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Abstract

Assembly optimization of printed circuit boards (PCBs) has received considerable research
attention because of efforts to improve productivity. Researchers have simplified complexities
associated with PCB assembly; however, they have overlooked hardware constraints, such as
pick-and-place restrictions and simultaneous pickup restrictions. In this study, a hybrid
group search optimizer (HGSO) was proposed. Assembly optimization of PCBs for a multi-
head placement machine is segmented into three problems: the (1) auto nozzle changer
(ANC) assembly problem, (2) nozzle setup problem, and (3) component pick-and-place
sequence problem. The proposed HGSO proportionally applies a modified group search opti-
mizer (MGSO), random-key integer programming, and assigned number of nozzles to an
ANC to solve the component picking problem and minimize the number of nozzle changes,
and the place order is treated as a traveling salesman problem. Nearest neighbor search is used
to generate an initial place order, which is then improved using a 2-opt method, where chaos
local search and a population manager improve efficiency and population diversity to mini-
mize total assembly time. To evaluate the performance of the proposed HGSO, real-time PCB
data from a plant were examined and compared with data obtained by an onsite engineer and
from other related studies. The results revealed that the proposed HGSO has the lowest total
assembly time, and it can be widely employed in general multihead placement machines.

Introduction

Multihead placement machines, which can be adapted to process various components, are the
most flexible machines for assembling printed circuit boards (PCBs). However, the production
efficiency of multihead placement machines is limited. Problems in the related optimization of
production efficiency can be classified into three typical subproblems:

(1) Auto nozzle changer (ANC) assembly problem;
(2) Nozzle setup problem;
(3) Component pick-and-place sequence problem.

Various optimization methods have been developed to address these subproblems. For exam-
ple, Grunow et al. (2004) proposed a three-step heuristic algorithm to solve the pick-and-place
problem. For multihead placement machines with a specific place sequence, Knuutila et al.
(2007) employed a greedy algorithm to optimize nozzle assignment and reduce the number
of picks. The concept of component batches was employed by Ashayeri et al. (2011) to formu-
late a multihead placement optimization problem for a mixed integer program designed to bal-
ance placement head loadings and reduce the number of nozzle changes. Ball and Magazine
(1998) defined the place sequence for a multihead machine as a postman problem. Leipälä and
Nevalainen (1989) considered a place sequence for a multihead machine to be a traveling sales-
man problem. Kumar and Li (1995) used linear programming for feeder assignment and place
sequence, where the local search was accompanied by 2 and 3 changes. Recently, meta-algo-
rithms, including greedy algorithms, genetic algorithms (GAs), and particle swarm optimiza-
tion (PSO), have been successfully applied to multihead machine problems. For example, Fu
and Su (2000) employed a GA, simulated annealing algorithm, and Tabu search-based algo-
rithm to solve a dynamically combinatorial problem. Moreover, Loh et al. (2007) applied a GA
to auto nozzle changer (ANC) assignment and place sequence for a placement machine. Jiang
et al. (2010a, 2010b, 2010c) employed an improved ant colony algorithm to optimize place
sequence and minimize nozzle changes. A memetic algorithm was proposed to solve a place-
ment machine scheduling problem (Neammanee and Reodecha, 2009). For PCB assembly, Du
et al., focused on feeder assignment and component pick-and-place sequence problems and
presented a hybrid GA combining heuristic and genetic algorithms for evaluating the perfor-
mance of feasible solutions (Du and Li, 2008). In another study of multihead placement
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machines, a GA with a distinct crossover operation and mutation
operators was applied to yield satisfactory results on robot assem-
bly time by reducing movement distance of a feeder carrier and
PCB table (Lin and Zhu, 2008). An efficient neural network
approach was presented to minimize the cycle time of a schedule
for a cyclic job shop problem (Kechadi et al., 2013). Al-Anzi and
Allahverdi focused on modeling a two-stage multimachine assem-
bly scheduling problem by employing an artificial immune system
to minimize total assembly time (Al-Anzi and Allahverdi, 2013).
Other related studies include Smed et al., 1999; Chen et al., 2011;
Chen and Shen, 2010; Jiang et al., 2010a, 2010b, 2010c; Luo et al.,
2010; Zhang et al., 2010; Alkaya and Duman, 2013; Chen et al.,
2012a, 2012b; Csaba and Nevalainen, 2015; Jensen, 2003; Chen
and Chang, 1995; Park et al., 2005.

Kim et al., developed an ontology-based model representing
morphological characteristics related to assembly joints (Kim
et al., 2009). A two-phase automatic generation of assembly
plans was designed. First, a graph-based procedure with topologi-
cal and geometric description provided a layout of an assembled
product. Second, heuristic knowledge of mechanical components
and assembly processes were used to plan selected assembly
sequences (Kroll et al., 1989). A new GA encoding scheme and
selection criteria were proposed for automatic generation of elec-
tromechanical engineering designs (Peysakhov and Regli, 2003).
Zeng et al. developed probability increment-based swarm optimi-
zation (PIBSO) through roulette wheel selection and probability
updating to solve a PCB assembly optimization problem. PIBSO
provides improved tour length and CPU running time (Zeng
et al., 2014). Chen and Wichman (1993) developed a novel system
that integrated neural networks to capture a design concept and
instigated a rule-based system for automatically generating an
assembly plan. Intelligent selective disassembly with an ant col-
ony algorithm has been used to solve combinatorial optimization
problems (Wang et al., 2003).

To simplify the investigated problems, the aforementioned
studies have ignored some practical limitations of placement
machines. This study aimed to overcome these limitations and
the following hardware constraints: (1) component height restric-
tions, (2) time consumption for nozzle changes, (3) picking
restrictions, (4) placing restrictions, (5) simultaneous pickup
restrictions, and (6) component shape restrictions. Moreover, a
hybrid group search optimizer (HGSO) is proposed to generate
feasible and efficient scheduling solutions for PCB assembly.

Machine description

Surface mount technology (SMT) equipment, also termed place-
ment machines, are the most crucial and complex equipment in
SMT production. Figure 1 presents the multihead placement
machine examined in this study. The machine has eight heads
for eight nozzles, and different nozzles can be selected according
to the shape of the component to be installed. One ANC accom-
modates 16 small nozzles and 4 large nozzles. For continuous
assembly of components, 90 feeder slots are integrated using
tape or stick feeders. The head moves along the X–Y axis to
pick components from a feeder slot and place them at appropriate
positions on the PCB. A pick-and-place cycle is completed when
all the picked components are placed at their appropriate
positions.

The primary parts of a placement machine are as follows:

(1) Head: Each head has one nozzle that can pick one
component.

(2) Nozzle: A nozzle is installed on a head and used to pick com-
ponents. A nozzle of a specified shape can only pick up com-
ponents of the same shape.

(3) ANC: An ANC is designed for holding and exchanging
nozzles.

(4) Feeder: A feeder stores and supplies components. Each feeder
can store one component.

(5) Slot: A slot is designed for feeder insertion.
(6) Feeder station: A feeder station holds feeders.
(7) PCB table: A PCB table is designed to fix PCBs.
(8) Arm: An arm moves the heads in an X–Y axis direction to

appropriate positions for picking and placing components.
(9) Fly vision: This is designed to ensure that the com-

ponents are correct and defect-free and to relocate X–Y
coordinates.

Problem definition

Restrictions of placement machine

To generate an efficient schedule for the placement machine in
this study, the following restrictions were considered:

(1) Component height: The component heights are different. To
avoid collisions with already installed components, compo-
nents with lower heights should be placed with higher
priority.

(2) Nozzle setup: Components with different shapes require noz-
zles with the corresponding shapes, but changing the nozzles
increases production time and cost.

(3) Picking restrictions: The moving distance of each head is
practically limited. For example, in Figure 2a, b, heads 3–8
cannot reach components in slot c, and heads 1–2 cannot
pick components in slot d, respectively.

(4) Placing restrictions: Not all heads can place components in all
slots. For example, in Figure 3a, heads 7–8 cannot place com-
ponents at position a, and in Figure 3b, heads 1–2 cannot
place components at position b.

(5) Simultaneous pickup restrictions: Simultaneous pickup is
essential for reducing the number of pickups and therefore
production time. The following conditions are necessary for
simultaneous pickup:
a. Components are stored in the tape feeder.
b. One feeder slot between component feeders.
c. Picking angles for all components are the same.
d. The same camera is used for fly vision.

In the first run, eight heads, excluding heads #5 and #6, can
simultaneously pick components R6, H2, M2, H3, M3, and H5
(Fig. 4a). In the second run, components H2 and M2 can be
picked by heads #5 and #6 (Fig. 4b). The increased number of
simultaneously picked components reduces the number of pick-
ups required.

(6) Component shape restrictions: When a component is larger
than 15 mm, it requires the space of more than one head.
In such cases, the adjacent head cannot be used. In our exam-
ple in Figure 5, the sizes for components V1 and V2 are 36
and 45 mm, respectively; therefore, heads #2, #4, and #6 are
idle when heads #3 and #5 are used (Fig. 5).
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Problem statement

This study aimed to provide efficient scheduling with minimum
production time for assembling PCBs. An interview with the
site engineer responsible for the placement machine revealed
that although the component positions in the feeders are not
fixed, the arrangement seldom varies in practice. If the same com-
ponents are used in different PCBs, their positions in the feeders

are generally retained. The following three interacting problems
are discussed herein:

(1) ANC assignment: component pick-and-place sequences
interact with each other to enable determination of the opti-
mal ANC.

Fig. 2. Picking restrictions

Fig. 1. Schematic of the multihead placement machine used in this study
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(2) Nozzle assignment: The nozzle must be assigned by consider-
ing the pick, place, component height, and simultaneous
pickup restrictions to reduce the number of pickups and noz-
zle changes, thereby reducing the total assembly time.

(3) Component pick-and-place sequence: The component
pick-and-place sequence must be optimized so that head
movement for pick-and-place operations uses the shortest
path.

Problem formulation

Considering limitations in the practical operation of a multihead
placement machine, a mathematical model is proposed for opti-
mizing the total assembly time, which includes pick time, place
time, and ANC time. Eq. (1) can be applied to minimize the
total assembly time for PCB production.

Ttotal =
∑NC
c=1

(Tpick(c))(+Tplace + Tchange) (1)

where Ttotal, Tpick, Tplace, and Tchange are the total production time
for PCB assembly, total pick time, total placing time, and total
nozzle change time, respectively. Tpick, Tplace, and Tchangeare
given as follows:

Tpick

=

∑NP−1

i=1
(T(d(Si, Si+1)) + Tz(i+ 1) + TDi+1 + TPi+1) , c = 1

T(d(PCN , S1)) + Tz(1) + TD1 + TP1+∑NP−1

i=1
(T(d(Si, Si+1))+ Tz(i+ 1)+TDi+1+TPi+1), otherwise

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2)

Tplace = T(d(SN , PC1)) + Tz(1) + TB1 + TL1+
∑N
j=2

(T(d(PC j−1, PCj)) + Tz(j) + TBj + TLj)
(3)

Fig. 3. Placing restrictions
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Tchange = T(d(PCN ,A1)) + T(d(ACN , S1))

+
∑CN
k=1

T(d(Ak,Ak+1)) + TNk]
(4)

where Min(Ttotal) indicates that the objective is to minimize the
total assembly time; NC, N, and NP are the total number of cycles
in the assembly, heads in the placement machine, and pickups in
the assembly, respectively; and TD, TP, TB, and TN are the
vacuum on delay time, total waiting time for picking components,
total waiting time for placing components, load wait time, and

Fig. 4. Simultaneous pickups

Fig. 5. Component shape restrictions
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total time for changing nozzles, respectively. Furthermore, CN is
the total number of nozzle changes; PC is the component picking
position; S is the position of the active slot; A is the position of
nozzle change in the ANC; d() is the movement distance of the
head; T() is the time required for head movement; andTz(c) is
the movement time in both directions along the Z axis.

HGSO for scheduling optimization

The GSO is a heuristic algorithm that was developed in 2009 (He
et al., 2009). The SO mimics the behavior of animals searching for
food, resources, and places. The GSO reaches global optimum
through a local search of team members. It involves few control
parameters, and the associated calculations are easy. Under
most circumstances, only slight adjustments are required to
both parameters and team members in order to apply the GSO
to different optimization problems.

Based on the GSO, an HGSO algorithm is proposed herein
for optimizing PCB assembly time. The proposed HGSO over-
comes several hardware limitations, including (1) component
height restrictions, (2) time consuming nozzle changes, (3) pick-
ing restrictions, (4) placing restrictions, (5) simultaneous pickup
restrictions, and (6) component shape restrictions. The proposed
HGSO divides PCB assembly into three problems: the (1) ANC
assembly problem, (2) nozzle setup problem, and (3) component
pick-and-place sequence problem. The first step of the HGSO is
to proportionally distribute nozzles to the ANC according to
required nozzle usage, which is determined by the component
picking sequence. The component heights must be considered
to avoid collision (i.e., shorter components must be placed ear-
lier). Then, the HGSO generates an efficient picking schedule
by considering picking, simultaneous picking, component
shape, and placing restrictions. Chaos local search and a popula-
tion manager are utilized to increase the diversity of placing
routes and reduce total PCB assembly time. Figure 6 presents
the procedures of the proposed method.

Proportional distribution of nozzles to the ANC

During production, any head in the placement machine may
require nozzle change to pick the subsequent component. The
ANC has 20 cells, with 16 small and 4 large cells (Table 1).
PCBs are different with different numbers of components. For
efficient production, the nozzles must be assigned to the ANC
before commencing operation. In this study, the nozzles were
distributed to the ANC according to the number of pickups by
each nozzle. Table 1 presents nozzle arrangement involving one
large nozzle (ANV1) and four small nozzles (AN3, AN5, AN6,
and AN7).

Step 1: Ensure that at least one nozzle is assigned in the ANC to
each component in Table 2, namely ANV1, AN3, AN5, AN6,
and AN7.

Step 2: Subtract the number of cells that have been occupied in
step 1 (i.e., 20−5 = 15). Compute the number of nozzles
required for each nozzle type (Table 3) according to the com-
ponents to be picked up (Table 6).

Step 3: Ensure that the number of nozzles assigned for each type is
not higher than the number of heads. For example, if the num-
ber of nozzles assigned for type AN3 exceeds the number of
heads, reduce the number of nozzles to the maximum number
of heads (Table 4).

Step 4: Repeat steps 2 and 3 until all cells in the ANC are occupied
(Tables 5 and 6, Fig. 7).

HGSO algorithm

To avoid collision during component placement, shorter compo-
nents must be placed earlier. In the following example, compo-
nents with a height of 0.6–2.6 mm (see Table 7) are grouped
together and can be arbitrarily placed if height restriction is
2 mm.

A random number between 0 and 1 is generated and assigned
to each member for executing the GSO algorithm (Table 8).
N and xi are the total number of components and the ith member
in the GSO, respectively. Each member represents a scheduling
solution.

The traditional GSO cannot be employed to schedule place-
ment machines because this problem is a type of integer optimi-
zation. In this study, an MGSO with an added random key
(Snyder and Daskin, 2006) was proposed for scheduling optimiza-
tion of PCB assembly. Tables 9–11 illustrates the procedure. The
first random number in Table 9 is 0.95. Component 6 is assigned
to the first cell after considering component height, component
shape, nozzle assignment, and picking restrictions. In Table 10,
the initial solution with random numbers in Table 9 is adjusted
by placing the elements in an ascending order: 0.12, 0.15, 0.75,
0.76, 0.88, 0.93, 0.95, and 0.99. Element 0 is assigned to the lowest
random number (0.12), element 1 is assigned to the subsequent
number (0.15), and so on (Table 11). Table 12 presents the solu-
tions for the large components, where head #3 and #5 are idle in
the first cycle because component 9 occupies the space beneath
them.

The 2-opt method is employed to the solution of the initial
path derived from Table 12. Table 13 presents the improved solu-
tion. A mathematical model that calculates the total assembly
time is then applied to evaluate the performance of the probable
solutions. Table 14 presents the final result.

Chaos local search

Chaos local search (Liu et al., 2005), which is a new optimization
technique, is applied to improve MGSO evolution performance.
Chaos local search has several advantages for obtaining the initial
solution, such as sensitivity and dependence, which ensure the
diversity and appropriate search behavior of the entire space.
The chaos search formula is as follows:

xn+1 = m× xn(1− xn), 0 ≤ x0 ≤ 1 (5)

where μ and x are a control parameter and a random variable,
respectively, with n = 0, 1, 2, … However, when μ = 4, x0{0,
0.25, 0.5, 0.75, 1} can be applied to Eq. (5). Chaos is sensitive
and dependent on initial conditions, and a slight initial difference
can generate considerable variances given a long enough time-
frame. The MGSO searches the entire space by using particular
characteristics of chaos [Eq. (6)]:

cx(k+1)
i = 4cx(k)i (1− cx(k)i ), i = 1, 2, . . . . . . ,N (6)
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where cxi and k are a chaos variable and the number of iterations,
respectively. cx(k)i has a range of [0, 1] and satisfies cx(0)i [ (0, 1),
cx(0)i å {0.25, 0.5, 0.75}. The procedure of chaos search is as
follows:

Fig. 6. Systematic procedures within HGSO

Table 1. Nozzle arrangement in ANC

Size
Big Nozzle Small Nozzle

No. 1 2 3 4 5 6 7 8 9 10

Nozzle ANV1 ANV1 AN3 AN5 AN6 AN7 AN3 AN3 AN3 AN3

ANV1 ANV1 AN3 AN3 AN3 AN5 AN5 AN5 AN5 AN6

No. 11 12 13 14 15 16 17 18 19 20

Table 2. ANC arrangement step 1

Size
Big Nozzle Small Nozzle

No. 1 2 3 4 5 6 7 8 9 10

Nozzle ANV1 AN3 AN5 AN6 AN7

No. 11 12 13 14 15 16 17 18 19 20

Table 3. Number of nozzles per type

Nozzle types ANV1 AN3 AN5 AN6 AN7

Number 3 9 2 0 0
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Step 1: Use Eq. (6) to produce chaos variables for the subsequent
generation.

cx(k+1)
i , cx(k)i = xi (7)

Step 2: Compare the new solution cx(k+1)
i with the original solu-

tion cx(k)i . Use the more favorable solution.

xi = cx(k+1)
i (8)

Step 3: Repeat steps 1 and 2 until i =N.

Population manager

Because similar subjects have similar fitness values and converge
to likely positions, the worse subjects must be eliminated to

improve efficiency and reduce computation. Similarity is evalu-
ated as follows (Liang and Lee, 2015):

f (xi) − f (xj)
f (xj)

∣∣∣∣
∣∣∣∣ , dm , xi − xj , rm (9)

where δm and rm are threshold values, representing the average fit-
ness value and average distance of the entire space, respectively;
·‖ ‖ denotes the distance betweenxi and xj. Figure 8 illustrates

this concept. Subjects Q3 and Q4 have similar fitness values
(less than δm); however, the distance is larger than rm. The posi-
tions for Q5 and Q6 are close (less than rm); however, the fitness
values are considerably different. The fitness values and positions

Table 4. Nozzle arrangement checklist

Nozzle types ANV1 AN3 AN5 AN6 AN7

Number 3 7 2 1 0

Size Big Nozzle Small Nozzle

No. 1 2 3 4 5 6 7 8 9 10

Nozzle ANV1 ANV1 AN3 AN5 AN6 AN7 AN3 AN3 AN3 AN3

ANV1 ANV1 AN3 AN3 AN3 AN5 AN5 AN6

No. 11 12 13 14 15 16 17 18 19 20

Table 5. Final nozzle arrangement

Size
Big Nozzle Small Nozzle

No. 1 2 3 4 5 6 7 8 9 10

Nozzle ANV1 ANV1 AN3 AN5 AN6 AN7 AN3 AN3 AN3 AN3

ANV1 ANV1 AN3 AN3 AN3 AN5 AN5 AN5 AN5 AN6

No. 11 12 13 14 15 16 17 18 19 20

Table 6. Components per nozzle type

Nozzle
Component

shape
Number of
component

Proportion of
nozzle (%)

AN3 Small 330 71

AN5 Small 90 19

AN6 Small 30 6

AN7 Small 18 4

ANV1 large 18 100

Fig. 7. Proportion of small nozzles
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Table 7. Component information

Component height (mm) Component type Number of component Nozzle Component shape Slot

0.6 R12 132 AN3 Small 35

R13 36 AN3 Small 38

R6 36 AN3 Small 36

R8 18 AN3 Small 34

R10 18 AN3 Small 53

R5 36 AN3 Small 37

R3 18 AN3 Small 54

1 D5 18 ANV1 Large 5

1.4 C2 36 AN3 Small 52

1.5 D1 18 AN5 Small 42

2.2 A1 72 AN5 Small 56

3.5 D2 30 AN6 Small 45

4 V1 18 AN7 Small 58

Table 8. Coding method for GSO members

Dimensions 1 ……… N

xi 0.95 0.99 0.15 0.76 0.75 0.93 0.12 0.88 ……

Table 9. Initial solution: random numbers

xi 0.95 0.99 0.15 0.76 0.75 0.93 0.12 0.88 …

Element 6 4 5 8 3 0 7 1 …

Table 10. Members arranged in ascending order

xi 0.93 0.76 0.88 0.99 0.75 0.12 0.95 0.15 …

Element 6 4 5 8 3 0 7 1 …

Table 11. Final solution of members

xi 0.93 0.76 0.88 0.99 0.75 0.12 0.95 0.15 …

Element 6 4 5 8 3 0 7 1 …

Head No 1 2 3 4 5 6 7 8 …

Number of cycle 1 1 1 1 1 1 1 1 …

Slot No 34 36 38 34 52 38 56 42 …

Pick sequence 1 1 1 2 3 2 3 2 …

Place sequence 1 2 3 4 5 6 7 8 …
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Table 12. MGSO of large components

xi 0.91 0.74 0.84 0.83 0.71 0.13 0.81 0.14 …

Element 6 4 9 8 3 0 7 1 …

Head No 1 2 4 6 7 8 1 2 …

Number of cycle 1 1 1 1 1 1 2 2 …

Slot No 34 36 5 34 52 38 56 42 …

Pick sequence 1 1 2 3 4 3 1 2 …

Place sequence 1 2 3 4 5 6 1 2 …

Table 13. The 2-opt method

xi 0.93 0.76 0.88 0.99 0.75 0.12 0.95 0.15 …

Element 6 4 5 8 3 0 7 1 …

Head No 1 2 3 4 5 6 7 8 …

Number of cycle 1 1 1 1 1 1 1 1 …

Slot No 34 36 38 34 52 38 56 42 …

Pick sequence 1 1 1 2 3 2 3 2 …

Place sequence 1 2 3 4 5 6 7 8 …

Place sequence 1 2 1 3 4 5 6 7 8 …

Place sequence 2 2 3 1 4 5 6 7 8 …

Place sequence 3 2 3 4 1 5 6 7 8 …

Place sequence…. 2 3 4 5 6 7 8 1 …

Table 14. Final scheduling results

Cycle Head Pick sequence Place sequence Component No Slot Nozzle

1 1 1 2 6 34 AN3

1 2 1 3 4 36 AN3

1 3 1 4 5 38 AN3

1 4 2 5 8 34 AN3

1 5 3 6 3 52 AN3

1 6 2 7 0 38 AN3

1 7 3 8 7 56 AN5

1 8 2 1 1 42 AN5

n 1 2 1 40 34 AN3

n 2 3 2 46 52 AN3

n 3 2 3 26 38 AN3

n 4 3 4 8 56 AN5

n 5 2 5 2 42 AN5

n 6 1 6 39 34 AN3

n 7 1 7 44 36 AN3

n 8 1 8 43 38 AN3
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for Q1 and Q2 are similar, which satisfy Eq. (9), and the lower
value (Q1) can be deleted.

Experimental results and comparisons

The real-time data from a placement machine (EM-780, Evest
Corporation, Taoyuan, Taiwan; Figure 9) were used to evaluate
the feasibility of the proposed method. In this study, 10 PCBs
with different numbers and types of components, nozzle types,
and feeders (Table 15) were assembled.

According to Section ‘GSO for scheduling optimization’, the
initial settings are as follows: N = 100, iterations = 3000, scroun-
gers = 80%, rangers = 20%, and head angle = 0.25π. The maxi-
mum iteration is a = round

						
n+ 1

√
. If the producer cannot

determine the improved area after a iterations, Ui and Li are

equal to 1 and −1. Here, n and lmax =
														∑N
i=1

(Ui − Li)2
√

are the

number of components and maximum pursuit distance, respec-
tively. Figure 10 displays the number of pickups, total assembly
time, and moving distance obtained using the proposed method.

Yan et al. (2011) proposed GSPSO, which integrates high-
speed computation in PSO with the favorable high-dimensional
performance of GSO. Chen et al. (2012a, 2012b) presented an
improved group search optimizer (IGSO) with a quantum-
behaved operator for scroungers according to a certain probability
of improving GSO convergence performance. In this method, the
scroungers are categorized into two types: the scroungers that
update their positions with quantum PSO operators and those
that search for opportunities to join the resources found by the
producer. Nian et al. (2013) proposed a differential evolution
(DE) GSO, which is a hybrid of DE and GSO. DE prevents tradi-
tional GSO from falling into local optimal and enhances its accu-
racy. Table 16 compares the proposed method and related
algorithms. The proposed method required the least total PCB
assembly time for the 10 PCBs out of the compared algorithms.
Figure 11 shows the learning curve for PCB_7, revealing that
the total assembly times of PCB_7 using the proposed method
and IGSO are similar [38]. Table 16 shows that the total average
assembly times for the 10 PCBs (i.e., PCB_1–PCB_10) were 531.8,
523.3, 517.7, 495.3, and 394.3 s for the GSO (He et al., 2009),
GSPSO (Yan and Shi, 2011), IGSO (Chen et al., 2012a, 2012b),
DEGSO (Nian et al., 2013), and proposed method, respectively.
Therefore, the total average assembly time of the proposed
method is superior to that of other methods (He et al., 2009;
Yan and Shi, 2011; Chen et al., 2012a, 2012b; Nian et al., 2013).

Algorithm performance in this study is determined in terms of
the (1) total number of pickups, (2) total head movement dis-
tance, and (3) total assembly time. The results of the proposed
method were compared with those of related algorithms, such
as GAs or the improved shuffled frog leaping algorithm (Loh
et al., 2001; Sun et al., 2005; Chang et al., 2007; Ho and Ji,
2010; Zhu and Zhang, 2014). The number of pickups consider-
ably influences PCB assembly, with total assembly time reducing
with decreasing number of pickups. The proposed method
required the least number of pickups for all experimental PCBs,
excluding PCB_2 (Table 17). Figures 12–14 exhibit improvements
calculated using the following equation:

Improvement = Onsite Engineer−Our method
Onsite Engineer

× 100% (10)

Assembly time reduces with decreasing total head movement

Table 15. PCB information

PCB ID Components
Component

types
Nozzle
types

Enable
feeders

PCB_1 796 6 1 6

PCB_2 198 3 1 3

PCB_3 396 14 4 14

PCB_4 100 11 3 14

PCB_5 48 3 1 3

PCB_6 59 8 3 8

PCB_7 78 2 1 2

PCB_8 735 7 2 7

PCB_9 151 7 2 7

PCB_10 291 6 1 6

Fig. 8. Fitness value and position

Fig. 9. Placement machine EM-780
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distance. Table 18 presents the experimental results, which indi-
cate that the proposed algorithm can effectively reduce total
head movement distance. Table 18 outlines the operation for
PCB_6, showing that the head movement distance generated by
the proposed algorithm is longer than that produced by an onsite
engineer. Figure 13 reveals improvement in the total head move-
ment distance achieved using the proposed algorithm.

From Table 19 and Figure 14, the proposed HGSO algorithm
outperforms other algorithms and the onsite engineer in terms of
assembly time. Although the total number of pickups for PCB_1,
PCB_3, and PCB_8 in Table 17 did not differ substantially, the
total head movement distances (Table 18) were clearly different.
Figure 14 shows the excellent performance of the proposed
HGSO in terms of total assembly time. In practice, onsite
engineers can appropriately design optimal pickup sequences
but not path optimization. The proposed HGSO considers the
total number of pickups and the total head movement distance
to reduce the total assembly time. In the total assembly time, con-
siderably more time is spent on pickups than it is on head move-
ment. Table 20 presents the percentages of pickup time, placing
time, and ANC time. To reduce total assembly time, a higher
head movement distance is traded off for fewer pickups. Studies

(Loh et al., 2001) and (Jiang et al., 2010a, 2010b, 2010c) have
decomposed the scheduling problem into two stages: optimization
(minimization) of (1) the number of pickups and (2) the place
movement based on the results of stage one. The proposed
HGSO is less complicated than the two-stage method.

Discussion and conclusions

This study aimed to perform scheduling optimization for reduc-
ing total PCB assembly time. Scheduling for a placement machine
is a highly comprehensive task. Several studies have overlooked
machine limitations to simplify the problem. However, the gener-
ated schedules produced by these studies cannot be practically
applied to production lines. By contrast, this study proposed an
HGSO that considers the limitations of placement machines to
generate an applicable schedule are summarized as follows.

(1) Component height: The height of each component could be
different, and the components are picked and placed in the
ascending order of the height to avoid collision, i.e., The com-
ponent with the lowest height must be placed first at the
beginning of the placement machine during work.

Table 16. Total assembly time in the proposed method and related GSOs

PCB ID

Total PCB assembly time (s)

GSO [33] GSPSO[37] IGSO[38] DEGSO[39] Proposed method

PCB_1 701.41 689.781 682.031 671.252 552.925

PCB_2 385.43 371.9 367.25 312.35 295.796

PCB_3 861.31 821.63 792.12 701.33 630.982

PCB_4 255.296 252.988 254.596 247.52 143.316

PCB_5 40.4064 38.125 37.8533 37.7147 32.8864

PCB_6 162.536 156.132 152.722 150.22 101.261

PCB_7 132.289 130.927 127.917 130.135 127.857

PCB_8 1710.431 1694.912 1660.29 1672.94 1292.1

PCB_9 367.913 389.897 390.124 354.163 249.459

PCB_10 701.416 687.198 711.79 675.61 516.653

Average 531.8 523.3 517.7 495.3 394.3

Fig. 10. Number of pickups, total assembly time, and moving distance
obtained through the proposed method
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Table 17. Comparison of total number of pickups

PCB ID

Total number of pickups (times)

Onsite
engineer Loh et al., [8] Sun et al., [18] Zhu et al., [19] Ho et al., [20] Chang et al., [21]

Proposed
method

PCB_1 345 358 335 601 557 586 345

PCB_2 82 87 91 90 81 91 86

PCB_3 267 286 254 367 356 374 267

PCB_4 60 85 83 93 87 87 45

PCB_5 19 26 34 35 34 39 19

PCB_6 55 47 43 53 52 54 45

PCB_7 59 58 63 67 61 65 58

PCB_8 455 442 428 585 594 588 455

PCB_9 80 82 91 119 122 115 77

PCB_10 182 215 198 235 232 228 182

Fig. 12. Improvement in total number of pickups

Fig. 11. Learning curve of PCB_7
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(2) The Time consuming of nozzle changes: shapes of the compo-
nents are different, and each matches a unique corresponding
nozzle. When the nozzle is not applicable, the head need to
exchange the nozzle. The process of nozzle changes takes time.
Some scholars ignore the time consuming of nozzle changes.

(3) Picking restrictions: In the placement machine, not every
head can pick up component in all feeders because there
are some positions that the head cannot reach.

(4) Placing restrictions: As above, there are some destinations that
head cannot arrive.

(5) Simultaneous pickup restrictions: Simultaneous pickup is
important in the placement machine process. Practically, we
want to simultaneously pick up components as many as pos-
sible to reduce the time consuming on picking components.
The restrictions of the head pitch and the feeder pitch should
be under consideration.

Table 18. Total head movement distance

PCB ID

Total head movement distance (mm)

Onsite Engineer Loh et al. [8] Sun et al. [18] Zhu et al. [19] Ho et al. [20] Chang et al. [21] Proposed method

PCB_1 190415 214840 185643 217102 214007 217824 189981

PCB_2 23980 32312.7 33045 28935.4 28629.5 30452.2 21245.9

PCB_3 83275 92201 86887 126815 121632 138081 82828.5

PCB_4 23997.5 34597.2 32089 29007.1 23741.7 33255.7 19984.7

PCB_5 12255.6 14539.5 14319.4 11945.8 11946.4 12700.8 11688.4

PCB_6 12378.1 18313.7 18153.7 17285.2 15513 18163.6 14114.7

PCB_7 9716.34 9033.89 9128.17 8986.48 8951.44 9362.49 7530.61

PCB_8 98201 82474 74497 113480 115105 112546 97981.5

PCB_9 20268.5 24712.7 26175 23234.4 22693.3 24074.8 18934.7

PCB_10 40671.4 48085 46348.9 37400.9 37606.1 37422.9 39999.8

Fig. 14. Improvement in total assembly time

Fig. 13. Improvement in total head movement distance
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(6) Component-shape restrictions: the components differ in
shape and size. If the component shape is larger than the
limit, the adjacent head cannot pick up the component.

Compared with the related works in this field, this study considers
more restrictions than others. This is the first study includes com-
ponent heights and component shapes in the scheduling problem
of a placement machine. In addition, this study modified the tra-
ditional group search optimizer for the possible usage for PCB
assembly. The results indicate that the proposed HGSO is super-
ior to related algorithms and an onsite engineer in terms of total
assembly time. Although the diversity of placement machines for
PCB assembly is many, the key structures of placement machines
are the same. The proposed hybrid group search optimizer pos-
sesses flexibility on adjusting the parameters according to the
head numbers, number of nozzle types, etc. and can be widely
applied to general multihead placement machines.
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