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abstract

In this paper we present many investigations into the results of simulating the process of
hedging a vanilla option at discrete times. We consider mainly a ‘maxi’ option (paying
Max(A, B)), though calls, puts and ‘minis’ are also considered. We show the sensitivity of the
variability of the hedging error to the actual investment strategy adopted, and to the many ways
in which the simulated real world can diverge from the assumed option pricing model. We
show how prudential reserves can be calculated, using conditional tail expectations, and how net
premiums or fair values (which we present as the same) can be calculated, allowing for the
necessary prudential reserves. We use two bond models, the very simple Black-Scholes one and a
less unrealistic one. We also use the Wilkie model as an even more realistic real-world model,
allowing for many complications in it to make it more realistic. We make observations on the
important difference between real-world models and option pricing models, and emphasise the
latter as the way of getting hedging quantities, and not just option prices.
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". Introduction, Summary and Conclusions

1.1 Origins
1.1.1 This paper has three sources. In Wilkie, Waters & Yang (2003)

(referred to as WWY) (discussed at the Faculty in January 2003) we stated
({C.12.3) that the results that had been found were “in contrast with results
that we have found elsewhere for other types of option’’. We present here the
quite extensive results to which we referred, which relate to ‘vanilla’
options, i.e. ordinary calls and puts (and also ‘maxi’ and ‘mini’ options).

B.A.J. 11, II, 199-312 (2005)

199

https://doi.org/10.1017/S1357321700003068 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003068


1.1.2 Secondly, in the discussion at the Institute of Actuaries in
November 2003 on Dullaway & Needleman (2004) one of us commented that
the United Kingdom regulators appeared to be going in the wrong
direction, in encouraging complicated option pricing methods with simple
scenario tests. Our ideas on this subject, outlined in WWY, need amplification.
In essence, we favour simple option pricing models which allow the hedging
quantities to be calculated, and complicated real-world models in which
empirical hedging, as we describe here, is investigated.

1.1.3 Thirdly, at the discussion at the Faculty in November 2003
(Faculty of Actuaries, 2004) on ‘Asset models in life assurance; views from
the Stochastic Accreditation Working Party’, John Jenkins asked a question
about how management actions (other than exact hedging) could be allowed
for. In Section 10 we show how to provide an answer to his question.

1.2 Outline: The Basic Model
1.2.1 Section 2 describes the methodology we use. We define the options

that we consider, ‘vanilla’ calls and puts, and also maxis and minis (which we
defined in WWY); we consider only European options. We introduce the
stochastic models, simple Brownian motion for a share (total return) index,
and two models for the bond price. One, as in Black-Scholes, assumes
constant interest rates; the other, as described in WWY, assumes a Vasicek-
style model for the interest rate on a zero coupon bond maturing at the same
time as the option. These models lead to similar formulae for the option
price and the hedging quantities, the amounts to be invested in the share and
the zero coupon bond in order to hedge the option.

1.2.2 We then explain the process of discrete hedging, describing various
options about how, in practice, to invest when (inevitably) the proceeds after
some discrete time do not match exactly what the theory requires. We show
how we calculate the deficit (or surplus) at expiry, and discuss the options for
discounting this to get a present value at the start of the option. We do not
discount at some abstract and artificial rate, but we assume that the
necessary contingency reserves to meet the deficit are invested in some
practical way in one of our available assets. We calculate quantile reserves at
various probability levels, such as 97.5%, 99%, etc., and we also calculate
conditional tail expectations (CTEs) at the same levels. For the reasons
described in WWY (Section 9), we prefer, and use, CTEs throughout.

1.2.3 We assume that the regulator follows our approach and lays down
some level of practical prudential reserve in terms of a quantile reserve or
CTE at a defined probability level. Alternatively, the management of the
institution writing the options decides that some security level higher than the
supervisor requires is desirable, and we are trying to meet that. We often
assume that the option writer is a life office, with options embedded in its
policies; but our methodology would apply to any institution writing
options.
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1.2.4 We then consider how the policy is financed. The first step is to
calculate the pure option price, and assume that that has been invested in one
of the ways we have considered. We also assume that the full prudential
reserve is to be set up. Since the ‘shareholders’ will get the benefit of any
surplus after the option has been paid off, it is to be expected that they will
provide the bulk of the extra amount to set up the prudential reserve. However,
as described in WWY (Section 8.2), we assume that the shareholders require
an extra ‘risk premium’ on their investment. Therefore, we calculate the
surplus or deficit vis-a' -vis the prudential reserve, discounting surpluses at a
small positive extra rate of interest, and (the quite rare) deficits at a small
negative extra rate, to get the value of the policy to the shareholder. We
assume that the policyholder pays the rest of what is required.

1.2.5 We then assert that the policyholder’s ‘net premium’, calculated in
this way (net because expenses and commission are excluded), is the same as
the ‘fair value’ at which one life office would transfer the liability to another.
This is the first important point in the paper.

1.2.6 In Section 3 we describe practical hedging with bond model A
(Black-Scholes), assuming first that the real-world model is the same as that
used to calculate the option price and hedging quantities. We show in detail
how our calculations are carried out, and we demonstrate that, if hedging is
reasonably frequent (we use hedging twice a month as our standard), our
assumed investments do, in fact, replicate closely the required option pay-off,
but do not replicate it exactly. We find that investing to match the required
hedging quantity in the share, and investing the contingency reserve in the
bond, gives generally good results; but this is not the only good strategy. In
WWY we found that investing both in proportion to the required hedging
quantities was best. We also calculate the CTEs, i.e. the prudential reserves,
and the net premiums, i.e. the fair values.

1.3 Outline: Variations on the Basic Model
1.3.1 In Sections 4 to 7 we assume a great many variations on this basic

model. First, we investigate different frequencies for hedging, from yearly
down to 1,024 steps per month. The more frequent the hedging the smaller
the hedging error. We also investigate modelling the share price movements,
by simulating at annual intervals and then inserting intermediate steps by
Brownian bridges. The results are quite similar.

1.3.2 In Section 5 we vary the parameters. First, we see the effect of the
exercise price. In our basic model the option was nearly ‘at the money’.
Different exercise prices affect the initial option price greatly. They also
affect the hedging error a bit. When the exercise price is increased, the
standard deviation of the hedging error also increases somewhat. Next, we
vary the mean return on shares; this parameter enters the real-world model,
though it does not affect the option price. We see that it has a quite small
effect on the hedging error, as we expected. Varying the mean return on cash,
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and therefore also the initial return, has a big effect; if we set the interest
rate wrongly the option is mispriced; but current interest rates are always
known, so there is no reason to misestimate this factor. When we vary the
standard deviation on shares, the option is also mispriced, and we have the
expected results: if the standard deviation is higher than we have allowed
for we make losses, if smaller we make profits; but the variability of the
hedging error increases in both directions.

1.3.3 So far we have ignored transaction costs. We investigate the effect
of these in Section 6. We allow for transaction costs at two levels, high and
low, and see what effect this has on the preferred hedging frequency. As the
frequency increases, so do the transaction costs, though the hedging error
decreases. There is an optimum frequency. With the high level of costs, the
optimum is hedging once or twice a month. With the lower level, the
optimum is around eight to 16 times per month. Note that we consider here
only one option; with a portfolio of options, some of which might offset
others, the net hedging required might be much smaller, and the
transaction costs correspondingly reduced.

1.3.4 In Section 7 we vary the structure of the real-world model. Up to
now we have assumed normally distributed innovations, corresponding with
the Brownian motion assumed in the option pricing. In reality, almost all
investment variables show high kurtosis, or ‘fat tails’. We now allow the real-
world model to have fat-tailed innovations, simulated as the difference
between two independent log-normally distributed variables. The hedging
error increases as the kurtosis increases. We next allow for uncertainty in the
parameters of the real-world model, by selecting the parameters (in this case
the mean and standard deviation of the return on shares) for each simulation
from a multivariate normal distribution. We describe this as a ‘hypermodel’.
In general, the variability of the hedging error is increased. We ‘hyperise’ the
parameters for the fat-tailed innovations too. This again increases the
variability of the hedging error. If we include all the complications, the
required prudential reserve is greatly increased, and the fair value/fair price
ratio is also increased. Including transaction costs as well increases them all
yet more.

1.4 Outline: Other Models
1.4.1 In Section 8 we move on to bond model B, in which the interest

rate on the zero coupon bond is stochastic, rather than constant, and has a
negative instantaneous correlation with share prices (so bond prices and
share prices have positive correlation). The option price under this model,
with the correlation coefficient we assume (ÿ0.3), is very slightly less than the
option price under the Black-Scholes model (because of this correlation),
and the hedging quantities are very similar. We use bond model B as the real-
world model, and carry out investigations similar to those that we carried
out for the Black-Scholes model. Different hedging strategies show the same
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type of result as for the Black-Scholes model, so that investing correctly in
the share quantity, letting the balance go into the bond, and discounting
deficits at the bond yield is satisfactory. The numerical results are quite
similar to those for bond model A.

1.4.2 We vary the parameters of the bond model. The mean interest rate
and the autoregressive parameter of the Ornstein-Uhlenbeck process for the
interest rate have rather little effect on the hedging error. The initial rate of
interest, the standard deviation and the correlation coefficient can have a
considerable effect. We investigate the effect of fat-tailed distributions for
the innovations of the bond process. These, too, make a difference. We
investigate, using a hypermodel for the parameters of the bond process;
this makes rather little difference to the variability of the hedging error.

1.4.3 On the whole, the bond model has less effect on the hedging error
than the share model has. This is not too surprising. Even when the interest
rate fluctuates, the initial and final bond prices are always the same, both
from one simulation to another, and between the two bond models.

1.4.4 In Section 9 we move on to represent the real world by the Wilkie
model, with stochastic bridges (Brownian andOrnstein-Uhlenbeck) to simulate
share prices and interest rates at intermediate points through the year (as in
WWY). We use bond model B for the hedging strategy. The simplest form of
the Wilkie model has fixed parameters and normally distributed
innovations, both in the annual model and in the bridging model. We allow
fat-tailed innovations in the bridging model, and hyperise each stage: the
bridging parameters, the bridging innovations, and the annual parameters.
We omit fat-tailed innovations (fixed or hyperised) for the annual model. As
we put in more complications and more uncertainty, the standard deviation
of the hedging error and the CTEs all increase.

1.4.5 In WWY we speculated ({10.3.10) that the annual part of the
Wilkie model might have rather little effect on the hedging error, whereas the
bridging model would have a big effect. The latter is true, but we find that
the annual model is not unimportant, when hedging is discrete. We try
varying the parameters of the annual model, first doubling, then halving all
the standard deviations in it, then hyperising all its parameters. The effects
are not always what one might expect, but they are noticeable.

1.5 Outline: Approximate Hedging
In Section 10 we investigate the suggestion made by John Jenkins that an

approximate hedging strategy might be of interest. We let the hedging
proportions depend linearly between zero and unity on the ‘moneyness’ (the
ratio of the current share price to the current value of the exercise price) or
on the logarithm of the moneyness. We find that, if we assume that we know
the real-world model exactly, as in the Black-Scholes model, failure to
hedge exactly gives large hedging errors, so requires a large ‘mismatching
reserve’. However, if the real-world model is less close to the option model,
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as in our version of the Wilkie model with hyperised parameters and fat-
tailed innovations, then the mismatching reserve, though not insignificant, is
less than in the first case.

1.6 Models
1.6.1 We use several models in our investigations. We make a large and,

we hope, clear distinction between real-world models and option pricing
models. The real-world models are used in the simulations, and are intended
to represent, to a greater or lesser degree, the behaviour of the real
investment markets. We assume investment only in assets that behave
according to the real-world model under consideration. The option pricing
models are used only to calculate the initial option price and the hedging
quantities at each rehedging point. We never use them for simulation (though,
of course, they could be so used).

1.6.2 In some cases the real-world model is the equivalent of the option
pricing model, as in what we describe as our basic model. To simulate
hedging in the real-world equivalent of a chosen option pricing model, and to
confirm that the resulting hedging errors are small, gives a useful check on
our mathematical derivation of the hedging quantities (and on our
programming). It is a standard against which we can compare more realistic
real-world models.

1.6.3 The process according to which investment variables actually
behave in the real world, if indeed there is one, is unknown to any of us. Any
proposed real-world model is, therefore, only an approximation to reality.
It is difficult ever to confirm that a proposed real-world model is ‘correct’,
though it is not difficult to show that some models that might be proposed do
not fit the evidence. The real world has so many obvious uncertainties and
complications that we believe a model which reflects many of these features is
better than one which does not. Therefore, we prefer to use a model like the
Wilkie model, with fat-tailed innovations, and with hyperised parameters,
rather than to use a model which does not have these features. We use the
Wilkie model because it is available, published and well-known in actuarial
circles; but, so far, it lacks a fully stochastic yield curve model, which would
have been useful in our investigations. Nevertheless, the two-parameter yield
structure in it (consols yield and base rate) seems much more realistic than
any of the one-factor models that are sometimes used.

1.6.4 The requirements for an option pricing model are quite different
from those of a real-world model. It needs to provide an initial option price
and, most importantly, the hedging quantities at each step. It is, therefore,
desirable for it to be mathematically tractable, so that the required quantities
can be calculated easily at each step of each (real-world) simulation. This
usually means that the option model should be based on Brownian motions,
and that the relevant benefits, often transformed in terms of some numeraire,
are lognormally distributed.
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1.6.5 Some option benefits, however, do not lend themselves to such
modelling. Examples would be a unit-linked policy where the final unit value
is guaranteed to be not less than the average unit price each month for the
last 36 months of the policy, or (as is currently on the market) a bond that
provides 70% of the increase in the FTSE 100 index over the next five years,
but where the price at maturity is taken as the daily average over the last 12
months of the policy. One approach is to simulate the option proceeds in a
risk neutral or equivalent martingale model. This can provide an estimate of
the option value, but not the hedging quantities immediately; these could
often be calculated by repeated simulations and finite difference methods; but
all this, requiring option simulations at each step within the real-world
simulations, would take time. If sufficient computer power is readily
available, perhaps on a large network of PCs, this may not matter. Our
approach, instead, would be to investigate whether the benefits, which, in
each of our examples, resemble an arithmetic average option, could be
related to the price and hedging quantities of a geometric average option,
which is much more tractable. However, we have not investigated this.

1.6.6 There are some who suggest using deflator models. While the
deflators for both our bond models can be computed, that for bond model B
is cumbersome. There seems little advantage in using deflators within
simulations, necessarily based on the real-world equivalent of the option
model (or some other model probabilistically equivalent to the option
model), rather than on the desired realistic real-world model, in order to
calculate option prices that can be calculated analytically far faster; and
again, the hedging quantities do not appear from a deflator model
immediately, though repeated simulations and finite difference methods
might provide an answer.

1.7 Progress Through the Contract
1.7.1 All the calculations in this paper are carried out as if at the start

of a ten-year contract. We do not consider what happens as we progress
through the term of the contract. As events unfold, the probability of the
assets being sufficient to meet the required payoff changes. What do we
then do? One approach is the ‘band’ method, suggested by the Maturity
Guarantees Working Party (Ford et al., 1980), another is ‘marking to market’;
yet another would be to ignore the unfolding events, on the grounds that the
initial probability remains unchanged and was chosen initially with suitable
strength. One long-established actuarial principle is that a contract should be
financed initially in such a way that there is little chance of further capital
being needed, and the idea of marking to market is not compatible with this
principle. However, the regulators are likely to wish to see the office
demonstrate sufficient strength at each relevant time, whether annually or
more frequently.
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1.7.2 An approach, which we have not yet implemented, is to assume
that the management wishes to set up an initial reserve sufficient to meet, not
only the final proceeds with a suitably high probability, but also the
supervisor’s requirements throughout the duration of the contract. To be
specific, imagine that the regulator requires a 95% level of solvency at each
annual investigation, which must be calculated as the 95% quantile reserve
using 1,000 simulations. Imagine, then, that the management wishes initially
a 99% CTE, calculated with 10,000 simulations, to ensure that no further
capital will be required during the term of the contract. The bases used by
regulator and management could differ; the numbers of simulations and the
probability levels could differ; each could require either quantiles or CTEs.

1.7.3 We start with some initial assumed reserve, perhaps the 99% CTE
from 10,000 simulations carried out without considering intermediate points.
We assume that this amount is invested in some chosen way. We then start
a new set of 10,000 simulations (or the same set again), calculated using the
management’s basis. At each annual point within each simulation we carry
out 1,000 simulations, calculated on the supervisor’s basis, and see whether
the proceeds of our investment are sufficient to satisfy the supervisor’s 95%
quantile reserve. If they are not we record the deficit, and discount at, say,
the bond yield. The maximum discounted deficit over the number of
intervening annual points gives the extra initial reserve required within that
simulation to meet the supervisor’s requirements. We then choose the 99%
CTE to satisfy the management’s requirements.

1.7.4 Such simulations within simulations would take much more
computer time than the 10,000 simulations we have carried out, which are all
quite quick (less than one minute with bond models A or B and with
hedging twice a month, but about seven minutes with the Wilkie model).
However, if we multiply these times by 8,000 or 9,000 (1,000 simulations at
each of eight or nine intermediate annual points, perhaps including the first),
the computer time required becomes significant. On the other hand, within
our program, we calculate results for all four options and each possible
investment strategy, so, if the calculations were reduced to only what is
required for one combination, they could be speeded up.

1.8 With-Profits Business
1.8.1 All our examples assume the equivalent of a unit-linked contract,

where the benefits are defined in terms of the value of some share index or
portfolio. Many real life insurance contracts are with-profits. We now
consider a mutual office; a ‘90/10’ office can be treated as 90% mutual, 10%
financed by shareholders. We would deal with with-profits contracts in the
first place by considering the guaranteed sums assured and bonus, along with
any options inherent in these, such as future bonus guarantees; we would
replace our ‘share index’ by whatever asset portfolio we wished to target. The
initial prudential reserve, which in our model is provided substantially by
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shareholders, needs to be included in the initial with-profits premium as a
‘bonus loading’. This bonus loading remains unallocated unless circumstances
have so improved that part of it can be released and declared as a guaranteed
bonus. At maturity, the unused part of the bonus loading can be returned to
the policyholder as terminal bonus.

1.8.2 It may be helpful to be specific. In our examples we assume a
single premium contract with an investment premium of »100, which is
assumed to be invested in ‘units’ of some share index. We assume an exercise
price of »165 (Table 3.2.1), which corresponds to a guarantee of about 5%
(continuous) interest on the »100 for our ten-year term contract. The extra
premium for the option in our bond model B is »24.17 (Table 8.1.2). The 99%
CTE reserve in our most realistic model (Wilkie hypermodel, variation (6),
Table 9.3.2) is »30.96. We assume that this is made up by contributions of
»25.46 from the shareholder, and »5.49 from the policyholder (Table 9.3.4).
However, in a mutual office the policyholder has to contribute all of this, so
his initial premium (ignoring expenses) is »155.13. The ‘sum assured’ is the
guaranteed »165. The initial investment in shares is »62.01 (Table 8.1.2), all
the rest being invested in the matching bond. A reversionary bonus only
arises if the shares do much better than the 5% bond rate. However, at maturity
the CTE reserve would have grown by expð0:05� 10Þ ¼ 1:65 to about »51,
and would be available either to meet the hedging error or as terminal bonus.
In very many cases out of the 10,000 the terminal bonus would be substantial,
because the average hedging error is close to zero. These seem not unreasonable
numbers, and they can be derived easily from our standard calculations.

1.8.3 However, any ‘asset share’, derived from the accumulation of the
whole initial premium, does not form part of these calculations. If it were to
become a requirement that the whole (net) premium be treated as if invested
in ‘shares’ and the resulting asset share be then guaranteed, then only
unit-linked business with no minimum money guarantee is possible. The
existence of guarantees requires both hedging of the investments and (usually)
significant contingency reserves. In a with-profits office, these reserves are
provided by the bonus loading, and can be returned as terminal bonus to the
extent that they are not required.

1.9 Final Observations
1.9.1 We have no concluding section to the paper. Instead, we have put

our concluding remarks into this introductory section, in the hope that those
who find the extensive details that follow rather tedious may nevertheless
read this section. We have not covered everything that we have thought of; no
authors do. Many of our results are of the sort that others have discovered
before, perhaps some time ago, or even that postgraduate students of options
may have covered as exercises; but we have not seen such a comprehensive
investigation published before, and certainly such an investigation has not
been put before the actuarial profession.
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1.9.2 Others have certainly studied some aspects of what we have done.
Boyle & Emmanuel (1980) show that, in the Black-Scholes model, the one-
step hedging error, suitably scaled, is distributed as chi-squared with one
degree of freedom. The sum of the errors, though they have different scaling
factors, is distributed in a way similar to chi-squared with many degrees of
freedom, or roughly normally.

1.9.3 Wilmott (1998) shows that, in the Black-Scholes model, one can
improve the hedging error when hedging discretely by adjusting the option
price and the hedging quantities. We have not experimented with this, but,
even if this improved the position in the basic situation, when the real world
is the equivalent of the option model, when we move on to try out a real
world with its realistic complications, the improvement might perhaps be
found to be comparatively small.

1.9.4 Willmott (1998) also shows how the option price can be adjusted
for transaction costs, again in the Black-Scholes model, and if transaction
costs are strictly proportionate to the size of the deal with the same rates for
all cases. This deserves further investigation. However, we allow for
transaction costs varying for buying and selling, long and short positions,
and our method could allow for transactions costs being non-linear, for
example a constant if any transaction takes place, plus a proportionate
charge.

1.9.5 Other authors have dealt with some aspects of discrete hedging. So
far as we are aware, none has considered all the aspects that we have
considered here.

Æ. Basic Principles

2.1 The Options
2.1.1 We consider only ‘vanilla’ options, the familiar call and put

options, on shares for cash, and also what in WWY were defined as ‘maxi’
and ‘mini’ options. Many life insurance embedded options are of the maxi
type.

2.1.2 If the (European) option expires at time T, the exercise price is K,
and shares at time T have value S(T), then the payoffs of these four options
are:

Maxi Max(S(T), K)
Mini Min(S(T), K)
Call Max(0, S(T)ÿK)
Put Max(0, Kÿ S(T)).

2.1.3 The payoffs are such that we readily see the ‘put-call parity’
equation:

Cashþ Call ¼ Shareþ Put
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but also:

Cashþ Call ¼ Shareþ Put ¼Maxi

and

Cashþ Share ¼MaxiþMini

or

Mini ¼ Shareÿ Call ¼ Cashÿ Put

which is the payoff of a covered writer of a call or a put.
2.1.4 For pricing the options (which will be seen to be of secondary

importance) and for calculating the hedging quantities (which is very
important), we use first the usual Black-Scholes methodology, in which there
are two tradeable assets: a unit fund, which we refer to as a ‘share’ without
specifying how it is invested; and a bond which provides some default free
return up to time T. The price of the former at time t is S(t) and of the latter
is B(t).
2.1.5 We assume that the share price S(t) is driven by the stochastic

differential equation:

dSðtÞ ¼ mSðÞ:SðtÞ:dtþ sS:SðtÞ:dW1

where W1 is a Wiener process, sS is a constant, and mSðÞ is some function of
t and S(t). Usually we assume that mSðÞ ¼ mS, so that the logarithm of the
share price performs a random walk with constant drift.

2.1.6 We investigate two different assumptions about the ‘bond’ price
process.

2.1.7 First, in model A, we make the usual ‘Black-Scholes’ assumption
that the cash yield (often called the ‘risk free rate’) is constant, so that the
price of the ‘bond’ B(t) changes deterministically in accordance with:

dBðtÞ ¼ r:BðtÞ:dt

where r is constant. We then have:

BðtÞ ¼ expðÿr:ðTÿ tÞÞ ¼ Bð0Þ: expðr:tÞ; since Bð0Þ ¼ expðÿr:TÞ:

2.1.8 Secondly, in model B we make the same assumptions as WWY,
that B(t) is a zero coupon bond (zcb) maturing at T, whose price is driven by
a single bond interest rate R(t) (applicable to maturity at time T), which has
the stochastic differential equation (very like the Vasicek model for short
rates):

Notes on Options, Hedging, Prudential Reserves and Fair Values 209

https://doi.org/10.1017/S1357321700003068 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003068


dRðtÞ ¼ mRðÞ:dtþ sR:dW2

where sR is a constant, mRðÞ is some function of t and R(t), and dW1 and
dW2 have instantaneous correlation coefficient r. Then the price of the bond,
B(t), is given by:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ:

If mRðÞ ¼ 0, sR ¼ 0 and Rð0Þ ¼ r, this collapses to model A.
2.1.9 We then put the value of an investment in the bond which will

provide K at time T as KðtÞ ¼ K:BðtÞ, whence KðTÞ ¼ K, since BðTÞ ¼ 1.
2.1.10 In each case the option value and the hedging quantities at time

t ð< TÞ are given by the usual Black-Scholes formulae (see e.g. Baxter &
Rennie, 1996), which we have slightly transformed. They are:

Share quantity HSðtÞ Cash quantity HBðtÞ

Maxi SðtÞ:Nðd1Þ KðtÞ:Nðd2Þ

Mini SðtÞ:ð1ÿNðd1ÞÞ ¼ SðtÞ:Nðÿd1Þ KðtÞ:ð1ÿNðd2ÞÞ ¼ KðtÞ:Nðÿd2Þ

Call SðtÞ:Nðd1Þ KðtÞ:ðNðd2Þ ÿ 1Þ ¼ ÿKðtÞ:Nðÿd2Þ

Put SðtÞ:ðNðd1Þ ÿ 1Þ ¼ ÿSðtÞ:Nðÿd1Þ KðtÞ:Nðd2Þ

where:
d1 ¼ logfSðtÞ=ðKðtÞg=Sþ S=2

d2 ¼ ÿ logfSðtÞ=ðKðtÞg=Sþ S=2

but S is different for the two different bond models:

Model A S2
¼ ðTÿ tÞ:s2

S

Model B S2
¼ ðTÿ tÞ:s2

S þ ðTÿ tÞ
2:r:sR:sS þ ðTÿ tÞ

3:s2
R=3:

The rationale for this result is explained in Appendix A.
2.1.11 The option price H(t) is the sum of the hedging quantities:

HðtÞ ¼ HSðtÞ þHBðtÞ:

2.2 Hedging
2.2.1 In theory, if hedging were to be carried out continuously and

costlessly, and if the model and the values of the parameters in the real world
were the same as assumed in the option pricing model, then the proceeds of
the hedge portfolio would exactly provide the payoff for the option. In
practice, perfect hedging such as this is impossible. Therefore, as in WWY,
we investigate the results of ‘empirical hedging’ by simulating the prices (of
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the share and the bond) at discrete intervals, then calculate the results of
different hedging strategies, thus obtaining an estimate of the distribution of
the hedging error. In practice we carry out N ¼ 10; 000 simulations.

2.2.2 We place ourselves in the position of the writer of one of the
options. We make a preliminary estimate of the price (or premium) that we
consider should be paid for the options by using the option formulae shown
in {2.1.10. We assume that we have received this premium ðHð0Þ ¼ Vð0ÞÞ, and
we invest it at time 0 in the share and cash in the quantities prescribed in
{2.1.10. We denote the amounts invested in the share and the bond as
VSð0Þ ð¼ HSð0ÞÞ and VBð0Þ ð¼ HBð0ÞÞ respectively. We then step forward a
chosen time step h. At time hÿ, i.e. just before any rearrangement of the
portfolio, the market values of our investments are:

VSðhÿÞ ¼ VSð0Þ=Sð0Þ:SðhÞ

and

VBðhÿÞ ¼ VBð0Þ=Bð0Þ:BðhÞ:

2.2.3 The sum of these, VðhÿÞ ¼ VSðhÿÞ þ VBðhÿÞ, will, in general, not
equal the desired option price H(h). We have to decide on a strategy to cover
the deficit or surplus. We make our investment self-financing. That is, we
do not assume that any extra capital comes in from or goes out to any
outside fund. We ignore transaction costs at this stage. We have three
obvious strategies:
(i) invest the correct amount in the share, and the balance in the bond;
(ii) invest the correct amount in the bond, and the balance in the share;

and
(iii) invest the correct proportions in the share and the bond.

There are other possible investment strategies, but we do not investigate
these at this stage. We also assume that we rearrange the portfolio at each
step h. An alternative, discussed by Boyle & Hardy (1997), is to rearrange the
portfolio only when the discrepancy between what we hold and what we
would like to hold exceeds a certain size.

2.2.4 Thus, under the different strategies, at time h+, just after we have
rearranged the portfolio, we hold:
(i) VSðhþÞ ¼ HSðhÞ and VBðhþÞ ¼ VðhÿÞ ÿ VSðhþÞ;
(ii) VBðhþÞ ¼ HBðhÞ and VSðhþÞ ¼ VðhÿÞ ÿ VBðhþÞ; and
(iii) VSðhþÞ ¼ VðhÿÞ:HSðhÞ=HðhÞ and VBðhþÞ ¼ VðhÿÞ:HBðhÞ=HðhÞ:

At each step h:

VðhþÞ ¼ VSðhþÞ þ VBðhþÞ ¼ VðhÿÞ
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so we make the strategy self-financing. Note that for call and put options
one or other of HSðhÞ and HBðhÞ is negative, and in all cases either VSðhþÞ or
VBðhþÞ or both may have a sign different from HSðhÞ or HBðhÞ.

2.2.5 We continue in this way through successive time steps, until we
reach the expiry date T. The proceeds are then VðTÞ ¼ VðTÿÞ, and we
compare this with the payoff of the relevant option XðTÞ. The deficit is
DðTÞ ¼ XðTÞ ÿ VðTÞ. There may be a surplus, in which case DðTÞ is negative.

2.2.6 We then rank the values of the deficit from the N simulations in
increasing order, so that:

D1ðTÞ � D2ðTÞ � . . . � DnðTÞ � . . . � DNðTÞ:

2.2.7 We can calculate the mean, variance, and higher moments of
DðTÞ. We would expect VðTÞ to be close to XðTÞ, but to err on either side of
it, so, although XðTÞ contains a large proportion of cases with the same
value, either zero (for calls and puts) or K (for maxis and minis), the
distribution of DðTÞ may be roughly symmetrical, so variances and higher
moments are meaningful.

2.3 Prudential Reserves
2.3.1 We could, at this point, calculate for the deficit DðTÞ at time T,

for any security level a (usually expressed as a percentage), the quantile
reserve Qa and the conditional tail expectation (CTE) Ta; but we need to
consider first how the deficit might be financed. We have assumed that the
initial option premium is invested in one of the ways described in {2.2.3; in
simulation n it gives proceeds of VnðTÞ and leaves a deficit of DnðTÞ. We
assume that this deficit is funded by an extra initial amount of capital. This,
in turn, can be invested in any one of several ways. We investigate three
obvious ways, similar to the three ways of investing the option premium:
(a) invest the extra capital in the share;
(b) invest the extra capital in the bond; and
(c) invest the extra capital in the same proportions as the option has been

invested; this really includes three subordinate ways, corresponding with
the three ways described in {2.2.3.

2.3.2 Thus, if we assume that the extra capital is invested in one of these
ways, the extra initial capital required, which we denote VDnð0Þ, is:
(a) VDnð0Þ ¼ DnðTÞ:Sð0Þ=SnðTÞ;
(b) VDnð0Þ ¼ DnðTÞ:Bð0Þ=BnðTÞ ¼ DnðTÞ:Bð0Þ, since BnðTÞ ¼ 1 for all n; and
(c) VDnð0Þ ¼ DnðTÞ:Vð0Þ=VnðTÞ, for whatever investment strategy was used

to derive VðTÞ.

2.3.3 We now calculate CTEs and quantiles of VDð0Þ, the present value
of the deficit at time zero, for security level, a. We sort the values of VDð0Þ
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into increasing sequence. Then, putting m ¼ N:ð1ÿ a=100Þ, we define
TDð0Þa as the average of the m largest values of VDnð0Þ and QDð0Þa as the
mth largest value. For example, if a ¼ 99% and N ¼ 10; 000, then m ¼ 100,
QDð0Þ99 ¼ VD9901ð0Þ and TDð0Þ99 ¼ Sj¼9901;10000VDjð0Þ=100. It is these values,
and other statistics of VDð0Þ, that appear in many of the tables in the rest of
the paper.

2.4 Fair Values
2.4.1 We now follow the rationale described in WWY, Section 8.2. It is

easier to explain first in terms of quantile reserves. Assume that the total
initial capital on a quantile basis, Hð0Þ þQDð0Þa, is either required by the
regulator (whatever regulatory authority or supervisor is relevant to the
institution we are considering), or is chosen by the management as being
desirable and in excess of the minimum required. The initial Hð0Þ ¼ Vð0Þ,
invested in one of the ways we have specified, will provide VnðTÞ in
simulation n at time T. The initial QDð0Þa will provide what we denote
QDnðTÞa, whose value will depend on the investment assumptions:
(a) QDnðTÞa ¼ QDð0Þa:SnðTÞ=Sð0Þ;
(b) QDnðTÞa ¼ QDð0Þa:BnðTÞ=Bð0Þ ¼ QDð0Þa=Bð0Þ; and
(c) QDnðTÞa ¼ QDð0Þa:VnðTÞ=Vð0Þ, for the strategy used to derive VnðTÞ.

2.4.2 The total available at time T in simulation n is therefore
VnðTÞ þQDnðTÞa. In a% of cases this will be more than sufficient to provide
the payoff under the option. This surplus will fall back to the ‘shareholders’,
or to whoever has provided the required initial capital. In the remaining
ð100ÿ aÞ% of cases there will be a deficit, and we assume that the shareholders
have to meet this deficit. We are imagining, for example, one portfolio of a
life office or a bank. It is possible, in extreme circumstances, that the whole
institution becomes insolvent, and limited liability would mean that
shareholders do not have to provide for the deficit; but we assume that, in
general, an institution carries the losses on any particular line of business,
although it may not like doing so.

2.4.3 The same principles apply if the CTE TDð0Þa is the basis of the
prudential reserve. However, the amount at time T will normally be sufficient
to meet many more than a% of cases. It would be possible to find what
percentile value, say a�, is such that TDð0Þa ¼ QDð0Þa� . We can then say that
the CTE reserve will meet a�% of cases.

2.4.4 We now consider the value of this ‘investment’ to the shareholders.
It has been invested in our chosen way, so provides that sort of return (as if
in shares, the bond, etc.), but the outcome is risky. We assume that
shareholders dislike extra risk, even if it is ‘diversifiable risk’. We use an
implicit utility function to value the shareholders’ interest. An easy one to use
is a ‘kinked linear’ utility function. In WWY, Section 8.2, we suggested that
positive returns for the shareholders might be valued by discounting at a rate
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of interest of j% in addition to the return on the investment, and that
negative returns might be valued by discounting at a rate of interest ÿk% in
addition to the return on the investment. Thus, the value to the shareholders
is estimated by:

Shareholder value

¼ ½SþfTDð0Þa ÿ VDnð0Þg:ð1þ j Þ
ÿT
þ SÿfTDð0Þa ÿ VDnð0Þg:ð1ÿ kÞ

ÿT
�=N

where Sþ is the sum of positive values of TDð0Þa ÿ VDnð0Þ, and Sÿ is the
sum of negative values. This ‘shareholder value’ is comparable with the
‘certainty equivalent’ of utility theory.

2.4.5 The effect of this basis is to value positive returns at less than ‘face
value’ and negative returns at more than ‘face value’. However, the effect of
compounding is that the risk aversion, the difference or ratio between
ð1þ j Þ

ÿT and ð1ÿ kÞ
ÿT, increases with T. This may not be realistic. While we

can imagine that shareholders may be less willing to undertake longer-term
risks than shorter-term ones, the strength of the risk aversion may not
increase as our model would indicate. Instead, shareholders may wish to
consider a pair of functions to replace ð1þ j Þ

ÿT and ð1ÿ kÞ
ÿT, which reduce

with T, but not so strongly as do these compound interest functions.
2.4.6 In WWY we suggested, and gave examples for, j and k equal to

1% and 2%. We do not know what a suitable level would be. We believe that
it is up to the market to set the level. If a is high, then j is much more
important than k. A high value for j implies that shareholders expect a high
‘risk premium’ on their investment. As we shall see, this means that
premiums are correspondingly high. In an efficient market, purchasers of
options, who may be prospective life office policyholders, will choose the
lowest premiums (assuming the same level of security of the company from
whom they are purchasing). In order to get business, shareholders have to
accept a low enough value for j, as low as the strongest competitor in the
market, but the value of j in the market also needs to be high enough to
attract enough capital to undertake this investment. On the other hand, if it
is too high, then prices for options become too high, and purchasers are not
available. So, the equilibrium value of j needs to be such as to attract a
supply of sufficient capital to meet the demand for sales of the contracts.

2.4.7 What we have just described is what ought to happen in a
competitive market, but the market for insurance appears to be very
‘inefficient’, in that offices can sell apparently identical products at
surprisingly different prices. Since many insurance options are embedded in
more complex products, it may be difficult to disentangle the prices being
charged for them. For statutory purposes, it may become necessary for the
regulator, perhaps in consultation with life offices, to lay down a satisfactory
basis for j and k in addition to specifying the necessary value of a.
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â. Practical Hedging: Bond Model A

3.1 First Assumptions
3.1.1 In order to investigate hedging at discrete intervals, we need a model

for how investments are assumed to behave in the real world, a model for option
pricing and hedging, and a set of rules that tells us how to invest, as we have
discussed in Section 2.2. The real-world model and option pricing model do
not need to be the same, but for the moment we assume that they are.
3.1.2 We assume, first, that the real-world model is the same as the

option pricing model, that is a random walk for shares in discrete time and a
fixed bond interest rate. We define the major time unit as a year, the minor
time unit as one twelfth of a year (a ‘month’), and the hedging time step as
some fraction of a month, such as 1, 1

2,
1
4,

1
8, . . . down to 1/1,024. We do

not need to use binary fractions of a month, but it is convenient to do so.
We describe the small unit of time over which we simulate as h of a year
ðh ¼ 1, 1

2, . . . , 1/12, 1/24, . . . , 1/12,288).
3.1.3 The model for shares is that they perform a logarithmic random

walk, with steps of h with bias mh and standard deviation sh. Thus:

ln Sðtþ hÞ ¼ ln SðtÞ þ mh þ sh:zðtþ hÞ

where each zðtþ hÞ is independent and unit normally distributed ðNð0; 1Þ).
3.1.4 We can calculate the hly parameters from specified yearly ones as:

mh ¼ h:m

sh ¼
p

h:s

where m is the annual mean rate of (logarithmic) growth and s is the annual
standard deviation (or volatility). We put m ¼ 0:07 and s ¼ 0:2 in our first
examples.

3.1.5 We first assume bond model A, and refer often to ‘cash’. In this
case cash grows with certainty at a uniform ‘force’ of r per annum, or rh per
period. Thus KðtÞ ¼ KðTÞ: expðÿruÞ, where u ¼ Tÿ t, and:

Kðtþ hÞ ¼ KðtÞ: expðrhÞ:

We put r ¼ 0:05 in our first examples. We introduce bond model B in
Section 8.

3.1.6 We assume that the option pricing model uses the same
parameters as the real-world model, but we shall give them different names
(with Greek letters), because later they will be different. The option pricing
risk free rate is d, where at present d ¼ r ð¼ 0:05Þ and the option volatility is
s, where at present s ¼ s ð¼ 0:2Þ.
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3.1.7 In our first example we choose an overall time period, T ¼ 10
years, a time step, one half of a month ðh ¼ 1=24Þ, a share price at outset,
Sðt ¼ 0Þ ¼ 100, and an exercise price, KðT ¼ 10Þ ¼ 165. We choose this
because Kð0Þ ¼ 165� expðÿ10� 0:05Þ ¼ 100:08, so the option is very near to
being ‘at the (discounted) money’. We shall investigate ‘out of the money’
and ‘in the money’ options later, where, in each case, we compare Sð0Þ and
Kð0Þ, and not (as is colloquial in the traded options market) comparing SðtÞ
or Sð0Þ and K ¼ KðTÞ.

3.1.8 We simulate share prices at discrete intervals of h, using the formula
in {3.1.3. An alternative would be to simulate yearly in the first place, and to
fill in the gaps by ‘Brownian bridges’. This is discussed in Section 4.2.

3.1.9 We consider all four types of option simultaneously (maxi, mini,
call, and put), and for each we calculate the theoretical option price at time 0,
using the relevant formula as shown in {2.1.10. We assume that the option
is being granted by a ‘life office’ (us) to a policyholder, and that, in the first
instance, the theoretical option price is paid at time t ¼ 0 by the policyholder
to the life office. ‘We’ then invest the option price in the share and in the
bond, in accordance with the quantities given by the formulae shown in
{2.1.10. We denote these as VSð0Þ and VBð0Þ respectively, with VSð0Þ þ VBð0Þ ¼
Vð0Þ. We could put subscripts, say g, on these to show that they belong to
option type g; g ¼ 1 to 4, but there is no confusion without these subscripts.
3.1.10 One period later, at time tþ h, the share price has changed

randomly to Sðtþ hÞ in accordance with the formula in {3.1.3, and cash has
grown (deterministically) by expðrhÞ in accordance with the formula in
{3.1.5. We then rearrange the portfolio in accordance with the method
described in Section 2.2. The new option prices depend on the new value of
the share price SðhÞ, and the term to run is reduced to Tÿ h. However, the
parameters d and s remain fixed.

3.1.11 We described three investment strategies in {2.2.3. We also
introduce strategy (iv) in which we invest the correct amounts in shares and
bonds at t ¼ 0, and then hold them up to the exercise date T, without any
dynamic hedging. It is not suggested that this is a good strategy; it is selected
purely in order to demonstrate how badly such a strategy performs in
comparison with the dynamic hedging strategies.

3.1.12 We carry on with this simulation of a practical investment
strategy until time T. At that point, we have to consider the outcome of the
option. The various possible payoffs, which we denote X(T), are:

If SðTÞ < KðTÞ If SðTÞ ¼ KðTÞ If SðTÞ > KðTÞ

Maxi KðTÞ SðTÞ ¼ KðTÞ SðTÞ
Mini SðTÞ SðTÞ ¼ KðTÞ KðTÞ
Call 0 0 ¼ SðTÞ ÿKðTÞ SðTÞ ÿKðTÞ
Put KðTÞ ÿ SðTÞ 0 ¼ KðTÞ ÿ SðTÞ 0.
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3.1.13 If our hedging had been correct theoretically, we should have
found that VðTÿÞ exactly equalled the required payoff, but, because of our
discrete hedging, we find that it is not exactly the right amount. We hope
that, on average, we are correct, and that the error is not too great. We are
concerned about having too little, rather than too much, so we define the
deficit (at expiry) as DðTÞ ¼ XðTÞ ÿ VðTÿÞ, the required payoff minus the
amount available. We consider statistics of D.

3.2 First Examples
3.2.1 We start with the parameters shown in Table 3.2.1, all fixed for

the period of the simulation.
3.2.2 We now show in detail how the calculations work, using the first

period of the first simulation as an example. The option prices and hedging
quantities at time t ¼ 0 are as in Table 3.2.2.

3.2.3 Note that, at t ¼ 0, the options are very close to being ‘at the
discounted money’; the share price Sð0Þ ¼ 100:00 is very close to the present
value of the exercise price Kð0Þ ¼ 100:08. Therefore, the values of the call
and the put are very close, and the amounts to be invested in shares and cash
for the maxi option are very close. All the other numbers can be derived
from these.

Table 3.2.1. Parameters for first examples

Number of simulations 10,000
Years to exercise date 10
Number of periods per year 24

Share price at t ¼ 0 100
Exercise price 165

Real-world parameters:
Mean share return, m 0.07
Standard deviation of share return, s 0.2
Fixed return on ‘cash’, r 0.05

Option pricing model:
Bond model A
Standard deviation of share return, s 0.2
Fixed return on ‘cash’, d 0.05

Table 3.2.2. Hedging quantities and option values for first examples

Share quantity Cash quantity Option value

Maxi 62.36 62.50 124.87
Mini 37.64 37.57 75.21
Call 62.36 ÿ37.57 24.79
Put ÿ37.64 62.50 24.87
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3.2.4 We use, as an example, the results from our first simulation.
During the first period of this simulation (half a month or 1/24 of a year) the
share price is assumed to increase, quite considerably, to 107:40 ¼ Sð1=24Þ.
The discounted value of the exercise price increases only slightly, to 100.29.
Our investments for the four types of option now have the values shown
in Table 3.2.3.

3.2.5 We now calculate the theoretical option prices and hedging
quantities, on the basis of the new facts, Sð1=24Þ, Kð1=24Þ and
Tÿ t ¼ 9þ 23=24, and we get the values shown in Table 3.2.4.

3.2.6 Comparing the new option value with our actual investment, we
see that we are short by 0.10 for the maxi, call and put, and have a surplus of
0.10 for the mini. We now consider what to do under three of our four
investment strategies; under strategy (iv) we do nothing at intervening dates,
and look at the results of the initial investment only when we reach the
exercise date. Consider the maxi: we have 129.61 to invest (and no
transaction costs to consider at this stage); under strategy (i) we set our share
investment at the theoretically correct quantity 71.34, and invest the
balance, 58.27, in cash; under strategy (ii) we set our cash investment at the
theoretically correct quantity 58.37, and invest the balance, 71.24, in shares;
under strategy (iii) we use the theoretical proportions, 55.00% in shares and
45.00% in cash, and we invest 71.29 in shares and 58.32 in cash.

3.2.7 Table 3.2.5 shows the results for all four types of option. Note
that the values have been rounded correctly, so they may appear to sum
incorrectly. (This comment applies passim.)

3.2.8 The calculations can be continued, period by period, up to the
exercise date. They become rather extensive. At time t ¼ 0 the investments
for all three strategies (and also for strategy (iv)) were the same, so the results
at the end of the first period (before rearranging the investments) were also

Table 3.2.3. Values of investment after one period, first example

Share value Cash value Total investment

Maxi 66.98 62.63 129.61
Mini 40.42 37.65 78.08
Call 66.98 ÿ37.65 29.32
Put ÿ40.42 62.63 22.21

Table 3.2.4. Theoretical hedging quantities and option value after one period

Share quantity Cash quantity Option value

Maxi 71.34 58.37 129.71
Mini 36.06 41.92 77.98
Call 71.34 ÿ41.92 29.42
Put ÿ36.06 58.37 22.31
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the same. This is not the case for investments during the second and
subsequent periods.

3.2.9 At the exercise date, T ¼ 10 years, after 240 periods, the share
price in this first simulation is 167.48, a little above the exercise price. The
payoff of the maxi option is therefore 167.48, of the mini 165, of the call 2.48
and of the put nil. The results of our investment strategies are shown in
Table 3.2.6.

3.2.10 In this simulation, we have a surplus (shown as a negative
deficit) for the maxi, call and put options, and a deficit for the mini,
whatever the strategy. The surplus is modest (but not zero) for strategies (i),
(ii) and (iii), and large for strategy (iv). This is not the case for all
simulations. The results for strategies (i), (ii) and (iv) are the same for the
maxi, call and put, and numerically the same, but with the sign reversed, for
the mini. This is the case for all simulations. For strategy (iii) the results
diverge for the different option types. One might argue from this one
simulation that the options were overpriced. If 100 had been charged for
either the maxi or the mini, and invested wholly in shares, the right amount
would have been obtained for the maxi, and a little too much for the mini,
but this is because the outcomes are so close. Different simulations produce
very different results.

3.3 First Results
3.3.1 We now note some statistics of the results for this first example.

First, in Table 3.3.1 we show statistics for the final share price (FSP),

Table 3.2.5. Amounts invested under various strategies after one period,
after rearrangement

Total Strategy (i) Strategy (ii) Strategy (iii)
investment Shares Cash Shares Cash Shares Cash

Maxi 129.61 71.34 58.27 71.25 58.37 71.29 58.32
Mini 78.08 36.06 42.02 36.15 41.92 36.10 41.97
Call 29.32 71.34 ÿ42.02 71.25 ÿ41.92 71.11 ÿ41.78
Put 22.21 ÿ36.06 58.27 ÿ36.15 58.37 ÿ35.90 58.11

Table 3.2.6. Payoffs and investment results at end of ten years under
various strategies

Required Strategy (i) Strategy (ii) Strategy (iii) Strategy (iv)
payoff Assets Deficit Assets Deficit Assets Deficit Assets Deficit

Maxi 167.48 170.62 ÿ3.14 171.28 ÿ3.80 171.12 ÿ3.64 207.49 ÿ40.02
Mini 165.00 161.85 3.14 161.20 3.80 161.68 3.32 124.98 40.02
Call 2.48 5.62 ÿ3.14 6.28 ÿ3.80 5.44 ÿ2.97 42.49 ÿ40.02
Put 0.00 3.14 ÿ3.14 3.80 ÿ3.80 1.40 ÿ1.40 40.02 ÿ40.02
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followed by statistics for the deficit DðTÞ, for four types of option for four
investment strategies. As a reminder, we repeat the investment strategies:
(i) invest correct amount in shares, the balance in cash;
(ii) invest correct amount in cash, the balance in shares;
(iii) invest correct proportions in shares and cash; and
(iv) invest correct amounts in shares and cash at time zero, and then hold

these amounts without dynamic hedging.

3.3.2 Note that in 6,234 of the 10,000 simulations the FSP ¼ SðTÞ
exceeded the exercise price KðTÞ, and in 3,766 of them it fell short of the
exercise price. In the former case call options were ‘in the money’ at expiry,
in the latter case put options were.

3.3.3 The 95% CTE is the average of the 500 largest amounts, the 97.5%
CTE is the average of the largest 250 amounts and the 99% CTE is the
average of the 100 largest amounts out of the 10,000 simulations.

3.3.4 The simulated share price has a wide range, and the simulated
values are close to being lognormally distributed (as the theoretical share
price is), with observed mean and standard deviation close to the theoretically
correct ones, which can be calculated as:

Table 3.3.1. Statistics for final share price (FSP) and deficit for different
options, different investment strategies, bond model A, first assumptions

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

FSP 245.7 174.3 21.0 2,002.9 768.4 924.7 1,155.4

Maxi:
Strategy i 0.04 2.32 ÿ11.48 12.68 5.35 6.42 7.75
Strategy ii 0.05 3.02 ÿ14.79 30.04 7.49 9.22 11.58
Strategy iii 0.06 2.77 ÿ13.63 26.22 6.75 8.22 10.21
Strategy iv 9.31 55.33 ÿ40.94 650.79 186.15 244.98 331.83

Mini:
Strategy i ÿ0.04 2.32 ÿ12.68 11.48 5.09 5.99 7.07
Strategy ii ÿ0.05 3.02 ÿ30.04 14.79 6.32 7.33 8.58
Strategy iii ÿ0.03 2.48 ÿ13.20 12.13 5.51 6.49 7.64
Strategy iv ÿ9.31 55.33 ÿ650.79 40.94 39.23 40.07 40.57

Call:
Strategy i 0.04 2.32 ÿ11.48 12.68 5.35 6.42 7.75
Strategy ii 0.05 3.02 ÿ14.79 30.04 7.49 9.22 11.58
Strategy iii ÿ0.04 47.08 ÿ2,312.62 2,584.61 37.11 58.82 110.88
Strategy iv 9.31 55.33 ÿ40.94 650.79 186.15 244.98 331.83

Put:
Strategy i 0.04 2.32 ÿ11.48 12.68 5.35 6.42 7.75
Strategy ii 0.05 3.02 ÿ14.79 30.04 7.49 9.22 11.58
Strategy iii 0.06 29.74 ÿ1,173.77 1,454.51 29.44 50.59 102.87
Strategy iv 9.31 55.33 ÿ40.94 650.79 186.15 244.98 331.83
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Mean ¼ Sð0Þ: expðTðmþ 1
2 s

2
ÞÞ ¼ 100 expf10� ð0:07þ 0:022=2g ¼ 246:0

and

Standard deviation ¼Mean:
p
ðexpðTs2Þ ÿ 1Þ

¼ 246:0�
p
ðexpð10� 0:22Þ ÿ 1Þ ¼ 172:5

so the simulated results, 245.7 and 174.3, are reasonably close to the correct
values.

3.3.5 For strategies (i), (ii) and (iv), the results for maxi options, calls
and puts are identical; for minis the mean and the range are the same with an
opposite sign; the standard deviation is the same; and the CTE calculations
are different, being based on the opposite tail of the distribution. For strategy
(iii), the results for the different option types are different.

3.3.6 Strategy (iv) clearly fails to replicate the required payoff by a long
way. This demonstrates what should be obvious, that it is the dynamic
hedging process that comes close to replicating the option payoff, not a static
‘buy and hold’ policy. We omit strategy (iv) from further consideration.

3.3.7 For maxi and mini options, strategies (i), (ii) and (iii) all get
reasonably close to the required payoff on average. Nevertheless, the range,
the standard deviation and the CTEs are large enough to be uncomfortable.
Dynamic hedging 24 times a year fails to replicate the payoff by quite a
significant amount in a proportion of cases.

3.3.8 For call and put options, strategies (i) and (ii) have the same
results as maxi options do, and the same comments apply. Strategy (iii),
however, produces some extreme errors. This needs explaining.

3.3.9 We can investigate in detail one simulation in which a very large
deficit of 1,671.55 for a call option under strategy (iii) has arisen. We
discover that the problems begin as we approach the exercise date. At period
234, with six periods (half-months) still to go, the share price is 82.36, so very
well below the exercise price of 165. The value of the call option, which is
very far out of the money, is nearly zero, 0:72� 10ÿ11. This should be hedged
by two almost equal amounts, 0:5196� 10ÿ9 of share, and ÿ0:5123� 10ÿ9

of cash. The accumulated investment is the modest sum of ÿ6.26, which does
not look too bad, at this point, but the proportional investment strategy
(iii) requires investing 71.54 times this (7,154%) in shares and ÿ70.54 times
this in cash. So, we invest ÿ448.00 in shares (i.e. go short) and 441.74 in cash.
This immediately feels rash!

3.3.10 During the next period, the 235th, the share price rises to 88.01,
still very far below the exercise price, but our investment has indeed been
rather bad, being now worth ÿ36.05. The theoretical option price has risen
slightly, to 0:99� 10ÿ11, but the theoretical proportions have widened to 77.68
times in shares and ÿ76.68 times in cash. The program continues to follow
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the required policy (which, to a human observer, would seem an
extraordinary one), and invests ÿ2,800.72 in shares and 2,764.66 in cash.

3.3.11 During period 236 the share price rises further, to 94.21, and our
investment is again bad, giving us a value of ÿ227.48. The same strategy is
continued, and over successive periods, as the share price happens to rise, our
investment gets progressively worse, being worth ÿ721.00 and ÿ1,664.60 at
the end of the next two periods. At this point we have ÿ80,319.43 in shares
and 78,654.74 in cash. At this point the computer calculates the option price
as zero, even with double precision floating point calculations, and ends up
putting nil in shares and the balance in cash (because the program calculates
the cash proportion as one minus the share proportion), so the losses in the
final two periods do not get any worse.

3.3.12 The conclusion that one draws is that the proportional strategy
(iii), while not unreasonable for maxi and mini options, is quite unsuitable
for call and put options, because of this potential problem as one approaches
the exercise date with a well out-of-the-money option. Of course, if share
prices had fallen, rather than risen, we could have made huge profits instead,
but our objective is to match the option payoff, not to take gambles on
share prices.

3.3.13 Strategies (i), (ii) and (iii) give reasonable results (i.e. without
such extremes) for maxi and mini options. Strategy (i), however, gives the
narrowest range, the smallest standard deviation, and the smallest CTE
figures. Strategy (iii) is a little better than strategy (ii) in these respects. It
is, perhaps, reasonable to suspect that matching exactly the more volatile
investment, i.e. shares, will produce the closest match, but the differences
are perhaps less than one might have imagined. For calls and puts,
strategy (iii) is obviously unsuitable, and again strategy (i) is rather better
then strategy (ii).

3.3.14 For guaranteed annuity options, a ‘quanto’ maxi type of option,
WWY found that proportionate hedging was best, and referred ({C.12.3) to
the result we have shown here. It is interesting that different options give
different relative results. One cannot automatically carry the results from one
investigation across to another.

3.4 Financing the Deficit
3.4.1 So far we have considered the results at the exercise date. If we

wish to cover ourselves against being unable to meet the liability for the
payoff, we need to set up initial ‘contingency reserves’, i.e. an extra amount
at time zero that will see us through all but the most extreme of outcomes,
but how do we invest this contingency reserve? Three possibilities (and there
could be more) are to put it all in shares, all in cash, or all in the same
proportions as the option premium is being invested. Thus, for each strategy
we should consider the present value of the deficit (PVD), DðTÞ, when
discounted either:
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(a) as a share;
(b) as cash; or
(c) as if it were part of the option premium.

3.4.2 If the deficit is discounted as cash, with a fixed discount rate,
clearly the ranking of outcomes is unchanged, but this does not follow for the
other two discounting possibilities. A large deficit might be best matched by
investment in shares or in the option portfolio. We need to investigate.
However, one might suspect that investing in the option portfolio for calls or
puts might be unsatisfactory, because the objective, when the option is out
of the money, is to reach a zero result or close to it, and dividing by a near
zero number (as is necessary) is likely to prove problematic; it does.

3.4.3 To be precise in the calculations: for a particular simulation n, the
deficit which we have found for a specific type of option and investment
strategy is DnðTÞ. At expiry the share price is SnðTÞ, and the exercise price is
KðTÞ ¼ K (for all n). The result of our investment of the original option price
is VnðTÞ. At time zero, the share price is Sð0Þ ¼ 100; the value of the exercise
price is Kð0Þ; and the option price is Vð0Þ ¼ Hð0Þ. The time zero value of the
deficit, PVDnð0Þ, is given by:
(a) PVDnð0Þ ¼ DnðTÞ:Sð0Þ=SnðTÞ if we assume investment in shares;
(b) PVDnð0Þ ¼ DnðTÞ:Kð0Þ=KðTÞ if we assume investment in cash; and
(c) PVDnð0Þ ¼ DnðTÞ:Vð0Þ=VnðTÞ if we assume investment in the same way

as the option premium has been invested for that particular strategy.

3.4.4 Table 3.4.1 shows results for PVDð0Þ for all four types of option,
for investment strategies (i) to (iii), for all three discounting methods. For
calls and puts, the results for combinations i(a), i(b), ii(a) and ii(b) are just
the same as for maxis, so are not shown. For calls and puts, the results for
combinations i(c) and ii(c) require so many divisions by numbers close to
zero that they cannot usefully be calculated.

3.4.5 It is clear that we can dismiss as unsuitable, because the extremes
are too high, the following: strategy (iii) for calls and puts; and strategies
with a (c) suffix for calls and puts. This leaves nine possibilities for maxis and
minis, and four possibilities for calls and puts, all of which give rather
similar results. For maxis strategies i(b), ii(a) and iii(a) give the best results
(lowest standard deviations, lowest maxima, lowest CTEs), with ii(a) best on
all counts; for minis strategies i(c) and iii(c) are best; for both calls and puts
strategies i(b) and ii(a) are best. However, the answers are so similar that a
different set of 10,000 simulations might well show different rankings.

3.4.6 One can confirm the results by redoing the same sequence of
simulations, adding the possibility of an initial contingency reserve, equal,
for example, to the highest value of PVD shown above for the particular
combination of strategies; that is: investing the option premium according to
strategy (i), (ii) or (iii), and investing the additional contingency reserve
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according to strategy (a), (b) or (c), as appropriate. This confirms that the
maximum deficit at expiry is then, in each case, zero, but with a different
sequence of simulations it might not be.

3.4.7 On balance, strategy i(b), i.e. investing the option premium so that
shares are matched exactly, and investing the contingency reserve in cash, is
an intuitively sensible strategy and is one of the best for all option types, so
further investigations will concentrate on this. Strategy ii(a) would have been
a little better, on the basis of these results, but seems less intuitively sensible.

3.5 Graphical Presentation
3.5.1 It is interesting to see the results presented graphically. We

concentrate first on the maxi option, with strategy i(b), and with steps of

Table 3.4.1. Statistics for present value of deficit (PVD), for different
options, different investment strategies, different discounting methods,

first assumptions

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi:
Strategy i(a) 0.00 1.49 ÿ7.00 9.13 3.69 4.52 5.55
Strategy i(b) 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
Strategy i(c) 0.01 1.50 ÿ7.83 9.91 3.67 4.55 5.71
Strategy ii(a) 0.00 1.38 ÿ7.06 7.04 3.18 3.84 4.65
Strategy ii(b) 0.03 1.83 ÿ8.97 18.22 4.54 5.59 7.03
Strategy ii(c) 0.00 1.57 ÿ7.92 9.61 3.79 4.63 5.71
Strategy iii(a) 0.00 1.43 ÿ6.74 8.62 3.40 4.12 4.97
Strategy iii(b) 0.04 1.68 ÿ8.27 15.90 4.09 4.98 6.19
Strategy iii(c) 0.00 1.50 ÿ7.87 9.10 3.56 4.36 5.38

Mini:
Strategy i(a) 0.00 1.49 ÿ9.13 7.00 3.43 4.06 4.81
Strategy i(b) ÿ0.02 1.41 ÿ7.69 6.96 3.09 3.63 4.29
Strategy i(c) ÿ0.01 1.25 ÿ6.66 5.64 2.77 3.24 3.81
Strategy ii(a) 0.00 1.38 ÿ7.04 7.06 3.11 3.67 4.32
Strategy ii(b) ÿ0.03 1.83 ÿ18.22 8.97 3.84 4.45 5.20
Strategy ii(c) ÿ0.01 1.44 ÿ13.40 7.06 3.04 3.51 4.11
Strategy iii(a) 0.00 1.40 ÿ7.78 7.37 3.28 3.91 4.61
Strategy iii(b) ÿ0.02 1.50 ÿ8.01 7.36 3.34 3.94 4.63
Strategy iii(c) 0.00 1.23 ÿ5.57 5.99 2.74 3.22 3.77

Call:
Strategy iii(a) ÿ0.02 39.15 ÿ1,846.11 2,163.03 22.28 38.73 82.84
Strategy iii(b) ÿ0.02 28.56 ÿ1,402.68 1,567.64 22.51 35.68 67.25
Strategy iii(c) 22.19 2,824.10 ÿ12,216.68 279,873.61 683.05 1,360.91 3,385.54

Put:
Strategy iii(a) 0.06 15.00 ÿ598.22 741.98 17.79 28.56 53.45
Strategy iii(b) 0.04 18.04 ÿ711.93 882.20 17.86 30.68 62.39
Strategy iii(c) ÿ17.01 120.49 ÿ11,192.02 1,038.11 24.35 44.86 96.98
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1/24 of a year. We use only the first 1,000 of the 10,000 simulated results.
In Figure 3.5.1 we show the payoff and the final assets both plotted against
the final share price, using the range from zero to 2,000, which covers all
1,000 results. It can be seen how closely the assets match the required payoff,
even when the final share price is very far from the exercise price.
3.5.2 In Figure 3.5.2 we reduce the range to look at values of the final

share price only from 100 to 230, a range equally spaced about the exercise
price. The scatter looks much larger than in Figure 3.5.1, but remember that
the bottom of the graph is not at zero. However, for a call option, the
payoff in the level part to the left would be zero, so the errors are relatively
large compared with the desired payoff.
3.5.3 In Figures 3.5.3 and 3.5.4 we show the present value of the deficit,

discounted at the cash rate, plotted against the final share price, first showing
the full range of values of the final share price, then showing the narrower
range from zero to 500. One can see how the error, whether a surplus or a
deficit, is larger when the final share price is close to the exercise price, and is
smaller when it is further away, especially when it is very large. This last
result is not unreasonable. As the share price gets very much ‘into the money’
for the call, the correct strategy is to invest a very high proportion in
shares, and the amount in cash does not change very much. However, one
should not be misled into thinking that any option in this position is correctly
hedged by investing all the assets in shares at all times.

3.5.4 The fact that the error is larger when the final share price is near
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Figure 3.5.1. Maxi option, strategy (i), 1/24 year; payoff and final assets v.
final share price
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the exercise price suggests the following investigation. The 1,000 simulations
are divided into ten subsets (deciles), based on the values of the final share
price, the 100 smallest, then numbers 101 to 200, etc. Then we calculate the
statistics of the present value of the deficit for each subset. These are shown
in Table 3.5.1, for the maxi option, for strategy i(b). Note that the results for
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Figure 3.5.2. Maxi option, strategy (i), 1/24 year, payoff and final assets v.
final share price, restricted range
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Figure 3.5.3. Maxi option, strategy i(b), 1/24 year, present value of deficit
v. final share price

226 Notes on Options, Hedging, Prudential Reserves and Fair Values

https://doi.org/10.1017/S1357321700003068 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003068


call and put options are the same as those for the maxi, and the results for
the minis are the reverse of those for the maxi.

3.5.5 It is clear that the standard deviation rises to a maximum when
the FSP is in the range 146.8 to 175.4, declining irregularly in either direction
outside this subset. The highest and lowest values of the present value of the
deficit are also at their peak in the central subsets, but not in the same one as
the maximum standard deviation is found. The values move closer to zero
as we go towards the extremities, but not uniformly.
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Figure 3.5.4. Maxi option, strategy i(b), 1/24 year, present value of deficit
v. final share price, restricted range

Table 3.5.1. Statistics for separate deciles of 1,000 simulations

Lowest
FSP

Highest
FSP

Mean Standard
deviation

Lowest Highest

Maxi option:
1-100 28.2 86.7 0.08 0.87 ÿ1.97 2.45
101-200 86.8 116.3 0.03 1.16 ÿ2.98 2.96
201-300 116.6 146.5 0.18 1.75 ÿ3.49 6.31
301-400 146.8 175.4 ÿ0.60 2.05 ÿ4.62 4.84
401-500 175.4 200.4 0.04 1.82 ÿ5.35 4.40
501-600 201.6 235.1 0.07 1.50 ÿ3.17 4.13
601-700 235.4 277.1 0.18 1.37 ÿ3.29 3.97
701-800 277.5 337.0 0.03 1.15 ÿ3.86 2.82
801-900 337.6 447.4 0.30 1.24 ÿ3.13 3.34
901-1,000 449.0 1,881.3 0.26 1.14 ÿ3.79 3.66
Overall 28.2 1,881.3 0.06 1.44 ÿ5.35 6.31
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3.6 Premiums and Fair Values
3.6.1 We can now consider how the principles described in Section 2 can

be applied to pricing these options and calculating ‘fair values’, which we
argue are the same as the ‘net premium’, i.e. the premium that should be
charged excluding expenses, but including a ‘margin for adverse deviation’.
We first need to choose a prudential reserve, as described in Section 2.3, such
as a regulator or prudent management might require. We use the 99% and
97.5% CTEs for our examples. For the 99% CTE we shall generally choose
values of j ¼ k ¼ 2%, and for the 97.5% CTE we choose j ¼ k ¼ 1%. These
are not equivalent, but are rather more extreme cases. If we chose (97.5%,
2%, 2%) or (99%, 1%, 1%) we would get intermediate answers, sometimes
similar to one another. With extreme CTEs, the results are not very sensitive
to the value of k.

3.6.2 We consider the maxi option in detail, with strategy i(b). The
‘pure’ option premium would be 124.87, as shown in Table 3.2.2. If we invest
this according to strategy (i), i.e. putting the correct amount into shares and
the balance into the bond at each step, we have a distribution of deficits/
surpluses. If we finance the deficit by investing extra capital in the bond, i.e.
using strategy i(b), we need 3.89 more initially to set up a 97.5% CTE and
4.70 more initially to set up a 99% CTE. We then consider the distribution of
profit or loss at expiry, relative to the proceeds of the initial investment and
the additional capital. We discount surpluses at the bond rate, and then
multiply by ð1þ jÞ

ÿT. We discount deficits at the bond rate, and then multiply
by ð1ÿ kÞ

ÿT. Since T ¼ 10, these factors, for j ¼ k ¼ 1%, are 1:01ÿ10 ¼ 0:9053
and 0:99ÿ10 ¼ 1:1057; for j ¼ k ¼ 2%, the values are 0.8203 and 1.12239. The
net value for the combination (97.5%, 1%, 1%) is 3.50, and for (99%, 2%,
2%) is 3.83. If the shareholders are willing to finance the capital requirement
to this extent, this leaves 0.39 or 0.86, respectively, to be financed by the
policyholder. We summarise this, and show other combinations, in Table
3.6.1. Note that the numbers are rounded and may not appear to sum

Table 3.6.1. Financing the initial capital, maxi option, strategy i(b),
different combinations of (a; j; k)

Pure option
price

a CTE j k Shareholder
contribution

Policyholder
contribution

Total
premium

124.87 97.5% 3.89 1% 1% 3.50 0.39 125.25
124.87 97.5% 3.89 1% 2% 3.50 0.39 125.25
124.87 97.5% 3.89 2% 1% 3.17 0.72 125.59
124.87 97.5% 3.89 2% 2% 3.17 0.72 125.59
124.87 99% 4.70 1% 1% 4.23 0.47 125.33
124.87 99% 4.70 1% 2% 4.23 0.47 125.33
124.87 99% 4.70 2% 1% 3.83 0.86 125.73
124.87 99% 4.70 2% 2% 3.83 0.86 125.73
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correctly. We see that, to the two decimal places shown, the value of k does
not affect the premiums.

3.6.3 Similar calculations are shown in Table 3.6.2 for the maxi option,
for different strategies. From this we see that strategy ii(a) is slightly better
than strategy i(b) at the (97.5%, 1%, 1%) level, in that it gives a lower extra
premium for the policyholder (0.36 instead of 0.39), and also a lower capital
contribution from the shareholder (3.47 instead of 3.50). At the (99%, 2%,
2%) level the position is similar, with very slight improvements for both
parties.

3.6.4 In Table 3.6.3 we show similar calculations, using strategy i(b), for
all four types of option. The shareholder contributions and policyholder
loadings for calls and puts are, with this strategy, the same as for the maxi,
but as a percentage of the option premium they are larger. Nevertheless, they
are quite a small extra for the policyholder to pay.

ª. Variations in Assumptions: Frequency of Hedging

4.1 Frequency of Hedging
4.1.1 So far we have used a hedging frequency of twice per month, or 24

times per year. However, if the hedging were to be carried out theoretically

Table 3.6.2. Financing the initial capital, maxi option, different strategies,
using (97.5%, 1%, 1%) and (99%, 2%, 2%)

Pure option
price: 124.87

97.5%
CTE

S’hdr P’hdr Total
prem

99%
CTE

S’hdr P’hdr Total
premium

Strategy i(a) 4.52 4.08 0.43 125.30 5.54 4.55 1.00 125.87
Strategy i(b) 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73
Strategy i(c) 4.55 4.11 0.44 125.30 5.71 4.68 1.03 125.90
Strategy ii(a) 3.84 3.47 0.36 125.23 4.65 3.81 0.84 125.70
Strategy ii(b) 5.59 5.03 0.56 125.42 7.03 5.73 1.29 126.16
Strategy ii(c) 4.63 4.19 0.44 125.31 5.71 4.68 1.03 125.89
Strategy iii(a) 4.12 3.73 0.39 125.26 4.97 4.07 0.90 125.76
Strategy iii(b) 4.98 4.48 0.51 125.37 6.19 5.04 1.14 126.01
Strategy iii(c) 4.36 3.94 0.42 125.28 5.38 4.41 0.97 125.84

Table 3.6.3. Financing the initial capital, various options, strategy i(b),
using (97.5%, 1%, 1%) and (99%, 2%, 2%)

Option
price

97.5%
CTE

S’hdr P’hdr Total
prem

99%
CTE

S’hdr P’hdr Total
premium

Maxi 124.87 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73
Mini 75.21 3.63 3.31 0.32 75.55 4.29 3.54 0.75 75.96
Call 24.79 3.89 3.50 0.39 25.18 4.70 3.83 0.86 25.65
Put 24.87 3.89 3.50 0.39 25.26 4.70 3.83 0.86 25.73
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continuously, the match at expiry should be perfect. It is of interest to see
what happens if we alter the hedging frequency. We continue with bond
model A, the Black-Scholes model. Table 4.1 shows results for maxi, call and
put options for yearly, six-monthly, quarterly, two-monthly, monthly, and
binary fractions of a month, 1

2,
1
4, etc., down to 1/1,024, which is equivalent

to hedging about every 40 minutes day and night. The figures are all
calculated on strategy i(b), and show the discounted values of the deficit,
discounted using the cash rate.

4.1.2 Note that, for this strategy i(b), the results for maxis, calls and
puts are identical. Note also that the results for minis are the negative of
those for maxis, so the standard deviation is the same, the mean, lowest and
highest have the opposite signs, and the CTE values, being based on the
opposite tail, are different; they are not shown.

4.1.3 The convergence is not particularly rapid. In order to reduce the
variation by half, one must divide the step size by four, but it is clear that, as
the step size is reduced, the error is converging to zero, which confirms that
our programming seems to be correct, and demonstrates that the theoretical
Black-Scholes result is right, at least for this idealised case. The level of error
that is acceptable is a matter of judgement, and we could not decide, in any
case, on these results, because we have not taken transaction costs into
account. Nor have we yet considered the possibility that the real-world model
might differ from the option pricing model which we are using. This is still
to be considered.

4.1.4 Note that the results for steps of one half of a month are the same
as those shown in Table 3.4.1.

Table 4.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), different frequencies, first assumptions

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi, call and put:
Yearly 0.50 7.06 ÿ20.94 44.59 17.99 21.89 27.07
Six-monthly 0.31 4.93 ÿ17.43 29.18 12.11 14.43 17.45
Quarterly 0.16 3.42 ÿ13.16 22.57 8.15 9.75 11.84
Two-monthly 0.11 2.82 ÿ12.39 14.26 6.68 7.91 9.45
Monthly 0.06 1.99 ÿ9.32 11.92 4.61 5.49 6.58
1/2 months 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
1/4 months 0.01 1.01 ÿ5.23 5.00 2.33 2.78 3.33
1/8 months 0.01 0.71 ÿ3.52 4.10 1.61 1.90 2.30
1/16 months 0.00 0.51 ÿ2.92 3.22 1.12 1.34 1.63
1/32 months 0.00 0.35 ÿ1.82 2.48 0.78 0.94 1.15
1/64 months 0.00 0.25 ÿ1.35 1.24 0.54 0.65 0.79
1/128 months 0.00 0.18 ÿ1.08 1.34 0.40 0.48 0.60
1/256 months 0.00 0.13 ÿ0.63 0.89 0.28 0.34 0.42
1/512 months 0.00 0.09 ÿ0.42 0.50 0.20 0.24 0.29
1/1,024 months 0.00 0.06 ÿ0.42 0.37 0.14 0.16 0.21
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4.1.5 Graphs of the results are shown for the two extremes: hedging at
yearly intervals in Figures 4.1.1 and 4.1.2, and at intervals of 1/1,024 of a month
in Figures 4.1.3 and 4.1.4. Observe how very closely the final assets match the
payoff in the latter case, even in the middle region (Figure 4.1.3), where the
errors were largest with hedging at 1/24 of a year. Observe, also, how the
present value of the deficit has the same feature as before of being more scattered
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Figure 4.1.1. Maxi option, strategy (i), yearly, payoff and final assets v.
final share price, restricted range
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Figure 4.1.2. Maxi option, strategy i(b), yearly, present value of deficit v.
final share price
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in the middle regions of final share price. However, observe the extremely
different scales of Figure 4.1.4 as compared with those of Figure 4.1.2.

4.2 Simulation using Brownian Bridges
4.2.1 When we simulated over a fixed number of years with different
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Figure 4.1.3. Maxi option, strategy (i), 1/1,024 month, payoff and final
assets v. final share price, restricted range
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Figure 4.1.4. Maxi option, strategy i(b), 1/1,024 month, present value of
deficit v. final share price
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step sizes, we got different results for the final share price. This is because
of the way in which the sequence of random numbers is used. It is possible
that this may have produced more variation in the hedging results than
would have been the case if the set of simulations had ended up at the same
place each year with each step size. One way round this is to simulate the
whole series using annual intervals in the first place, and then to interpolate,
stochastically, using Brownian bridges. These are described fully in Appendix
D of WWY.

4.2.2 Table 4.2 shows results similar to those in Table 4.1, using this
method. Note that the results for yearly are the same here as in Table 4.1.
4.2.3 While these results are numerically different from those in Table

4.1, they are not qualitatively different. It is not obvious that either method is
superior. This means that we can reasonably safely use the bridging method
to interpolate when we turn to a model (such as the ‘Wilkie’ model) that is
defined in annual steps and does not easily lend itself to a model with higher
frequencies for all of its features.

4.2.4 It is also clear that the preliminary calculations with steps of one
half of a month were qualitatively the same as those from higher frequencies.
Since simulation with steps of 1/1,024 of a month takes about 512 times as
long to calculate as simulation with steps of half of a month (and over 12,000
times as long as yearly), we restrict ourselves hereafter to steps of half of a
month. We also restrict ourselves to quoting results for the maxi option,
which covers both calls and puts too. Results for the mini option seem to add
little more information.

Table 4.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), different frequencies, first assumptions,

simulated with Brownian bridges between annual steps

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Yearly 0.50 7.06 ÿ20.94 44.59 17.99 21.89 27.07
Six-monthly 0.24 4.84 ÿ16.61 38.41 11.69 13.97 16.76
Quarterly 0.12 3.46 ÿ16.73 17.83 8.04 9.62 11.71
Two-monthly 0.10 2.81 ÿ13.26 16.19 6.55 7.88 9.49
Monthly 0.04 1.97 ÿ8.39 10.06 4.46 5.34 6.55
1/2 months 0.01 1.42 ÿ6.97 9.08 3.24 3.90 4.80
1/4 months 0.01 0.99 ÿ5.21 6.99 2.23 2.66 3.20
1/8 months 0.00 0.69 ÿ3.10 4.33 1.60 1.93 2.41
1/16 months 0.00 0.51 ÿ3.37 3.27 1.15 1.39 1.70
1/32 months 0.00 0.35 ÿ1.78 2.35 0.82 0.99 1.21
1/64 months 0.00 0.25 ÿ1.36 1.37 0.57 0.68 0.82
1/128 months 0.00 0.18 ÿ0.93 1.00 0.40 0.48 0.58
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ä. Variations in Assumptions: Different Parameters

5.1 Different Exercise Prices
5.1.1 We now start to vary the conditions in different ways. We can

try the effect of having different exercise prices, keeping all the other
parameters the same. We use the base exercise price of 165 and add exercise
prices of 105, 135, 195 and 225. The option prices are now different, and
are shown in Table 5.1.1. Not surprisingly, the option prices for maxis, minis,
and puts increase as the exercise price increases, whereas the prices of calls
decrease.

5.1.2 Statistics of the present value of the deficit using strategy i(b),
hedging twice a month, are shown in Table 5.1.2. We see that the variability
of the present value of the deficit increases as the exercise price increases, i.e.
as the call option gets more out of the money, or the put option is more in
the money.

5.1.3 In Table 5.1.3 we show the statistics for pricing, for each of these
exercise prices, for the maxi option. We can observe that the policyholder
loading increases, both absolutely and as a percentage of the maxi option
price, as the exercise price increases, i.e. as the call option is more out of the
money or the put option is more in the money.

Table 5.1.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying exercise prices

Exercise
price K

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

105 0.00 0.74 ÿ4.34 5.05 1.71 2.09 2.59
135 0.02 1.12 ÿ6.15 7.40 2.55 3.08 3.76
165 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
195 0.03 1.64 ÿ8.00 10.86 3.84 4.59 5.60
225 0.05 1.82 ÿ9.28 11.48 4.36 5.23 6.38

Table 5.1.1. Hedging quantities for maxi, and option values, different
exercise prices

Hedging quantities Option values

Exercise
price K

K(0) Share
quantity

Cash
quantity

Maxi Mini Call Put

105 63.69 84.84 33.01 106.85 56.83 43.17 6.85
135 81.88 73.64 40.95 114.59 67.30 32.70 14.59
165 100.08 62.36 62.50 124.87 75.21 24.79 24.87
195 118.27 52.03 85.11 137.14 81.14 18.86 37.14
225 136.47 43.04 107.87 150.91 85.56 14.44 50.91
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5.2 Different Mean Returns on Shares
5.2.1 So far, we have assumed that the parameters of the real-world

process were known, and those of the option price calculations were the same
as the real-world ones. We now consider what happens if the real-world
parameters are different from what is assumed in the option pricing
calculations (but are still fixed). We start by varying the mean rate of return
on shares, which, in the base calculations, was 0.07. We now use additional
values of 0.03, 0.05, 0.09 and 0.11.

5.2.2 The mean rate of return on shares does not affect the option
pricing calculations, so the initial option prices are unchanged. Table 5.2
shows the present value of the deficit. The means are still close to zero. We
would expect this, since the theoretical option price does not depend on the
mean return on shares, but the actual outcome does depend on the return on
shares, and we see some variation, though this is irregular. On the whole,
the further apart the real-world mean return and the interest rate assumed in
the option pricing formula, the lower the standard deviation and the lower
the CTEs, but the variation is not large. This may occur because, when the
real-world mean return is either very high or very low, the option is likely to
be very much either in or out of the money, and we have seen already that,
in these cases, the hedging error is a little smaller.

Table 5.1.3. Financing the initial capital, maxi option, strategy i(b), using
(97.5%, 1%, 1%) and (99%, 2%, 2%), various exercise prices

Exercise
price K

Option
price

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

105 106.85 2.09 1.89 0.20 107.05 2.59 2.12 0.47 107.32
135 114.59 3.08 2.77 0.31 114.89 3.76 3.07 0.69 115.28
165 124.87 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73
195 137.14 4.59 4.13 0.46 137.60 5.60 4.57 1.03 138.16
225 150.91 5.23 4.69 0.54 151.44 6.38 5.19 1.18 152.09

Table 5.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying mean return on

shares

Real-world
mean return on

shares, m

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.03 0.02 1.38 ÿ7.83 7.27 3.30 3.96 4.80
0.05 0.00 1.41 ÿ7.62 7.16 3.22 3.85 4.66
0.07 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
0.09 0.05 1.38 ÿ7.40 9.22 3.16 3.79 4.61
0.11 0.06 1.29 ÿ6.09 9.05 2.93 3.53 4.41
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5.3 Different Mean Returns on Cash
5.3.1 We now consider what happens if the real-world return on cash is

different from what is assumed in the option pricing calculations. In the base
calculations we assumed 0.05. We now use additional values of 0.01, 0.03,
0.07 and 0.09.

5.3.2 The option pricing basis is unchanged, so the option prices are the
same as before. Table 5.3.1 shows the present value of the deficit. Not
surprisingly, if we earn more on cash than we expected when the pricing was
done, we end up with bigger final assets and surplus, and vice versa if we
earn less than expected. The mean values of the PVDs move in the expected
direction, but the standard deviations and the range increase if we get it
wrong, in either direction.

5.3.3 Instead of varying the real-world return on cash, we can vary the
option pricing return on cash, keeping the real-world rate fixed at 0.05. As
before, we use values of 0.01, 0.03, 0.07 and 0.09. Now the option prices are
changed; they are shown in Table 5.3.2. As expected, the option price
increases as the assumed risk free rate reduces.

5.3.4 The statistics for the PVDs are shown in Table 5.3.3. Qualitatively,
the same effects are seen. If we price assuming too high a return on cash, we

Table 5.3.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying real world

return on cash

Real-world
return on
cash r

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.01 24.42 12.23 2.23 51.49 45.66 46.49 47.28
0.03 11.10 5.51 0.95 26.10 20.83 21.32 21.86
0.05 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
0.07 ÿ9.19 4.38 ÿ19.02 0.72 ÿ1.98 ÿ1.51 ÿ1.03
0.09 ÿ16.88 7.46 ÿ31.82 ÿ0.51 ÿ4.56 ÿ3.79 ÿ3.01

Table 5.3.2. Hedging quantities for maxi, and option values, different
returns on cash

Hedging quantities Option values

Option cash
return d

K(0) Share
quantity

Cash
quantity

Maxi Mini Call Put

0.01 149.30 37.54 123.76 161.30 88.00 12.00 61.30
0.03 122.24 49.95 90.07 140.02 82.21 17.79 40.02
0.05 100.08 62.36 62.50 124.87 75.21 24.79 24.87
0.07 81.94 73.61 41.01 114.61 67.32 32.68 14.61
0.09 67.08 82.83 25.25 108.08 59.01 40.99 8.08
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may almost guarantee that we have a deficit, and if we price using too low
a return, we can almost guarantee a surplus.
5.3.5 There is, however, little excuse for getting the cash return wrong.

Sufficiently many safe bonds (such as government stock) are usually
available, with the right range of maturities, and, nowadays, zero coupon
bonds are available, in the form of strips, in several countries. It would only
be in exceptional circumstances that the present value of a zcb was
unavailable.

5.3.6 Our model, however, has so far assumed that the return on
cash is wholly predictable, or that the zcb always has the same yield. We
consider what happens when the yield on the bond is stochastic in
Section 8.

5.4 Different Standard Deviations on Shares
5.4.1 We now consider what happens if the real-world standard deviation

on shares is different from what is assumed in the option pricing calculations.
In the base calculations we assumed 0.2. We now use additional values of
0.1, 0.15, 0.25 and 0.3.

5.4.2 The option pricing basis is unchanged, so the option prices are the
same as before. Table 5.4.1 shows the present value of the deficit. Not

Table 5.3.3. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying option return

on cash

Option return
on cash

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.01 ÿ31.19 10.66 ÿ48.65 ÿ3.72 ÿ11.47 ÿ9.93 ÿ8.29
0.03 ÿ12.59 5.30 ÿ24.36 0.34 ÿ3.34 ÿ2.67 ÿ1.98
0.05 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
0.07 7.97 4.52 ÿ0.14 20.71 16.46 16.95 17.44
0.09 12.51 8.06 0.61 32.02 28.27 29.16 30.02

Table 5.4.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying real-world share

standard deviation

Real-world
share SD s

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.1 ÿ12.14 3.14 ÿ20.17 ÿ3.02 ÿ6.10 ÿ5.50 ÿ4.76
0.15 ÿ6.16 2.24 ÿ14.24 ÿ0.27 ÿ2.18 ÿ1.84 ÿ1.45
0.2 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
0.25 6.24 3.14 0.14 19.71 13.90 15.15 16.60
0.3 12.48 6.04 0.68 36.44 26.25 28.17 30.42
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surprisingly, if the real-world standard deviation is smaller than that used
for option pricing, a surplus is likely to emerge, and vice versa if the real-
world volatility is larger. However, it is worth noting that the standard
deviation of the deficit and the range of results increase as the difference
between the actual SD and the assumed SD increases.

5.4.3 Instead of varying the real-world standard deviation on shares, we
can vary the option pricing standard deviation on shares, keeping the real-
world rate fixed at 0.2. As before, we use values of 0.1, 0.15, 0.25 and 0.3.
Now the option prices are changed; they are shown in Table 5.4.2. As
expected, the option price increases as the assumed standard deviation on
shares increases.

5.4.4 The statistics for the present value of the deficit are shown in
Table 5.4.3. Qualitatively, the same effects are seen. If we price assuming too
low a standard deviation, we may almost guarantee that we have a deficit,
and if we price using too high a standard deviation, we can almost guarantee
a surplus. Again, the standard deviation and the range increase as the
discrepancy between actual and assumed standard deviations on shares
increases.

Table 5.4.2. Hedging quantities for maxi, and option values, different
standard deviations for shares

Hedging quantities Option values

Option share
SD sS

Share
quantity

Cash
quantity

Maxi Mini Call Put

0.1 56.19 56.42 112.61 87.47 12.53 12.61
0.15 59.31 59.48 118.79 81.28 18.72 18.79
0.2 62.36 62.50 124.87 75.21 24.79 24.87
0.25 65.33 65.46 130.79 69.29 30.71 30.79
0.3 68.21 68.32 136.53 63.55 36.45 36.53

Table 5.4.3. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying option share

standard deviation

Option share
SD sS

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.1 12.46 6.46 0.78 36.75 26.80 28.60 30.71
0.15 6.24 3.03 0.39 20.39 13.40 14.50 15.71
0.2 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
0.25 ÿ6.15 2.48 ÿ15.82 0.18 ÿ1.84 ÿ1.47 ÿ1.05
0.3 ÿ12.21 3.92 ÿ24.40 ÿ1.59 ÿ4.76 ÿ4.02 ÿ3.28
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å. Allowing for Transaction Costs

6.1 Transaction Costs
6.1.1 Although the theoretical option pricing model assumes that one

can hedge both continuously and costlessly, in practice hedging has to be
done discretely, and also transaction costs are incurred. Allowing for
transaction costs can be complicated. Although most costs can be taken as
proportional to the value traded (as we assume throughout), shares and
‘cash’ (in practice perhaps a zero coupon bond) carry different rates from one
another, there are different rates for buying and selling, and there probably
would be different rates for long and short positions. Further, the costs may
be, in effect, a constant if any trading is done, plus a proportion of the value;
we do not consider this possibility.

6.1.2 While it is easy to understand the pricing of the purchase and sale
of shares and bonds, the costs of going short are not so obvious. We assume
that one ‘borrows’ shares from a willing counterparty, and sells them,
incurring selling costs, to raise cash. When the time comes to repay the
shares, one buys them in the market, incurring buying costs, and then returns
the shares to the lender. One would expect the counterparty to exact some
charges too, at least at the borrowing stage. Bonds are conceptually easier,
since one can normally borrow cash from a bank; though the ‘charge’ is more
likely to be in the form of an increased rate of interest than specific
commission on borrowing and repaying (though that might happen too).

6.1.3 An alternative for shares is to go short on a traded index future,
which should be much cheaper; but, so far as we understand, this cannot be
done for the longer-term contracts that we are discussing, so a short position
would need to be rolled over, at a cost, at regular intervals. We do not
consider that possibility here.

6.1.4 We use two scales of charges, A and B. The rates for scale A are
plausible for the purchase and sale of real shares (in the U.K., allowing for
stamp duty of 1

2% of purchases, and a small bid/offer spread). The rates for
going short on shares allow for the costs of sale and repurchase, together
with an extra 0.5% each way. The rates for bonds are all one-tenth of the
rates for shares. The rates for scale B are arbitrarily taken as one-tenth of
the rates for scale A, so are quite low. The rates assumed are as shown in
Table 6.1.1.

6.1.5 Besides allowing for the costs of altering the portfolio during the
hedging process, it is desirable (or at least consistent) to allow for the initial
purchase and the final sale of the hedging assets. Thus, when an initial
purchase of shares is made, the quantity bought allows for the fact that costs
will be payable on the sale, and then the buying costs are added. This initial
charge can be calculated at the outset, and is the same for all simulations.
The values for the basic model are shown in Table 6.1.2.
6.1.6 The costs are a small percentage of the option price, much lower
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than the usual bid/offer spread for unit trusts or unit-linked life policies,
but these also have to bear initial commission to agents and the initial
management expenses, neither of which are allowed for here. The charges,
however, for calls and puts can be higher than for maxis (and in percentage
terms they are much larger), because two quite large opposite positions need
to be set up.

6.1.7 When the quantity of assets is increased or reduced during the
hedging process, enough is held to allow for the selling (or repayment) costs
at the close. Then, at settlement the shares and bonds are assumed to be sold
(or repaid), and the relevant charges are calculated too. One can calculate
the present value at the outset of all charges, discounted at the bond rate.
This is similar to the initial charge plus the increase in the present value of
the deficit at settlement.

6.1.8 It is reasonable to assume that the effect of transaction costs will
be greater the more frequent the hedging. We therefore investigate the costs
for various frequencies of hedging. The results for calls and puts are no
longer the same as for maxis, because the portfolios to be held carry different
costs; they are, however, similar. There is no need to go much beyond some
optimum position, because one must expect the transaction costs to become
excessive as the frequency reduces to very short intervals.

6.1.9 The statistics for the present value of the deficit, discounted at the
bond rate, for transaction costs scale A, are shown in Table 6.1.3.
6.1.10 We see that the mean PVD increases with the frequency of

hedging. The standard deviation falls to a minimum with hedging either

Table 6.1.1. Rates of transaction costs assumed

Scale A Scale B

Buying shares 1% 0.1%
Selling shares 0.5% 0.05%
Borrowing shares 1% 0.1%
Repaying shares 1.5% 0.15%
Buying bonds 0.1% 0.01%
Selling bonds 0.05% 0.005%
Borrowing bonds 0.1% 0.01%
Repaying bonds 0.15% 0.015%

Table 6.1.2. Initial costs on purchase, scales A and B

Option price Initial charge A Percentage A Initial charge B Percentage B

Maxi 124.87 1.03 0.82 0.10 0.08
Mini 75.21 0.62 0.82 0.06 0.08
Call 24.79 1.05 4.24 0.10 0.40
Put 24.87 1.02 4.10 0.10 0.40
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Table 6.1.3. Statistics for present value of deficit, for all option types,
investment strategy i(b), first assumptions, with transaction costs scale A,

various frequencies of hedging

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi:
Yearly 1.69 7.29 ÿ20.43 47.70 19.86 23.88 29.09
Six-monthly 1.99 5.15 ÿ16.65 32.57 14.54 16.97 20.08
Quarterly 2.45 3.68 ÿ10.72 26.05 11.54 13.29 15.51
Two-monthly 2.89 3.13 ÿ9.20 19.13 10.76 12.19 13.96
Monthly 3.93 2.56 ÿ4.89 18.18 10.37 11.53 12.94
1/2 monthly 5.42 2.49 ÿ0.13 17.12 11.43 12.40 13.45
1/4 monthly 7.61 3.02 0.71 18.28 14.18 15.02 16.76
1/8 monthly 10.64 3.98 1.22 24.04 18.62 19.46 20.39
1/16 monthly 15.03 5.53 1.79 31.05 25.55 26.43 27.45
1/32 monthly 21.08 7.75 2.17 40.67 35.90 37.02 38.11

Mini:
Yearly 0.42 7.03 ÿ43.09 21.48 14.14 15.89 17.81
Six-monthly 1.07 4.91 ÿ27.11 18.98 11.39 12.88 14.49
Quarterly 1.83 3.45 ÿ18.52 15.40 9.47 10.60 11.90
Two-monthly 2.37 2.91 ÿ10.00 15.41 9.04 10.06 11.32
Monthly 3.51 2.33 ÿ5.71 13.76 9.11 9.94 10.84
1/2 monthly 5.07 2.34 ÿ0.99 14.70 10.37 11.07 11.83
1/4 monthly 7.29 2.93 0.43 16.23 13.27 13.89 14.56
1/8 monthly 10.33 3.92 1.61 20.72 17.90 18.54 19.21
1/16 monthly 14.73 5.51 2.18 28.91 25.16 25.88 26.67
1/32 monthly 20.76 7.76 2.74 39.68 35.63 36.65 37.62

Call:
Yearly 1.72 7.31 ÿ20.45 47.80 19.94 23.97 29.22
Six-monthly 2.01 5.17 ÿ16.69 33.04 14.65 17.07 20.17
Quarterly 2.52 3.70 ÿ10.72 26.66 11.69 13.45 15.68
Two-monthly 2.98 3.16 ÿ9.32 19.60 10.95 12.41 14.21
Monthly 4.06 2.61 ÿ4.74 18.75 10.65 11.83 13.29
1/2 monthly 5.63 2.56 0.00 17.27 11.79 12.81 13.87
1/4 monthly 7.91 3.14 0.74 18.47 14.70 15.56 16.63
1/8 monthly 11.09 4.14 1.29 24.29 19.38 20.24 21.21
1/16 monthly 15.66 5.77 1.90 31.96 26.66 27.58 28.65
1/32 monthly 21.95 8.08 2.24 43.63 37.43 38.60 39.77

Put:
Yearly 1.46 7.09 ÿ20.55 46.20 19.23 23.29 28.60
Six-monthly 1.81 5.01 ÿ15.72 32.79 14.23 16.66 19.85
Quarterly 2.41 3.63 ÿ10.64 27.64 11.52 13.28 15.56
Two-monthly 2.94 3.15 ÿ9.07 20.49 11.07 12.54 14.34
Monthly 4.21 2.73 ÿ4.61 19.40 11.10 12.36 13.85
1/2 monthly 6.04 2.84 0.16 19.13 12.81 13.90 15.14
1/4 monthly 8.73 3.63 1.01 21.34 16.48 17.41 18.50
1/8 monthly 12.42 4.83 1.92 28.02 22.14 23.11 24.16
1/16 monthly 17.76 6.75 2.69 37.51 30.73 31.80 32.91
1/32 monthly 25.12 9.49 3.39 51.40 43.48 44.87 46.22
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Table 6.1.4. Statistics for present value of deficit, for all option types,
investment strategy i(b), first assumptions, with transaction costs scale B,

various frequencies of hedging

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi:
Yearly 0.62 7.08 ÿ20.87 44.90 18.17 22.09 27.27
Six-monthly 0.47 4.95 ÿ17.30 29.51 12.35 14.68 17.71
Quarterly 0.40 3.44 ÿ12.91 22.92 8.48 10.01 12.20
Two-monthly 0.39 2.84 ÿ12.06 14.69 7.08 8.33 9.89
Monthly 0.44 2.01 ÿ8.87 12.55 5.15 6.07 7.19
1/2 monthly 0.56 1.43 ÿ6.28 8.63 4.01 4.70 5.53
1/4 monthly 0.77 1.06 ÿ4.38 6.26 3.41 3.93 4.54
1/8 monthly 1.08 0.82 ÿ1.98 6.10 3.15 3.54 3.99
1/16 monthly 1.50 0.75 ÿ0.59 5.55 3.33 3.63 4.03
1/32 monthly 2.10 0.85 0.13 6.32 4.00 4.27 4.59
1/64 monthly 2.97 1.13 0.36 6.61 5.23 5.46 5.75
1/128 monthly 4.19 1.59 0.59 8.92 7.25 7.52 7.82

Mini:
Yearly ÿ0.41 7.05 ÿ44.44 20.98 13.32 15.10 17.06
Six-monthly ÿ0.17 4.92 ÿ28.94 17.58 9.99 11.49 13.14
Quarterly 0.04 3.42 ÿ22.17 13.38 7.25 8.35 9.63
Two-monthly 0.14 2.81 ÿ13.83 12.69 6.16 7.12 8.37
Monthly 0.30 1.98 ÿ11.30 9.73 4.73 5.45 6.32
1/2 monthly 0.49 1.41 ÿ6.76 7.60 3.76 4.33 5.00
1/4 monthly 0.72 1.03 ÿ3.77 6.10 3.22 3.69 4.28
1/8 monthly 1.02 0.80 ÿ2.24 5.06 3.01 3.38 3.84
1/16 monthly 1.48 0.74 ÿ1.03 5.42 3.29 3.57 3.94
1/32 monthly 2.08 0.85 0.21 5.19 3.95 4.19 4.44
1/64 monthly 2.94 1.12 0.39 6.34 5.17 5.39 5.63
1/128 monthly 4.17 1.58 0.51 8.27 7.16 7.40 7.64

Call:
Yearly 0.62 7.08 ÿ20.89 44.91 18.18 22.09 27.28
Six-monthly 0.48 4.95 ÿ17.29 29.56 12.36 14.69 17.72
Quarterly 0.40 3.44 ÿ12.91 22.98 8.50 10.11 12.22
Two-monthly 0.40 2.84 ÿ12.04 14.74 7.10 8.35 9.91
Monthly 0.46 2.01 ÿ8.86 12.60 5.17 6.10 7.22
1/2 monthly 0.58 1.43 ÿ6.25 8.65 4.04 4.73 5.57
1/4 monthly 0.81 1.06 ÿ4.33 6.28 3.46 3.98 4.59
1/8 monthly 1.12 0.83 ÿ1.90 6.13 3.22 3.61 4.07
1/16 monthly 1.56 0.77 ÿ0.52 5.61 3.44 3.73 4.15
1/32 monthly 2.20 0.88 0.13 6.50 4.16 4.43 4.76
1/64 monthly 3.11 1.18 0.38 6.84 5.45 5.69 5.98
1/128 monthly 4.38 1.66 0.62 9.34 7.57 7.85 8.16
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monthly or twice a month, and then rises. The CTEs generally reach a
minimum with monthly hedging, and then rise. This suggests that, with
transaction costs on scale A, hedging more frequently than monthly may not
be worth the expense.

6.1.11 The results with the lower transaction costs of scale B are shown
in Table 6.1.4.

6.1.12 We can see that the advantages of more frequent hedging
continue to a higher frequency than for scale A. Nevertheless, all the means
increase beyond monthly hedging, and all the standard deviations increase
beyond hedging 16 times a month. The highest values and the CTEs reach
their minimal values at frequencies of either eight or 16 times per month.
Thus, even these very low transaction costs bite if hedging is frequent enough.

6.1.13 An alternative to hedging fully at regular time intervals is to use
a ‘distance-based’ strategy, and hedge when the discrepancy between the
actual holdings and the desired holdings exceeds some threshold (as suggested
by Boyle & Hardy, 1997). This threshold might increase as one approaches
expiry close to being at the money, when the maximum changes in position
are to be expected. This approach has not been investigated.

6.1.14 A further, and very important, consideration is that we are
considering here only one option contract, rather than a portfolio of contracts.
A portfolio may happen to contain offsetting contracts, so that the
transactions required to maintain the aggregate hedge position might be less,
possibly much less, than the sum of the individual transactions. This would
reduce the transaction costs, and therefore also the contingency reserves
required.

Table 6.1.4 (continued).

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Put:
Yearly 0.60 7.06 ÿ20.90 44.75 18.11 22.03 27.22
Six-monthly 0.46 4.93 ÿ17.23 29.54 12.31 14.65 17.69
Quarterly 0.39 3.43 ÿ13.90 23.08 8.47 10.09 12.21
Two-monthly 0.40 2.83 ÿ12.05 14.83 7.10 8.36 9.92
Monthly 0.48 2.01 ÿ8.84 12.68 5.21 6.14 7.27
1/2 monthly 0.63 1.44 ÿ6.21 8.85 4.13 4.83 5.68
1/4 monthly 0.90 1.08 ÿ4.16 6.58 3.62 4.15 4.76
1/8 monthly 1.27 0.87 ÿ1.62 6.35 3.47 3.88 4.34
1/16 monthly 1.79 0.85 ÿ0.14 6.03 3.83 4.14 4.58
1/32 monthly 2.53 1.02 0.25 7.28 4.75 5.05 5.41
1/64 monthly 3.60 1.38 0.50 7.90 6.32 6.59 6.92
1/128 monthly 5.10 1.95 0.73 10.78 8.85 9.16 9.51
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6.2 Pricing
In Table 6.2.1 we show the shareholder and policyholder contributions

when transaction costs are allowed for. One can see that the policyholder
contribution increases very greatly with the transactions costs, quite
reasonably, because a certain level of transaction costs is almost certain to be
incurred. Nevertheless, the uncertainty about transaction costs increases the
shareholder contribution considerably also.

æ. Varying the Real-World Model

7.1 Fat-Tailed Distribution of Innovations
7.1.1 So far we have assumed that the real-world model within which we

are simulating is the Black-Scholes world, in which the values of the
parameters are known, and the share price is driven by a Wiener process,
which therefore has normally distributed increments. We now investigate
what happens if we change these assumptions. First, we consider simulating
with a different distribution for the innovations of the model for shares. It is
well known that the distribution of share price changes is fatter tailed than
the normal distribution, so we move in that direction.
7.1.2 One way to simulate a fat-tailed distribution is to simulate:

Z ¼ X1 ÿX2, where both X1 and X2 are independently lognormally distributed.
X is lognormally distributed if Y ¼ lnX is normally distributed. The
lognormal distribution is usually parameterised by the mean and variance of
the underlying normal m and s2. We denote the parameters of X1 and X2 by
subscripts. For some purposes it is convenient to reparameterise the
lognormal with parameters l and d, putting:

l ¼ expðmÞ

d ¼ expðs2=2Þ:

Table 6.2.1. Financing the initial capital, maxi option, strategy i(b), using
(97.5%, 1%, 1%) and (99%, 2%, 2%), hedging twice monthly, various

transaction costs

Transaction
costs

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

None 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73
Scale A 12.40 6.32 6.09 130.95 13.45 6.58 6.87 131.73
Scale B 4.70 3.74 0.96 125.82 5.53 4.07 1.46 126.32
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7.1.3 The moments about zero of the lognormal are then given by:

E½Xr
� ¼ lrdr�r

and we can calculate other features of the distribution, skewness, kurtosis,
cumulants, etc., from these. We see that l is purely a scale parameter and d
(or s) controls the shape of the distribution.

7.1.4 If X1 and X2 have the same parameters, so that l1 ¼ l2 and
d1 ¼ d2, then Z is symmetric, and has zero mean. We can arrange that Z has
unit variance by putting:

l21 ¼ l2
2 ¼ 1=f2ðd4

1 ÿ d2
1Þg

thus defining the equivalent of a unit normal (which has zero mean and unit
variance). If X1 and X2 have different values of d, i.e. d1 6¼ d2, we can still
choose l1 and l2 (or m1 and m2) so that Z has zero mean and unit variance. If
d1 > d2, then Z is positively skewed, and if d1 < d2, then Z is negatively
skewed. If d1 and d2 are reversed, this is equivalent to changing the sign of Z.
Z is fatter tailed (higher kurtosis) than the normal distribution, and it can
be made more or less fat tailed and either symmetric or skewed, within limits,
by a suitable choice of d1 and d2 (or s1 and s2).
7.1.5 There are many other possible fat-tailed distributions, but normal

random variates are easy to simulate, so the lognormal difference is a
convenient one to use.

7.1.6 In order to choose parameters for the distribution, it is useful to
investigate the actual distribution of the changes in the logarithms of share
prices in the U.K. This is discussed in Appendix B. The statistics of these
over the whole period and selected sub-periods are shown in Table 7.1.1. The
last three periods shown are the 120-month periods, which show the smallest
and the largest values of the skewness and kurtosis, the last of which has
both the smallest (largest negative) skewness, ÿ2.42, and the largest kurtosis,
15.31.

Table 7.1.1. Statistics of U.K. total return index for shares for various
periods

Period Number of
differences

Mean Standard
deviation

Skewness Kurtosis

Dec 1923 to Jun 2004 966 0.0086 0.0493 ÿ0.08 11.59
Dec 1923 to Mar 1964 483 0.0071 0.0398 ÿ0.74 6.66
Mar 1964 to Jun 2004 483 0.0102 0.0572 0.10 11.19
Dec 1946 to Jun 2004 690 0.0096 0.0523 0.06 11.49

Nov 1974 to Nov 1984 120 0.0228 0.0691 1.62 12.39
Jan 1949 to Jan 1959 120 0.0090 0.0386 ÿ0.50 2.86
May 1940 to May 1950 120 0.0083 0.0384 ÿ2.42 15.31
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7.1.7 From these values, it looks reasonable to target a kurtosis of about
12 for monthly differences. The overall skewness is small, though large falls,
such as occurred in June 1940 (ÿ0.23), March 1974 (ÿ0.23) and October
1987 (ÿ0.31), produce negative skewness from time to time, whereas large
rises, such as occurred in January 1975 (0.43) and February 1975 (0.22),
produce positive skewness. If our distribution is chosen to be symmetric,
a kurtosis of 12 for monthly steps is equivalent to a kurtosis of 21 for
half-monthly steps. This can be provided approximately by choosing
s1 ¼ s2 ¼ 0:82.
7.1.8 Table 7.1.2 shows the kurtosis for intervals of one half of a month,

one month, one year, and ten years for a symmetric distribution with various
values of s1 ð¼ s2Þ, from 0.02 to 0.92. Note that the kurtosis of a normal
distribution is three, and as s1 ð¼ s2Þ tends to zero the distribution tends to
normality; but if we do set s1 ¼ s2 ¼ 0, the two lognormals collapse to point
distributions at one, and the difference is always zero, so a small positive
value is the smallest one practicable. In all cases the long-run experience
becomes asymptotically normal, so the distribution of the final share price
might be expected to be similar in all cases.

7.1.9 As a specimen, we show in Table 7.1.3 the skewness and kurtosis
for a few asymmetric distributions for the same intervals. Again, the long-run
experience tends towards normality.

Table 7.1.2. Symmetric difference of lognormals, standardised: kurtosis

m1 ¼ m2 Half month Month Year Ten years

normal 3 3 3 3
s1 ¼ s2 ¼ 0:02 35.3447 3.00 3.00 3.00 3.00
s1 ¼ s2 ¼ 0:12 5.8292 3.12 3.06 3.00 3.00
s1 ¼ s2 ¼ 0:22 3.0994 3.42 3.21 3.02 3.00
s1 ¼ s2 ¼ 0:32 2.0459 3.95 3.48 3.04 3.00
s1 ¼ s2 ¼ 0:42 1.4740 4.84 3.92 3.08 3.01
s1 ¼ s2 ¼ 0:52 1.1085 6.30 4.65 3.14 3.01
s1 ¼ s2 ¼ 0:62 0.8522 8.73 5.87 3.24 3.02
s1 ¼ s2 ¼ 0:72 0.6620 12.94 7.97 3.41 3.04
s1 ¼ s2 ¼ 0:82 0.5159 20.64 11.82 3.73 3.07
s1 ¼ s2 ¼ 0:92 0.4014 35.59 19.29 4.36 3.14

Table 7.1.3. Asymmetric difference of lognormals, standardised: skewness
and kurtosis

Half month Month Year Ten years
s1 s2 Skew. Kurt. Skew. Kurt. Skew. Kurt. Skew. Kurt.

0.82 0.62 1.69 20.15 1.19 11.57 0.34 3.71 0.11 3.07
0.82 0.72 0.92 18.50 0.66 10.75 0.19 3.65 0.06 3.06
0.82 0.92 ÿ1.16 31.21 ÿ0.82 17.10 ÿ0.24 4.18 ÿ0.08 3.12
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7.1.10 Table 7.1.4 shows the results for the distributions specified above.
First, the final share price is shown, which, indeed, is very similar to the
normal for all the symmetric distributions. However, the asymmetric
distributions are rather more skew than we might have expected.

7.1.11 Table 7.1.4 then shows the PVD for maxi, call and put options.
The statistics of the PVD show quite a small mean in all cases, which
indicates that the option pricing formula and hedging method are doing part
of their job. However, the standard deviations for all the fatter-tailed
distributions are larger than for the normal, and the highest values and the
CTEs are significantly higher. Skewness makes it quite a lot worse.

7.1.12 Thus, the existence of fatter-tailed distributions for the innovations
justifies a higher contingency reserve than if the distributions were known to
be normally distributed.

7.2 Uncertainty in the Parameters of the Model: a Hypermodel
7.2.1 So far, we have assumed that the parameters of the real-world

model were known. In practice, we can only estimate what appear to be
reasonable values to be used. A way of dealing with this uncertainty is to use
a ‘hypermodel’, by which we mean a model in which, for each simulation,
the values of the parameters to be used are drawn from some multivariate
distribution of the parameters. For the time being we remain with our
assumption of a ‘Black-Scholes world’. In this world the only parameters are
the fixed interest rate on the bond and the mean and standard deviation of
the share price increment. We assume that the initial interest rate on the
bond is known. As noted in {5.3.5, there is little reason to get this wrong,
though, of course, the assumption in the Black-Scholes model that this rate
never changes is unrealistic.

7.2.2 We therefore consider uncertainty in the parameters m and s, the
mean and standard deviation of the annual log return on shares. We have
used m ¼ 0:07 and s ¼ 0:2 in our standard examples so far. We consider,
again, the data-set discussed in Appendix B. Over the whole period of 966
months the monthly mean is 0.0086, equivalent to an annual mean of 12
times this or 0.1036, higher than the 0.07 we have assumed (but we have
already seen that the value of m makes little difference to the hedging error).
The monthly standard deviation is 0.0493, equivalent to an annual value ofp
12 times this, or 0.1707, rather lower than the 0.2 we have assumed.
7.2.3 If the data series were homogeneous and were normally distributed,

then the standard error of our estimate of the annual mean would be 0.0055,
quite a small value, but we know that the distribution is quite fat tailed,
and it is likely that it is non-homogenous. One argument could be that share
prices, which depend ultimately on company earnings and dividends, are
influenced by inflation, and inflation has run at very different levels during
the period of investigation. Another approach is to look at the range of
results of the 847 (overlapping) periods of 120 months, as in Appendix B.
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Table 7.1.4. Final share price and present value of deficit for various
real-world share models

s1, s2 Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Final share price
Basic 245.7 174.3 21.0 2,002.9 768.4 924.7 1,155.4

Symmetric:
0.02 245.6 174.6 17.1 2,804.0 767.5 914.1 1,145.3
0.12 245.6 174.9 17.5 2,786.0 769.6 915.8 1,146.9
0.22 245.6 175.1 17.8 2,806.7 772.0 917.7 1,146.6
0.32 245.6 175.3 18.2 2,868.1 773.7 919.9 1,147.1
0.42 245.7 175.4 18.8 2,899.1 775.5 922.2 1,146.9
0.52 245.7 175.4 19.2 2,895.2 776.6 925.0 1,146.4
0.62 245.7 175.5 18.6 2,855.5 777.6 927.9 1,146.2
0.72 245.8 175.7 18.2 2,776.4 779.2 930.9 1,150,6
0.82 245.8 176.1 17.9 2,659.0 782.0 935.2 1,159.2
0.92 245.9 176.8 17.9 2,506.2 786.5 941.1 1,174.8

Asymmetric:
0.82, 0.62 247.1 184.7 23.1 2,596.3 819.6 991.7 1,247.8
0.82, 0.72 246.5 180.7 20.1 2,648.2 802.0 965.6 1,207.1
0.92, 0.82 246.7 182.3 19.8 2,559.7 809.0 977.8 1,230.7
0.62, 0.82 244.5 167.4 15.5 2,713.8 740.3 871.9 1,058.8
0.72, 0.82 245.1 171.3 16.5 2,724.9 759.3 901.4 1,102.9
0.82, 0.92 245.0 170.9 16.4 2,583.1 759.1 900.5 1,106.3

PVD: Maxi, call and put:
Basic 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70

Symmetric:
0.02 0.01 1.42 ÿ6.86 12.41 3.23 3.89 4.83
0.12 0.02 1.45 ÿ6.31 11.79 3.32 3.98 4.93
0.22 0.01 1.55 ÿ6.83 10.98 3.62 4.37 5.43
0.32 0.01 1.72 ÿ8.14 13.96 4.07 4.93 6.13
0.42 0.01 1.95 ÿ9.55 18.80 4.69 5.71 7.08
0.52 0.00 2.26 ÿ10.13 22.78 5.56 6.85 8.61
0.62 ÿ0.02 2.69 ÿ11.45 27.49 6.84 8.56 11.12
0.72 ÿ0.03 3.29 ÿ11.70 54.85 8.69 11.04 14.55
0.82 ÿ0.05 4.14 ÿ13.03 96.53 11.23 14.67 20.17
0.92 ÿ0.06 5.35 ÿ14.61 161.64 14.71 19.75 28.28

Asymmetric:
0.82, 0.62 0.28 4.49 ÿ11.00 108.55 12.82 17.18 24.17
0.82, 0.72 0.13 4.20 ÿ12.15 91.09 11.68 15.42 21.39
0.92, 0.82 0.15 5.51 ÿ13.02 158.24 15.33 20.88 30.46
0.62, 0.82 ÿ0.32 3.40 ÿ11.95 42.56 9.13 11.82 15.74
0.72, 0.82 ÿ0.20 3.55 ÿ12.67 62.18 9.44 12.19 16.32
0.82, 0.92 ÿ0.25 4.39 ÿ14.06 102.76 12.02 15.78 21.66
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The annualised observed means vary from ÿ0.0167 to 0.2778. If the
distribution were normal and i.i.d. (independent and identically distributed),
then the standard error of a sample of 120 would be about 0.0156; the
observed range is many times this. We have chosen to model the value of m
as being distributed normally, with mean 0.07 (to be consistent with our
calculations so far) and standard deviation 0.04.
7.2.4 The variance of a sample from a unit normal distribution is

approximately distributed as w2n=n, with n, the degrees of freedom, equal to
the number of observations. A w2n distribution has mean n and variance
2n (Kendall & Stuart, 1977, p398). If there are 966 observations, w2

n=n is
distributed almost approximately normally, with mean one and standard error
about 0.046. The observed annualised variance of 0.0291, with a standard
error of 0.0013, is equivalent to a standard deviation of about 0.17 with a
standard error of roughly 0.004. The variance of our 847 periods of 120
months ranges from 0.0107 to 0.0779, with standard deviations ranging
from 0.1035 to 0.2791. We have chosen to model the value of s2 as being
distributed normally, with mean 0.04 (again to be consistent with our
calculations so far) and standard deviation 0.012, equivalent to a standard
deviation with mean 0.2 and standard deviation roughly 0.03.

7.2.5 We assume first that the values of m and s2 are normally distributed
and are independent. If a population is distributed normally, then estimates of
the means and standard deviations of samples from it are indeed independent,
but they can easily be modelled as correlated, and we assume both positive
and negative correlations, as examples. It seems, perhaps, more likely that
positive correlation would exist. If the mean return on shares were relatively
high, then it seems plausible that the variability of that return might also be
high.

7.2.6 The results for some specimen values are shown in Table 7.2.1. We
start with the basic model, with no uncertainty about the mean (m ¼ 0:07)

Table 7.2.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying real-world share

parameters (m and s)

Hyperised Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Neither 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
m (0.04) 0.04 1.36 ÿ6.23 7.65 3.15 3.83 4.80
s (0.012) ÿ0.21 4.30 ÿ20.23 20.38 9.01 10.57 12.55
m (0.04) s (0.012) ÿ0.11 4.10 ÿ21.05 24.03 9.03 10.73 12.79
ditto r ¼ 0:5 ÿ0.13 4.07 ÿ20.60 19.06 8.75 10.38 12.37
ditto r ¼ ÿ0:5 ÿ0.06 3.93 ÿ15.96 24.11 8.97 10.72 13.16
m (0.02) s (0.006) ÿ0.01 2.41 ÿ12.16 13.44 5.52 6.59 7.95
m (0.08) s (0.024) ÿ0.19 6.82 ÿ24.78 31.34 15.14 18.00 21.50
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and variance (s2 ¼ 0:04) of the share price return. We keep these values as
the means of our parameters. Then we allow the value of m to be normally
distributed with standard deviation 0.04, keeping s2 fixed. Then we allow the
value of s2 to be normally distributed with variance 0.012 (and limit it to be
non-negative; this limit would very rarely apply), keeping m fixed. Then we
allow both to vary, with these standard deviations; then we include a
correlation between the values of m and s2 of þ0:5, then ÿ0.5. Then we halve
both standard deviations, then double them, with zero correlation.

7.2.7 It can be seen that varying the value of m has a very small effect,
and such effect as there is is beneficial, reducing the standard deviation.
Varying the value of s2 has a big effect, which is very slightly reduced if m
also varies. The correlation also has only a small effect, which can be slightly
beneficial or slightly harmful. Larger values for the standard deviations of
the parameters have a bigger effect, and smaller values a lesser effect, but not
exactly proportional.

7.3 Uncertainty in the Parameters of the Innovations
We also do not know the true values of the parameters of the fat-tailed

distribution which we have used for simulating the innovations, even if the
distribution we have used, the difference between two lognormals, can be
taken as a true representation of real world innovations. We can ‘hyperise’
these parameters too. We start with a symmetric model where s1 ¼ s2 ¼ 0:82,
and both values are fixed. Then we allow the value of s1 to be normally
distributed, with mean 0.82 and standard deviation 0.1; then we vary s2 in
the same way; then both of them, independently. Then we include a positive
correlation coefficient of 0.5; then a negative one of ÿ0.5. The results are
shown in Table 7.3.1.

7.4 Allowing for Every Complication
7.4.1 Finally in these experiments, we can put all our complications

together, and allow for a fat-tailed distribution for the innovations, parameter

Table 7.3.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), first assumptions, varying innovation

parameters (s1 and s2)

Hyperised fat tails Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

s1 ¼ s2 ¼ 0:82 ÿ0.05 4.14 ÿ13.03 96.53 11.23 14.67 20.17
s1 � Nð0:82; 0:1Þ ÿ0.03 4.49 ÿ12.12 84.98 12.48 16.79 24.15
s2 � Nð0:82; 0:1Þ ÿ0.05 4.34 ÿ13.00 103.47 11.95 15.69 22.00
Both vary ÿ0.03 4.72 ÿ13.59 91.72 13.21 17.87 26.17
Correlation þ0.5 ÿ0.04 4.53 ÿ12.94 90.74 12.54 16.82 24.33
Correlation ÿ0.5 ÿ0.03 4.88 ÿ13.10 91.73 13.78 18.77 27.71
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uncertainty for the mean parameters, parameter uncertainty for the
innovation parameters, and also transaction costs, on both scales A and B,
considered in Section 6. To be precise, we allow for the mean rate of return
on shares, m, to be distributed normally N (0.07, 0.042), for the variance of
the return on shares to be distributed N (0.04, 0.0122), independently from
the mean; and for the two parameters of the innovation, s1 and s2, to be
distributed independently N (0.82, 0.12). We then allow for no transaction
costs, costs on scale A and costs on scale B. The results are shown in Table
7.4.1. We show the results with transaction costs only for the maxi option;
the others are reasonably similar.

7.4.2 One can see that the extra complications for which we have
allowed increase both the mean and the standard deviation of the share price
after ten years. The extremes are now very much further out. The extra
complications have little effect on the mean PVD, but increase the standard
deviation and all the quantiles considerably. Transaction costs put up almost

Table 7.4.1. Statistics for the final share price and the present value of
deficit, for maxi, call and put options, investment strategy i(b), first

assumptions, with all extra complications

Transaction costs Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Final share price:
Basic 245.6 174.3 21.0 2,002.9 768.4 924.7 1,155.4
With all extras 268.4 240.1 9.6 3,518.5 1,029.2 1,282.5 1,646.6

Maxi, call, put:
Basic 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
With all extras
and no costs

ÿ0.15 5.95 ÿ20.68 105.88 15.87 20.96 29.77

Maxi option:
Scale A 3.85 6.52 ÿ19.52 112.31 21.81 27.07 35.98
Scale B 0.25 5.99 ÿ20.56 106.52 16.43 21.55 30.37

Table 7.4.2. Financing the initial capital, maxi option, strategy i(b), using
(97.5%, 1%, 1%) and (99%, 2%, 2%), hedging twice monthly, various

transaction costs

Pure option
price: 124.87

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

Basic 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73

With all complications:
None 20.96 11.54 1.11 125.97 29.77 24.52 5.25 130.11
Scale A 27.07 21.01 6.06 130.93 35.98 26.34 9.64 134.50
Scale B 21.55 19.26 2.29 127.15 30.27 24.69 5.68 130.55
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all the values, but by perhaps rather less with the complications than they
did without them (see Tables 6.1.3 and 6.1.4).
7.4.3 The effect of all these complications on the premiums and fair

values can now be shown, in Table 7.4.2. One can see that the initial capital
required from the shareholders, if based on a CTE at 97.5% or 99%, is far
from trivial, and that the extra charge to the policyholder is also very
significant. Guarantees do not come cheap.

ð. Bond Model B

8.1 Assumptions
8.1.1 We now try bond model B, which we described in {2.1.8, with BðtÞ

as a zcb maturing at T, whose price is driven by the bond interest rate R(t),
which has the stochastic differential equation:

dRðtÞ ¼ mRðÞ:dtþ sR:dW2

where sR is a constant, and mR() is some function of t and R(t). The price of
the bond BðtÞ is given by:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ:

8.1.2 For calculating option prices, we do not need to define the form of
mR(), but, in order to simulate the real-world model we do. As in WWY, we
put:

mRðÞ ¼ aRðmR ÿRðtÞÞ

with aR and mR constants. This gives us the differential equation for R(t) as:

dRðtÞ ¼ aRðmR ÿRðtÞÞ:dtþ sR:dW2

which is an Ornstein-Uhlenbeck process. The discrete real-world equivalent
is:

Rðtþ hÞ ¼ mR þ aR;h:ðRðtÞ ÿ mRÞ þ sR;h:zRðtþ hÞ

where mR ¼ mR, aR;h ¼ expðÿaRhÞ, sR;h ¼ sR

p
fð1ÿ a2

R;hÞ=ð2aRÞg and zR is a
unit normal random variable, correlated with zSðtþ hÞ with correlation
coefficient r. This is a first order autoregressive, or AR(1), time series model
for R(t). Again we use Roman letters m, a, s to denote the real-world
values, because they may well be different from the option pricing
parameters. We also need a value for R(0).
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8.1.3 The bond price is calculated from the yield as:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ:

8.1.4 The hedging quantities and option value are calculated using the
same formulae as previously, but, as noted in {2.1.10, instead of S2

¼ ðTÿ tÞ:s2
S,

we use:

S2
¼ ðTÿ tÞ:s2

S þ ðTÿ tÞ
2:r:sRsS þ ðTÿ tÞ

3:s2
R=3:

8.1.5 In our first examples with this model we make the real-world
model and the option model correspond, and we use the same parameters as
in Table 3.2.1, except as shown in Table 8.1.1. These are the same as we used
in WWY (but there mR was denoted yR). Note that R(0) is not equal to mR,
but is taken as the same in both real-world and option pricing models.

8.1.6 The option prices and hedging quantities at time t ¼ 0 are as in
Table 8.1.2.

8.1.7 All these values are very close to the values shown for bond model
A in Table 3.2.2, and, indeed, for the maxi, call and put are slightly smaller.
This is because the assumed negative correlation between changes in share
prices and changes in the bond yield offsets the additional uncertainty
introduced by the stochastic bond yield. If we had chosen a correlation
coefficient of ÿ0.0208333, the values would have been identical. This critical

Table 8.1.2. Hedging quantities and option values, bond model B

Share quantity Cash quantity Option value

Maxi 62.01 62.16 124.17
Mini 37.99 37.92 75.91
Call 62.01 ÿ37.92 24.09
Put ÿ37.99 62.16 24.17

Table 8.1.1. Additional parameters for bond model B

Real-world parameters:
Mean rate of interest mR 0.065
Autoregressive parameter aR 0.125
Standard deviation of interest rate sR 0.0125
Initial interest rate R(0) 0.05

Option pricing model:
Bond model B
Standard deviation of interest rate sR 0.0099
Correlation coefficient r ÿ0.3
Initial interest rate R(0) 0.05
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value for the correlation coefficient can readily be calculated as:

r ¼ ÿðTÿ tÞ:sR=ð3sSÞ:

Had we used zero correlation, the option values would have been about 1.5
larger for maxi, call and put, and 1.5 smaller for the mini. The range of
values for the maxi option is from 117.83, with r ¼ ÿ1, to 132.53, with
r ¼ þ1. All these numbers alter as the term to go decreases, and, of course,
with the values of the other parameters.

8.2 Results
8.2.1 In Table 8.2.1 we show results corresponding with those for bond

model A, shown in Table 3.3.1. We omit strategy (iv). In this bond model the
bond prices at times zero and T are the same as before, and the prices at
the intervening dates are irrelevant for this strategy; so the results are
identical. The distribution of the final share price is the same as before, so we
omit that too.

8.2.2 As before, the results under strategies (i) and (ii) are the same for
maxi, call and put options, and for the mini are the negative of these; and the
results for strategy (iii) for call and put options are sometimes quite extreme
(so are excluded from the remarks which follow). In all other cases, the
means, as before, are close to zero. However, the standard deviations, the
extremes and the CTEs are almost all rather lower than before. (This result is
not true, however, for all possible combinations of parameter values for

Table 8.2.1. Statistics for deficit for different options, different investment
strategies, bond model B

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi:
Strategy i 0.05 2.25 ÿ11.90 12.01 5.26 6.31 7.58
Strategy ii 0.05 2.91 ÿ12.86 19.87 7.30 8.89 11.06
Strategy iii 0.06 2.68 ÿ11.45 17.84 6.59 7.97 9.85

Mini:
Strategy i ÿ0.05 2.25 ÿ12.01 11.90 4.90 5.80 6.96
Strategy ii ÿ0.05 2.91 ÿ19.87 12.86 6.11 7.19 8.49
Strategy iii ÿ0.03 2.38 ÿ13.53 12.66 5.26 6.26 7.45

Call:
Strategy i 0.05 2.25 ÿ11.90 12.01 5.26 6.31 7.58
Strategy ii 0.05 2.91 ÿ12.86 19.87 7.30 8.89 11.06
Strategy iii ÿ0.45 31.65 ÿ2,136.98 597.71 28.43 41.67 68.11

Put:
Strategy i 0.05 2.25 ÿ11.90 12.01 5.26 6.31 7.58
Strategy ii 0.05 2.91 ÿ12.86 19.87 7.30 8.89 11.06
Strategy iii 0.20 31.11 ÿ1,082.97 1,518.67 31.15 53.18 108.42
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bond model B.) Strategy (i), investing the right amount in the share and the
balance in the bond, is best for all options, and distinctly better than
strategies (ii) or (iii), except for strategy (ii) for the mini.

8.2.3 In Table 8.2.2 we show the results corresponding to those in Table
3.4.1, giving the PVD for different options, with different discounting
methods. For calls and puts the results for the four useable strategies ((i) and
(ii) combined with (a) and (b)) are the same as for maxis.

8.2.4 These results are very similar to those shown in Table 3.4.1 for
bond model A, with the standard deviations, extremes and CTEs being often
a little lower, but sometimes a little higher than previously, but again, these
conclusions depend on the particular parameter values being used.

8.3 Varying the Parameters: Mean Interest Rate
8.3.1 We restrict our further investigations to those relating to the

parameters of bond model B (of which there are several). First, we consider
changing the real-world mean interest rate mR. For the basic model we used
mR ¼ 0:065. We now use mR ¼ 0:035, 0.05 and 0.08. The results for strategy
i(b) are shown in Table 8.3.1.

Table 8.2.2. Statistics for present value of deficit (PVD), for different
options, different investment strategies, different discounting methods, bond

model B

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi, call and put:
Strategy i(a) 0.02 1.48 ÿ7.14 17.05 3.76 4.63 5.76
Strategy i(b) 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
Strategy ii(a) 0.01 1.33 ÿ6.80 7.19 3.12 3.74 4.52
Strategy ii(b) 0.03 1.76 ÿ7.80 12.05 4.43 5.39 6.71

Maxi:
Strategy i(c) 0.01 1.46 ÿ8.40 9.28 3.64 4.48 5.59
Strategy ii(c) 0.00 1.51 ÿ7.99 9.76 3.67 4.50 5.56
Strategy iii(a) 0.02 1.41 ÿ6.48 13.52 3.44 4.16 5.11
Strategy iii(b) 0.04 1.62 ÿ6.94 10.82 4.00 4.83 5.97
Strategy iii(c) 0.01 1.45 ÿ7.56 8.94 3.49 4.27 5.23

Mini:
Strategy i(a) ÿ0.02 1.48 ÿ17.05 7.14 3.30 3.91 4.69
Strategy i(b) ÿ0.03 1.37 ÿ7.29 7.22 2.97 3.52 4.22
Strategy i(c) ÿ0.02 1.24 ÿ12.30 5.99 2.68 3.17 3.76
Strategy ii(a) ÿ0.01 1.33 ÿ7.19 6.80 2.96 3.53 4.20
Strategy ii(b) ÿ0.03 1.76 ÿ12.05 7.80 3.71 4.36 5.15
Strategy ii(c) ÿ0.02 1.40 ÿ9.02 6.13 2.96 3.47 4.09
Strategy iii(a) ÿ0.01 1.36 ÿ7.73 7.60 3.12 3.74 4.47
Strategy iii(b) ÿ0.02 1.45 ÿ8.21 7.68 3.19 3.80 4.52
Strategy iii(c) ÿ0.01 1.20 ÿ5.75 6.31 2.63 3.12 3.70
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8.3.2 We see that the mean interest rate makes almost no difference to
the hedging results. This is what we should have expected. However,
changing the initial interest rate would make a big difference, as it does for
bond model A.

8.4 Varying the Parameters: Autoregressive Parameter
8.4.1 We now vary the autoregressive parameter aR. For the basic

model we used aR ¼ 0:125, a moderately slow regression to the mean. We
now try aR ¼ 0:05 (slower regression) and 0.25, 0.5, 1, 2 and 4 (faster
regression). We also try one special case, in which we put aR ¼ 0, so that
there is no regression to the mean (the value of which is therefore irrelevant),
and interest rates follow a random walk with no drift. In each of these cases
we keep the instantaneous standard deviation, sR, the same, but the annual
and half-monthly standard deviations depend on the value of aR, as shown in
Table 8.4.1.

8.4.2 It is interesting that the half-monthly parameters reduce quite
slowly, but the annual ones reduce much more quickly, so that, for aR ¼ 4,
the yearly autoregressive parameter is quite small and the yearly standard
deviation is about one third of the continuous value.

Table 8.3.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying mean interest rate

Real-world
mean interest

rate mR

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.035 0.03 1.37 ÿ7.25 7.35 3.20 3.83 4.61
0.05 0.03 1.37 ÿ7.24 7.32 3.20 3.83 4.60
0.065 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
0.08 0.03 1.36 ÿ7.18 7.23 3.19 3.82 4.59

Table 8.4.1. Equivalent autoregessive parameters and standard deviations
at different frequencies

Real-world
autoregressive
parameter aR

Half-monthly
autoregressive
parameter

Yearly
autoregressive
parameter

Continuous
standard

deviation sR

Half-monthly
standard
deviation

Yearly
standard
deviation

0.0 1.0000 1.0000 0.0125 0.0026 0.0125
0.05 0.9979 0.9512 0.0125 0.0025 0.0122
0.125 0.9948 0.8825 0.0125 0.0025 0.0118
0.25 0.9896 0.7788 0.0125 0.0025 0.0111
0.5 0.9794 0.6065 0.0125 0.0025 0.0099
1 0.9592 0.3679 0.0125 0.0025 0.0082
2 0.9200 0.1353 0.0125 0.0024 0.0062
4 0.8465 0.0183 0.0125 0.0024 0.0044
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8.4.3 The results are shown in Table 8.4.2, again for strategy i(b). We
can see that the value of the autoregressive parameter makes very little
difference, except that the CTE values start to rise as the value of aR becomes
large.

8.5 Varying the Parameters: Standard Deviation of Interest Rates
We now vary the standard deviation of the rate of interest sR. For the

basic model we used sR ¼ 0:0125. We now use 0.005, 0.025 and 0.05. The
results are shown in Table 8.5.1. It is not surprising that, if the value of sR
(which is used for the real-world model) is much larger than the value of sR

(which is used for the option pricing model), then our initial option value is
too low, and we have much larger deficits. However, if the value of sR is
reduced, then our position is not improved, and, indeed, becomes slightly
worse. This can be explained by considering the value of S, which is
calculated from

S2
¼ ðTÿ tÞ:s2

S þ ðTÿ tÞ
2:r:sR:sS þ ðTÿ tÞ

3:s2
R=3:

Keeping the values of ðTÿ tÞ, sS and r fixed, then, as sR varies, S reaches a
minimum at sR ¼ ÿ1:5r:sS=ðTÿ tÞ. We are using Tÿ t ¼ 10, sS ¼ 0:2 and
r ¼ ÿ0:3. With these values, S reaches a minimum at sR ¼ 0:009. The values
of the options are also at a minimum when S is minimised. In effect, if
we use too small a value for sR the beneficial effect of a negative value for
r ceases to operate, and the option price rises again. Thus, if the real-
world value of sR is less than 0.009 (other things remaining unchanged),
then we have charged too little for the option by setting sR ¼ 0:0125, and the
deficit increases.

Table 8.4.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying autoregressive

parameter

Real-world
autoregressive
parameter aR

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.0 0.03 1.37 ÿ7.17 7.29 3.20 3.84 4.61
0.05 0.03 1.37 ÿ7.19 7.23 3.19 3.83 4.61
0.125 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
0.25 0.03 1.36 ÿ7.25 7.35 3.19 3.82 4.59
0.5 0.03 1.36 ÿ7.29 7.42 3.19 3.82 4.60
1 0.05 1.36 ÿ7.32 7.47 3.21 3.84 4.62
2 0.08 1.36 ÿ7.34 7.49 3.24 3.87 4.66
4 0.13 1.36 ÿ7.28 7.48 3.31 3.95 4.74
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8.6 Varying the Parameters: Correlation Coefficient
We now vary the correlation coefficient between the innovations for

shares and interest rates in the real-world model r. For the basic model we
used r ¼ ÿ0:3. We now use ÿ1, 0, 0.3 and þ1. The results are shown in
Table 8.6.1. We see that, if the (negative) correlation is greater than we have
assumed, we, on average, make profits, and if it is smaller, or zero, or
becomes positive, we make losses. However, it is economically plausible that
there is a negative correlation between interest rates and share price changes,
at least in the shorter term, and the evidence is also in that direction, as
shown in Appendix B.

8.7 Varying the Model: Fat-Tailed Innovations for Interest Rates
8.7.1 Just as we did for the share innovations, we can allow fat-tailed

innovations for the bond model. From Appendix B, we see that the kurtosis
in the bond model has a mean value of 13.41, but ranges for the various 120-
month periods from 3.0 (practically normal) to the very large 64.18. The
mean value is close enough to 12 for us to use the same model (the difference
of two independent lognormals), and the same range of parameters as for

Table 8.6.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying correlation

coefficient

Real-world
interest

correlation
coefficient r

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

ÿ1.0 ÿ5.96 1.43 ÿ12.87 1.58 ÿ3.21 ÿ2.81 ÿ2.25
ÿ0.3 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
0.0 2.37 1.60 ÿ5.08 10.66 6.22 6.89 7.72
0.3 4.59 1.97 ÿ2.91 13.94 9.24 9.99 10.88
1.0 9.43 3.17 1.12 21.24 16.27 17.18 18.29

Table 8.5.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying standard deviation

of interest rates

Real-world
interest rate
standard

deviation sR

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

0.005 0.07 1.37 ÿ6.68 7.72 3.32 3.99 4.77
0.0125 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
0.025 2.54 2.56 ÿ4.89 42.16 10.08 12.15 15.26
0.05 15.66 4.16 1.52 32.66 24.23 25.43 26.94
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shares. We first introduce fat-tailed innovations for bonds, leaving the share
model in its basic form. The results are shown in Table 8.7.1.

8.7.2 We see that fat-tailed innovations in the bond model make rather
little difference to the results, much less than fat-tailed innovations in the
share model. The standard deviation increases when the distribution is
asymmetric, but even then not by much.

8.7.3 Part of this may be caused by the way in which correlation is
effected. When there are no fat tails we use the following procedure. The
correlation between the share and bond innovations is r; we calculate the
complement of r, rc, where r2

þ r2
c ¼ 1; then, for each step t, we simulate a

unit normal innovation for the share model ZSðtÞ, then simulate another
independent unit normal Z2ðtÞ, and calculate the unit normal innovation for
the bond model ZBðtÞ as r:ZSðtÞ þ rc:Z2ðtÞ. This works correctly when both
are normally distributed. However, when the bond model is fat tailed, we
generate Z2ðtÞ as an independent unit fat-tailed variate, and add it in as
before. Thus, the bond innovation consists of part of a unit normal and part
of a fat-tailed innovation. A better way to deal with the simulation might be
through the use of a copula instead of a single correlation coefficient, but we
have not explored this.

Table 8.7.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B with fat-tailed innovations;

share model normal

s1, s2 Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Basic 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60

Symmetric:
0.02 0.04 1.37 ÿ7.01 7.23 3.19 3.82 4.66
0.12 0.04 1.37 ÿ6.94 7.22 3.19 3.82 4.67
0.22 0.04 1.37 ÿ6.85 7.20 3.20 3.83 4.69
0.32 0.04 1.37 ÿ6.74 7.17 3.21 3.84 4.71
0.42 0.04 1.38 ÿ6.61 7.12 3.22 3.86 4.73
0.52 0.04 1.39 ÿ6.57 7.07 3.24 3.88 4.76
0.62 0.04 1.40 ÿ6.64 7.00 3.28 3.93 4.81
0.72 0.04 1.42 ÿ6.72 7.21 3.35 4.02 4.93
0.82 0.03 1.46 ÿ6.79 9.13 3.47 4.20 5.20
0.92 0.03 1.53 ÿ6.86 15.39 3.69 4.53 5.75

Asymmetric:
0.82, 0.62 0.06 1.48 ÿ6.75 12.50 3.58 4.34 5.42
0.82, 0.72 0.05 1.46 ÿ6.77 10.80 3.50 4.24 5.27
0.92, 0.82 0.02 1.48 ÿ6.82 7.90 3.52 4.29 5.30
0.62, 0.82 0.02 1.44 ÿ6.71 7.63 3.37 4.06 5.00
0.72, 0.82 0.02 1.44 ÿ6.75 7.22 3.38 4.07 4.98
0.82, 0.92 0.05 1.53 ÿ6.84 17.96 3.75 4.59 5.89
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8.7.4 We now make the share innovations fat tailed too. We use, for the
share innovations, only the symmetric s1S ¼ s2S ¼ 0:82, in combination with
all the s1B and s2B values for the bond model. The results are shown in
Table 8.7.2.

8.7.5 We see now that the introduction of fat-tailed innovations for the
share model makes a great deal of difference, larger with this bond model
than with the Black-Scholes model. This may be because part of the share
innovation is carried into the bond innovation because of the way we have
implemented the correlation. However, thereafter fat-tailed innovations for
the bond model make almost no difference, indeed slightly reduce the
standard deviation and the maximum value, though generally not the CTEs.

8.8 Varying the Model: a Hypermodel for the Real-World Parameters
8.8.1 We can allow the parameters of the bond model to be chosen

randomly for each simulation, from a prescribed distribution, on the same
lines as for the share model discussed in Section 7.2. We can, of course,
‘hyperise’ all the parameters. We use the parameters shown in Table 8.8.1,
with the correlation matrix shown in Table 8.8.2; but we introduce them by

Table 8.7.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B with fat-tailed innovations;

share model also with fat-tailed innovations s1S ¼ s2S ¼ 0:82

s1B; s2B Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Basic (both normal) 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
Bond normal s1S ¼ s2S ¼ 0:82 ÿ0.02 3.87 ÿ11.84 97.19 9.93 13.04 18.09

Symmetric:
0.02 ÿ0.03 3.69 ÿ12.59 96.17 10.02 13.23 18.23
0.12 ÿ0.03 3.69 ÿ12.55 96.17 10.02 13.21 18.20
0.22 ÿ0.03 3.69 ÿ12.51 96.16 10.01 13.19 18.17
0.32 ÿ0.03 3.69 ÿ12.48 96.15 10.01 13.17 18.14
0.42 ÿ0.03 3.69 ÿ12.44 96.13 10.00 13.16 18.11
0.52 ÿ0.03 3.69 ÿ12.41 96.10 10.00 13.15 18.09
0.62 ÿ0.03 3.69 ÿ12.37 96.06 10.01 13.14 18.07
0.72 ÿ0.03 3.70 ÿ12.34 96.02 10.02 13.14 18.06
0.82 ÿ0.03 3.72 ÿ12.31 95.96 10.06 13.18 18.09
0.92 ÿ0.03 3.75 ÿ12.28 95.90 10.15 13.30 18.31

Asymmetric:
0.82, 0.62 ÿ0.01 3.73 ÿ12.05 96.22 10.14 13.28 18.21
0.82, 0.72 ÿ0.02 3.72 ÿ12.18 96.09 10.09 13.23 18.14
0.92, 0.82 ÿ0.04 3.73 ÿ12.43 95.84 10.04 13.15 18.08
0.62, 0.82 ÿ0.05 3.71 ÿ12.59 95.78 10.00 13.12 18.08
0.72, 0.82 ÿ0.04 3.71 ÿ12.46 95.88 10.01 13.13 18.06
0.82, 0.92 ÿ0.02 3.76 ÿ12.14 96.02 10.20 13.37 18.42
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stages. The only change of the means is to use 0.065 instead of 0.125 for the
bond alpha. The standard deviations and correlation coefficients are taken
from Appendix B, heavily rounded.

8.8.2 We introduce the hyperparameters in the following sequence:
(i) bond mean and alpha only;
(ii) bond mean and alpha and bond sigma;
(iii) bond mean and alpha and correlation coefficient;
(iv) all four bond parameters;
(v) all bond and share parameters, independent; and
(vi) all bond and share parameters, correlated.

The results are shown in Table 8.8.3.
8.8.3 Varying the bond model parameters makes rather little difference

to the results. Varying the share model parameters makes much more
difference, as we observed in Section 7.2.

8.8.4 One can see, from the investigations described in Appendix B, that
the distributions of some of the parameters in the sample periods considered
there are very fat tailed. This would justify picking the parameters in a
hypermodel from a fat-tailed distribution, rather than a normal one. We have
not indulged in this complication (yet).

8.9 Varying the Model: a Hypermodel for the Innovation Parameters
8.9.1 We now introduce variation in the innovation parameters for the

bond model, as we did for the share model in Section 7.3. We use the same

Table 8.8.1. Means and standard deviations for parameters for hypermodel

Mean S Dev

Bond mean 0.065 0.03
Bond alpha 0.65 0.4
Bond variance 0.01252 0.0005
Correlation ÿ0.3 0.125
Share mean 0.07 0.04
Share variance 0.22 0.012

Table 8.8.2. Correlation coefficients for parameters for hypermodel

Bond
mean

Bond
alpha

Bond
variance

Correlation Share
mean

Share
variance

Bond mean 1.0
Bond alpha 0.3 1.0
Bond variance 0.9 0.55 1.0
Correlation ÿ0.2 ÿ0.05 ÿ0.2 1.0
Share mean 0.65 0.4 0.6 ÿ0.25 1.0
Share variance 0.75 0.15 0.75 ÿ0.25 0.2 1.0
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variations, first keeping the share innovation parameters fixed, then
allowing the values of s1S and s2S to be normally distributed Nð0:82; 0:12Þ.
The results are shown in Table 8.9.1.

8.9.2 We see from Table 8.9.1 that fat-tailedness of the bond innovations
has very little effect on the results, whereas fat-tailedness of the share

Table 8.8.3. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying real-world

parameters

Hyperised Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Basic 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
(i) 0.07 1.36 ÿ7.20 7.36 3.21 3.82 4.59
(ii) 0.11 1.37 ÿ7.09 7.58 3.28 3.91 4.67
(iii) 0.06 1.68 ÿ7.28 7.95 3.95 4.64 5.47
(iv) 0.09 1.68 ÿ7.19 8.19 4.02 4.72 5.54
(v) ÿ0.04 3.93 ÿ19.61 23.32 8.74 10.34 12.32
(vi) ÿ0.16 3.76 ÿ20.28 23.50 8.40 10.11 12.42

Table 8.9.1. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), bond model B, varying innovation

parameters ðs1B and s2BÞ, with various share models

Hyperised fat-tails Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Share model normal:
s1B ¼ s2B ¼ 0:82 0.03 1.46 ÿ6.79 9.13 3.47 4.20 5.20
s1B � Nð0:82; 0:1Þ 0.04 1.47 ÿ6.77 14.67 3.54 4.29 5.31
s2B � Nð0:82; 0:1Þ 0.04 1.46 ÿ6.86 8.97 3.48 4.21 5.19
Both vary 0.04 1.48 ÿ6.78 15.78 3.55 4.31 5.37
Correlation þ0.5 0.04 1.47 ÿ6.74 14.56 3.53 4.28 5.31
Correlation ÿ0.5 0.04 1.49 ÿ6.82 16.69 3.58 4.36 5.43

s1S ¼ s2S ¼ 0:82:
s1B ¼ s2B ¼ 0:82 ÿ0.02 3.70 ÿ12.38 95.69 10.00 13.08 17.98
s1B � Nð0:82; 0:1Þ ÿ0.02 3.71 ÿ12.58 95.69 10.03 13.13 18.03
s2B � Nð0:82; 0:1Þ ÿ0.02 3.71 ÿ12.43 95.73 10.00 13.09 18.02
Both vary ÿ0.02 3.72 ÿ12.62 95.73 10.04 13.13 18.04
Correlation þ0.5 ÿ0.02 3.71 ÿ12.51 95.73 10.03 13.11 18.01
Correlation ÿ0.5 ÿ0.02 3.72 ÿ12.71 95.72 10.06 13.15 18.04

s1S; s2SNð0:82; 0:1Þ:
s1B ¼ s2B ¼ 0:82 ÿ0.06 3.96 ÿ11.80 56.00 11.09 14.83 21.30
s1B � Nð0:82; 0:1Þ ÿ0.05 3.97 ÿ11.91 55.99 11.13 14.88 21.32
s2B � Nð0:82; 0:1Þ ÿ0.06 3.96 ÿ11.86 56.03 11.10 14.84 21.33
Both vary ÿ0.06 3.97 ÿ11.81 56.03 11.13 14.87 21.33
Correlation þ0.5 ÿ0.06 3.97 ÿ11.81 56.03 11.12 14.86 21.30
Correlation ÿ0.5 ÿ0.06 3.98 ÿ11.85 56.02 11.15 14.89 21.33
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innovations has a substantial effect, which is made a bit worse when the
parameters controlling the innovations are themselves uncertain.

8.10 Varying the Model: All the Complications
8.10.1 We now pack in all the features that we have explored so far, for

the bond model as well as for the share model, as we did for bond model A in
Section 7.4. Thus, we allow for the parameters of the models for both assets
to be hyperised, and for the innovations to be fat tailed, also with hyperised
parameters. We also allow for transaction costs in three ways: none, scale A
and scale B. To be precise, we use the parameters of the model parameters
shown in Table 8.8.1, with the correlations shown in Table 8.8.2. We use the
fat-tailed parameters with each one being distributed independently N(0.82,
0.12). The results are shown in Table 8.10.1.
8.10.2 It is clear that the complications of a realistic model add

enormously to the range of possible outcomes, and that the required CTEs
are very much bigger than if it is assumed that the real world behaves exactly
as the option pricing model assumes. It is made worse by transaction costs.
The effect of all this on ‘fair values’ is shown in Table 8.10.2.

Table 8.10.2. Financing the initial capital, maxi option, strategy i(b), using
(97.5%, 1%, 1%) and (99%, 2%, 2%), hedging twice monthly, bond model B,

with all complications, various transaction costs

Pure option
price: 124.17

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

Basic model 3.82 3.43 0.39 124.56 4.60 3.75 0.85 125.02

With all complications:
None 16.69 15.34 1.35 125.52 22.94 19.03 3.92 128.09
Scale A 22.97 17.42 5.55 129.71 29.48 21.13 8.35 132.52
Scale B 17.29 15.52 1.77 125.94 23.57 19.21 4.36 128.52

Table 8.10.1. Statistics for the present value of deficit, for maxi, call and
put options, investment strategy i(b), bond model B, with all extra

complications

Transaction costs Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Maxi, call, put:
Basic 0.03 1.37 ÿ7.22 7.29 3.19 3.82 4.60
With all extras and
no costs

ÿ0.26 5.07 ÿ20.71 99.83 12.86 16.69 22.94

Maxi option with costs:
Scale A 3.71 5.64 ÿ20.07 107.45 18.89 22.97 29.48
Scale B 0.13 5.11 ÿ20.57 100.59 13.43 17.29 23.57
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æ. Using the Wilkie Model

9.1 Introduction
9.1.1 An alternative real-world model, which attempts to model reality

rather more fully than our simplified share and bond models, is the Wilkie
model. We can use this just as well for our real-world model in the
simulations, provided that, as in WWY, we use stochastic bridges to
interpolate at intervals shorter than the annual intervals for which the Wilkie
model is designed. We can also add some of our complications, including
fat-tailed innovations and hyperised parameters, to the Wilkie model, either
to the annual model, or to the bridging models, or to both. We explore
certain options in this section.

9.1.2 The Wilkie model, as described by Wilkie (1995), is defined for
annual time steps, and simulates, inter alia, values for a share total return
index SðtÞ, a long-term ‘consols’ redemption yield C(t) and a short-term
‘cash’ rate BðtÞ. In the basic model the parameters are fixed and the
innovations are normally distributed. We use the parameters as defined in
Wilkie (1995), with the exception that we set the mean rate of inflation at
2.5%, which seems more realistic in current conditions, and we allow for
dividend yields being now ‘actual’ rather than gross by setting
YMU ¼ 3.75% (instead of 4.0%). The parameters that are relevant for our
simulations here are: QMU ¼ 0.025 (not 0.047), QA ¼ 0.58, QSD ¼ 0.0425,
YW ¼ 1.8, YMU ¼ 3.75%, YA ¼ 0.55, YSD ¼ 0.155, DD ¼ 0.13, DW ¼
0.58, DMU ¼ 0.016, DY ¼ ÿ0.175, DB ¼ 0.57, DSD ¼ 0.07, CD ¼ 0.045,
CMU ¼ 3.05%, CA ¼ 0.9, CY ¼ 0.34, CSD ¼ 0.185, BA ¼ 0.74, BMU ¼
ÿ0.23, BSD ¼ 0.18. We use initial conditions as at June 2004, but modified
so that the initial ten-year zero coupon yield is 0.05 (see below). The values of
the relevant parameters are: I(0) ¼ 0.029885, Y(0) ¼ 3.16% (‘actual yield’),
Y(ÿ1) ¼ 3.43%, DM(0) ¼ 0.032765, DE(0) ¼ 012767, C(0) ¼ 5.123511%
(instead of the actual 4.83%), CM(0)0.047431, B(0) ¼ 4.5%.
9.1.3 In order to provide values of the relevant variables more frequently

than yearly, we use stochastic bridges, as described in WWY. We use a
Brownian bridge for the total return share index SðtÞ, and Ornstein-
Uhlenbeck bridges for the logarithm of the consols yield C(t) and the log
spread logðBðtÞ=CðtÞÞ. We use the same parameters as in WWY, except for
the mean log consols yield, viz:

for the share total return: sy ¼ 0:2;
for the log consols model: my ¼ ÿ3:0; ay ¼ 0:94 and sy ¼ 0:095; and
for the log spread model: my ¼ ÿ0:23; ay ¼ 0:74 and sy ¼ 0:18.

In WWY we used ÿ2.56 for the mean log consols yield, corresponding to a
yield of 7.7305%, which seems high compared with our mean inflation rate of
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2.5%; the value we use now, of ÿ3.0, corresponds to a consols yield of
4.9787%. We now assume that the bridging innovations are correlated (in
WWY we assumed that they were independent), with correlation
coefficients:
for shares and consols: r ¼ ÿ0:3;
for shares and spread: r ¼ ÿ0:3; and
for consols and spread: r ¼ 0:0.

9.1.4 In order to provide a zero-coupon yield for a bond that starts as a
ten-year one and reduces with each time step simulated, we use a yield curve,
similar to what is described in WWY, Appendix B, but constructed in
greater detail. We use C(t) and BðtÞ at each time t. We assume that BðtÞ is a
continuous rate; we assume that C(t) is a rate of interest convertible
annually; we convert it to a rate convertible with the frequency of simulation,
e.g. half-monthly. We assume that BðtÞ and the adjusted C(t) are the
redemption yields on bonds standing at par, with interest payable at the
frequency of simulation, and are for durations zero and infinity respectively.
We fit a yield curve, using the parameter b ¼ 0:39 (as described in WWY).
We then derive from this a series of zero coupon rates, at steps of the
frequency of simulation. This is the same method as we have used in
Appendix B.

9.1.5 Using the data as at June 2004, when BðtÞ ¼ 4:5% and CðtÞ ¼ 4:83%,
we get an initial zcb yield (continuous) of 0.047181. When we alter C(t) to
5.123511% we get an initial zcb yield of 0.05 almost exactly. This was done so
as to provide comparability with our earlier calculations.

9.1.6 The basic annual model has fixed parameters and normally
distributed innovations. The basic bridging model also has fixed parameters
and normally distributed innovations. Either or both of the innovations can
be made ‘fat tailed’. Any of the resulting four sets of parameters (annual
model, annual innovations, bridging model, bridging innovations) can be
‘hyperised’. There are, in all, 36 possible combinations. We do not investigate
all of these.

9.2 Basic Results
9.2.1 We start by keeping the annual model with fixed parameters and

normal innovations. We vary the bridging model in six ways:
(1) fixed parameters and normal innovations (‘fn’);
(2) hyperised parameters and normal innovations (‘hn’);
(3) fixed parameters and fat-tailed innovations (‘ff ’);
(4) hyperised parameters and fat-tailed innovations (‘hf’);
(5) fixed parameters and hyperised fat-tailed innovations (‘fh’); and
(6) hyperised parameters and hyperised fat-tailed innovations (‘hh’).
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9.2.2 The means and standard deviations of the hyperised bridging
parameters are as shown in Table 9.2.1. The means are the same as the fixed
values when these are used. The standard deviations are chosen as plausible
and reasonable values, but without detailed statistical justification. We
assume independence of the parameter values.

9.2.3 The means and standard deviations of the hyperised innovation
parameters are all 0.82 and 0.1 respectively. As with the bridging parameters,
the means are the same as the fixed values when these are used. The standard
deviations are the same as those chosen for the hyperised fat-tailed innovations
in Section 8.7. Again we assume independence of the parameter values.

9.2.4 The option pricing formula used is exactly as in Section 8, i.e.
bond model B. Since the initial zcb rate is exactly the same, at 0.05, the
option price and the hedging quantities are also the same.

9.2.5 Results for the six variations described in {9.2.1 are shown in
Table 9.2.2, followed by those values selected from Tables in Section 8 that
most closely correspond.

9.2.6 We can see that the basic Wilkie model (1) shows a mean very
close to zero. This is perhaps fortuitous; if it had not been so we would have
modified the bridging parameters we were using so that it was so. The
correct procedure would be to choose the bridging parameters to be as
realistic as one could make them, and then adjust the option parameters so
that the mean was close to zero; but we wished to retain comparability with
our earlier results. The standard deviation is larger than for the bond model
B basic, but not very much so (1.54 against 1.37). The CTEs are larger, but
again not very much so.

9.2.7 When we introduce more variability, the results from the Wilkie
model remain a bit higher than for bond model B, but the same pattern is
retained. The hypermodel for the bridging parameters (2) makes a lot of
difference in both cases. Fat tails for the innovations (3) increase the

Table 9.2.1. Means and standard deviations for hyperised Wilkie bridging
parameters

Mean Standard
deviation

Share variance 0.22 0.012
Log consols mean ÿ3.0 0.05
Log consols alpha 0.94 0.1
Log consols variance 0.00952 0.0005
Log spread mean ÿ0.23 0.05
Log spread alpha 0.74 0.05
Log spread variance 0.0182 0.01
Correlation share/consols ÿ0.3 0.05
Correlation share/spread ÿ0.3 0.05
Correlation consols/spread 0.0 0.05
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standard deviation a bit less than does (2), but increases the CTEs by much
more. A hypermodel for the innovations makes things only a bit worse (c.f.
(5) with (3) and (6) with (4)). Hyperising all round (6) is clearly the worst. All
these statements are true for both models.

9.2.8 Table 9.2.3 shows the financing costs for these variations of the
Wilkie model. In each of variations (2) to (5), the shareholders have to put up
much bigger initial funding than in case (1), and the policyholder should
also be asked to pay more.

9.3 Varying the Wilkie Model
9.3.1 We speculated, in WWY ({10.3.10), that variation in the parameters

of the annual Wilkie model might have little effect on the results from
hedging. We tried two extreme variations to test this. First, we doubled the

Table 9.2.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), Wilkie model, with different variations

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Wilkie variations
(1) ‘fn’ ÿ0.01 1.54 ÿ6.46 8.73 3.54 4.27 5.09
(2) ‘hn’ ÿ0.08 4.45 ÿ18.56 22.66 9.95 11.66 13.78
(3) ‘ff ’ ÿ0.14 4.22 ÿ12.93 89.48 11.65 15.20 21.16
(4) ‘hf’ ÿ0.17 5.95 ÿ18.78 123.21 15.64 19.61 25.74
(5) ‘fh’ ÿ0.18 4.54 ÿ12.77 68.82 12.94 17.14 24.02
(6) ‘hh’ ÿ0.21 6.23 ÿ18.81 96.92 16.95 21.65 29.11

Bond model B
Basic 0.03 1.37 ÿ7.24 7.32 3.20 3.83 4.60
8.8.3 (v) cf (2) ÿ0.04 3.93 ÿ19.61 23.32 8.74 10.34 12.32
8.7.2 0.82 cf (3) ÿ0.03 3.72 ÿ12.31 95.96 10.06 13.18 18.09
8.9.1 both cf (5) ÿ0.06 3.96 ÿ11.86 56.03 11.10 14.84 21.33
8.10.1 no costs cf (6) ÿ0.26 5.07 ÿ20.71 99.83 12.86 16.69 22.94

Table 9.2.3. Financing the initial capital, maxi option, using
(97.5%, 1%, 1%) and (99%, 2%, 2%), hedging twice monthly,

Wilkie variations, no transaction costs

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

Wilkie variations
(1) ‘fn’ 4.27 3.87 0.39 124.56 5.09 4.18 0.90 125.07
(2) ‘hn’ 11.66 10.63 1.04 125.20 13.78 11.37 2.41 126.58
(3) ‘ff ’ 15.20 13.88 1.32 125.49 21.16 17.46 3.70 127.87
(4) ‘hf’ 19.61 17.89 1.71 125.88 25.74 21.25 4.49 128.66
(5) ‘fh’ 17.14 15.67 1.47 125.64 24.02 19.84 4.18 128.35
(6) ‘hh’ 21.65 19.77 1.88 126.04 29.11 24.03 5.08 129.24
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size of all the standard deviations in the model, and then we halved them
all. These represent very large changes. The resulting values are shown in
Table 9.3.1.

9.3.2 The corresponding results are shown in Table 9.3.2 for variations
(1) and (6). Doubling the standard deviations makes the CTEs in (1) bigger,
though the standard deviation in (1) is reduced; in (6) both standard
deviation and CTEs are reduced. Halving the standard deviations makes
almost no difference to the CTEs in (1), though the standard deviation in (1)
is increased; in (6) both standard deviations and CTEs are increased. This
all seems perverse. One possible explanation, which we have not investigated
further, is that when the standard deviations in the annual model are
greatly increased, the share price spends much more time either well in the
money or well out of it. We have already seen that there is a tendency for the
hedging errors to be smaller in these circumstances. Table 9.3.2 also shows
the results of using a hypermodel for the Wilkie parameters, which we discuss
next.

9.3.3 We can also vary the annual model parameters by hyperising them.
We have done this for the parameters of the annual Wilkie model; we leave
the innovations normally distributed. The means are the same as the fixed
parameters used in the unhyperised version. The standard deviations have

Table 9.3.1. Means and standard deviations for hyperised Wilkie bridging
parameters

Basic Double Half

QSD 0.0425 0.085 0.02125
YSD 0.155 0.310 0.0775
DSD 0.07 0.14 0.035
CSD 0.185 0.037 0.0925
BSD 0.18 0.36 0.09

Table 9.3.2. Statistics for present value of deficit, for maxi, call and put
options, investment strategy i(b), Wilkie model, varying the annual model

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Wilkie variations
(1) basic ÿ0.01 1.54 ÿ6.46 8.73 3.54 4.27 5.09
(1) double sds 1.10 1.47 ÿ5.20 8.58 4.75 5.44 6.27
(1) halve sds ÿ0.51 1.81 ÿ7.94 8.43 3.53 4.22 5.07
(1) hypermodel ÿ0.04 1.52 ÿ6.19 8.72 3.47 4.19 5.14

(6) basic ÿ0.21 6.23 ÿ18.81 96.92 16.95 21.65 29.11
(6) double sds 1.06 5.04 ÿ15.24 73.12 15.26 19.97 27.28
(6) halve sds ÿ0.87 7.24 ÿ21.18 85.47 18.74 23.72 31.23
(6) hypermodel ÿ0.10 6.27 ÿ21.95 95.50 17.48 22.73 30.96
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been chosen to reflect roughly the standard errors of the parameter
estimates as shown in Wilkie (1995). It is assumed that the values of the
parameters are distributed normally and independently. Closer investigation
of the data would be necessary to establish plausible correlation coefficients
for them. The values of the means and standard deviations used are shown in
Table 9.3.3. Note that normally DX ¼ 1ÿDW, which maintains ‘unit gain’
of dividends on inflation, but we now allow both to vary independently.

9.3.4 The results for variations (1) and (6) are shown in Table 9.3.2. It
can be seen that the results for (1) are very similar to those for the
unhyperised model. For (6) the CTEs are increased a bit, but by no more
than halving the standard deviations did. Our conclusion is that the
parameters of the Wilkie model do have an effect on the hedging results, but,
for realistic variations of them, it might be relatively small.

9.3.5 Table 9.3.4 shows the financing costs for these variations. One
interesting feature is that in variation (1), when the standard deviations of the
annual model are halved, for the basis (97.5%, 1%, 1%), the policyholder
extra contribution is negative. This is because the average result of the
hedging process is to produce a small profit (mean deficit ÿ0.51, i.e. mean
profit þ0.51). The shareholders get the benefit of this, and are assumed to be

Table 9.3.3. Means and standard deviations for hyperised Wilkie model
parameters

Mean Standard
deviation

QMU 0.025 0.015
QA 0.58 0.08
QSD2 0.04252 0.00034
YW 1.8 0.6
YMU 3.75% 0.2%
YA 0.55 0.1
YSD2 0.1552 0.00465
DD 0.13 0.08
DW 0.58 0.2
DX 0.42 0.2
DMU 0.016 0.015
DY ÿ0.175 0.05
DB 0.57 0.15
DSD2 0.072 0.0014
CD 0.045 0.01
CMU 3.05% 0.65%
CA 0.9 0.05
CY 0.034 0.15
CSD2 0.01852 0.0074
BMU ÿ0.23 0.1
BA 0.74 0.1
BSD2 0.182 0.0072
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prepared to contribute a bit more towards the initial CTE reserves. Further,
since the 97.5% CTE is slightly reduced as compared with the basic model,
the policyholder is not asked to contribute as much. Some other variations
show negative mean deficits (see Tables 9.2.2 and 9.3.2), and while these act
towards reducing the policyholder’s contribution, none goes so far as this
example.

9.3.6 Having reached the end of the complications that we wish to
introduce, it is desirable to check whether the strategy which we have chosen
to adopt is still a good one. Table 9.3.5 shows the results for ‘Wilkie
hypermodel variation (6)’ for each of the possible strategies, for a maxi
option only. We see that any of several strategies may seem acceptable.
Strategies i(a), i(b), ii(a), iii(a) and iii(b) all have relatively low standard
deviations and low CTEs. Strategy iii(a), investing the premium according to
the option proportions, and investing the contingency reserves in shares, is

Table 9.3.4. Financing the initial capital, maxi option, using (97.5%, 1%,
1%) and (99%, 2%, 2%), hedging twice monthly, Wilkie parameter

variations, no transaction costs

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

Wilkie variations
(1) basic 4.27 3.87 0.39 124.56 5.09 4.18 0.90 125.07
(1) double sds 5.44 3.93 1.51 125.68 6.27 4.24 2.03 126.20
(1) halve sds 4.22 4.28 ÿ0.06 124.11 5.07 4.58 0.50 124.66
(1) hypermodel 4.19 3.83 0.36 124.53 5.14 4.25 0.89 125.06

(6) basic 21.65 19.77 1.88 126.04 29.11 24.03 5.08 129.24
(6) double sds 19.97 17.11 2.86 127.03 27.28 21.50 5.78 129.95
(6) halve sds 23.72 22.24 1.48 125.64 31.23 26.32 4.92 129.08
(6) hypermodel 22.73 20.66 2.08 126.24 30.96 25.46 5.49 129.66

Table 9.3.5. Statistics for present value of deficit (PVD), for maxi option,
different investment strategies, different discounting methods, Wilkie

hypermodel, variation (6)

Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Strategy i(a) ÿ0.12 6.23 ÿ22.39 77.99 17.56 23.16 31.85
Strategy i(b) ÿ0.10 6.27 ÿ21.95 95.50 17.48 22.73 30.96
Strategy i(c) 0.22 7.65 ÿ22.57 173.19 22.42 30.79 44.95
Strategy ii(a) ÿ0.13 6.37 ÿ21.07 120.81 17.26 22.55 31.38
Strategy ii(b) ÿ0.16 7.79 ÿ26.97 141.92 21.52 28.19 38.88
Strategy ii(c) 0.24 9.27 ÿ21.24 381.12 24.35 33.53 50.45
Strategy iii(a) ÿ0.27 5.75 ÿ21.41 57.21 15.39 19.66 26.24
Strategy iii(b) ÿ0.30 6.60 ÿ23.03 80.10 17.82 22.66 29.86
Strategy iii(c) 0.04 7.13 ÿ21.53 165.98 20.13 26.90 38.28
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best on all measures. However, as with all results based on simulations, one
should also try this with different, non-overlapping simulation runs, to check
whether the sampling errors of the simulation process have affected the
results.

"ò. Approximate Hedging

10.1 We now turn to the question asked by John Jenkins at the
discussion on ‘Asset models in life assurance; views from the Stochastic
Accreditation Working Party’, at the Faculty on 17 November 2003 (Faculty
of Actuaries, 2004). He asked:

“I have a supplementary question to those of Professor Wilkie. I note his comments
on the closed form solution for valuing options and guarantees under fair values. What
I do not understand is how he would allow for management actions (for example
changes in investment mix) to reduce the likelihood that the guarantee will actually
apply.’’

10.2 A later communication from him ran:

“The normal situation I see is that companies have say a portfolio of with-profits
endowments, with a sum assured (SA) and reversionary bonus (RB) guarantee at
maturity. The main thing the management can change is the EBR (i.e. the proportion
invested in equities). In practice they often do not formally hedge, they just ‘manage’ the
EBR to balance the guarantee risk with the desire to achieve maximum long term
returns.

The sort of management action which they may well be thinking of is something like:
Set the EBR at 50% (say), but if for any policy the gap between the asset share and the

discounted value of SAþRB falls below 20% (say) then reduce to EBR on a sliding scale
down to 20%.

Thus, the closer the guarantees get to biting, the more action a company will take to
reduce the likelihood that they will actually bite.

It is the above sort of management action which I was querying whether the closed
form solution could allow for. With a stochastic projection model, clearly one can build
such things in.’’

10.3 Interpreting this in the context of our maxi option, where we
assume 100% investment in shares in respect of the liability, rather than a
standard equity backing ratio of only 50%, would perhaps mean that the
proportion of the available assets invested in shares would be set at 100%,
provided the option was at least 20% ‘in the money’, i.e. SðtÞ � 1:2KðtÞ, and
would reduce linearly from 100% at SðtÞ ¼ 1:2KðtÞ to 40% at, say, SðtÞ ¼ KðtÞ,
with 40% if SðtÞ � KðtÞ. However, if the share is sufficiently far ‘out of the
money’, then the share proportion tends to zero, so a better, and symmetrical,
rule might be to reduce linearly to 0% at, say, SðtÞ ¼ 0:8KðtÞ and below.

10.4 Before doing any calculations, however, it is best to investigate this
suggestion mathematically. We know from Section 2.1 that, for a maxi
option, the hedging quantities are given by:
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Share quantity: HSðtÞ ¼ SðtÞ:Nðd1Þ

Cash/bond quantity: HBðtÞ ¼ KðtÞ:Nðd2Þ

where:

d1 ¼ logfSðtÞ=KðtÞg=Sþ S=2

d2 ¼ ÿ logfSðtÞ=KðtÞg=Sþ S=2

and S is different for the two different bond models:

Model A S2
¼ ðTÿ tÞ:s2

S

Model B S2
¼ ðTÿ tÞ:s2

S þ ðTÿ tÞ
2:r:sRsS þ ðTÿ tÞ

3:s2
R=3:

10.5 We now define the ‘moneyness’ as MðtÞ ¼ SðtÞ=KðtÞ and the
proportions to be invested in the share and the bond as PSðM; tÞ and PBðM; tÞ.
We then get:

Share proportion ¼ PSðM; tÞ ¼ HSðtÞ=fHSðtÞ þHBðtÞg

¼ SðtÞ:Nðd1Þ=fSðtÞ:Nðd1Þ þKðtÞ:Nðd2Þg

¼MðtÞ:Nðd1Þ=fMðtÞ:Nðd1Þ þNðd2Þg

Bond proportion ¼ PBðM; tÞ ¼ HBðtÞ=fHSðtÞ þHBðtÞg

¼ Nðd2Þ=fMðtÞ:Nðd1Þ þNðd2Þg

and

d1 ¼ logfMðtÞg=Sþ S=2

d2 ¼ ÿ logfMðtÞg=Sþ S=2:

Thus, the share and bond proportions depend only on the moneyness, the
term to go ðTÿ tÞ and the fixed parameters included in S.

10.6 We can, however, make this symmetrical by using log moneyness,
mðtÞ ¼ logMðtÞ, in which case we have:

PSðm; tÞ ¼ expðmðtÞÞ:Nðd1Þ=fexpðmðtÞÞ:Nðd1Þ þNðd2Þg

PBðm; tÞ ¼ Nðd2Þ=fexpðmðtÞÞ:Nðd1Þ þNðd2Þg
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with:
d1 ¼ mðtÞ=Sþ S=2

d2 ¼ ÿmðtÞ=Sþ S=2:

In this case, PSðm; tÞ ¼ PBðÿm; tÞ ¼ 1ÿ PSðÿm; tÞ.
10.7 In Figure 10.1 (the S-shaped curves) we show PSðm; tÞ, for the Black-

Scholes model with s ¼ 0:2, graphed as a function of m, for Tÿ t ¼ 10 years
(the most spread out), five years (intermediate) and one year (the steepest).
We see how the graphs are symmetrical about m ¼ 0, where M ¼ 1, or
SðtÞ ¼ KðtÞ, and the option is exactly ‘at the (discounted) money’, and
PSðtÞ ¼ PBðtÞ ¼ 0:5 for all t. A linear approximation to the S-shaped curves
would be plausible, and a good fit for each curve is shown, based on
minimising the maximum difference between the curve and the straight line.
The slopes of the straight lines increase as the term to go reduces.

10.8 The three straight lines shown in Figure 10.1 can be denoted as
PASðm; tÞ, and can be expressed as:

PASðm; tÞ ¼ maxð0;minð1; bðTÿ tÞ:mÞÞ

where bðTÿ tÞ has the values: bð10Þ ¼ 0:5428, bð5Þ ¼ 0:74, bð1Þ ¼ 1:57. The
lines reach zero close to m ¼ ÿ0:92, ÿ0.68 and ÿ0.32 respectively, and reach
unity at the corresponding positive values. These correspond to ranges of
the moneyness of 39.9% to 250.9%, 50.7% to 197.4% and 72.6% to 137.7%
respectively, much shallower slopes than the linear 80% to 20% suggested in
{10.3.
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Figure 10.1. Proportion invested in shares, PS(m; t), and linear
approximations, terms to go of ten years, five years, one year
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10.9 We can easily test out these hedging strategies within some real-
world model. We still assume that the liability is defined in terms of a share
index, not in relation to the actual portfolio of the office. We then take two
extreme examples. First we assume that the real world corresponds exactly
with the Black-Scholes model, as in the examples in Section 3. We consider
only a maxi option, because these approximate strategies are designed to
hedge only that type of option. The initial amount invested is taken to be
equal to the Black-Scholes option price. Hedging is carried out twice per
month, and there are no transaction costs. The deficit is assumed to be
financed by investment in the bond (sub-strategy (b) from Section 3). The
statistics of the present value of the deficit are shown in Table 10.1.

10.10 We see that the standard deviations of the PVD are very much
larger than if hedging is carried out exactly. However, the strategies can turn
out to be very profitable, since the lowest deficits in each case are large and
negative. However, the worst results and the quantile reserves are much
higher than in the basic case. In this case, not hedging properly is extremely
risky, and requires large contingency reserves, in effect large ‘mismatching
reserves’. The best strategy, among those tried, is that based on log
moneyness, scaled from ÿ0.68 to þ0.68, which corresponds to a log linear
approximation to the correct hedging proportions at term five years (with
five years to go), about the middle of the duration of the option.
10.11 Our second example uses the Wilkie model, in one of its more

extreme varieties, with fat-tails in the bridging, and with hypermodels for the
annual parameters, the bridging parameters, and the parameters that
control the fat tails. We assume bond model B for the initial option price.
This corresponds with the model whose results are shown in the last line of
Table 9.3.2. The results are shown in Table 10.2.

10.12 In this case, all the standard deviations and all the CTEs are
increased, as compared with variation (6). However, the increase to allow for
mismatching is less than that in our first example, and in the last two rows
the increase in the CTEs is not enormous. Perhaps we can explain this by
saying that, if the real-world model were precisely known, as in our first
example, not hedging in accordance with that model requires a large

Table 10.1. Statistics for present value of deficit, for maxi option,
approximate investment strategies 1 to 4, Black-Scholes model

Strategy Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Basic 0.02 1.41 ÿ6.96 7.69 3.25 3.89 4.70
S1 80/120 ÿ2.68 20.06 ÿ188.04 49.28 26.16 29.25 32.94
S2 �0.32 ÿ1.69 14.33 ÿ141.60 38.08 17.36 19.31 21.76
S3 �0.68 0.51 6.74 ÿ32.32 24.62 12.83 14.21 16.02
S4 �0.92 1.89 11.53 ÿ18.64 80.39 25.73 28.87 33.59
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mismatching reserve, but if, on the other hand, there is uncertainty about
the real-world model and the values of its parameters, the contingency
reserve required to allow for this model/parameter uncertainty is already
large, and the mismatching reserve required for hedging badly is relatively
less.

10.13 We conclude by showing the pricing corresponding to the examples
in this section, in Table 10.3. In the first example, the CTEs are all greatly
increased as compared with the basic model, and the contributions of both
shareholder and policyholder are also increased. In the second example, this
is true to a much greater extent for the first two approximate hedging
strategies shown, but for S3 the policyholder contribution is only slightly
increased as compared with the basic model, and for S4 it is reduced, more
for (97.5%, 1%, 1%) than for (99%, 2%, 2%). Again, this can be explained
because the mean deficit is sufficiently negative (ÿ1.20) to justify the
shareholders contributing more than simply a fraction of the increase in the
required CTE.

Table 10.2. Statistics for present value of deficit, for maxi option,
approximate investment strategies 1 to 4, Wilkie hypermodel, variation (6)

Strategy Mean Standard
deviation

Lowest Highest 95%
CTE

97.5%
CTE

99%
CTE

Variation (6) ÿ0.10 6.27 ÿ21.95 95.50 17.48 22.73 30.96
S1 80/120 2.72 16.83 ÿ106.48 113.86 41.80 49.84 61.05
S2 �0.32 2.06 12.60 ÿ82.28 102.05 32.39 39.41 49.29
S3 �0.68 ÿ0.28 8.63 ÿ22.54 77.17 20.60 25.17 32.08
S4 �0.92 ÿ1.20 10.98 ÿ22.68 63.69 24.49 28.71 34.35

Table 10.3. Financing the initial capital, maxi option, using
(97.5%, 1%, 1%) and (99%, 2%, 2%), approximate hedging twice monthly,

no transaction costs

97.5%
CTE

S’hdr P’hdr Total
premium

99%
CTE

S’hdr P’hdr Total
premium

Example 1 option price 124.87
Basic 3.89 3.50 0.39 125.25 4.70 3.83 0.86 125.73
S1 80/120 29.25 28.89 0.35 125.22 32.94 29.21 3.73 128.59
S2 �0.32 19.31 19.00 0.31 125.17 21.76 19.23 2.53 127.40
S3 �0.68 14.21 12.39 1.81 126.68 16.02 12.72 3.30 128.17
S4 �0.92 28.87 24.42 4.45 129.32 33.59 26.00 7.59 132.46

Example 2 option price 124.17
Basic 22.73 20.66 2.08 126.24 30.96 25.46 5.49 129.66
S1 80/120 49.84 42.63 7.21 131.27 61.05 48.83 13.22 137.39
S2 �0.32 39.41 33.80 5.61 129.78 49.29 38.73 10.56 134.73
S3 �0.68 25.17 23.03 2.15 126.31 32.08 26.53 5.55 129.71
S4 �0.92 28.71 27.07 1.64 125.81 34.35 29.16 5.19 129.36
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APPENDIX A

DERIVATION OF OPTION FORMULAE

A.1 Assumptions
A.1.1 In this Appendix we summarise the derivation of options prices

and hedging quantities using our bond model B. In the course of this we also
derive the Black-Scholes option formula (bond model A). We follow closely
Appendix C of WWY, and refer to the results therein.

A.1.2 We start at time t ¼ 0, and consider European call, put, maxi and
mini options expiring at time T. We assume two traded assets, a share and a
zero coupon bond, a ‘zcb’ maturing at time T. The market price of a unit
share at time t is SðtÞ, and at time T it has a value SðTÞ. The zcb pays one at
time T, and prior to that has value Bðt;TÞ or just BðtÞ. BðTÞ ¼ 1. The exercise
price of all the options is K. The amount of the bond to match the exercise
price is therefore also K, with value at time t of K:BðtÞ ¼ KðtÞ.

A.1.3 We now consider the Brownian motions ‘driving’ the prices. We
assume two separate Brownian motions, W1, and W2. W1 and W2 have
instantaneous correlation r. The Wis are related to two independent Brownian
motions, Z1, and Z2:

dW1 ¼ dZ1

dW2 ¼ r:dZ1 þ rc:dZ2

where:

r2 þ r2
c ¼ 1:

A.1.4 We assume that the share price, SðtÞ, is driven by the stochastic
differential equation:

dSðtÞ ¼ mSðÞ:SðtÞ:dtþ sS:SðtÞ:dW1

where sS is a constant, and mS() is some function of t and SðtÞ, to be defined
later. For shares in practice we choose mSðÞ ¼ mS.
A.1.5 In bond model A, the zcb price BðtÞ is derived from the zcb

interest rate R(t), which is assumed to be constant, and equal to its initial
value:

dRðtÞ ¼ r ¼ r0:

A.1.6 In bond model B, we let the zcb price BðtÞ be driven by the zcb
interest rate R(t), which has the stochastic differential equation:
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dRðtÞ ¼ mRðÞ:dtþ sR:dW2

where sR is a constant, and mR() is some function of t and R(t), similar to mS().
In practice, we shall choose mRðÞ ¼ aRðyR ÿRðtÞÞ, an Ornstein-Uhlenbeck
process. This is similar to the Vasicek (1977) model, but this is usually
applied to the short rate, rather than to a zcb rate for constant maturity
date.

A.1.7 In both models, the zcb price BðtÞ is related to the zcb interest
rate R(t), by:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ

but in model A it is deterministic, in model B stochastic.

A.2 Stochastic Derivatives
A.2.1 We put CðtÞ ¼ 1=BðtÞ, and express it as a function of R(t):

CðtÞ ¼ 1=BðtÞ ¼ expððTÿ tÞ:RðtÞÞ:

For bond model A, C(t) is deterministic, with:

CðtÞ ¼ expððTÿ tÞ:rÞ

dCðtÞ ¼ ÿr expððTÿ tÞ:rÞ ¼ ÿr:dCðtÞ:dt:

A.2.2 In bond model B, C(t) is stochastic, and we use Ito’s formula (see
WWY C.6) to get the differential equation of C(t). We have CðtÞ ¼ f ðRðtÞÞ,
with derivatives:

f 0ðÞ ¼ @C=@R ¼ ðTÿ tÞ: expððTÿ tÞ:RðtÞÞ ¼ ðTÿ tÞ:CðtÞ

and

f 00ðÞ ¼ @2C=@R2
¼ ðTÿ tÞ

2: expððTÿ tÞ:RðtÞÞ ¼ ðTÿ tÞ
2:CðtÞ:

Also:

@C=@t ¼ ÿRðtÞ: expððTÿ tÞ:RðtÞÞ ¼ ÿRðtÞ:CðtÞ:

We also have:

dRðtÞ ¼ mRðÞ:dtþ sR:dW2:
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Hence:

dCðtÞ ¼ ðTÿ tÞ:CðtÞ:dRþ 1
2 s

2
R:ðTÿ tÞ

2:CðtÞ:dtÿRðtÞ:CðtÞ:dt

¼ CðtÞ:fðTÿ tÞ:mRðÞ þ
1
2 s

2
R:ðTÿ tÞ

2
ÿRðtÞg:dtþ ðTÿ tÞ:CðtÞ:sR:dW2:

A.2.3 We now choose the zcb as numeraire. The value of the share
relative to the zcb is SðtÞ=BðtÞ ¼ SðtÞ:CðtÞ, which we denote as H(t). The value
of the zcb relative to itself is unity.

A.2.4 We now get the stochastic differential equation for H(t). We use
the product rule (WWY, C.7.2):

dðXYÞ ¼ X:dYþY:dXþ rXY:sX:sY:dt:

A.2.5 In bond model A we have:

dSðtÞ ¼ mSðÞ:SðtÞ:dtþ sS:SðtÞ:dW1

and

dCðtÞ ¼ ÿr:CðtÞ:dt

so:

dHðtÞ ¼ SðtÞ:dCðtÞ þ CðtÞ:dSðtÞ

¼ SðtÞ:ðÿr:CðtÞ:dtÞ þ CðtÞ:ðmSðÞ:SðtÞ:dtþ sS:SðtÞ:dW1Þ

¼ HðtÞ:ððmSðÞ ÿ rÞ:dtþ sS:dW1Þ

¼ HðtÞ:ððmSðÞ ÿ rÞ:dtþ sS:dZ1Þ:

A.2.5 In bond model B we have:

dSðtÞ ¼ mSðÞ:SðtÞ:dtþ sS:SðtÞ:dW1 ¼ mSðÞ:SðtÞ:dtþ sS:SðtÞ:dZ1

and

dCðtÞ ¼ CðtÞ:fðTÿ tÞ:mRðÞþ
1
2 s

2
R:ðTÿ tÞ

2
ÿRðtÞg:dtþðTÿ tÞ:CðtÞ:sR:dW2

¼ CðtÞ:fðTÿtÞ:mRðÞþ
1
2 s

2
R:ðTÿtÞ

2
ÿRðtÞg:dtþðTÿtÞ:CðtÞ:sRðr:dZ1þrc:dZ2Þ

so:

dHðtÞ ¼ SðtÞ:dCðtÞ þ CðtÞ:dSðtÞ þ fsS:SðtÞ:ðTÿ tÞ:CðtÞ:r:sRg:dt

¼ HðtÞ½ðTÿ tÞ:mRðÞ þ mSðÞ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:r:sS:sR�:dt

þHðtÞ:½fsS þ ðTÿ tÞ:r:sRg:dZ1 þ ðTÿ tÞ:rc:sR:dZ2�:
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A.3 Equivalent Martingales
A.3.1 We now change the stochastic differential equations so that the

process for each of the tradeables (relative to the new numeraire) is a
martingale. We do this by adjusting the Zs to new values:

Z�i ðtÞ ¼ ZiðtÞ þ
Ð
giðtÞ:dt

or:

dZ�i ¼ dZi þ giðtÞ

in such a way that the tradeables are martingales. We denote adjusted
values by an asterisk.

A.3.2 The zcb is easy in either model, since its value relative to the new
numeraire is always one.

A.3.3 The value of the share, relative to the new numeraire, is H(t),
with stochastic differential equation in bond model A:

dHðtÞ ¼ HðtÞ:ððmSðÞ ÿ rÞ:dtþ sS:dZ1Þ:

We replace dZ1 by dZ�1 ÿ g1ðtÞdt, with:

g1ðtÞ ¼ ðmSðÞ ÿ rÞ=sS

to give:

dH�ðtÞ ¼ H�ðtÞ:sS:dZ
�

1

so that H�ðtÞ is a martingale.
A.3.4 In bond model B:

dHðtÞ ¼HðtÞ½ðTÿ tÞ:mRðÞ þ mSðÞ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:r:sS:sR�:dt

þHðtÞ:½fsS þ ðTÿ tÞ:r:sRg:dZ1 þ ðTÿ tÞ:rc:sR:dZ2�:

We define a new Brownian motion Z3, with:

s3ðtÞ:dZ3 ¼ fsS þ ðTÿ tÞ:r:sRg:dZ1 þ ðTÿ tÞ:rc:sR:dZ2

and

s3ðtÞ
2
¼ fsS þ ðTÿ tÞ:r:sRg

2
þ fðTÿ tÞ:rc:sRg

2

¼ s2
S þ 2ðTÿ tÞ:r:sS:sR þ ðTÿ tÞ

2:s2
R
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so that:

dHðtÞ ¼HðtÞ:½ðTÿ tÞ:mRðÞ þ mSðÞ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:r:sS:sR�:dt

þHðtÞ:s3ðtÞ:dZ3

and we replace dZ3 by dZ�3 ÿ g3ðtÞdt with:

g3ðtÞ ¼ ½ðTÿ tÞ:mRðÞ þ mSðÞ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:r:sS:sR�=s3ðtÞ

to give:

dH�ðtÞ ¼ H�ðtÞ:s3ðtÞ:dZ
�

3

so that H�ðtÞ is also a martingale.

A.4 The Option Payoff
A.4.1 The value of any payoff X, at time T, which is a function of H(t),

can now be calculated as the expected value of X, expressed as a function of
H�(t), i.e. under the equivalent martingale measure. For the various options
we have an exercise price of K, with value at time t of KðtÞ. For the maxi
option, we can express the payoff as:

XðTÞ ¼ maxðSðTÞ;KðTÞÞ:

We express this in terms of the numeraire, so that the payoff is:

XðTÞ=BðTÞ ¼ maxðSðTÞ;KðTÞÞ=BðTÞ

¼ maxðHðTÞ;KðTÞÞ:

Thus, the value of the maxi option in terms of the numeraire is:

E�½XðTÞ=BðTÞ� ¼ E½maxðH�ðTÞ;KðTÞÞ�:

Re-expressed in pounds at time zero, it is:

Vð0Þ ¼ Bð0Þ:E�½XðTÞ=BðTÞ� ¼ Bð0Þ:E½maxðH�ðTÞ;KðTÞÞ�:

We treat time zero as the starting point of the option, with it being
exercised T time units later.

A.4.2 We now consider the distribution of H�ðTÞ. We have, in the two
bond models:

dH�ðtÞ ¼ H�ðtÞ:sS:dZ
�

1
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and

dH�ðtÞ ¼ H�ðtÞ:s3ðtÞ:dZ
�

3

with:

s3ðtÞ
2
¼ s2

S þ 2ðTÿ tÞ:r:sS:sR þ ðTÿ tÞ
2:s2

R:

A.4.3 Let LðtÞ ¼ logðH�ðtÞÞ. In bond model A we get:

dLðtÞ ¼ f1=H�ðtÞg:H�ðtÞ:sS:dZ
�

1 þ
1
2H
�
ðtÞ

2:s2
S:ðÿ1=H

�
ðtÞ

2
Þ:dt

¼ ÿ 1
2 s

2
S:dtþ sS:dZ

�

1:

We put:

LðTÞ ¼ Lð0Þ þ
Ð T
0 fÿ

1
2 s

2
S:dtþ sS:dZ

�

1g

¼ Lð0Þ ÿ
Ð T
0

1
2 s

2
S:dtþ

Ð T
0sS:dZ

�

1:

The first integral is deterministic, the second stochastic. The second integral
is normally distributed with mean zero, and variance:

Ð T
0 s2

S:dt.
Thus, LðTÞ is normally distributed with mean:

E½LðTÞ� ¼ Lð0Þ ÿ
Ð T
0

1
2 s

2
S:dt

and variance:

Var½LðTÞ� ¼
Ð T
0s

2
S:dt ¼ T:s2

S:

Since LðTÞ ¼ logH�ðTÞ is normally distributed, H�ðTÞ is lognormally
distributed.

A.4.4 In bond model B the same arguments lead us to:

dLðtÞ ¼ ÿ 1
2 s3ðtÞ

2:dtþ s3ðtÞ:dZ
�

3

LðTÞ ¼ Lð0Þ þ
Ð T
0 fÿ

1
2 s3ðtÞ

2:dtþ s3ðtÞ:dZ
�

3g

¼ Lð0Þ ÿ
Ð T
0

1
2 s3ðtÞ

2:dtþ
Ð T
0s3:dZ

�

3:

And LðTÞ is normally distributed, with mean:

E½LðTÞ� ¼ Lð0Þ ÿ 1
2 T:s

2
SsS:sR þ T3:s2

R=3
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and variance:

Var½LðTÞ� ¼
Ð T
0s3ðtÞ

2:dt

¼ ½T:s2
S þ T2:r:sS:sR þ T3:s2

R=3�:

Again H�ðTÞ is lognormally distributed.
A.4.5 We put in bond model A:

S2
¼ T:s2

S

and in bond model B:

S2
¼ T:s2

S þ T2:r:sS:sR þ T3:s2
R=3

and LðTÞ has mean Lð0Þ ÿ 1
2S

2 and variance S2. Both models are now
expressed similarly.

A.4.6. To calculate the value of the maxi option, we note that, if X is
normally distributed, with mean m and variance s2, then:

E½Yr; a; b� ¼
Ð b

a
yr: fYðyÞ:dy

¼ expðrmþ r2s2=2Þ:½Nfðlog bÿ mÿ rs2Þ=sg ÿNfðlog aÿ mÿ rs2Þ=sg�:

Whence:

E½Y; a;1� ¼ expðmþ 1
2 s

2
Þ:½1ÿNfðlog aÿ mÿ s2

Þ=sg�

and

E½1; 0; b� ¼ Nfðlog bÿ mÞ=sg ÿ 0:

A.4.7 We put: m ¼ Lð0Þ ÿ 1
2S

2 and s ¼ S. Lð0Þ ¼ logH�ð0Þ ¼ logHð0Þ ¼
logðSð0Þ=Bð0ÞÞ. The value of the maxi option, expressed in units of the
numeraire, is:

E½maxðH�ðTÞ;KÞ� ¼
Ð K
0 K: f ðH

�
Þ:dH� þ

Ð1
KH

�
ðTÞ: f ðH�Þ:dH�

and expressed in units of currency is:
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Vð0Þ ¼ Bð0Þ:E½maxðH�ðTÞ;KÞ�

¼ Bð0Þ:½
Ð K
0 K: f ðH

�
Þ:dH� þ

Ð1
KH

�
ðTÞ: f ðH�Þ:dH��

¼ Bð0Þ:½K:NfðlogKÿ mÞ=sg þ expðmþ 1
2 s

2
Þ:½1ÿNfðlogKÿ mÿ s2

Þ=sg�

¼ Sð0Þ:½NfðlogðSð0Þ=Kð0ÞÞÞ=Sþ 1
2Sg�

þKð0Þ:½1ÿNfðlogðSð0Þ=Kð0ÞÞÞ=Sÿ 1
2Sg:

A.4.8 The formula above applies equally at general time t if Sð0Þ and
Kð0Þ are replaced by SðtÞ and KðtÞ, T is replaced by Tÿ t, and 1ÿNðxÞ is
replaced by NðÿxÞ, giving:

VðtÞ ¼ SðtÞ:½NfðlogðSðtÞ=KðtÞÞÞ=Sþ 1
2Sg� þKðtÞ:½NfÿðlogðSðtÞ=KðtÞÞÞ=Sþ 1

2Sg�

or

VðtÞ ¼ SðtÞ:Nðd1Þ þKðtÞ:Nðd2Þ

with:

d1 ¼ ðlogðSðtÞ=KðtÞÞÞ=Sþ 1
2S

d2 ¼ ÿðlogðSðtÞ=KðtÞÞÞ=Sþ 1
2S

where, in bond model A:

S2
¼ ðTÿ tÞ:s2

S

and in bond model B:

S2
¼ ðTÿ tÞ:s2

S þ ðTÿ tÞ
2:r:sS:sR þ ðTÿ tÞ

3:s2
R=3:

A.5 The Hedging Quantities
A.5.1 We now find the hedging quantities. We define the amounts to be

invested in the share and the bond to be jS(t) and jB(t) respectively, so
that:

VðtÞ ¼ jSðtÞ þ jBðtÞ

and put:

jHðtÞ ¼ jSðtÞ=BðtÞ

jAðtÞ ¼ jBðtÞ=BðtÞ

UðtÞ ¼ VðtÞ=BðtÞ ¼ HðtÞ:Nðd1Þ þK:Nðd2Þ:
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A.5.2 Then, as in WWY C10, we calculate:

dUðtÞ ¼ djHðtÞ þ djAðtÞ

¼ jHðtÞ=HðtÞ:dHðtÞ þ jAðtÞ=AðtÞ:dAðtÞ

where A(t) is the value of the zcb in terms of the zcb, so AðtÞ ¼ 1 and
dAðtÞ ¼ 0 for all t. We then find that

dUðtÞ ¼ @U=@H:dHðtÞ þ non-stochastic terms

so we need:

jHðtÞ=HðtÞ ¼ @U=@H

and

jAðtÞ ¼ UðtÞ ÿ jHðtÞ:

A.5.3 @U=@H ¼ @fHðtÞ:Nðd1Þ þK:Nðd2Þg=@H
¼ Nðd1Þ

so:

jHðtÞ ¼ HðtÞ:@U=@H ¼ HðtÞ:Nðd1Þ

jAðtÞ ¼ UðtÞ ÿ jHðtÞ

whence:

jSðtÞ ¼ jHðtÞ:BðtÞ

jBðtÞ ¼ jAðtÞ:BðtÞ

or, directly:

jSðtÞ ¼ SðtÞ:Nðd1Þ

jBðtÞ ¼ VðtÞ ÿ jSðtÞ ¼ KðtÞ:Nðd2Þ:

This applies to both bond models.

A.6 Simulating the Real-World Equivalent Model
A.6.1 In many of our investigations, we use as the real-world model the

model that corresponds with the option pricing model, which we simulate
over time steps of length h. Since mS() and mR() do not enter the option pricing
formula, we can make them any functions that we like (within limits). We
therefore choose mSðÞ ¼ mS, a constant, and mRðÞ ¼ aRðmR ÿRðtÞÞ:
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A.6.2 The differential equation for SðtÞ is:

dSðtÞ ¼ mS:SðtÞ:dtþ sS:SðtÞ:dW1

from which we can derive (using Ito again):

d log SðtÞ ¼ ðmS ÿ
1
2 s

2
SÞ:dtþ sS:dW1

whence:

log Sðtþ hÞ ¼ log SðtÞ þ mS;h þ sS;h:W1ðtþ hÞ

where mS;h ¼ ðmS ÿ
1
2 s

2
SÞh and sS;h ¼ sS

p
h, and W1 is a unit normal random

variable. This is a random walk model with drift for log SðtÞ.
A.6.3 The differential equation for R(t) is:

dRðtÞ ¼ aRðmR ÿRðtÞÞ:dtþ sR:dW2

which is an Ornstein-Uhlenbeck process, whence:

Rðtþ hÞ ¼ mR þ aR;h:ðRðtÞ ÿ mRÞ þ sR;h:W2ðtþ hÞ

with mR ¼ mR, aR;h ¼ expðÿaRhÞ; sR;h ¼ sR

p
fð1ÿ a2

R;hÞ=ð2aRÞg, and W2 is a
unit normal random variable. This is a first order autoregressive, or AR(1),
time series model for R(t).

A.6.4 Note that W1 and W2 are related through:

W1 ¼ Z1

W2 ¼ r:Z1 þ rc:Z2

where Z1 and Z2 are independent unit normal variates.
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APPENDIX B

DATA ANALYSIS

B.1 In this Appendix we describe the analyses we have carried out into
actual data, in order to support some of the numerical assumptions which we
have made in the paper.

B.2 We have available three series, each at monthly intervals, with end-
of-month values for December 1923 to June 2004, inclusive, giving 967 values
of each series. The series represent:
(i) A total return (rolled-up) share index on U.K. shares. In recent years

this has been the total return index for the All-Share Index in the FTSE-
Actuaries U.K. Share Indices. In earlier years it is an index that we
have constructed from similar indices from the past. In early years this is
gross of tax, but, in the most recent years, it includes dividends on an
‘actual’ basis. We denote the index in month t as SðtÞ.

(ii) An indicator of long-term interest rates which we describe as a
‘Consols yield’, and denote as C(t). In recent years this has been the
irredeemables yield index from the FTSE-Actuaries BGS Indices. In
earlier years, it was the quoted yield on 212% Consols.

(iii) An indicator of short-term interest rates, which we denote as BðtÞ. This
is the rate of bank rate, minimum lending rate or bank base rates, as
determined by the Bank of England, taken as at the end of each month.
This is not necessarily the best indicator of short-term interest rates, for
which, nowadays, a suitable LIBOR rate might be better, but the series
we use is available for the whole period which we have studied.

B.3 We start by calculating certain derived series from the source data.
First, we take the logarithm of each of the values of the share total return
index, and then take the differences. This gives us a series of monthly total
returns, for t ¼ January 1924 to June 2004, of 966 values:

LðtÞ ¼ lnðSðtÞÞ ÿ lnðSðtÿ 1ÞÞ:

B.4 Next, we transform the Consols yield (which is quoted as a
percentage) to a monthly percentage yield. We assume that C(t) represents a
yield convertible half-yearly. This is correct for the recent values, taken from
the FTSE-Actuaries BGS indices. We do not know how the earlier values
were calculated. We calculate:

CmðtÞ ¼ 100� ðð1þ CðtÞ=200Þ1=6 ÿ 1Þ:

Note that this gives a rate of interest per cent per month. We also calculate the
equivalent monthly rate for BðtÞ. We assume that bank rate is convertible
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monthly. It is not clear that any prescribed frequency is intended, and
custom no doubt varies from bank to bank and from time to time. This
gives us:

BmðtÞ ¼ BðtÞ=12:

B.5 We now assume that Bm(t) and CmðtÞ represent redemption yields
on redeemable stocks, with interest payable monthly, and standing at par,
with terms of zero and infinity respectively. Now we proceed as described in
WWY Appendix B. We assume that a par yield curve can be interpolated
between these values with an exponential curve, so that the par yield for a
stock of term u, at time t, Pðu; tÞ, is given by:

Pðu; tÞ ¼ CmðtÞ þ ðBmðtÞ ÿ CmðtÞÞ: expðÿb:uÞ

where b is taken, as in WWY, as 0.39 (annually, equal to 0.39/12 monthly)
for all t.

B.6 Next, for each month t, we derive a series of zcb yields, with terms
at monthly intervals, again following WWY. We denote the present value
function of a zcb of term u at time t by Vðu; tÞ, and we calculate these:

Vð1; tÞ ¼ 1=ð1þ Pð1; tÞ=100Þ

Vðu; tÞ ¼ ð1ÿ Pðu; tÞSs¼1;uÿ1Vðs; tÞÞ=ð1þ Pðu; tÞ=100Þ:

We then convert these to annual percentage zcb rates, assumed payable
continuously, Rðu; tÞ, by:

Rðu; tÞ ¼ ÿ1200� lnðVðu; tÞÞ=u:

We now have zcb rates for each date from December 1923 to June 2004, for
each term from zero months to 120 months.

B.7 Next, we construct series of zcb rates maturing at a fixed date. The
first series is assumed to mature in December 1933, and starts with the
ten-year (120-month) rate in December 1923, followed by the 119-month rate
in January 1924, the 118-month rate in February 1924, and so on up to the
zero-month rate in December 1933. Each of the 847 series has 121 values. The
first matures in December 1933, the last in June 2004. We denote the values
by R(u, T), where u is the outstanding term and runs down from 120 to zero,
and T is the maturity date and runs from December 1933 to June 2004.

B.8 To go with the 847 series of zcb yields, we construct 847 matching
series of 121 values of the share index for the same dates as the zcb yields.
These overlap one another considerably. Each series of 121 values of the
index allows 120 values of the log differences, and we identify them as
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Lðu;TÞ, u ¼ 120; . . . ; 0, T ¼December 1933 to June 2004, where Lðu;TÞ ¼
LðTÿ uÞ.

B.9 We can now analyse the statistics of each of our 847 pairs of series.
We start with the zcb yields, and record, for each series, the maximum and
minimum values, the mean, variance, standard deviation, skewness and
kurtosis. We also calculate the first autocorrelation coefficient, and the
second and third partial autocorrelation coefficients. For series T, we denote
the mean zcb yield as Rm(T) and the first autocorrelation coefficient as
Ra(T). Using these, we calculate a further series of 120 ‘residuals’, denoted
Re(u, T):

Reðu;TÞ ¼ ðRðu;TÞ ÿRmðTÞÞ ÿRaðTÞ:ðRðuþ 1;TÞ ÿRmðTÞÞ:

Note that the previous value, for month Tÿ uÿ 1, is for term uþ 1.
B.10 We now calculate the same set of statistics for each of the 847

series of residuals. We also calculate the same set of statistics for the log
share differences, and also the (simultaneous) correlation coefficient between
log share differences and yield residuals, Lðu;TÞ and Reðu;TÞ.

B.11 There is a big variation in the statistics which we have calculated.
For each of the statistics, the means, standard deviations, etc., we have 847
values, and we can calculate just the same statistics for each of the series
statistics. The results are shown in Table B.1 for the zcb statistics, and in

Table B.1. Statistics for statistics of zcb and zcb residuals for each
120-month period

Minimum Maximum Mean Standard
deviation

Skewness Kurtosis

Zcb rates:
Mean (%) 2.76 12.49 6.52 3.15 0.40 1.75
Autocorrelation
coefficient

0.7281 0.9855 0.9460 0.0307 ÿ1.87 8.36

Continuous
autocorrelation
factor

0.1754 3.8074 0.6726 0.4028 2.09 10.25

Zcb residuals:
Variance 0.001586 0.495032 0.099646 0.126637 1.55 4.05
Standard deviation (%) 0.0398 0.7036 0.2614 0.1770 0.99 2.78
Skewness ÿ1.74 6.88 1.30 1.59 1.32 4.73
Kurtosis 3.00 64.18 13.41 11.99 1.96 7.19
Continuous S.D. %
(annualised)

0.1298 3.0147 0.9353 0.7155 1.15 3.10

967 months:
Base Rate % 2.00 17.00 6.0204 3.7282 0.92 3.04
Consols Yield % 2.53 17.20 6.5214 3.2365 0.86 2.84
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Table B.2 for the share statistics. Table B.2 also includes the statistics for
the whole sample of 966 log share returns.
B.12 Consider first the zcb yields. The means RmðTÞ range from 2.76%

(the series from January 1941 to January 1951) to 12.49% (the series from
August 1972 to August 1982), with a mean value of 6.52% and a standard
deviation of 3.15%. The skewness of the means is 0.40 and the kurtosis a very
low 1.75 (for a normal distribution the skewness is zero and the kurtosis is
three). The autocorrelation coefficients Ra(T) range from 0.7281 (the series
from March 1942 to March 1952) to 0.9855 (the series from February 1994
to February 2004), with a mean value of 0.9460 and a standard deviation of
0.0307. The skewness of the autocorrelation coefficients is ÿ1.87 and the
kurtosis is 8.36; but these coefficients are not expected to be normally
distributed.

B.13 The monthly autocorrelation coefficient corresponds with a
continuous factor (per annum; this is what we require for the continuous
model), Ralpha(T), calculated as:

RalphaðTÞ ¼ ÿ12� lnðRaðTÞÞ:

These have also been calculated, and the results are also shown in Table
B.1. They range from 0.1754 (corresponding with RaðTÞ ¼ 0:9855) to 3.8074
(corresponding with RaðTÞ ¼ 0:7281Þ, with a mean value of 0.6726 and a
standard deviation of 0.4028. Their skewness is 2.09 and kurtosis is 10.25.

B.14 Table B.1 also shows the statistics for the 967 values of the
original base rate and the Consols yield. Not shown in the table are the
monthly autocorrelation coefficients, 0.9911 and 0.09955, respectively,
corresponding with continuous annualised values of 0.1079 and 0.0547.
These are much lower than the mean value of 0.6726 quoted above. WWY
used a value of 0.125 (as we have done in many of our calculations), which
was derived from other, less detailed, investigations. As shown in Section 8.4,
the value of the autoregressive parameter makes very little difference to the
hedging results.

B.15 From the series of zcb residuals, we obtain the standard deviations;
note that these are percentage values, since the yields are expressed as
percentages. These range from 0.0398 to 0.7036 with a mean of 0.2614 and a
standard deviation of 0.1770; their skewness is 0.99 and their kurtosis is
2.78. For the variances the corresponding figures are: range 0.0016 to 0.4950,
mean 0.0996, standard deviation 0.1266, skewness 1.55, kurtosis 4.05. The
monthly standard deviation, denoted Rs(T), corresponds with a continuous
standard deviation, denoted Rsigma(T), calculated as:

RsigmaðTÞ ¼ RsðTÞ:
p
fð2�RalphaðTÞÞ=ð1ÿRaðTÞ2Þg:

The statistics of Rsigma(T) (still expressed as a percentage) are: range 0.1298
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to 3.0147, mean 0.9353, standard deviation 0.7155, skewness 1.15, kurtosis
3.10.

B.16 We are also interested in the skewness and kurtosis of the
residuals. The statistics for the skewness are: range ÿ1.74 to 6.88, mean 1.30,
standard deviation 1.59, skewness 1.32, kurtosis 4.73. The statistics for the
kurtosis are: range 3.00 to 64.18, mean 13.41, standard deviation 11.99,
skewness 1.96, kurtosis 7.19.

B.17 For shares, we are interested in the mean log difference over each
ten-year period. The statistics of the mean are: range ÿ0.0014 (June 1930 to
June 1940) to 0.0231 (December 1974 to December 1984), mean 0.0091,
standard deviation 0.0043, skewness 0.39, kurtosis 3.05. We are also
interested in the standard deviations whose statistics are: range 0.0299 to
0.0806, mean 0.0486, standard deviation 0.1345, skewness 1.25, kurtosis 3.50.
The numbers used in our modelling are the annual equivalents for the mean
and standard deviation, calculated by multiplying by 12 and

p
12 respectively.

The statistics for these are also shown in Table B.2.
B.18 A further analysis is of the residuals of the zcb rates, rearranged so

that the 847 values of the residuals for a 119-month term are put into one
series, then the 847 residuals of the 118-month term, and so on. This gives us
120 series, each with 847 values. Each series is the residual after fitting
different means and autocorrelation factors, but the interesting features are
the standard deviations of these series. They are plotted in Figure B.1. The
standard deviations have a value of around 0.3 for most of the terms, but the
value rises to over 0.5 as the term shortens below 24 months or so. This
suggests that our bond model, with a constant value of sR, could, perhaps, be
improved by allowing a deterministically varying value sRðtÞ.

B.19 Note that the values of the standard deviations shown in Figure
B.1 are higher than the mean standard deviation shown in Table B.1 of about

Table B.2. Statistics for statistics of share log difference for each 120-month
period, and for whole period of 966 months

Minimum Maximum Mean Standard
deviation

Skewness Kurtosis

Mean ÿ0.0014 0.0231 0.0091 0.0043 0.39 3.05
Variance 0.000893 0.006493 0.002541 0.001543 1.56 4.15
Standard deviation 0.0299 0.0806 0.0486 0.1345 1.25 3.50
Skewness ÿ2.42 1.62 ÿ0.57 0.90 0.22 2.49
Kurtosis 2.86 15.31 6.55 3.34 0.52 1.67
Correlation with zcb
residuals

ÿ0.5708 ÿ0.0358 ÿ0.3075 0.1231 ÿ0.22 2.38

Annualised mean ÿ0.0167 0.2778 0.1095 0.0516 0.39 3.05
Annualised stand. dev. 0.1035 0.2791 0.1683 0.0466 1.25 3.50

966 months:
log difference ÿ0.3056 0.4300 0.0086 0.0493 ÿ0.08 11.59
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0.26, but those show variations about the 120-month trends, whereas the
figures under consideration now show variations about the whole series of 70
years of values. When the underlying means are clearly varying so much,
measurement of the variations from those means is difficult. The approach in
the Wilkie model of removing, first, the effect of inflation, and then treating
the remaining ‘real’ yield as having a constant mean, is probably more
realistic, but it would require a more complex option pricing bond model,
and would require more complex hedging, including investment in the RPI or
its equivalent (such as index-linked stock), to match the liability. We have
not considered this in this paper.

B.20 We have also calculated the correlation coefficients between selected
statistics, those that are needed for our real-world model. These are shown in
Table B.3, along with the means and standard deviations of the values. We
have included the initial bond yield, the ten-year rate at the start of each
sample. All these are calculated from the 847 samples, which overlap greatly,
so standard statistical tests do not necessarily apply.

B.21 Many of these correlation coefficients are large. Some can be
explained. When the initial bond rate is high, the average bond rate for the
next ten years is also high. This has occurred at times of high inflation, so the
return on shares has also been high. When the initial bond rate, or the mean
bond rate, is high, the standard deviation (sigma) of the bond rate is also
high. Therefore, a log transform might be a better way of modelling the real
world (as in the Wilkie model), but it would alter our option pricing model.
This evidence suggests that fuller investigations than are appropriate here
would be interesting.
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Figure B.1. Standard deviations of zcb residuals by outstanding term
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Table B.3. Correlation coefficients of selected statistics

Bond
mean %

Bond
rate 0

Bond
alpha

Bond
sigma %

Share/bond
correlation

Share
mean

Share
standard
deviation

Mean 6.5185 6.4661 0.6726 0.9353 ÿ0.3075 0.1095 0.1683
Standard deviation 3.1500 3.2923 0.4028 0.7155 0.1231 0.0516 0.0466
Correlation coefficient
Bond mean 1.0 0.8859 0.2947 0.8962 ÿ0.1901 0.6623 0.7593
Bond rate 0 0.8859 1.0 0.3197 0.7663 ÿ0.1524 0.7172 0.5259
Bond alpha 0.2947 0.3197 1.0 0.5495 ÿ0.0454 0.4153 0.1466
Bond sigma 0.8962 0.7663 0.5495 1.0 ÿ0.2121 0.5827 0.7792
Share/bond
correlation

ÿ0.1901 ÿ0.1524 ÿ0.0454 ÿ0.2121 1.0 ÿ0.2687 ÿ0.2367

Share mean 0.6623 0.7172 0.4153 0.5827 ÿ0.2687 1.0 0.2166
Share standard
deviation

0.7593 0.5259 0.1466 0.7792 ÿ0.2367 0.2166 1.0
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