specialist
communities, influence on a measurable scale the aggregate behaviour of quantities
that are of widespread interest. In particular, we examine how molecular mixing
influences the transport of advected scalars and the conversion of energy.

Mixing between two species is a two-step process that comprises stirring and
molecular diffusion. Molecular diffusion alone is a slow process and the stirring
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enhances the rate of species diffusion by stretching material surfaces and increasing
the surface area and the species gradient over which the molecular diffusion occurs.
Rayleigh–Taylor unstable flows are especially interesting to examine in this context
because, throughout the evolution of the instability, the baroclinic source term in
the vorticity equation, −(1/ρ2)∇ρ × ∇p, deposits vorticity into the flow oriented
perpendicular to, and precisely co-located with, the species/scalar gradients. Since
gradients of the induced velocity decay exponentially away from the vorticity source,
co-location and perpendicular orientation are the optimal conditions for the sustained
stretching of material surfaces. One would expect from this that Rayleigh–Taylor
instability is unusually effective at doing mixing, and indeed this has been shown to be
the case (e.g. Linden, Redondo & Youngs 1994; Dalziel et al. 2008).

The classical Rayleigh–Taylor problem can be characterized very simply by the
following unstable initial condition:

ρ(z)=
{
ρu, z > 0,
ρl, z< 0,

(1.1)

where ρu > ρl are constant densities and z is anti-parallel to the acceleration field,
which in the laboratory context is gravity, g. In the absence of surface tension, any
perturbation to the interface will initiate a self-perpetuating, internally driven flow,
which becomes turbulent at sufficiently high Re. Potential energy is released into
kinetic energy by local overturning of dense and light fluid, which expands the mixing
region at the expense of the unmixed regions. Some of that kinetic energy is used
to engulf further unmixed fluid and this accelerates the instability. The rate at which
this process happens (in the high Re regime) is controlled by the acceleration due to
reduced gravity, g′ = g(1ρ/ρ), where in this classic Rayleigh–Taylor context we have
1ρ = ρu − ρl and for Boussinesq density differences, ρ = (ρu + ρl)/2. In the majority
of the Rayleigh–Taylor literature, a non-dimensional density difference is introduced,
the Atwood number,

A= ρu − ρl

ρu + ρl
, (1.2)

and is related to the reduced gravity by g′ = 2Ag. On dimensional grounds alone,
the height h of the mixing region must be characterized by h ∼ f (A)gt2, and there
is a wealth of evidence to suggest that f (A) = A both for Boussinesq flows and for
the penetration of light into dense for non-Boussinesq flows. It is common to write
an expression for the instability growth in the form h = αAgt2, where by convention
the constant of proportionality is denoted α. Defining its value has attracted much
experimental (e.g. Read 1984; Snider & Andrews 1994; Dalziel, Linden & Youngs
1999; Waddell, Niederhaus & Jacobs 2001), numerical (e.g. Youngs 1984; Cook, Cabot
& Miller 2004; Dimonte et al. 2004; Cabot & Cook 2006) and modelling (e.g. Zufiria
1988; Ofer et al. 1996; Rikanati et al. 2000) interest over the past 25 years, yet many
uncertainties remain.

It is reasonable to infer that the rate of instability growth is controlled by
the distribution of energy in the system, particularly the balance between energy
needed to sustain the instability and energy used in other ways. We have chosen
to look at Rayleigh–Taylor unstable systems from this perspective, and we measure
experimentally the energetic changes between initial and final states. Experimentally
this poses problems for an unconfined instability (which will evolve ad infinitum),
unless one accepts the somewhat arbitrary confinement imposed by a finite domain.
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Rayleigh–Taylor mixing in an otherwise stable stratification 509

We consider instead a case where the Rayleigh–Taylor instability is naturally confined
by linear stable density stratifications that sit above and below the Rayleigh–Taylor
unstable interface. The stratification at t = 0 is given by

ρ(z, 0)=
{
ρu − βz, z > 0,
ρl − βz, z< 0,

(1.3)

where the constant stratification slope β is given by

β =−∂ρ
∂z
= ρ

g
N2 > 0. (1.4)

Here, N is the buoyancy frequency and ρu > ρl are the densities just above and
below the interface. The initial density field ρ(z, 0) is of course discontinuous and
Rayleigh–Taylor unstable at z = 0. In the case β = 0, equation (1.3) reduces to the
classic Rayleigh–Taylor problem.

The decomposition of energy into kinetic and potential components is elementary,
but in characterizing the energy conversions here we follow Winters et al. (1995) and
decompose potential energy into ‘available’ and ‘background’ components. Potential
energy has a component ‘available’ (in a thermodynamic sense) to do work, Eap, and
a remainder component known as the ‘background’, Ebp, which has no capacity to do
further work. All kinetic energy, Ek, currently in the system is considered available,
so Ea, the energy available to the system for conversion to another form, is given by
Ea = Ek + Eap. As the system relaxes, progressively less of this energy will remain
available. Ultimately, a quiescent, stable state is reached.

The question this paper examines is where that initially available energy ends up.
For more complex and larger systems, one must take into account conversion to
and from chemical potential energy and other higher-order concerns (see Tailleux
2009, for a detailed discussion), but here our data are taken at laboratory scale
and concern the behaviour of miscible liquids under linear mixing at atmospheric
pressure. With these restrictions, we can construct a Boussinesq, incompressible model,
accounting for contributions to internal energy Ei but ignoring any feedback from it.
Such effects we thus neglect include the very long time scale processes of diffusion
that occur in the absence of stirring (see Winters & Young 2009, for some details),
heat-induced volumetric expansion and contributions from dissolution due to diffusion
of our density-varying solute, sodium chloride. These assumptions can be shown to
introduce errors two orders of magnitude smaller than those experimental errors we are
able to measure, and so we choose to ignore such effects. However, even the weak
nonlinearities of the equation of state for sea water are likely to become important at
oceanographic scales.

At a continuum scale, we regard shear as the physical mechanism by which kinetic
energy is converted to heat, and viscosity ν controls the rate at which this happens.
Less intuitively, molecular diffusion of mass, controlled by a scalar diffusivity κ , is
the corresponding mechanism by which available potential energy Eap is converted
to background potential energy Ebp. This mechanism can perhaps best be described
by considering how mixing changes the form of the density field probability density
function (p.d.f.(ρ)). In general, mixing takes a pre-existing contrast in density and
afterwards fluid is concentrated closer to some mean density. There is an irreversible
energy conversion associated with this process, which one could quantify if one were
to associate the p.d.f. with a unique monotonic stable stratification. The sorting of the
density field required to obtain a p.d.f. (see Tseng & Ferziger 2001) is equivalent to
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that required to adiabatically rearrange arbitrarily located fluid parcels into a stable
state, i.e. sort(ρ(x)) = ρ(ẑ), where ẑ is the required vertical reorganization. When
density contrasts are eroded by mixing towards a mean density, the centre of mass
of the reorganized field is lifted upwards, so the corresponding integral ‘background’
potential energy, Ebp =

∫
V ρgẑ dV , therefore increases over time.

With the above arguments, we can thus identify that there are two primary routes
for initially available energy to become unavailable, namely a flux to internal energy
and a flux to background potential energy. These can most simply be described by the
following differential system for the aggregate energy:

dEi

dt
= ε, (1.5a)

dEk

dt
=−φ − ε, (1.5b)

dEap

dt
= φ − ζ, (1.5c)

dEbp

dt
= ζ, (1.5d)

where the energy conversion fluxes follow from the Boussinesq equations of motion
(see Winters et al. 1995, for more detail) and reduce to:

ε(t)=
∫

V
ν|∇u |2 dV, (1.6a)

ζ(t)=−κg
∫

V

dẑ

dρ
|∇ρ |2 dV, (1.6b)

φ(t)=
∫

V
gρuz dV. (1.6c)

The dissipative flux, ε(t) > 0, is the flux to internal energy due to friction; ζ(t) > 0
is the flux of energy to background, which we note is a non-local definition, since
it requires knowledge of the complete system to obtain ẑ. Both are non-negative and
irreversible due to processes on the molecular scale. The buoyancy flux φ(t), which
represents the work done on the density field by the velocity field, is an adiabatic,
reversible exchange between the two forms of available energy.

The fluxes ζ and ε together quantify the rate of decrease of available energy, but it
is of interest to examine the distribution of energy leaving the system, in particular the
ratio ζ/ε, first used by Oakey (1982). A commonly used alternative, especially in the
oceanographic community (e.g. Itsweire et al. 1992; Munk & Wunsch 1998; Wunsch
& Ferrari 2004; Laurent, Simmons & Jayne 2006), is the mixing efficiency η. In our
current framework we define the instantaneous mixing efficiency as

ηI = ζ

ζ + ε . (1.7)

Rayleigh–Taylor instability is unusual for its quiescent initial and final states, and
in a laboratory context it is very convenient to measure changes in aggregate quantity
between end states in a closed system. We adopt the definition for an ‘aggregate’
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mixing efficiency

ηA = |1Ebp|
|1Eap +1Ek| , (1.8)

and for convenience use absolute values, since 1Ea =1Eap + 1Ek < 0 and 1Ebp > 0.
In the special case of Rayleigh–Taylor instability, which has quiescent initial and end
states, 1Ek = 0 and 1Ea =1Eap.

We now consider how aggregate mixing efficiency in the classical Rayleigh–Taylor
case can be predicted from the initial density profile and assumptions about the
expected final state. As shown in figure 1(a), the initial state has a p.d.f. given by
δ(ρ − ρu) + δ(ρ − ρl) (where δ is the Dirac delta function). If we assume that the
most mixing possible has taken place by the time the flow comes to rest, then the end
state would be homogeneous at the mean density, and we would have a density field
p.d.f. given by 2δ[ρ− (ρu+ρl)/2]. Experimentally we get remarkably close to this (see
Holford, Dalziel & Youngs 2003) in low-aspect-ratio domains (though variability in
initial conditions has a small influence), and even closer in high-aspect-ratio domains
(see Dalziel et al. 2008), where the initial conditions have negligible influence.

With this empirically supported model for the evolution of the p.d.f., we obtain
corresponding potential energies:

E0
tp =

∫ 0

−H
ρlgz dz+

∫ H

0
ρugz dz= 1

2
gH2(ρu − ρl), (1.9a)

E0
bp =

∫ 0

−H
ρugz dz+

∫ H

0
ρlgz dz= 1

2
gH2(ρl − ρu)=−E0

tp, (1.9b)

E∞bp =
∫ H

−H

ρu + ρl

2
gz dz= 0, (1.9c)

E∞tp = E∞bp, (1.9d)

where the tp suffix we introduce here indicates the total potential energy. With
our current definition of z = 0, the background potential energy at the end state,
E∞bp , cannot be greater than zero, even if the stratification is not well mixed. The
maximum mixing efficiency, in terms of these total and background potential energies,
is given by

ηA|max =
|E∞bp − E0

bp|
|(E∞tp − E∞bp)− (E0

tp − E0
bp)|
= 1

2
. (1.10)

This result is well known for the classic Rayleigh–Taylor problem in a finite box,
and indeed no closed process has been shown to exhibit higher mixing efficiencies
than Rayleigh–Taylor instability. Furthermore, it is straightforward to show that
ηA|max = 1/2 holds for any monotonic density profile anti-symmetric about its mid-
point, of the form

ρ(z, 0)=
{
ρ +1ρ(|z|), z> 0,
ρ −1ρ(|z|), z< 0.

(1.11)

As for the classical instability, E0
bp = −E0

tp and E∞bp = 0 = E∞tp for a well-mixed final
state. However, we have not been able to verify our prediction experimentally, since
we cannot generate unstable stratifications of this form in the present experimental
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FIGURE 1. Idealized stratifications and probability density functions of initial and final states
for (a) the classical Rayleigh–Taylor instability, and (b–d) the new stratified configuration
under the limiting conditions of (b) no mixing, (c) ‘complete’ mixing and (d) no dissipation.
Initial states are shown as dashed lines, and final states as solid lines.

apparatus. The significance of this prediction, however, is that the end state will
approach a well-mixed state for any monotonically unstable initial stratification,
irrespective of the initially available potential energy. In this sense, such initial density
profiles possess excess available energy that can only be expended by doing additional
dissipation beyond the minimum needed to perform the mixing that achieves a well-
mixed end state. Observation of their final quiescent states therefore indicates little
about the the minimum dissipation needed to perform mixing specifically during the
Rayleigh–Taylor mixing process. The key question is obvious: what might we learn if
we remove the ‘excess’ energy?

We now turn our attention to the system described by (1.3). It is not clear a priori
what the end-state profile will be, but, as illustrated by the sequence of figure 1(b–d),
we can construct well-defined bounds. Once again it is instructive to consider both the
p.d.f. of the density field, and its mean vertical profile.

If all fluid parcels were mutually immiscible, no mixing could take place between
them, so the p.d.f. would remain unchanged throughout the process, and therefore
the background state that we define from the sorting would also remain unchanged.
Therefore, once all available energy was used, the final state would have been identical
to the initial background state. Since no energy was spent modifying the background
state, all the irreversible energy conversions must have been dissipative (i.e. ηA = 0)
and the system relaxation must simply have been a rearrangement of fluid parcels
without modification of their properties. This final state is illustrated in figure 1(b), and
we note that the mixing region must penetrate vertically until those fluid parcels that
are initially most buoyant reach a position where they become neutrally buoyant. We
denote this point

zn = ρu − ρl

β
, (1.12)

as indicated in the figure.
Now consider the case conceptually closest to perfect mixing, where there is

sufficient advective transport within the mixing region that every newly encountered
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Rayleigh–Taylor mixing in an otherwise stable stratification 513

fluid parcel of density ρ at the upper edge of the mixing region can pair and mix with
its equal and opposite member 2ρ − ρ on the lower edge and thus generate fluid of
density ρ = (ρu+ρl)/2. The p.d.f., initially distributed as a top-hat profile, will become
narrower from the outside and eventually become a Dirac delta function. The mixed
region will be homogeneous, with density ρ, and its vertical penetration, by geometric
reasoning, can be no further than ±zn/2, as shown in figure 1(c). We calculate the
energy conversions that give rise to this end state as

E0
tp =

∫ 0

−zn

(ρl − βz) gz dz+
∫ zn

0
(ρu − βz) gz dz

=−1
6
(ρu − ρl) gz2

n, (1.13a)

E0
bp =

∫ zn

−zn

(
ρu + ρl

2
− ρu − ρl

2zn
z

)
gz dz

=−1
3
(ρu − ρl) gz2

n, (1.13b)

E∞tp =
∫ −zn/2

−zn

(ρl − βz) gz dz+
∫ zn/2

−zn/2

ρu + ρl

2
gz dz+

∫ zn

zn/2
(ρu − βz) gz dz

=− 5
24
(ρu − ρl) gz2

n, (1.13c)

E∞bp = E∞tp . (1.13d)

This results in an aggregate mixing efficiency of

ηA = 3
4 . (1.14)

Note that the vertical penetration of the mixing region is smaller for ηA = 3/4 than
for ηA = 0. This raises the question of how one could obtain ηA = 1, which would
represent an inviscid fluid with no dissipation. In this case all irreversible energy
conversions must be due to molecular diffusion of density. We may reasonably assume
that the mixing region will be ‘well mixed’ since we have no dissipation to drain
energy before it can become so, and it can be shown that the mixing region would
progress to ±3zn/4. The end state in figure 1(d) contains density jumps. Such jumps
are consistent with so-called ‘external mixing’, in which density gradients tend to be
sharpened (Turner 1973) by a supply of turbulent energy from a source some distance
away. The sharpened density gradient appears in the corresponding p.d.f. as a trough,
where densities initially located between zn/2 and 3zn/4 are subsumed into the mixing
zone. Since baroclinic deposition of vorticity into the flow at precisely the orientation
and location required to best enhance scalar gradients is indicative of ‘internal mixing’,
where density contrasts are smoothed rather than sharpened by the turbulent processes,
we view figure 1(d) as a hypothetical, rather than a realistic, possibility. We also note
(Fernando 1991) that the process of external mixing is known to be very inefficient
compared with that of Rayleigh–Taylor instability.

However, it is clear that with our new configuration we can obtain statically stable,
quiescent end states for the complete range of possible mixing efficiencies. This is
not possible with classical Rayleigh–Taylor instability, and indeed all other unstable
profiles of the form (1.11), because there the system starts with more available
potential energy than is needed to mix completely to a homogeneous end state.
Any energy not used in mixing must be dissipated, reducing the average value of ηA
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between initial and final states. It appears that the upper limit in the classical case is
ηA = 1/2 simply because of the geometric constraint that the end state must be at least
neutrally stable. Previously, this equi-distribution of irreversible energy fluxes between
internal energy and background potential energy has been regarded as an intrinsic
upper limit of the fluid. However, attributing special significance to this observation
is inappropriate, since in the classical Rayleigh–Taylor system one cannot discriminate
on the basis of quiescent initial and final states between, on the one hand, that portion
of the dissipated energy that was intrinsically required as part of the mixing process to
bring fluid parcels of contrasting densities close together so molecular diffusion could
take place, and, on the other, that portion that was dissipated due to supplementary
advection without having made a significant contribution to mixing.

Equally, in our new configuration, there is no special significance to a particular
value of mixing efficiency without reference to the corresponding well-mixed end state;
it would be possible to conceive of other initial stratifications whose upper limit of
mixing efficiency on the basis of internal mixing was greater than 3/4. The crucial
feature of our configuration is that there is much less initially available potential
energy than classical Rayleigh–Taylor instability. Provided the mixing efficiency turns
out to be lower than the geometric limit, the end state is solely and robustly
determined by energy conversions intrinsic to the Rayleigh–Taylor driven mixing
mechanism that we regard as being optimal. The following sections describe a series
of experiments designed to test and understand these predictions.

2. Experimental setup
The experimental arrangements for the present set of experiments with linearly

stratified upper and lower layers follow broadly those for studying classical
Rayleigh–Taylor instability. Density differences are created by adding NaCl to fresh
water and the basic apparatus is identical to that used by Dalziel et al. (1999) and
Jacobs & Dalziel (2005), which in turn was refined from earlier studies (Dalziel 1993;
Linden et al. 1994). The Rayleigh–Taylor tank has dimensions 0.4 m× 0.2 m× 0.5 m
as shown in figure 2(a), and its central feature is the sliding barrier, which supports the
unstable density discontinuity prior to release.

Lane-Serff (1989) conceived of a composite barrier mechanism as detailed in
figure 2(b–d) made with a structural core of two metal plates, and flexible external
surfaces of polyester cloth. The cloth is attached to the tank at one end, and during
withdrawal of the barrier at the start of an experiment, the cloth is folded inside the
barrier between the metal plates. This shields the fluid from the moving metal, and
in the reference frame of the tank the cloth is stationary, except at the very tip of
the barrier where it folds around, and a clearance along the edges. The total barrier
thickness is 2.5 mm.

Some light-induced fluorescence (LIF) measurements were made in the present
study using a 700 W xenon arc lamp, di-sodium fluorescein dye and a 1 Mpixel
UNIQVision 1830-12B-CL monochrome charge-coupled device (CCD) digital video
camera. Fluid below the unstable density discontinuity was dyed with a uniform
concentration of dye, and a very thin (<1 mm) vertical light sheet used. The
observations are shown later in § 3. Unlike Rayleigh–Taylor in its classical
configuration, here the dye is no longer a proxy for density, and these images instead
measure the penetration of the dye front into the undyed upper region.

Quantitative optical measurements were made using a dye attenuation technique.
A fluorescent light bank with an optical diffuser (functioning also as a heat shield)
was placed behind the tank and recorded by the video camera at a distance of 5 m

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.398


Rayleigh–Taylor mixing in an otherwise stable stratification 515

(a) (b)

(c)

(d)

FIGURE 2. Diagrams illustrating tank and barrier mechanism: (a) an overview of the tank,
with nylon cloth (chequered pattern) and metal barrier (grey); (b–d) series of cross-sections of
the composite barrier while being withdrawn.

from the front to minimize parallax. Fiesta Red food colouring dye was used, and
a green filter was placed over the lens of the camera so that the light transmitted
to the CCD sensor was spectrally narrow-band. Recorded images were corrected
for variations in background light intensity and calibrated against a known linear
dye/density stratification. Attenuation experiments (see Cenedese & Dalziel 1998, for
more detail) were performed both where dye was a proxy for density (optical density
method) and, like the qualitative observations in figure 3, where dye concentration is
uniform within a layer (dye penetration method).

The main focus of this work, however, is calculation of mixing efficiency by
accurately measuring the density field. This was performed in a set of experiments
using only brine (Schmidt number Sc = ν/κ = 700) and without dye. The vertical
profile of salt concentration was measured by traversing a conductivity probe. The
probe used is an aspirating design, whereby brine is sucked through the 0.3 mm
diameter nozzle at very low volume flow rate (10 ml min−1), but this gives a tip
velocity of 23 m s−1. The electrical pathway from outer to inner electrode is through
the nozzle, and the signal is dominated by the conductivity of fluid in the nozzle.
Owing to its high nozzle velocity, the probe has a very fast frequency response.
In these experiments the probe was traversed vertically down through the tank
at 2 cm s−1 using a computer-controlled stepper motor, and voltage measurements
from the probe were streamed synchronously to an analogue data acquisition card.
Probe measurements were made in quiescent flow (except perhaps for the potential
flow response of the probe itself) before and after the system had relaxed.

A pair of computer-controlled peristaltic pumps are used to reliably create the
linear stratifications. We note that a temporally nonlinear density variation is required
in the supply of fluid to the tank, since mixing between adjacent horizontal layers
is influenced by the boundary towards the end of the filling process. Filling was
performed with the barrier nearly closed, to minimize the disturbance to the lower
layer stratification when closing the barrier to prepare for filling the upper layer.
Both layers are initially over-filled by 2 cm to ensure the conductivity probe has an
electrical pathway between its electrodes when measuring the very top of each layer.
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In the case of the lower layer, the excess fluid above the barrier is removed after the
probe measurements have been taken and the barrier has been closed, but before the
upper layer fluid is added.

The removal of the barrier as the experiment begins causes a small drop in the
potential energy present in the fluid, since the newly created space is filled by upper
layer fluid descending 2.5 mm to occupy the volume. However, to leading order,
the barrier withdrawal is energetically neutral, since the work done by the fluid on
the barrier is equal to this potential energy change. Naturally, when measuring the
initial condition for the upper layer, we do so with the barrier shut, so we make
an adjustment to the height of initial condition measurements in the upper layer to
calculate the equivalent energetic state with the barrier fully withdrawn.

3. Results and modelling
LIF experiments were conducted with a uniform concentration of fluorescent dye

in the upper layer and, from the images in figure 3, it is immediately apparent that
the height to which the Rayleigh–Taylor instability reaches is constrained by the
stratification. Moreover, the dye shows that the mixing region does not reach the
neutral buoyancy height zn, here set to be the top (and bottom) of the tank. This
height would only be reached if parcels of fluid immediately below (above) undergo
no mixing. Thus molecular mixing influences the height to which upper layer fluid can
penetrate the lower layer (and vice versa), as anticipated in our figure 1.

This raises the question of how accurate a predictor of mixing efficiency dye
penetration measurements might be and, conversely, whether for a known mixing
efficiency the dye penetration could be calculated. If we consider a parameter θ , in
the range 0 < θ 6 1, representing the penetration height as a fraction of zn, and we
generalize our earlier assumptions to admit an end state with a constant stratification
gradient γ = β[1 − 1/(2θ)], say, in the mixed region, then we can establish a mixing
efficiency in terms of θ . The generalized end-state potential energies are

E∞tp =
∫ −θzn

−zn

(ρl − βz) gz dz+
∫ θzn

−θzn

(
ρu + ρl

2
− γ z

)
gz dz+

∫ zn

θzn

(ρu − βz) gz dz

=−1+ θ 2

6
(ρu − ρl) gz2

n, (3.1a)

E∞bp = E∞tp , (3.1b)

and from this we recover the aggregate mixing efficiency as

ηA = 1− θ 2 = 1− 1

4(1− γ /β)2 , (3.2)

for a non-zero initial stratification gradient β. For energetic consistency (i.e. zero
available energy in the final state), θ > 1/2 since only statically stable density
profiles are viable quiescent end states. One feature that becomes obvious from
(3.2) is that, with smaller mixing efficiencies, the penetration height θzn increases.
In the immiscible limit, θ = 1. Still larger values of θ are dynamically inadmissible
(buoyancy opposes θ > 1), but it is interesting to note that such density profiles have
an even lower total potential energy, i.e. E∞tp reduces monotonically with increasing
θ . This observation is crucial. It is now evident that penetration into the range
1/2 < θ < 1 must release more of the initially available potential energy. Incidentally,
a larger proportion of this energy must eventually go into dissipation to be consistent
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(a) (b) (c)

(d) (e) ( f )

FIGURE 3. Experimental image sequence showing the Rayleigh–Taylor instability confined
by linear stratification, at times: (a) t = 0 s, (b) t = 4 s, (c) t = 8 s, (d) t = 12 s, (e) t = 16 s
and (f ) t = 20 s. The images are captured from the end of the tank, with the barrier withdrawn
into the page. The Atwood number is A= 2× 10−3.

with (3.2). However, it is not apparent from the one-dimensional profile of density how
this potential energy can be accessed, since when θ > 1/2 the mean stratification is
stable and one might conclude that Eap = 0, and any remaining Ea is merely residual
kinetic energy that will decay rapidly away. This is not consistent with substantial
development of the penetration height beyond θ = 1/2 as observed in the experiments.
Our explanation is that, while the horizontally averaged density profile can be used
to calculate Etp without error, it only represents a lower bound on Eap, since inclined
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isopycnals store additional Eap without appearing in the average. We might write

Et
tp − Et

bp < Et
ap < Et

tp − E0
bp, (3.3)

since we can construct an upper bound from the ‘zero-mixing’ limit (where
Ebp = const.). With this understanding, it is clear that θ = 1/2 is not a limit on
the available energy; the absolute limit is determined by the rise in Ebp, which is
entirely a function of molecular mixing.

It is instructive at this point to reconsider the p.d.f., its relationship to Ebp and
the inclined isopycnals. In general, the wider the spread of the p.d.f., the lower the
background potential energy and the steeper the density gradients of those inclined
isopycnals. However, only the portion of the p.d.f. contributed by the mixing region,
p.d.f.|mix , say, plays a role in the evolution of the flow. For the mixing region
to continue growing while the mean density stratification is stable requires the
spread of p.d.f.|mix to be greater than the difference between densities at the upper
and lower edges of the mixing region. Thus, locally, the flow is Rayleigh–Taylor
unstable and fresh fluid above and below the mixing region can be drawn in. It
is thermodynamically inadmissible for the p.d.f.|mix to increase its spread with time
(this implies un-mixing at a molecular level), so at the time where the mixing zone
stops growing, the density spread must be [ρu − βθzn, ρl + βθzn]. Thereafter, the
remaining available energy stored by inclined isopycnals is expended by mixing out
these density gradients, p.d.f.|mix clusters towards the mean density and the isopycnals
become horizontal. At this point the flow has no further available energy and becomes
quiescent. The Eap remaining once θzn has been reached is merely residual energy,
and plays no significant role in modifying the mean density profile. If this were a
significant reservoir of available energy, then it would sharpen the density gradients at
the edge of the mixing region. While we cannot rule out the possibility at h > zn/2
that there are regions of local static stability in which residual kinetic energy drives
some mixing, there is no evidence in figure 3 of the scouring normally associated
with such processes. Indeed, subsequent figures will show that, with the present initial
stratification, at no point during the evolution of the instability is there evidence
of a contribution from mixing of this type to the stratification; rather, there exist
localized regions of instability throughout the vertical extent of the mixing region for
the duration of the evolution.

We would expect the maximum penetration of dye to be associated with the height
±θzn of the end-state mixed region. While internal gravity waves are bound to
form where the mixing zone interfaces with fluid above and below, in our closed
domain energy cannot be radiated away by these waves. Except if they were to break
(which we regard as unlikely), they simply exchange Eap with Ek and contribute to
the reversible flux φ(t). We initially (Lawrie 2009) used time-series data from dye
penetration LIF and a simple concentration thresholding to define the boundary of the
mixed region. While we observed with this measure that the instability settles to a
constant height, the ensemble average appeared to overshoot the end-state value during
transient growth by 10 %. This was not, however, an observation unique to the LIF
viewing plane. Shadowgraph measurements highlight the extrema of turbulent mixing
zones rather than a mean or projected view; our measurements covered the whole
width and thickness of the tank yet also exhibited a similar overshoot. We attribute
the appearance of additional transient penetration to these internal gravity waves, but
we expect them to play no significant role in irreversible energy conversion. The
experiments presented in this paper use improved diagnostics to focus solely on these
irreversible conversions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.398


Rayleigh–Taylor mixing in an otherwise stable stratification 519

To refine our expectations of the form that the transient growth behaviour should
take in the new, stratified case, we now examine the exchange between kinetic and
potential energies as the Rayleigh–Taylor instability relaxes. The energy budget can be
written as ∫

ρ0gz dz−
∫
ρgz dz∼

∫
1
2
ρu2 dz, (3.4)

where the double overbar indicates a horizontally averaged quantity, ρ0 = ρ(z, 0),

ρ = ρ(z, t), and the term ρu2 represents kinetic energy. The ∼ symbol becomes an
equality in the case of no dissipation (ηI = 1) but in general we expect ηI to be a
constant of proportionality. We progress by assuming a functional form for the density
perturbation function ρ ′(z, t) = ρ0 − ρ, and evaluating directly. In the first instance we
assume that as the system relaxes it forms a well-mixed region of uniform density
(ρu + ρl)/2. Thus∫ zn

−zn

(
ρ0 − ρ

)
gz dz∼

∫ h

0

(
ρu − ρl

2
− βz

)
gz dz+

∫ 0

−h
−
(
ρu − ρl

2
− βz

)
gz dz

∼ 1
2

gh2 (ρu − ρl)

(
1− h

χzn

)
, (3.5)

where χ = 3/4. Following the scalings proposed by Batchelor (1954) and reviewed by
Turner (1986) for studies of turbulent entrainment, and in line with previous studies on
the self-similar Rayleigh–Taylor instability, we assume that turbulent velocities scale as
u∼ dh/dt. The kinetic energy, after making the Boussinesq approximation, becomes∫ zn

−zn

1
2
ρ
∣∣u2
∣∣ dz∼ ρu + ρl

2

(
dh

dt

)2

h. (3.6)

This energy is distributed over the mixing zone volume, the height of which scales
with h, so the energy balance is therefore

1
2

gh2 (ρu − ρl)

(
1− h

χzn

)
∼ ρu + ρl

2

(
dh

dt

)2

h. (3.7)

Defining the buoyancy frequency N for the undisturbed stratification as given in (1.4),
the integration to recover h(t) is of the form∫

dt ∼
∫

1√
1
2 N2hzn[1− h/(χzn)]

dh

dt
dt, (3.8)

to which there is a solution

t − t0 ∼
√

2χ
N

arctan


√

1
8χ zn[2h/(χzn)− 1]√

1
2 znh[1− h/(χzn)]

 . (3.9)

This functional form, plotted in figure 5, confirms that we should observe monotonic
transient growth of the instability. It is also clear that there is only one single time
scale in the problem,

1
N
=
√

zn

2Ag
, (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.398


520 A. G. W. Lawrie and S. B. Dalziel

which determines both the Rayleigh–Taylor acceleration and the subsequent
deceleration as available energy is consumed. This is also the time scale of any
internal gravity waves in the unmixed regions. We can define a Reynolds number for
the mixing zone growth as Re= h(dh/dt)/ν and from (3.9) it follows that

Re∼ Nz2
nχ

3/2

ν

√(
h

χzn

)3(
1− h

χzn

)
. (3.11)

Clearly spatial and temporal scalings are independent here, so Re(h) is self-similar for
all Atwood numbers and, from (3.10), it follows that Re ∼ A1/2. The most significant
features of Re(h), as shown in figure 4, are its asymmetry, with a late peak at
3χzn/4, and an extremely rapid decay to 0 as h→ χzn. Recalling that χ = 3/4,
we have a prediction of end-state penetration h(∞) = 3zn/4 that is consistent with
the assumptions in the model, namely that all initially available potential energy is
converted to kinetic energy, and all kinetic energy is returned to potential energy, but
none is lost through dissipation. This is the ηA = 1 scenario depicted in figure 1(d).
Since we know that only a proportion of the kinetic energy is returned to potential
energy, given by an instantaneous mixing efficiency ηI , we can begin to reconcile the
model prediction with our intuition. To be consistent, we must relax the assumption
of well-mixedness and admit other possible end-state gradients. It turns out that
this is possible by a simple transformation. For the well-mixed case, the density
deficit function ( ρ0 − ρ ) given in (3.5) has a constant gradient β in the range
z = [−h, h], with a discontinuity at z = 0. Suppose our end state has a stable slope
−∂ρ/∂z = γ > 0, then the corresponding gradient in (3.5) becomes β + γ . Tracking
this through the model, we see that this simply changes the coefficient χ , and
therefore the predicted end-state penetration h(∞) is consistent with (3.2). While
there are limitations to this modified model (the β + γ slope of stratification is a poor
approximation at early time, for instance), we nevertheless obtain useful insight from
the scalings.

An important characterization of buoyant mixing flows in general is the Richardson
number. Here, we take a self-consistent definition for the bulk Richardson number
based on the density difference 1ρ(h) between points just above (ρu − βh) and just
below (ρl + βh) the mixing region,

Ri= g
1ρ(h)

2ρ
h

(dh/dt)2
∼ 2h/zn − 1

1− h/(χzn)
. (3.12)

It is clear from the functional form, also shown in figure 4, that Ri is negative initially,
owing to the unstable mean density gradient within the mixing zone. As h passes
through zn/2, the horizontally averaged stratification becomes stable in the mixing
zone and Ri= 0. As Re begins its rapid decay towards h/(χzn)= 1, the flow becomes
increasingly stable as Ri grows rapidly. In figure 4 we have plotted Ri for χ = 3/4,
consistent with the assumptions in the model. As χ varies, so too will the relative
positions of Repeak and Ri = 0. However, the kinetic energy (dh/dt)2 always peaks at
h/(χzn) = 0.5, which implies that kinetic energy begins to fall long before the mean
stratification is stable, and despite the continued increase in Reynolds number. We note
once again that the mean density profile hides available potential energy contained
in horizontal density gradients, and so this bulk Richardson number cannot inform
us of precisely when mixing turns off. In the case of internal mixing, this is solely
determined by the p.d.f. of the density field. Taken together, however, these scalings
give an important justification that the system relaxation is dominated by energetic,
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FIGURE 4. Normalized Re (solid line) and Ri (dashed line) as a function of normalized
height.

high-Re, low-Ri Rayleigh–Taylor mixing and the low-Re, high-Ri decay phase that
must exist just before h= h(∞) is energetically negligible.

The curve given by (3.9) with a suitable χ is shown as a solid line in figure 5,
scaled on the time axis (as with most Rayleigh–Taylor models in the literature, we
have no way of estimating the growth time scale) to match data from an experiment
using the dye penetration method described in § 2. The most direct experimental
analogue of the dye penetration height h(t) given by our model (3.9) would be to
select an isosurface of dye concentration. To avoid making an arbitrary choice and
improve the robustness of the measurements, we instead follow Dalziel et al. (1999)
and use an equivalent integral measure of mixing zone height,

hexp ∼
∫

c(1− c) dz, (3.13)

where c(z) is the horizontal mean dye concentration, averaged along each light ray
and arithmetically across the tank width. A prefactor ensures that the measures h(∞)
and hexp(∞) are consistent, and provided the concentration profile in the mixing zone
is self-similar, they are equivalent for all t. If the dyed layer is c = 1 initially, the
integrand is bounded between 0< c(1− c) < 0.25, since this function has a maximum
when c= 0.5 in the instance of completely mixed upper and lower layer fluid.

The penetration height observed in the experiment corresponds to a mixing
efficiency of η = 0.55; in this and subsequent figures, the dashed line represents the
values for η = 0.5 (the maximum possible in the classical configuration) and the dotted
line for η = 0.75 (the well-mixed limit for internal mixing in the present configuration).
It is clear from the obvious consistency with our energy budget model that, unlike
the earlier measurements of Lawrie (2009), there is no significant overshoot in the
transient growth observed using this more careful definition of h. Once the stable
state has been reached, there is an apparent trend of decreasing penetration, but this
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FIGURE 5. Extent of dye interpenetration; optical measurements with model superimposed;
A= 10−3.

is an artefact of image processing because the fluorescent light bank became slowly
brighter during the experiment, not a spuriously non-monotonic development of the
instability. The heat emitted by the light bank precluded it being left to equilibrate
before starting the experiment, since the red dye absorbs heat and the double-diffusive
convection that results interferes with the initial density stratification. The error bars
on the experimental data indicate the severity of the correction made to enforce optical
conservation of mass, and this accounts for errors due to non-uniformity of density
along each light ray.

We also used the dye attenuation technique in ‘optical density’ mode to obtain a
more detailed picture of the density field during the transient growth. Figure 6 shows
a sequence of vertical mean profiles ρ(z). As one would expect, the mixing due to
the instability reduces the severity of the density gradient around the Rayleigh–Taylor
unstable interface. During the time that the mean density gradient remains unstable, it
is obvious how the potential energy is supplied to the system; this becomes less clear
when ∂ρ/∂z < 0 everywhere. Our justification is that the turbulent motion produces
horizontal as well as vertical density fluctuations, and therefore statically stable mean
stratifications can hide available energy, which will continue to be used for mixing.
Thus, locally, the flow is still Rayleigh–Taylor unstable, and able to draw new fluid
into the mixing region. In doing so, the mean stratification ∂ρ/∂z becomes more stable
and, somewhat counter-intuitively, the total potential energy of the system reduces.
This continued release of potential energy allows the mean vertical profile to evolve
long after the slope in the central mixing region reaches ∂ρ/∂z= 0. This is not simply
residual decay of motion from previously supplied potential energy, but is driven by
newly released energy made available by the increasing static stability of the mean
profile. In this manner, potential energy could be extracted from the system indefinitely
if buoyancy were not opposing further progress of the mixing region. The buoyancy
in the system is regulated by the mixing occurring as the system relaxes, and this
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FIGURE 6. Optical measurements of density profile with time 0< t < 12.5s, at intervals of
2 s; A= 10−3.

determines p.d.f.|mix . In turn, this also determines the availability of potential energy
in the system. So we therefore arrive at the central conjecture of this paper, that
in the present configuration the fluid is free to select a stable state unconstrained
by geometric limits, and this stable state unambiguously describes the balance of
irreversible energy conversions taking place in Rayleigh–Taylor driven mixing.

The estimated peak Re given by (3.11) for these A = 10−3 experiments is
Repeak = 2100 but, from examination of figure 3, we caution that the integral scale
of the turbulence is significantly smaller than the size of the layer, though we
believe that the velocities at this length scale are similar to dh/dt. Having developed
an understanding of the fluid mechanical processes in the problem using optical
techniques at these very low Atwood numbers, we considered a range of Atwood
numbers in the Boussinesq regime, 0.001 < A < 0.012. As the interfacial density
jump increases, Re(h) ∼ A1/2, but Ri(h) is unchanged. The higher Re regime is
interesting since we might anticipate that, as the Kolmogorov scale reduces, mixing
efficiency improves. Unfortunately, at higher salt concentrations the refractive index
differences between the extreme densities ρu and ρl are non-negligible, so we solely
used beginning- and end-state data from vertical traversals of the conductivity probe.

Figure 7 shows these measurements, normalized by the interfacial density difference
and corrected to enforce conservation of mass between beginning and end states in
each case. The collapse is good, particularly with respect to stratification slope at z= 0
and the inferred penetration height θzn. From our earlier modelling we would therefore
expect the mixing efficiency to be consistent across the Atwood/Reynolds number
range. We confirmed this, as shown in figure 8, by direct integration of the potential
energies associated with the probe density profiles (black squares with error bars),
and compared these to predictions from our simple model (circles), which assumes
the stratification is piecewise linear with a mixing zone slope based on (dρ/dz)|z=0.
In the low Atwood number case we were able to verify mean profiles from optical
measurements (triangle) against the probe data.
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FIGURE 7. Collapse of stratification gradient over the range 0.001< A< 0.012, normalized
by interfacial density difference.
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FIGURE 8. Mixing efficiency as a function of Atwood number.

The error bars given for the probe data indicate the uncertainty in experimental
mass conservation. A complex arrangement of seals ensured that leakage from the
tank through the slot for the barrier was negligible. The small variations in mass
we measured between start and end states simply arise from measurement errors in
the probe data, partly due to contamination of the probe by silicone grease used to
help seal the barrier. The particularly large error range in one A = 0.001 case arises
from electrical noise in the traverse mechanism influencing the conductivity signal; the
signal-to-noise ratio at low salt concentrations is poor, and the outlying data in figure 7
are from the two A= 0.001 cases.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.398


Rayleigh–Taylor mixing in an otherwise stable stratification 525

The barrier is withdrawn by hand, and a small and inevitably inconsistent
contribution to the initial kinetic energy must therefore result. While such variations
are unavoidable in our experiment, we believe that they have a comparatively small
effect on the mixing efficiency. The conductivity probe data (black squares with
error bars) shown in figure 8 account for a ‘mean withdrawal’, using estimates for
the barrier kinetic energy derived in Dalziel et al. (1999) from particle tracking
velocimetry in a uniform-density Rayleigh–Taylor-neutral fluid (ρu = ρl, β = 0). The
correction results in a 1 % reduction in our calculated values, though we note that this
does not account for any long-lasting effects on the structure of the Rayleigh–Taylor
turbulence caused by the initial kinetic energy. Across the Atwood number range,
experiments with similar initial Atwood numbers appear to give either a mixing
efficiency close to η = 0.5 or a larger value (η ≈ 0.56). We do not believe that this
indicates that the instability is bimodal; rather we think that this indicates the extent of
variability introduced by the initial perturbation, over which we have little control.

Despite some variability between experiments, from figure 7 we see that the
end-state stratification slope is approximately constant, hence so too is our model
prediction of mixing efficiency (circles in figure 8). The model does not show
especially good agreement with the conductivity probe data, but it must be borne
in mind that the model assumes that the stratification slope can be approximated
as piecewise linear. A higher-order shape function would doubtless improve the
agreement over the current model.

Over the range of Atwood and Reynolds numbers considered (0.001 < A <

0.012, 2100 < Repeak < 7300), we have shown that there is approximate invariance
of mixing efficiency, and that the value is well below the energetically admissible
maximum. This is in marked contrast to experiments – including those using similar
equipment and techniques – performed on the Rayleigh–Taylor instability between two
homogeneous layers of equal depth, which routinely measure mixing efficiencies close
to the admissible maximum (Holford et al. 2003).

This classical Rayleigh–Taylor instability is unusually efficient for doing mixing for
two reasons. Firstly, as argued in Dalziel et al. (2008), the only energetic route that
achieves molecular mixing is a conversion of available potential energy to background
potential energy, and by construction the available potential energy already exists
in Rayleigh–Taylor instability at t = 0. Other less efficient processes need prior
conversion of kinetic energy to available potential energy before molecular mixing
can take place and there are inevitably associated losses. Secondly, over all scales
of the turbulence, the steepest scalar gradients and velocity gradients are co-located,
whereas, for example, grid-generated turbulence above a stable density interface (see
Fernando 1991) is relatively inefficient because much of the turbulent kinetic energy is
dissipated before reaching the interface and being able to do mixing.

However efficient the classical Rayleigh–Taylor problem may be, its geometry
imposes an upper bound on possible values of aggregate mixing efficiency. We
have found a new Rayleigh–Taylor unstable configuration whose geometry imposes
no limit on the possible values of mixing efficiency, and therefore we believe that
the experimental data in this paper characterize the fluid’s natural or intrinsic mixing
efficiency.

4. Conclusions
Since the physical mechanisms in Rayleigh–Taylor instability present optimal

conditions for the stretching of material surfaces in a fluid, we have sought to
characterize the mixing efficiency of the Rayleigh–Taylor process. The classical form
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of Rayleigh–Taylor instability in a finite box has an inherent restriction on the values
that mixing efficiency can take, and measurements of initial and final density profiles
do not solely characterize the Rayleigh–Taylor mixing, but represent an average over
a mixing-intensive phase and a dissipation-dominated phase. Here, Rayleigh–Taylor
instability has been examined in a novel configuration chosen to avoid such misleading
properties, and we have shown that there is a one-to-one relationship between the form
of the end-state density profile and the mixing efficiency, and that our configuration
has no restriction on the values that mixing efficiency can take.

A sequence of experiments on an incompressible, miscible fluid system with a
Rayleigh–Taylor unstable interface situated between two stable linear stratifications
has been conducted. The interpenetration of fluids from above and below the
Rayleigh–Taylor unstable interface has been measured by taking vertical density
profiles with optical techniques and more accurate measurements taken with an
aspirating conductivity probe in quiescent flow before and after system relaxation.
Simple linear models predict well the transient growth and the maximal extent of
upper and lower layer interpenetration, which is also verifiable from LIF and dye
attenuation experimental data. To within the limits of experimental error, the results
suggest that the mixing efficiency is invariant with Atwood number over a range of
Boussinesq density differences. Under half the energy being spent irreversibly leaves
the system as heat, and the remaining portion becomes background potential energy
due to irreversible structural changes in the p.d.f. of the density profile associated
with molecular diffusion of density. This alone is not significant, since we must
consider the observed mixing efficiency against the corresponding value for ideal
mixing, and this depends on geometry and the form of mixing one expects. In our
case, the observed mixing efficiency is significantly below that for ideal internal
mixing, a lower bound than our geometry permits, and we argue that our data
characterize the intrinsic ability of the fluid to mix in Rayleigh–Taylor instability.
Since Rayleigh–Taylor instability appears to be an optimal mixing mechanism,
we speculate that our measurements characterize an upper bound on fluid mixing
in general.

We would like to thank D. Youngs and R. Williams for many useful discussions
and AWE Ltd. for financial support on the research fellowship ‘Leveraging
Rayleigh–Taylor instability’.
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