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Electro-osmotic flow (EOF) in nanochannels exhibits a puzzling non-monotonic
dependence on salt concentration, which contrasts with observations in microchannels
and remains not fully understood. In this work, we address this phenomenon through a
theoretical investigation of EOF in pH-regulated channels. New analytical approximations
for electrostatic potential, EOF profile and electro-osmotic mobility beyond the Debye–
Hückel limit are derived through asymptotic analysis. Our findings reveal that the surface
electrostatic potential is independent of the channel size only when the half-channel
size exceeds the Gouy–Chapman length. In contrast, surface ionization and net charge
distribution play more crucial roles in EOF at the nanoscale, as they govern both the
magnitude and the spatial distribution of the Coulomb driving force. As salt concentration
increases, EOF velocity initially rises due to enhanced surface ionization, followed by a
decline attributed to increased wall shear stress. This work provides key insights for EOF
applications in nanofluidics and biomedical devices, and deepens the understanding of
electrokinetic phenomena influenced by pH-regulation effects.

Key word: electrokinetic flows

1. Introduction
Electro-osmotic flow (EOF) is the motion of fluid induced by the movement of counterions
near charged surfaces in response to an external electric field (Ajdari 1995; Squires &
Bazant 2004; Bazant & Squires 2004; van der Heyden et al. 2006; Ghosal 2004). Owing to
its feasibility for fluid manipulation at the micro/nanoscale (Stone, Stroock & Ajdari 2004;
Schoch, Han & Renaud 2008; Zhao & Yang 2012; Bandopadhyay, Tripathi & Chakraborty
2016; Alizadeh et al. 2021), EOF has been widely exploited in various applications such
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Figure 1. (a) Schematic of EOF triggered by an external electric field E applied along a negatively charged
nanochannel, where � and λ are the channel size and Debye length, respectively. (b) Zoomed-in view of the
ionization equilibrium of the acidic groups HA at the channel walls.

as cell manipulation (Hui et al. 2016; Kounovsky-Shafer et al. 2017; Hur & Chung 2021),
protein analysis (Das et al. 2012; Huang et al. 2017; Schmid et al. 2021), ionic valves
(Chen & Das 2015; Koyama et al. 2021; Koyama et al. 2021) and seawater desalination
(Picallo et al. 2013; Deng et al. 2015; Brown et al. 2021). Experimental studies have shown
that in microchannels, the EOF velocity decreases with increasing salt concentration
(Haywood, Harms & Jacobson 2014; Peng & Li 2016), which aligns with theoretical
models assuming a constant surface charge density (Manning 1967; Chen & Das 2017).
In contrast, within nanochannels, the EOF velocity initially increases and then decreases
as the salt concentration rises (Pennathur & Santiago 2005; Haywood et al. 2014; Peng &
Li 2016; Li & Li 2019). This non-monotonic behaviour is puzzling, as theories based on
a constant surface charge density predict a plateau before the decrease, failing to explain
the observed trends (Chen & Das 2017). It is important to note that the surface charge of a
silica or polydimethylsiloxane (PDMS) channel is influenced by several factors including
pH, salt concentration and channel size. This phenomenon is commonly referred to as
surface charge regulation (Behrens & Grier 2001; Trefalt, Behrens & Borkovec 2016).
Baldessari examined the effects of three different boundary conditions – specified surface
potential, specified surface charge density and charge regulation – on the electric potential
field and EOF in nanochannels, emphasizing the importance of achieving equilibrium
between the channel and well (Baldessari 2008). Subsequent numerical studies of pH-
regulated nanochannels have successfully captured this non-monotonic trend in EOF
velocity with added salt (Liu, Tseng & Hsu 2015; Sadeghi, Saidi & Sadeghi 2017).
However, the corresponding analytical expressions derived within the Debye–Hückel (DH)
limit do not adequately explain the numerical or experimental data, as the pH-regulation
effect becomes more pronounced beyond the DH limit (Duan et al. 2024).

We recently developed a new theoretical framework to investigate the influence of
salt, confinement and pH on the surface charge density of carbon nanotubes, silica
nanopores and colloidal nanoparticles (Duan et al. 2024). In this work, we examine the
salt dependence of EOF in pH-regulated channels at both micro- and nanoscale. We
present new predictions for the surface potential and the electro-osmotic mobility beyond
the DH limit, and compare these predictions with experimental data. Our objective is to
elucidate the non-monotonic dependence of EOF on salt concentration in pH-regulated
nanochannels and to offer practical insights for surface potential measurements.

2. Theoretical model
We consider a two-dimensional channel of size 2� (see figure 1a), where the channel walls
are negatively charged due to the ionization of acidic groups, HA � A− + H+(figure 1b).
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Accordingly, the surface charge density σ is regulated by the hydrogen ion concentration
at the surface, namely the surface pH value. The distributions of the electrostatic potential
ψ and the ion concentrations ni of various species i = ±,H+,OH− within the channel
−�≤ y ≤ � can be obtained by solving the Poisson–Boltzmann (PB) equation:

d2ψ

dy2 = − e

ε0εr

∑
i

zi ni , (2.1a)

ni = ni,∞ exp
(

−zi
eψ

kB T

)
, (2.1b)

with the boundary condition dψ/dy|y=±� = ±σ/(ε0εr ). Here, e is the elementary charge,
kB is the Boltzmann constant, T is the thermal temperature, ε0 is the vacuum permittivity,
εr is the relative permittivity of water, zi = ±1 is the valence of the ion species, and ni,∞ is
the bulk ion concentration. For an acidic solution (pH ≤ 7), such as one prepared by adding
HCl to a NaCl solution, the bulk ion concentrations are given by n+,∞ = ns , n−,∞ = ns +
nH+,∞ − nOH−,∞, nH+,∞ = 103 NA10−pH and nOH−,∞ = 103 NA10−14+pH, where NA =
6.022 × 1023 is the Avogadro constant. Thus, the degree of ionization σ/σ0 of the charged
surfaces is related to the undetermined surface electrostatic potential ψS =ψ |y=±�:

σ

σ0
= 1

1 + 10pKa−pH exp(− eψS
kB T )

, (2.2)

where σ0 is the maximum surface charge density and pKa is the ionization constant of
the acidic groups (Duan et al. 2024).

When an external electric field E is applied along the channel, the Coulomb force acting
on the mobile ions triggers EOF. The EOF velocity u can be determined using the Stokes
equation

η
d2u

dy2 + Ee
∑

i

zi ni = 0, (2.3)

with a no-slip boundary condition u|y=±� = 0, where η is the dynamic viscosity of
the electrolyte solution (Burgreen & Nakache 1964). Accordingly, the electro-osmotic
mobility μeo is defined as

μeo = 1
2�E

∫ �

−�
u dy. (2.4)

Now, using (2.1)–(2.4), we can theoretically predict the distributions of the electrostatic
potential ψ , ion concentration ni , EOF velocity u and electro-osmotic mobility μeo in
both micro- and nanochannels, and make comparisons with experiments.

3. Asymptotic analysis

3.1. Puzzling experimental observations
The aforementioned puzzling observations are illustrated in figure 2(a), where markers
depict the experimental measurements of the electro-osmotic mobility μeo in borosilicate
glass channels at various NaCl concentrations ns where pH ≈ 5.5 (Haywood et al. 2014).
In the microchannel with a half-channel size of �= 2500 nm, the data represented by
the blue markers show that μeo decreases monotonically as ns increases. In contrast,
nanochannels with �= 108 , 54 and 27 nm exhibit non-monotonic behaviour, where μeo
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Figure 2. (a) Electro-osmotic mobility μeo and (b) surface electrostatic potential |ψS | as functions of ns .
The triangle markers represent the experimental data measured in borosilicate glass micro/nanochannels
where pH ≈ 5.5 (Haywood et al. 2014). The coloured lines are the numerical predictions using ε0 = 8.8 ×
10−12 F m−1, εr = 80, kB = 1.3804 × 10−23 J K−1, T = 300 K, pH = 5.5, pKa = 6.6 and σ0 = −0.45 C m−2.
The coloured arrows mark the positions where λ= �/(2π) for the corresponding curves.

initially increases and then decreases with increasing ns , as indicated by the green, yellow
and red markers, respectively.

To further understand this phenomenon, we look into the corresponding surface
electrostatic potential |ψS| measured for �= 2500 nm at various ns , as depicted by
the blue markers in figure 2(b) (Haywood et al. 2014). The results indicate that |ψS|
decreases with increasing ns , with data points for ns < 10−1 M exceeding the DH limit, i.e.
|ψS|> kB T/e. Here, we have kB T/e ≈ 25 mV, considering kB = 1.3804 × 10−23 J K−1,
T = 300 K and e = 1.6 × 10−19 C. Apparently, previous theoretical predictions derived
within the DH limit are not applicable (Liu et al. 2015; Sadeghi et al. 2017). Furthermore,
we note that the Gouy–Chapman length �GC = 2ε0εr kB T/(e|σ |), which is less than
18 nm considering |σ |> 0.002 C m−2 for typical glass surfaces in contact with aqueous
solutions, is significantly smaller than the half-channel size �. Consequently, we can derive
analytical approximations for ψS and μeo under the conditions of |ψS| � kB T/e and
�GC � �.

3.2. Analytical predictions for the electrostatic potential
The analytical predictions for the distributions of the electrostatic potential can be obtained
using (2.1) and (2.2). The dimensionless forms of (2.1) and (2.2) and the corresponding
boundary conditions are

d2Ψ

dȳ2 = sinhΨ
λ̄2

, boundary conditions
dΨ
dȳ

∣∣∣∣
ȳ=±1

= ± σ̄

λ̄2
, (3.1)

σ

σ0
= 1

1 + 10pKa−pH exp (−ΨS)
, (3.2)
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where the dimensionless parameters are Ψ = eψ/(kB T ), ΨS = eψS/(kB T ), ȳ = y/�, σ̄ =
σ/(

∑
i ni,∞e�) and λ̄= λ/�, with λ=

√
ε0εr kB T/(e2

∑
i ni,∞) being the Debye length

which characterizes the thickness of the electric double layer (EDL).
Considering |ΨS| � 1 and |σ̄ |/(2λ̄2)� 1, or equivalently |ψS| � kB T/e and �GC � �,

the analytical approximation for the degree of ionization is derived as

σ

σ0
≈
(

λ̄2

10pKa−pHσ̄ 2
0

) 1
3

, (3.3)

where σ̄0 = σ0/(
∑

i ni,∞e�).
Accordingly, the electrostatic potential distributions are

Ψ (ȳ)≈ 4 tanh−1
[

1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(−ȳ − 1
λ̄

)]

+ 4 tanh−1
[

1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(
ȳ − 1
λ̄

)]
for |ΨC | � 1. (3.4a)

Ψ (ȳ)≈ − ln

(
π2λ̄2(

1 − 2λ̄2/σ̄
)2
[

1 + tan2
(

π ȳ

2 − 4λ̄2/σ̄

)])
for |ΨC | � 1, (3.4b)

where ΨC = eψC/(kB T ) and ψC =ψ |y=0. The detailed derivations for (3.3), (3.4a) and
(3.4b) are provided in Appendix A.

Both (3.4a) and (3.4b) lead to the same analytical prediction of the surface electrostatic
potential,

ΨS ≈ − ln
(
σ̄ 2

λ̄2

)
, (3.5)

which is the same as (A3) and (A8) in Appendix A. Considering ns � nH+,∞, (3.5) can
be simplified to

∣∣∣∣ eψS

kB T

∣∣∣∣≈ 2
3

ln

[
|σ0|

e10pKa−pH

(
ns

2π�B

)− 1
2
]
, (3.6)

where �B = e2/(4πε0εr kB T ) is the Bjerrum length.

3.3. Analytical predictions for EOF
The analytical predictions for the distributions of EOF velocity can be obtained using
(2.3). The dimensionless forms of (2.3) and the corresponding boundary conditions are

d2ū

dȳ2 = sinhΨ
λ̄2

, boundary conditions
dū

dȳ

∣∣∣∣
ȳ=±1

= 0, (3.7)

where ū = u/u0 and u0 = Eε0εr kB T/(eη).
Combining (3.1) and (3.7) yields

ū (ȳ)=Ψ −ΨS. (3.8)
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Substituting (3.4a) and (3.5) into (3.8) yields

ū (ȳ)≈ 4 tanh−1
[

1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(−ȳ − 1
λ̄

)]

+ 4 tanh−1
[

1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(
ȳ − 1
λ̄

)]
+ ln

(
σ̄ 2

λ̄2

)
for |ΨC | � 1, (3.9a)

ū (ȳ)≈ ln

⎡
⎣1 + tan2

(
π

2−4λ̄2/σ̄

)
1 + tan2

(
π ȳ

2−4λ̄2/σ̄

)
⎤
⎦ for |ΨC | � 1. (3.9b)

Finally, substituting (3.9a) and (3.9b) into (2.4), the analytical predictions for the
electro-osmotic mobility μeo are obtained:

μeo

μ0
≈ 2

3
ln
( |σ̄0|

10pKa−pHλ̄

)
for |ΨC | � 1, (3.10a)

μeo

μ0
≈ 2 ln

[
1

2π λ̄

( |σ̄0|
10pKa−pHλ̄

) 1
3 + 1

]
for |ΨC | � 1, (3.10b)

where μ0 = ε0εr kB T/(eη) is introduced for normalization. The threshold |ΨC | ≈ 1 is
equivalent to

λ≈ �

2π
, (3.11)

which is obtained analytically by determining the intersection point of (3.10a) and (3.10b).
Considering ns � nH+,∞, (3.10a) and (3.10b) can be simplified to

μeo

μ0
≈ 2

3
ln

[
|σ0|

e10pKa−pH

(
ns

2π�B

)− 1
2
]

for λ� �

2π
, (3.12a)

μeo

μ0
≈ 2 ln

⎡
⎣(4�2

B |σ0| ns�
3

πe10pKa−pH

) 1
3

+ 1

⎤
⎦ for λ� �

2π
. (3.12b)

Here, combining (3.6) and (3.12a), we obtainμeo/μ0 = e|ψS|/(kB T ), which aligns with
the Helmholtz–Smoluchowski (HS) theory. In contrast, when the Debye length becomes
larger than the channel size, i.e. λ� �/(2π), the ratio μeo/μ0 becomes a function of �, as
indicated in (3.12b).

3.4. Fitting parameters
It is important to note that two key parameters, the maximum surface charge density
σ0 and the ionization constant pKa of the charged surfaces, are not provided in the
referenced article (Haywood et al. 2014). To determine these parameters, we first fit the
experimental data for |ψS| shown in figure 2(b) using (3.6). The fitting process yields
σ0 = −0.45 C m−2 and pKa = 6.6, which are consistent with ranges reported in previous
studies on glass–water interfaces (Sjöberg 1996; Mueller et al. 2003). Using these fitted
values, we compute the numerical predictions of |ψS| for various values of �, as shown
by the coloured lines in figure 2(b), which exhibit close alignment. We then calculate the
corresponding numerical predictions of μeo for various values of �, as represented by the
coloured lines in figure 2(a). These predictions fit well with both the experimental data
and the theoretical predictions from (3.12a) and (3.12b) in the corresponding regimes.
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� = 108 nm, λ/� = 0.28

1.0

−0.5

0.5

−1.0

0

1 2 3 4 5

1.0

−0.5

0.5

−1.0

0

00 1 2 3 4 5

y/�

u / u0e|ψ| /(kBT)

u/u0 = 
e|ψs|
 kBT

|ψC|

|ψS|

Figure 3. (a) Numerical predictions for the spatial distributions of dimensionless electrostatic potential
e|ψ |/(kB T ) with various � considering ns = 10−4 M (or equivalently λ= 30.2 nm), where the dashed and
dotted lines are the corresponding analytical predictions using (3.4a) and (3.4b), respectively. (b) Numerical
predictions for the dimensionless EOF velocity u/u0 with various � considering ns = 10−4 M (or equivalently
λ= 30.2 nm), where the dashed and dotted lines are the corresponding analytical predictions using (3.9a) and
(3.9b), respectively. Other parameters are identical to those used in figure 2.

Notably, the results indicate that the HS theory is applicable only in microchannels or at
high salt concentrations, provided the condition λ� �/(2π) is satisfied.

4. Discussion

4.1. Influence of channel size
To clarify the effect of channel size on EOF, we present the predicted distributions
of the dimensionless electrostatic potential e|ψ |/(kB T ) and EOF velocity u/u0
within the channel at ns = 10−4 M for various � in figure 3(a,b), respectively. The
Debye length λ is approximately 30 nm, remaining constant for ns = 10−4 M and
pH = 5.5. Figure 3(a) shows that while the centre electrostatic potential |ψC | increases as �
decreases, the surface electrostatic potential |ψS| remains independent of �. This behaviour
arises because the analysed cases fall within the regime where �GC � �. According
to (2.2), the surface charge density σ is also unaffected by �, ensuring that the total
net charge

∫ �
−� nnet dy remains constant due to electroneutrality, where nnet =∑

i zi ni
represents the net charge density. As � decreases to the order of λ, the EDLs on both
sides of the channel generally converge, leading to an increase in |ψC |. In figure 3(b), a
plug-like velocity profile is shown for the EOF velocity u/u0 in the microchannel with
�= 2500 nm. This occurs because the driving Coulomb force of the EOF is concentrated
within the EDL, the length scale of which is significantly smaller than the half-channel
size, i.e. λ� � (Burgreen & Nakache 1964; Arulanandam & Li 2000). The plateau value
can be captured by the HS equation u = u0e|ψS|/(kB T ), which remains constant for even
larger �. In contrast, as � approaches the scale of λ, the plug-like profile diminishes and
u/u0 decreases due to the increasing spatial confinement.

4.2. Influence of salt concentration
To elucidate the impact of salt concentration ns on EOF in nanochannels, we visualize the
distributions of net charge density nnet and dimensionless EOF velocity u/u0 at different
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σ/σ0 = 0.034

σ/σ0 = 0.010

(a)

(c) (d)

(b)

σ/σ0 = 0.005

nnet (M)

10−4 10−3 10−2 10−1 100

1 2 3

1

−1

0

1 2 3

1

−1

0

0

0

1 2 3

1

−1
0

0

1 2 30

1
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0y/�

y/�

ns = 10−2 M

ns = 10−4 M ns = 10−3 M

ns = 10−1 M

λ/� = 0.36

λ/� = 0.04λ/� = 0.11

λ/� = 1.12

σ/σ0 = 0.020

u / u0 u / u0

Figure 4. Numerical predictions for the spatial distributions of net charge density nnet = n+ − n− + nH+ −
nOH− (colourmaps) and dimensionless EOF velocity u/u0 (solid lines) in the nanochannel with �= 27 nm for
various ns . Numerical predictions for the degree of ionization σ/σ0 at each ns are marked in the corresponding
subplot. Other parameters are identical with those used in figure 2.

ns for �= 27 nm in figure 4. The degree of ionization σ/σ0 for each case is indicated in the
corner, showing an increase with the addition of salt due to the pH-regulation effect. At low
salt concentrations, i.e. ns = 10−4 M and ns = 10−3 M as indicated in figure 4(a,b), wide
diffusive layers are observed because the EDL thicknesses, i.e. λ≈ 30 nm and λ≈ 10 nm,
respectively, are large compared with the half-channel size. Consequently, the driving
Coulomb force of the EOF is evenly distributed across the channel, leading to parabolic-
like velocity profiles. Meanwhile, as the degree of ionization σ/σ0 for ns = 10−3 M is
higher than that for ns = 10−4 M, the driving Coulomb force is stronger for ns = 10−3 M,
resulting in a greater EOF rate compared with ns = 10−4 M. At high salt concentrations,
i.e. ns = 10−2 M and ns = 10−1 M in figure 4(c,d), net charges predominantly accumulate
near the walls, resulting in plug-like velocity profiles since the corresponding Debye
lengths, i.e. λ≈ 3 nm and λ≈ 1 nm, respectively, are small compared with the half-
channel size. Moreover, the EOF at ns = 10−1 M is more severely retarded due to wall
shear stress, despite the degree of ionization σ/σ0 and the driving Coulomb force being
greater than those at ns = 10−2 M.

4.3. Potential effect of the Stern layer
The Stern layer is often considered a crucial factor in charge regulation, as it is assumed
that the ions are tightly adsorbed to the charged surface, leading to a linear drop in
electrostatic potential. Baldessari’s model incorporates the Stern layer in its charge
regulation boundary condition, expressed in our notation as
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Figure 5. (a) Surface charge density |σ |, (b) surface electrostatic potential |ψS | and (c) electro-osmotic
mobility μeo as functions of ns for different σ0. The solid lines represent the numerical predictions obtained
from the boundary condition in (2.2). The dashed lines are the numerical predictions obtained from the
boundary condition in (4.1) considering C = 3.0 F m−2, as reported in Baldessari (2008). Other parameters
are identical to those used in figure 2.

σ

σ0
= 1

1 + 10pKa−pH exp (− eψS
kB T − eσ

CkB T )
, (4.1)

where σ/C is the potential drop within the Stern layer and C is the Stern layer’s
phenomenological capacity (Behrens & Grier 2001; Baldessari 2008). To evaluate the
potential effects of the Stern layer, we compare the numerical predictions for |σ |, |ψS| and
μeo using the two boundary conditions in (2.2) and (4.1), as shown in figure 5(a–c).

The results indicate that the two boundary conditions yield similar predictions
for smaller surface group densities of σ0 = −0.045 C m−2 and σ0 = −0.45 C m−2. In
contrast, for σ0 = −4.5 C m−2, the model that incorporates the Stern layer predicts
slightly lower values for |σ |, |ψS| and μeo when ns > 10−2 M. Thus, we anticipate that
incorporating the Stern layer is primarily necessary for surfaces with extensive chargeable
groups.

4.4. Range of applicability of the classical PB equation
The classical PB equation is a well-established framework for modelling electrostatic
interactions. While it may be regarded as less effective at very high salt concentrations due
to factors such as ion size and ion–ion correlations, it remains a valid and robust approach
for the specific cases presented in our study. Please note that the salt concentrations
we consider, ranging from ns = 10−5 to 1 M, are significantly lower than the cutoff
concentration ncut

s = a−3 = 5 ∼ 60 M, considering a typical ion size of a = 0.3∼0.7 nm.
This suggests that the ion size effect is negligible, thereby justifying the applicability of the
classical PB equation (Storey et al. 2008). Furthermore, scenarios with salt concentrations
exceeding 1 M are less relevant to this work, as both the EOF velocity and electro-osmotic
mobility approach zero in these conditions.

5. Conclusion
In conclusion, when it comes to EOF at the nanoscale, the ionization of charged surfaces
and the distribution of net charge across the channel emerge as more critical factors
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than the surface potential, as they govern both the magnitude and the spatial distribution
of the Coulomb driving force of the EOF. By analysing the experimental data, fitting
them with our analytical predictions, and visualizing the electrostatic potential, net charge
distribution and EOF velocity profile across the channel, we provide a comprehensive
explanation for the non-monotonic salt dependence of the electro-osmotic mobility in pH-
regulated nanochannels. Specifically, as the salt concentration increases, the initial rise
of the electro-osmotic mobility is caused by the increase of surface charge density, while
the subsequent decline is induced by the increase of the wall shear stress. Furthermore,
we identify a transition point at λ≈ �/(2π), where the EOF velocity shifts from a
parabolic-like to a plug-like profile, which has practical implications for applications such
as cell manipulations at the nanoscale. Additionally, we highlight that the Helmholtz–
Smoluchowski theory is applicable only to microchannels or at high salt concentrations
where λ� �, a limitation that may have been overlooked in zeta-potential measurement.
We anticipate that this work will advance the understanding of EOF in nanofluidic
systems, with applications ranging from particle separation and ionic valves to seawater
desalination, while also providing new insights into broader electrokinetic phenomena
influenced by pH regulation.
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Appendix A. Analytical approximations of the electrostatic potential and degree of
ionization
We first derive the analytical approximations of Ψ considering |ΨS| � 1 and
|σ̄ |/(2λ̄2)� 1.

When |ΨC | � 1, integrating (3.1) from 0 to ȳ, using coshΨC ≈ 1 and considering the
symmetry at ȳ = 0, i.e. dΨ/dȳ|ȳ=0 = 0, we have

1
2

(
dΨ
dȳ

)2

≈ coshΨ − 1
λ̄2

, (A1)

which yields an analytical solution,

Ψ (ȳ)≈ 4 tanh−1
[

C1 exp
(−ȳ − 1

λ̄

)]
+ 4 tanh−1

[
C1 exp

(
ȳ − 1
λ̄

)]
, (A2)

where the constant C1 needs to be determined. Using the boundary condition
dΨ/dȳ|ȳ=±1 = ± (σ̄ /λ̄2) in (A1), we obtain ΨS ≈ 2 sinh−1(σ̄ /2λ̄). Considering
|ΨS| � 1, it can be simplified to

ΨS ≈ − ln
(
σ̄ 2

λ̄2

)
. (A3)

Combining (A2) and (A3) gives C1 ≈ (1 + σ̄ /λ̄)/(1 − σ̄ /λ̄). Substituting C1 into (A2)
yields
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Ψ (ȳ)≈ 4 tanh−1
[

1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(−ȳ − 1
λ̄

)]
+ 4 tanh−1

[
1 + σ̄ /λ̄

1 − σ̄ /λ̄
exp

(
ȳ − 1
λ̄

)]
,

(A.4)

which is the same as (3.4a) in the main text.
When |ΨC | � 1, using sinhΨ ≈ exp(−Ψ )/2, (3.1) can be simplified to

d2Ψ

dȳ2 ≈ −exp(−Ψ )
2λ̄2

, (A5)

which yields an analytical solution,

Ψ (ȳ)≈ − ln
(

C2λ̄
2
[

1 + tan2
(√

C2

2
ȳ

)])
, (A6)

where the constant C2 needs to be determined. Using the boundary condition
dΨ/dȳ|ȳ=±1 = ±σ̄ /λ̄2 in (A6), we have

√
C2/2 tan(

√
C2/2)≈ −σ̄ /(2λ̄2), which leads

to C2 ≈ π2/(1 − 2λ̄2/σ̄ )2 considering |σ̄ |/(2λ̄2)� 1. Substituting C2 into (A6) yields

Ψ (ȳ)≈ − ln

(
π2λ̄2(

1 − 2λ̄2/σ̄
)2
[

1 + tan2
(

π ȳ

2 − 4λ̄2/σ̄

)])
, (A7)

which is the same as (3.4b) in the main text. Equation (A7) further leads to

ΨS ≈ − ln
(
σ̄ 2

λ̄2

)
. (A8)

Note that (A3) and (A8) are identical. Thus, we can combine these two scenarios and
probe σ/σ0 for |ΨS| � 1 and |σ̄ |/(2λ̄2)� 1. Substituting (A3) or (A8) into (3.2) yields

σ

σ0
≈
(

λ̄2

σ̄ 2
0 10pKa−pH

) 1
3

⎡
⎢⎣ 3

√√√√1
2

√
1 + 4λ̄2

27σ̄ 2
0 10pKa−pH

+ 1
2

− 3

√√√√1
2

√
1 + 4λ̄2

27σ̄ 2
0 10pKa−pH

− 1
2

⎤
⎥⎦ . (A9)

Equation (A9) can be further simplified to

σ

σ0
≈
(

λ̄2

10pKa−pHσ̄ 2
0

) 1
3

for
|σ̄0|
λ̄

�
√

10pH−pKa , (A10)

which is the same as (3.3) in the main text.
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