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Flapping wings of insects can follow various complex-motion waveforms, influencing
the flow structures over a wing and consequently the aerodynamic performance.
However, most studies of insect-wing models incorporate either simple harmonic
or robofly-like motion waveforms. The effects of other waveforms appear to be
under-explored. Motivated by this, the present study investigates the individual and
combined effects of the sweep- and pitch-motion waveforms for fixed flapping
frequency and amplitude of a fruit-fly wing planform. Physical experiments are
conducted to directly measure the forces and torques acting on the wing. Interestingly,
the sweep waveform is observed to influence the overall variation in the lift coefficient
(CL), whereas the pitch waveform is observed to influence only the instantaneous CL
during stroke reversal. Carefully validated three-dimensional numerical simulations
reveal that a change in the strength of the large-scale vortex over the wing as the
sweep profile parameter is varied is responsible for the observed variations in CL.
An exploration over wide ranges of the sweep and the pitch profile parameters
shows that the waveforms maximising the mean lift coefficient are different from
those maximising the power economy. Consistent with some previous experiments on
robotic insects, the possibility of passive pitch motion is observed at slower pitching
rates. Contours of the mean lift coefficient and power economy mapped on the planes
of the sweep and the pitch profile parameters can help designers of flapping-wing
micro air vehicles in selecting the waveforms appropriate for their design criteria.

Key words: swimming/flying

1. Introduction
The flight of flapping-wing micro air vehicles (FWMAVs) is relatively costly

compared to that of large gliders due to the increased viscous resistance at small
scales. However, the high lift generated as a result of multiple unsteady mechanisms,
such as the delayed stall and the clap-and-fling mechanisms, makes flapping essential
for a stable flight at low Reynolds numbers (Sane 2003). The flapping-wing
mechanism in FWMAVs has been inspired by that of insects. A flapping stroke
comprises the rotational translation (or sweep) during a half-stroke, followed by the
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flip motion (or pitch) towards the end of the half-stroke. Two such half-strokes,
namely the upstroke and downstroke, make a single flapping stroke. The mean
lift force generated as a result of various unsteady mechanisms depends on the
flapping-motion pattern of the wing, which also affects the flight economy. Hence, in
order to have a complete understanding of the kinematic efficiency of a flyer, it is
important to study its flapping kinematics.

An insect wing is free to rotate around three orthogonal axes, allowing three
degrees of freedom. The corresponding three Euler angles represent the phase angle
(φ), the pitch angle (ψ) and the deviation angle (θ ). It has been established that
during ‘normal hovering’, an insect wing is minimally deviated (i.e. θ ∼ 0) and the
wing flaps symmetrically in upstroke and downstroke along nearly a single horizontal
plane (Rayner 1979; Maxworthy 1981). Hence, the important angles in this mode are
φ and α, which are shown in the schematic in figure 1. Following the convention
from the literature (e.g. Chen & Skote 2016), the angle of attack (α) is related to the
pitch angle as α = π/2 − |ψ |. It should be noted that the forces on an insect-style
flapping wing are stabilised by the stable attachment of the leading-edge vortex
(LEV) (see Ellington et al. 1996). The LEV is a peculiar feature of a rotating wing,
which is stabilised on account of the strong spanwise flow driven by the Coriolis and
centripetal accelerations (Lentink & Dickinson 2009), unlike its periodic shedding in
the wake of a two-dimensional (2-D) heaving and pitching wing. Hence, a study of
three-dimensional (3-D) flapping kinematics is different from that of 2-D kinematics
and needs to be explored further.

Previous optimisation studies of wing kinematics can be broadly divided into three
groups. The first group involves studies (e.g. Izraelevitz & Triantafyllou 2014; Van
Buren et al. 2017) investigating the optimal waveforms of heaving and pitching of
2-D wings. The second group includes a number of studies (e.g. Altshuler et al.
2005; Ansari, Knowles & Zbikowski 2008; Young, Lai & Germain 2008; Khan &
Agrawal 2011) investigating the optimised parameters, such as wing-sweep amplitude
(φA), pitch amplitude (ψA), flapping frequency ( f ) and phase of flip rotation (δψ), in
3-D flapping. The third group involves studies (e.g. Sane & Dickinson 2001; Berman
& Wang 2007; Ghommem et al. 2013; Zheng, Hedrick & Mittal 2013; Nakata, Liu
& Bomphrey 2015) investigating optimal 3-D flapping-motion waveforms. Studies
from the first group have been primarily inspired by fish-like propulsion. However,
the mechanism involved in the force generation on small-aspect-ratio 3-D flapping
wings of insects is different (Garmann & Visbal 2013). Studies from the second
group have investigated optimised parameters with either a harmonic or a robofly-like
trapezoidal waveform (similar to that used by Dickinson and co-workers). However,
the flapping-motion waveforms of real insects have been observed to correspond
to neither of those (see Ellington 1984; Fry, Sayaman & Dickinson 2005). Finally,
studies from the third group have investigated the effects of pitch duration and
timing, which indeed determine the pitch waveform, but show contradictory results
as discussed later in this section. However, the sweep waveform, which strongly
influences the instantaneous lift coefficient and is a key factor of this paper, has not
been varied in any of these studies, except in that by Berman & Wang (2007). In fact,
the optimisation study by Berman & Wang (2007) is based on the quasi-steady model
for force predictions, which does not involve the understanding of the flow physics
responsible for the resulting optimised waveforms. Therefore, to our best knowledge,
the systematic study of the individual and combined effects of both the sweep and
pitch waveforms of an insect-like flapping wing has remained under-explored.

Bos et al. (2008) have compared the harmonic, robofly and real fruit-fly waveform
models using a 2-D flapping wing and have shown that the real fruit-fly model
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FIGURE 1. The schematics show (a) the flapping-wing set-up and (b) the alignment of
the forces measured using an ATI-Nano17 F/T transducer attached to the wing root. The
coordinates are shown in the wing’s reference frame, where the Y axis is aligned with the
sweep axis and the Z axis is aligned with the pitch axis along the wingspan.

results in maximum lift coefficient and lift-to-drag ratio. Interestingly, Berman &
Wang (2007) have suggested the following parametric model to systematically vary
both the sweep- and pitch-motion waveforms from harmonic to robofly-style motion:

φ(t)=
φA

sin−1 K
sin−1
[K sin(2πft+ δψ)] and

ψ(t)=
ψA

tanh(Cψ)
tanh[Cψ sin(2πft)],

 (1.1)

where K is the sweep profile parameter, Cψ is the pitch profile parameter and δψ
is the pitching phase offset. Berman & Wang (2007) have varied K from 0, for
the sinusoidal waveform, to 1, for the robofly-like sweep waveform. For the pitch
motion, they have varied Cψ from 0, for the sinusoidal waveform, to 10, for the
robofly-like pitch waveform. Their optimisation study has shown that, for a lift just
sufficient to support the insect mass, high K (>0.7) and low Cψ (<2.5) are desirable
to achieve low flapping-power consumption. However, their optimisation study uses
the forces and torques predicted using quasi-steady models, which do not explain the
flow physics behind the minimum power consumption with the optimised parameters.
Moreover, their force prediction model uses the lift and drag coefficients reported by
Dickinson, Lehmann & Sane (1999), which have been obtained using only the robofly
model. These coefficients differ strongly from those for other motion waveforms, as
observed in the present study.

A computational study of pitch waveforms of a 2-D wing by Bluman & Kang
(2017) has shown results contradictory to those of Berman & Wang (2007). Bluman
& Kang (2017) have investigated the stability of the flapping system and showed
that slow pitching, i.e. a low Cψ , makes the system more unstable than one with
rapid pitching. Moreover, previous experiments by Sane & Dickinson (2001) of a
3-D flapping wing have predicted a high lift coefficient and lift/drag ratio with rapid
pitching, suggesting that a high Cψ is desirable. Other 2-D computational studies
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(e.g. Khan & Agrawal 2011; Ghommem et al. 2013) have also varied the duration of
pitch in a flapping cycle and showed that a slow pitching, i.e. a low Cψ , is necessary
for a minimum power consumption. However, their 2-D model of a flapping wing
comprises linear translation and pitching. The LEV, as mentioned earlier, cannot
be observed to be stable in a 2-D flapping-motion model. Hence, a change in the
additional lift generated by the rotational accelerations, with a change in the sweep
waveform, cannot be predicted well by 2-D models. In short, to achieve the best
possible performance of a FWMAV, it is important to identify the optimal flapping
waveforms for both the sweep and pitch motions. It is also necessary to observe the
relation between the complex 3-D flow structure over the wing and the aerodynamic
forces, which can reveal the influence of flapping waveforms on the flow instabilities.

In the present experimental study motivated by insect-scaled MAVs, a fruit-fly
wing planform is made to flap at a span-based Reynolds number of Reb = 215
using various motion waveforms for φ and ψ . The performance is computed from
the direct measurements of forces and torques along the three Cartesian axes. The
cycle-averaged lift and power economy, derived from the measurements, are observed
to vary with changes in the values of K and Cψ . Computational simulations of
the chosen flapping-wing cases reveal the detailed variations in flow structures
with K and Cψ . Additionally, a comparison of a real fruit-fly-style flapping motion
with the simplified parametric flapping model indicates that the flapping motion in
nature is reasonably optimised for minimum power. The parametric model allows
the optimisation of K and Cψ values to achieve higher lifts. The lift coefficient and
power economy mapped on the plane of K and Cψ can help designers in selecting
the optimum flapping-motion profile based on the desired output for their MAVs.

2. Method

This study was conducted using a wing flapping at a fixed Reynolds number, with
varying flapping-motion waveforms. As mentioned earlier, the study was motivated
by developments in insect-scaled MAVs. In this regard, fruit-fly wing kinematics
has been widely explored in the past. Fruit flies are observed to flap their wings at
Reynolds numbers in the range [120–170] based on the wing chord and the wing-tip
velocity (Fry et al. 2005). This range is scaled to, approximately, [200–280], based
on the wingspan (b) and the mean velocity at the radius of gyration (Rg). This
span-based scaling of the Reynolds number (Reb) has been shown to appropriately
govern the large-scale flow structures over a wing in our recent studies (Harbig,
Sheridan & Thompson 2013; Bhat et al. 2019). In the case of flapping wings, Reb is
defined as

Reb =
Ugb
ν
, (2.1)

where Ug is the cycle-mean velocity at Rg given by Ug = 4nφARg, n is the flapping
frequency, φA is the stroke amplitude and ν is the kinematic viscosity of the medium.
Throughout this study, the stroke amplitude and the frequency were maintained to be
constant (φA= 70◦ and n= 0.55 Hz), such that Reb= 215, which was within the fruit-
fly range. The mean force and energy calculations for a wide range of flapping-motion
waveforms were obtained from the direct experimental measurements. The detailed
variations in vortical structures over the wing with the changes in the waveforms were
obtained using 3-D computational simulations.
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FIGURE 2. (a) The parts of the flapping-wing rig assembly are shown in an exploded
view. (b) A photograph of the assembled set-up of the flapping-motion rig.

2.1. Flapping-wing experiments
The experiments were performed on a fruit-fly (Drosophila melanogaster) wing
planform of wingspan b= 0.12 m and aspect ratio A= 2.91, fabricated from a stiff
2 mm thick acrylic sheet. The wing was attached rigidly to an ATI-Nano17 IP68
transducer. The transducer could measure forces with an accuracy of 0.003 N and
torques with an accuracy of 0.015 N mm. The transducer, along with the wing, was
attached to a flapping mechanism allowing motion of two degrees of freedom. The
flapping mechanism was driven using two servo motors (EC-max30, Maxon Motor).
Motor-1 controlled the sweep motion via the main shaft. Motor-2 controlled the
pitch motion via a timing belt-and-pulley mechanism placed inside the hollow main
shaft. The parts of the flapping-wing assembly are shown in an exploded view in
figure 2(a). The transducer and the attachments caused the wing to be offset from the
sweep axis such that the offset ratio was b0/b= 0.5. From a previous study, for this
offset ratio, the forces over the wing can be assumed to be minimally affected by
the central body (Bhat et al. 2019). Other parameters, which were maintained to be
constant, are the pitch amplitude (ψA = 45◦) and the pitching phase offset (δψ = 90◦).

As shown in the photograph in figure 2(b), the flapping-motion rig was mounted
on a square tank of size 0.5 × 0.5 × 0.6 m3 filled with Stella food-grade mineral
oil of kinematic viscosity ν ∼ 150 mm2 s−1. This high viscosity helped to maintain
sufficiently high signal-to-noise ratio of the force measurements, even at low Reynolds
number. Mineral oil also helped to reduce the noise levels in the recorded signals by
electrically and thermally isolating the transducer. The kinematic viscosity was found
to vary with ambient temperature. Accordingly, the flapping frequency was adjusted
before each experimental run such that Reb remained constant.

The ATI-Nano17 transducer was attached to the wing in such a way that it always
measured the forces and torques along the axes fixed to the wing’s reference frame.
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884 A8-6 S. S. Bhat and others

As can be seen in figure 1(b), the transducer measured the forces along the wing chord
(Fc) and normal to the wing (Fn). The lift and drag over the wing were calculated as

L= Fc cos(ψ)+ Fn sin(ψ) and D=−Fc sin(ψ)+ Fn cos(ψ), (2.2a,b)

respectively. The lift and drag coefficients of the wing were computed as

CL =
2L

ρU2
gS

and CD =
2D

ρU2
gS
, (2.3a,b)

where ρ is the density of the mineral oil and S is the wing area. The transducer also
measured the torques about the axes along the chord and the normal, referred to as τc

and τn, respectively. Hence, the torques along the X axis and Y axis were computed
as

τx =−τc sin(ψ)+ τn cos(ψ)+ bati × L and τy = τc cos(ψ)+ τn sin(ψ)+ bati ×D,
(2.4a,b)

respectively. Note that the terms bati × L and bati × D are added since the tool side
of the ATI transducer is situated away from the origin by an offset bati = 48 mm.
The calculated moment coefficients, using this correction, show a close match with
those from computational predictions, as shown in appendix A. Moreover, the force
and torque measured along the wingspan (Z axis) were referred to as Fz and τz,
respectively. The coefficients of moments along the X, Y and Z axes were computed
as

Cmx =
2τx

ρU2
gSb

, Cmy =
2τy

ρU2
gSb

and Cmz =
2τz

ρU2
gSb

. (2.5a−c)

The motors driving the flapping motion were equipped with encoders (ENC24
2RMHF, Maxon Motor) to measure the angular displacements φ and ψ . Using the
recorded data, the coefficient of aerodynamic power required for flapping the wing
was computed as

CP =
2τyφ̇ + 2τzψ̇

ρU3
gS

=
2b(Cmy φ̇ +Cmzψ̇)

Ug
, (2.6)

where φ̇ and ψ̇ are angular velocities in sweep and pitch, respectively. The F/T
transducer, motors and encoders were connected to a Beckhoff EK1100 coupler in an
EtherCAT-based real-time system controlled using TwinCAT 3.0 software. The forces,
torques and angular displacements were sampled at 100 Hz and filtered using a 5 Hz
low-pass filter.

In experiments, the wing was flapped with a chosen flapping-motion profile for
20 flapping cycles. Starting from a quiescent fluid, the wing experienced highly
repeatable force–time traces after four cycles, as shown in appendix A. Hence, the
phase-averaged data were obtained by averaging over 15 flapping cycles, starting from
the fifth cycle. The power economy, which is a measure of the flight performance,
was calculated as PE= CL/CP, where CL and CP are the lift and power coefficients,
respectively.
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2.2. Numerical simulations
The flow around a flapping wing was computationally simulated to investigate the
variations in the wing vortical structures and their influence on the mean and
instantaneous forces on the wing. This computational approach had been adopted
from a previous investigation by Harbig, Sheridan & Thompson (2014). In this
method, the flow over a flapping wing was simulated by solving the Navier–Stokes
equations cast in a non-inertial reference frame along with the continuity constraint.
The Navier–Stokes equations were solved directly using the commercial code ANSYS
CFX version 18.2. The spatial and temporal discretisations were performed using
second-order-accurate schemes (see Harbig et al. 2014).

The model rigid wing, having span b, mean chord c and thickness 0.01b, was
placed in a cubical domain of side 18 × (b + b0), where b0 is the wing-root offset
from the origin. The offset ratio was maintained to be b0/b = 0.5, to match that
in experiments. The origin, about which the wing flapped, was coincident with
the domain centre. The domain was split into outer ‘stationary’ domain and inner
‘rotating’ domain. The inner rotating spherical domain of diameter 7 × (b + b0),
located at the centre of the stationary domain, was in a rotating frame of reference
with angular velocity φ̇. A general grid interface connection was applied between the
stationary and rotating domains, allowing the fluid to flow across the interface. The
rotating domain was divided into two non-conformal mesh regions, where the smaller
spherical region of diameter 3.5× (b+ b0) was located concentrically inside the outer
spherical region. The mesh in the inner region was fixed with respect to the wing and
was allowed to rotate about the wing’s spanwise (Z) axis with angular velocity ψ̇ .
An additional general grid interface connection was applied at the interface between
these two regions.

Both the stationary and rotating domains were meshed using an unstructured
tetrahedral mesh, with triangular prism elements near the wing surface. The overall
mesh consisted of approximately 8 million elements, with a grid spacing of 0.0145c
on the wing surface. Following the suggestions of Harbig et al. (2014) from their
time-step validation, a time step of [T/(4φA)] was chosen, where T was the time
period of flapping and φA, in this case, was the sweep amplitude in degrees. A
detailed description, resolution study and validation of this method have been given
by Harbig et al. (2014).

In the computational model, the wing underwent three flapping cycles, starting from
a quiescent fluid. Here, unlike experiments, the wing experienced highly repeatable
force–time traces in only two cycles, as shown in appendix A. The time traces of the
last flapping cycle were extracted for the analysis.

2.3. Wing kinematics
Typically, for a symmetric flip rotation with respect to the stroke reversal, δψ = π/2.
An advanced rotation, with δψ < π/2, was observed to have a positive lift peak
compared to that for a delayed rotation, with δψ > π/2 (Dickinson et al. 1999).
In (1.1), φ(t) is a smoothed triangular waveform, which becomes sinusoidal as K
approaches 0. Similarly, ψ(t) is a smoothed step waveform, which becomes sinusoidal
as Cψ approaches 0. The smoothed triangular waveform of φ(t) and the smoothed
trapezoidal waveform of ψ(t) used for a robofly (their robotic insect) by Dickinson
and co-workers can be approximated by K = 0.99 and Cψ = 10. Waveforms for
various values of K and Cψ are shown in figure 3.
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FIGURE 3. Flapping-motion waveforms for φ (sweep) and ψ (flip or pitch) obtained by
varying the parameters K and Cψ , respectively. The kinematics of a real free-flying fruit
fly, shown by the dashed black lines, has been obtained by Fry et al. (2005).

3. Results

The effects of the motion profiles on the wing aerodynamics were studied by
systematically varying the values of K and Cψ that control the driven flapping
waveforms. In order to observe the effect of these parameters individually, the values
of the two are independently varied. As suggested, the resulting CL and the flow
structures over the wing are observed to vary with these parameters.

3.1. Effect of the sweep-motion profile
As discussed in § 1, the effects of the sweep-motion profile on insect-wing aerodyna-
mics have remained under-explored. Most optimisation studies of wing kinematics
investigate the effects of either the flapping stroke amplitude, frequency, phase or
pitch duration and timing. However, the study of the sweep-motion profile is important
since it determines the instantaneous velocity, which in turn affects the instantaneous
and the overall lift coefficient. Hence, to study those effects in our experiments, the
sweep-motion profile was varied systematically by changing K values in the range
[0.01–0.99]. The variation in the corresponding angular velocity normalised by the
mean angular velocity in sweep (φ̇∗ = φ̇/φ̇), as shown in figure 4(a), results in the
variation in time traces of the instantaneous Reynolds number (Rei

b = φ̇Rgb/ν). In
these experiments, the pitching-motion profile was maintained to be sinusoidal with
Cψ = 0.01. The resulting time traces of the lift coefficient are shown in figure 4(b). It
should be noted that the slight difference in CL between the upstroke and downstroke
might be due to errors introduced in the angle ψ by the slight misalignment in the
assembly and motor backlash; while not completely negligible, these differences are
relatively small.

It can be seen that the time traces of the lift coefficient change with K. At higher K
values, there is a peak at the start of the sweep motion in both half-strokes, followed
by a second peak close to the mid-strokes. The magnitude of the first peak increases
with an increase in K. This peak is associated with the jerk at the start of a half-stroke,
whose effect is amplified by an increase in the sweep acceleration with K. On the
contrary, the magnitude of the second peak decreases with K, which is related to the
decrease Rei

b at the mid-stroke (e.g. at t/T = 0.75). Moreover, the quasi-steady model
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FIGURE 4. The phase-averaged time traces of (a) φ̇∗ and (b) CL with varying K. The
dashed line in (b) indicates the predictions using the quasi-steady model of Sane &
Dickinson (2002). The black dots in (b) represent the instantaneous values of CL at
t/T = 0.75, which (c) vary linearly with the instantaneous Reynolds number. The extreme
cases, marked with open circles in (c), are discussed later in detail.

of Sane & Dickinson (2002) predicts the time traces of CL close to only those for K=
0.99. This might be due to the fact that the quasi-steady model of Sane & Dickinson
(2002) has been based on the rotational translation with a constant angular velocity,
similar to that during the sweep motion at high K. According to this model, CL during
the rotational translation phase is predicted as

CL(α)= 0.225+ 1.58 sin(2.13α − 7.2◦), (3.1)

where α is the angle of attack in degrees. It should be noted that this model predicts
the values of CL with the instantaneous velocity as the reference, whereas the present
study uses the mean velocity.

The relation between the instantaneous CL at the mid-stroke and Rei
b is nearly

linear, as can be seen in figure 4(c). Therefore, the change in the instantaneous
Reb is expected to have a negligible influence on CL when normalised with the
instantaneous velocity. However, it should be noted that, for a purely rotating wing,
CL changes with Reb. As can be seen from our recent work (Bhat et al. 2019), CL
on a fruit-fly wing with an offset ratio b0/b= 0.33 (i.e. Rg/c= 2.51), rotating at Reb
in the range [150–600], varies in the range of approximately [1.15–1.45]. Moreover,
CL on the wing with a higher offset ratio, b0/b= 0.5, is expected to be even lower.
Interestingly, in the flapping-wing cases, the value of CL, which is close to this range,
occurs only for K= 0.99. Perhaps not surprisingly, this is the case where the rotation
rate is steady during the majority of the sweep. Hence, the instantaneous forces on
a flapping wing match those on wings in pure rotation, only if the sweep motion
mostly involves a constant angular velocity. Moreover, the cycle-averaged values (CL)
for various K are given in table 1. It is clear from these values that even CL reduces
with K, with the value at K = 0.99 being closer to that obtained for a wing rotating
at Reb ∼ 215.

It can be observed from table 1 that the power economy remains nearly unchanged
at lower K and decreases at higher K. Thus, it can be concluded that the robofly-
like model for the sweep motion results in a low aerodynamic performance, with the
lowest CL and PE. Although a high K value results in a nearly stable lift coefficient
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Values at t/T = 0.75 Cycle-averaged values
K CL CP CL CP PE

0.01 3.23 11.87 1.59 5.96 0.267
0.30 3.03 10.89 1.57 5.82 0.270
0.50 2.91 10.11 1.55 5.74 0.269
0.90 2.05 6.35 1.38 5.32 0.259
0.99 1.45 4.17 1.26 5.52 0.227

TABLE 1. A comparison of the values of CL and CP at t/T = 0.75 and the cycle-averaged
values of CL, CP and PE is shown for various values of K. In all cases, Cψ = 0.01.

in time during the sweep, it also adversely affects the initial peak, creating a jerk
at the start of the sweep motion. Note that the magnitude of this peak might be
amplified on account of the backlash during the stroke reversal in experiments. This
peak increases, mainly, with Cψ , as discussed in the following section, whereas in the
numerical predictions, CL follows a relatively smooth time variation, even at high K,
as shown in appendix A.

In order to observe the differences in the flow structures with K, two extreme
cases were chosen, as marked in figure 4(c). Supplementary movie 1 available
at https://doi.org/10.1017/jfm.2019.929 shows a comparison of the evolution and
shedding of the vortical structures over a wing flapping with K = 0.01 and K = 0.99
obtained using computational simulations. Figure 5(a,b) shows a comparison of the
instantaneous vortical structures extracted at t/T = 0.75 with K = 0.01 and K = 0.99.
The vortical structures over the wing are identified using the constant Q criterion.
The higher instantaneous velocity at K= 0.01 has fed higher circulation into the LEV,
causing its size to be larger compared to that at K = 0.99.

The normalised spanwise circulation around the LEV section (Γ ∗z ) shows a
significant difference between these two cases. As can be seen in figure 5(c), Γ ∗z for
K= 0.01 is considerably higher than that for K= 0.99 throughout the wingspan. Thus,
the lift over the wing at K = 0.01 is expected to be higher. Interestingly, figure 5(d)
shows that the difference between the mean spanwise velocities through the LEV
(u∗z ) is relatively low. However, as a result of a higher vorticity, the mean spanwise
vorticity flux through the LEV (u · ω∗z ), shown in figure 5(e), is also significantly
high for K = 0.01. Near the spanwise position of r/b = 0.6, for K = 0.99 u · ω∗z
is nearly zero. In addition to the low spanwise flux, the high streamwise velocity
in the early stages of the LEV development shortly after the stroke reversal causes
the LEV to undergo an early breakdown, not allowing the vorticity from the LEV
to be transported up to the wing tip. Here, the vorticity is left in the wake via a
vortex trail near the midspan, as can be seen in figure 5(b). This diversion of the
vorticity into the wake might be responsible for a further loss in the overall lift in
this case. During the sweep motion, the vorticity starts diverging at t/T = 0.2 in the
upstroke and at t/T = 0.7 in the downstroke. Later in the sweep motion, the diversion
point shifts towards the wing tip and the lift is observed to be slightly improved at
approximately t/T = 0.4 and 0.9, as can be seen in supplementary movie 1.

3.2. Effect of the pitch-motion profile
As mentioned in § 1, several researchers in the past have studied the timing and
duration of stroke reversal. Throughout the present study, stroke reversal is maintained
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FIGURE 5. The instantaneous vortical structures at t/T = 0.75 over the flapping wing,
identified by the constant Q criterion and coloured with ω∗z , are shown for (a) K = 0.01
and (b) K= 0.99. Comparisons of the spanwise variations of (c) Γ ∗z , (d) u∗z and (e) u · ω∗z
of the LEVs for the two K values.

to be symmetric, i.e. the stroke-reversal duration is divided equally in two successive
half-strokes. The duration is varied by changing the pitch-motion waveform with Cψ .
The maximum duration is equal to half of the flapping period, which can be obtained
with a sinusoidal motion for Cψ = 0.01. The minimum duration achieved in the
present experiments is with Cψ = 8. Achieving a lower duration was limited by the
high torque exerted by the motor in flipping the wing at a high angular acceleration
(ψ̈).

The pitch-motion profile controls the velocities and accelerations during stroke
reversal, which can influence the instantaneous as well as the cycle-averaged lift and
power economy of the wing. In order to investigate these effects, the pitch-motion
profile was varied by changing the values of Cψ , while K was maintained to be
0.01. The time traces of the normalised pitch-rotation velocity (ψ̇∗ = ψ̇b/Ug) and
CL are shown in figure 6(a,c). It can be seen that there is a minimal change in the
overall time variation in CL. However, at the start and end of the half-strokes, clear
and distinct peaks are observed with their magnitudes increasing with Cψ . These
peaks can be associated with the jerks created by the rapid pitch accelerations (ψ̈),
as can be observed in figure 6(b). The instantaneous values of CL and the normalised
pitch acceleration (ψ̈∗ = ψ̈b/Ug) were extracted at t/T = 0.55, where the first peak
of the downstroke is observed. As shown in figure 6(d), the instantaneous CL varies
approximately linearly with ψ̈∗.

It should be noted that the discontinuous time traces of ψ̇∗ for Cψ =0.01 seen at the
mid-stroke are due to the small backlash in the driving mechanism. With an increase
in Cψ , the duration of the backlash is decreased. The backlash creates an additional
jerk responsible for an extra magnitude of the CL peak in experiments. Table 2
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FIGURE 6. The phase-averaged time traces of the (a) normalised pitch velocity (ψ̇∗), (b)
normalised pitch acceleration (ψ̈∗) and (c) CL with varying Cψ . The black dots in (c)
represent the instantaneous values of CL at t/T = 0.54, which (d) vary linearly with the
instantaneous ψ̈∗.

Values at t/T = 0.55 Cycle-averaged (EXP) Cycle-averaged (CFD)
Cψ CL CP CL CP PE CL CP PE

0.01 0.56 2.75 1.59 5.96 0.267 1.50 5.82 0.258
3.00 0.94 2.26 1.69 5.44 0.309 1.62 5.25 0.308
5.00 1.57 2.79 1.73 5.48 0.300 1.66 5.41 0.307
8.00 2.73 4.01 1.77 5.50 0.281 1.70 5.89 0.289

TABLE 2. A comparison of the values of CL and CP at t/T = 0.55 and the cycle-averaged
values of CL, CP and PE is shown for various values of Cψ . In all cases, K = 0.01.

shows that CL from experiments is slightly greater than the numerical predictions on
account of this. However, overall it minimally affects the predictions of PE, where
the difference between the experimental and computational fluid dynamics (CFD)
values was found to be less than 5 %. The maximum PE amongst these cases is
observed for Cψ = 3. This suggests that increasing the pitch acceleration further is
actually detrimental to the power economy. Moreover, with a high Cψ , the flight
may be relatively unstable (i.e. less smooth) compared to that at a low Cψ , owing to
the large-amplitude undulations in CL over a flapping stroke. Interestingly, Altshuler
et al. (2005) have observed multiple CL peaks in a flapping stroke of a honey bee
in contrast to the relatively smooth CL variation in fruit-fly wings. However, such
multiple force peaks have been noted to exist typically in insects with shallow stroke
(sweep) amplitudes and high flapping frequencies.

Supplementary movie 2 shows the evolution and shedding of the vortical structure
over a wing flapping at Cψ = 0.01 and Cψ = 8. The effect of Cψ on the flow structure
was observed by extracting the spanwise vorticity contours on a plane at the midspan
at various time intervals. Figure 7 shows the time evolution of the vortical structures
over the wing during stroke reversal for Cψ = 0.01 and Cψ = 8. It should be noted
that, for t/T < 0.5, the wing is moving from the left to the right. At t/T = 0.5, the
sweep velocity is zero and the wing is undergoing pure pitch motion. For t/T > 0.5,
the sweep motion reverses such that the wing moves towards the left. Due to a rapid
pitch at Cψ = 8, the wing reaches higher angles after stroke reversal than in the case
of Cψ = 0.01.

The higher pitch velocity in the Cψ = 8 case is responsible for the formation of a
stronger trailing-edge vortex (TEV) at t/T = 0.5. In this case, a higher velocity at the
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FIGURE 7. The temporal variations in the normalised spanwise vorticity contours (ω∗z =
ωzb/Ug) on a plane at the midspan location, during stroke reversal, are shown for two
different Cψ . The black contours represent the vortices identified using the constant Q
criterion.

trailing edge, on account of the rapid flip motion, feeds more vorticity into the TEV.
As the wing reverses its motion beyond t/T = 0.5, the secondary vorticity near the
wing surface is pushed towards the trailing edge, forming a new TEV of opposite sign
and severing connection with the previous TEV. The new TEV pairs with the previous
TEV and the pair then advects away from the wing through self-induction. This pair
of vortices at the trailing edge during the flip motion is very similar to the dipolar
structures identified by Jones (2003) and Sohn (2018) over a flat plate in fling motion.
Furthermore, at t/T = 0.55, the phenomenon of wake capture, as has been discussed
by Birch & Dickinson (2003), provides an extra lift to the wing, contributing to the
first CL peak in a half-stroke. Clearly, the TEV in the case of Cψ = 0.01 is very weak
on account of the low ψ̇ . Therefore, the magnitude of the first CL peak, in this case,
is relatively low.

In conclusion, the time variation of CL depends, largely, on the sweep-motion
profile, with the instantaneous values at the stroke reversal being affected by the
pitch-motion profile. The cycle-averaged value, i.e. CL, increases with Cψ . On the
other hand, PE increases in the low range of Cψ and decreases in the range Cψ > 3,
consistent with the extra energy input required to form the strong vortex pair for the
high-Cψ case.

3.3. Combined effects of sweep- and pitch-motion profiles
As the lift coefficient and power economy of the wing were observed to be influenced
by both the sweep- and pitch-motion profiles, the combined effects of the two
profiles were studied by varying K and Cψ simultaneously. In experiments, K was
systematically varied over the range 0.01 6 K 6 0.99 and Cψ was varied over the
range 0.01 6 Cψ 6 8. The wing performance in each case was measured in terms
of CL and PE. The contours of CL and PE were mapped on the planes of K and
Cψ , as shown in figure 8. It can be seen that the lift coefficient in all the flapping
configurations varies in the range 1.26CL 6 1.8 and the power economy varies in the
range 0.25 6 PE 6 0.35. A high CL can be obtained at a low K and a high Cψ . On
the other hand, a high PE can be obtained at K ∼ 0.8 and Cψ ∼ 3, which are close
to the values predicted by Berman & Wang (2007). Using these profiles, the power
coefficient corresponding to the sweep motion is 4.55, whereas that corresponding to
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FIGURE 8. The contours of (a) CL and (b) PE on the K–Cψ planes. The regions showing
the feasibility of the passive and active pitch motions have been separated by a hatched
transition region (due to the uncertainty in measurements) in (b).

the pitch motion is −0.01, meaning the power in pitch is provided from the flow to
the wing.

The power economy is a function of both CL and CP. As is clear from the contours
of CL in figure 8, CL decreases with both an increase in K and a decrease in Cψ .
The smaller and weaker LEV at higher K also results in a smaller CD that requires
a lower sweep power to overcome the drag. Consequently, PE increases by a very
small amount with K. Furthermore, with an increase in Cψ , the power required for
the sweep decreases and the power required for the pitch increases. As a combination
of both, the net power is minimum near Cψ ∼ 3, as can be seen in table 2. Hence,
the optimal waveforms based on PE can be obtained where CP is minimum, i.e. at a
high K and at Cψ ∼ 3. The contours of CL in figure 8(a) are more closely spaced at
K>0.8 than at lower K; this closer spacing represents a high gradient in the CL values
at higher K. Therefore, increasing K beyond 0.8 also causes a sudden reduction in CL
that also reduces PE. Hence, the maximum PE is observed at K = 0.8 and Cψ = 3,
approximately.

Clearly, the flapping-motion profile which maximises the lift coefficient is different
from that which maximises the power economy. It should be noted that Khan &
Agrawal (2011) and Ghommem et al. (2013) have suggested slow pitching, i.e. a
low Cψ , for achieving a minimum flapping power or a high PE. Contrary to this,
our analysis shows that Cψ = 0.01 also results in a low PE. Moreover, it can be
seen that for K < 0.5, PE is dependent largely on Cψ , with a minimal change with
K. However, at higher K, both K and Cψ affect PE. Therefore, with a faster stroke
reversal, the effects of both pitch and sweep motions influence the power.

The pitch duration in all the investigated cases is symmetrically divided between
two half-strokes since the phase difference between the sweep and pitch is maintained
to be δψ = 90◦. Sane & Dickinson (2001) have shown that the L/D ratio, which is
similar to PE, is affected by both the phase difference as well as the flip duration.
According to their results, for a delayed flip, a higher flip duration results in a higher
L/D, whereas for an advanced flip, a higher flip duration results in a lower L/D.
In the present cases, the flip duration is increased by lowering the values of Cψ .
Consequently, we might expect the optimal PE values to be shifted to Cψ < 3 for
a delayed flip and to Cψ > 3 for an advanced flip. Hence, it should be noted that
the optimal PE is sensitive to the phase difference between the sweep and the pitch
motions.
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Furthermore, the flapping-motion waveforms of a real free-flying fruit fly, as shown
in figure 3, were simulated to compare the performance with that of the parametric
flapping models, as shown in § 3.5. The cycle-averaged values with the fruit-fly motion
profiles were found to be CL= 1.35 and PE= 0.33. Thus, CL was found to be towards
the lower side of the range obtained with the parametric models and PE was found to
be towards the higher side. In contrast to the findings of Bos et al. (2008) from their
2-D numerical predictions, our experiments on sinusoidal motion profiles resulted in
a higher CL than that with the real fruit-fly motion profiles.

Hence, it might be inferred from these results that, in fruit flies, the flapping-wing
kinematics appears to be optimised for low power consumption, with the lift sufficient
to support the insect’s weight. However, in the case of a MAV, the weight might differ
based on its design. Accordingly, the required CL can be evaluated and the contour
of that value from figure 8(a) can be superimposed onto the contour map in 8(b)
to estimate the values of K and Cψ in order to achieve the maximum possible PE.
Remarkably, the contour maps show that, even for higher CL values of up to 1.56, a
high PE can be achieved with an appropriate selection of K and Cψ .

Interestingly, Van Buren et al. (2017) have shown in their study of 2-D heaving
and pitching foils that a more square-like heaving motion results in a significantly
higher lift. Intrigued by this, we also simulated the square waveform in sweep and
the triangular waveform in pitch. The square waveform in sweep required the wing to
stay at one end for a long time followed by a sudden motion towards the other end
with a significantly higher acceleration at the start of each half-stroke. This resulted
in a very high CL (∼13) due to the high thrust created by the vortex shedding.
However, this also resulted in an extremely poor PE (∼0.05) due to the high amount
of power required to accelerate the wing. Moreover, such a high acceleration will
not be practical in the case of real wings flapping at a high frequency. Furthermore,
the triangular motion in pitch may be practical, but it results in lower values of both
CL and PE than in the case of the sinusoidal waveform. It should be noted that the
mechanisms involved in the case of fish flapping and the insect-wing flapping are
different. In fish, most of the thrust is provided by the vortices shed in the wake
during the flapping motion at each stroke reversal. On the other hand, in insects,
most of the force is provided by the stable attachment of the LEV during the sweep
motion. An additional force during stroke reversal due to the shed vortices contributes
only partially to CL. Therefore, further investigation of more square-like waveforms
for the sweep motion and more triangular waveforms for the pitch motion is avoided.

3.4. Feasibility of the passive pitch motion
Previous studies (Ennos 1988; Bergou, Xu & Wang 2007) indicated that insects, such
as fruit flies and dragonflies, undergo passive pitching motion during stroke reversal.
This means that the flapping power is entirely utilised for the back-and-forth sweep
motions and the power for the flip motion is provided only by the fluid mechanical
torque acting on the wing and the restoring torque in the hinge muscles during the
stroke reversal. Moreover, the use of the passive pitch can significantly simplify the
complex flapping mechanism of a MAV. Chen & Skote (2016) demonstrated the
passive hinge kinematics of a model wing. However, the present study focuses on the
aerodynamic torques responsible for the passive pitch. Therefore, the feasibility of the
passive pitch motion can be predicted based on the aerodynamic power coefficient
associated with the pitch motion, i.e. CPz = Cmzψ̇

∗. In the cases where the mean
pitching power coefficient (CPz) is negative, the energy can be considered to be
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supplied by the flow to undergo the pitch motion, and hence the passive pitch is
highly feasible.

The feasibility of the passive wing flip was also investigated by Khan & Agrawal
(2011), who indicated that the passive flip was feasible for an advanced flip motion
with a phase difference of δψ < 78◦. On the contrary, in the present experiments, even
though the phase difference was maintained to be δψ = 90◦, some cases resulted in
a negative mean pitching power, indicating a feasibility of passive pitch. Hence, the
values of CPz across all the investigated profiles were examined and a region of the
possible passive pitch motion was identified, as shown in figure 8(b), where CPz < 0.
Overall, this is a low-Cψ region, with all possible K values. Therefore, perhaps not
surprisingly, the feasibility of the passive pitch is largely independent of the sweep-
motion profile. Moreover, high pitch accelerations are not possible in passive motion.

In order to observe the effects of aerodynamic forces on passive pitching, two cases
were chosen: one with Cψ = 0.01 and the other with Cψ = 8. The time traces for the
pitching power (CPz) for the two cases can be seen in figure 9. It can be seen that,
during some part of a flapping stroke with Cψ = 0.01, CPz < 0, indicating that energy
is transferred from the flow to rotate the wing. In the remaining part of the stroke,
CPz > 0, which means the power is transferred from the wing to the flow. In this case,
the area under the curve with CPz < 0 is more than that with CPz > 0, resulting in a
negative mean pitching power. On the other hand, in the case of Cψ =8, a significantly
large positive CPz peak is observed during the high-acceleration pitch motion, which
results in CPz > 0. The value of CPz is 0 during most part of a stroke in this case
since the wing maintains a constant pitch angle during the sweep motion.

Two time instants were chosen with opposite signs of CPz in each case for further
examination. Figures 9(a) and 9(b) show a comparison of flow structures at t/T = 0.6
and t/T = 0.9, respectively. Interestingly, the pitch angle at these two time steps is the
same. However, in figure 9(a), the wing is pitching down, whereas in figure 9(b), the
wing is pitching up. The LEV size in figure 9(a) is small since the wing has started
accelerating in sweep in the second half-stroke. The LEV is larger at t/T = 0.9, which
is towards the end of the half-stroke. Nevertheless, the net aerodynamic force in both
cases tries to pitch the wing down. This is helpful in the case of figure 9(a), where
the wing is pitching down, and hence, CPz in this case is negative. However, in the
case of figure 9(b) the wing has to perform work to overcome the torque exerted by
the net force, causing CPz to be positive. It should be noted that the magnitude of the
force in figure 9(a) is greater due to the wing’s acceleration in sweep.

Similarly, figures 9(c) and 9(d) show a comparison of the flow structures at t/T =
0.5 and t/T = 0.53, respectively, for Cψ = 8. It should be noted that the wing is
pitching down in both cases. However, in figure 9(c), the net force acts in the opposite
direction, exerting a pitch-up moment. The direction of this force is towards the left
on account of the drag exerted on the wing at the end of the half-stroke, when the
wing was moving from the left to the right. As seen earlier, the magnitude of ψ̇ at
this time is very large, requiring highly positive work to be done by the wing to
overcome the aerodynamic moment. On the other hand, in figure 9(d), the net force
exerts a pitch-down motion. However, the magnitude of ψ̇ is less, which results in a
low magnitude of CPz on the negative side.

By and large, it can be seen that the positive peak of CPz increases markedly with an
increase in ψ̇∗, i.e. with Cψ . The range 26Cψ 6 3 in figure 8(b) shows the transition
region, where the mean negative CPz over a stroke might be balanced by the mean
positive CPz . Increasing Cψ beyond this range might cause a significant increase in
the positive peak of CPz . The region marked as the passive pitch might help MAV
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FIGURE 9. Flow structures over the wing at its midplane at two different time steps with
opposite signs of CPz for (a,b) Cψ = 0.01 and (c,d) Cψ = 8. The black lines indicate the
vortices identified using the constant Q criterion. The corresponding time traces of CPz are
shown at the top. The curved arrow represents the instantaneous direction of pitch and the
dashed arrow represents the net force vector.

designers select the flapping-motion waveforms requiring fewer motors and driving
mechanisms, which can result in lower weights and associated costs.

3.5. Comparison with the kinematics of a free-flying fruit fly
The kinematics of a free-flying fruit fly was recorded by Fry et al. (2005). The sweep-
and pitch-motion waveforms obtained after averaging those of six fruit flies are shown
in figure 3. In the present study, these waveforms were also simulated to compare the
performance of the real fruit-fly model with that of the parametric models. The angular
velocities |φ̇∗| and ψ̇∗ from the fruit-fly model are shown in figure 10(a). It can be
seen that the sweep motion is nearly sinusoidal. Hence, a comparison is made with a
harmonic model, in which both the sweep and pitch are nearly sinusoidal, i.e. K=0.01
and Cψ = 0.01. The time traces of the net force coefficient, CF =

√
CL +CD, from the

two models are compared in figure 10(b).
The values of CF obtained from the fruit-fly model are highly asymmetric between

the two half-strokes, whereas those from the harmonic model are symmetric. It
should be noted that in the fruit-fly model, |φ̇∗| and the angle of attack, calculated
using α = π/2 − ψ , are asymmetric in the two half-strokes. The combined effect
of the two caused the forces in the two half-strokes to be different. Experiments
by Fry et al. (2005) on a robotic wing undergoing fruit-fly kinematics also showed
asymmetry, which compares well with our predictions, as shown in figure 10(b). The
small difference in the values and the phase of the force variations may be attributed
to the additional effects of the deviation angle varied by Fry et al. (2005).

Furthermore, the power coefficients with the fruit-fly and the harmonic models were
compared, as shown in figure 10(c). Interestingly, the time traces of the sweep power
coefficient (CPy) and those of the total power coefficient (CP = CPy + CPz) nearly
overlap in both the models. This indicates that the aerodynamic pitching power is
negligible throughout the stroke in both the models. Therefore, there might be a
possibility of a passive pitch. As CPz is negligible, the power required for the passive
pitch motion in real insects might be entirely provided by the restoring torque of the
twisted muscle at the wing root, as has been investigated by Chen & Skote (2016).
Nevertheless, the power economy with the fruit-fly model is very high (PE = 0.33)
due to the negligible aerodynamic pitching power. We note that the pitch angle,
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FIGURE 10. (a) A comparison of the normalised sweep velocities (solid lines) and the
normalised pitch velocities (dashed lines) between the fruit-fly model (black) and the
harmonic model (red). (b) The corresponding time traces of CF along with those obtained
by Fry et al. (2005) on a fruit-fly model (blue). (c) The sweep (dashed lines) and total
(solid lines) power coefficients are compared between the fruit-fly model (black) and the
harmonic model (red).

passively attained as a result of the interaction between the restoring torque at the
wing root and the aerodynamic forces, might vary differently from our parametric
waveforms.

4. Conclusions

Most studies of flapping kinematics investigate the heaving and pitching of
2-D airfoils, the aerodynamics of which is different from that of insect wings
involving rotational flapping motion. Previous studies of the optimisation of
rotational flapping-wing kinematics use the quasi-steady models to predict the forces,
which cannot predict the flow physics responsible for the optimised aerodynamic
performance. Some studies, involving experiments on 3-D flapping-wing models,
have investigated the effects of the pitch-motion profile. However, in those studies,
the sweep-motion profile, which strongly influences the mean lift over a wing,
remained unexplored.

In the present study, the effects of flapping-motion waveforms on the aerodynamics
of a flapping fruit-fly wing were studied experimentally as well as numerically. A
hovering stroke of a fruit-fly wing comprises, mainly, the sweep and pitch motions,
with very little deviation. A parametric model, adapted from past studies, was used to
systematically vary the flapping motion along the sweep and pitch axes. The sweep
waveform was varied from sinusoidal to nearly triangular by varying the sweep-motion
parameter in the range 0.01 6 K 6 0.99 and the pitch waveform was varied from
sinusoidal to nearly square by varying the pitch-motion parameter in the range 0.016
Cψ 6 8. The flapping frequency and amplitude were maintained to be constant, such
that the mean span-based Reynolds number (Reb = 215) was constant across all the
cases.

The time variation of the lift coefficient of the wing (CL) was found to be strongly
affected by K. Two peaks in the variation of CL were observed at the start and end of
a half-stroke, whose magnitudes increased with Cψ . Therefore, the mean lift coefficient
(CL) also increased with Cψ , consistent with previous studies, due to the additional
lift generated by the rapid pitch motion. Interestingly, the instantaneous CL at the
mid-stroke was observed to vary linearly with the sweep velocity and the magnitudes
of the two additional peaks were found to scale linearly with the pitch acceleration.
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Furthermore, CL was found to decrease with an increase in K. An investigation of the
flow structure at the mid-stroke, obtained numerically, showed that the LEV size at a
lower K is larger on account of the higher vorticity fed into it by the higher sweep
velocity and stabilised by a higher spanwise vorticity flux. This resulted in a higher
spanwise circulation around the wing, contributing to the higher CL.

The combined effects of K and Cψ showed that they have different effects on CL

and PE. Coefficient CL can be maximised with a lower K and a higher Cψ , whereas
PE can be maximised with a higher K and Cψ ∼ 3. The prediction of the wing
performance undergoing a real fruit-fly-like motion indicated that the motion might be
optimised for a higher PE. Remarkably, the low-Cψ waveforms showed a possibility
of a passive pitch on account of the negative aerodynamic power experienced by the
wing. The contours of CL and PE obtained over the maps of K and Cψ might be
helpful in determining the optimised sweep- and pitch-motion waveforms for MAVs.
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Appendix A. Validation
A.1. Repeatability of forces in successive flapping cycles

During an experiment, the wing starts flapping in the mineral oil, which is initially
quiescent. However, after the wing flips at the end of the half-strokes, it leaves vortical
structures in the wake, which might influence the forces in the subsequent flapping
cycle on account of the phenomenon of wake capture (Dickinson et al. 1999). Hence,
the instantaneous forces in a half-stroke may differ from one flapping cycle to the
next. To check the repeatability of the forces, the wing was flapped 20 times and the
forces were recorded using the ATI-Nano17 transducer throughout the wing motion.

Figure 11(a) shows the time traces of CL during the first half-stroke of five
successive flapping cycles. It can be observed that, after Cycle no. 2, the time
traces are highly repeatable. Therefore, the influence of wake capture does not
create a significant difference in the lift beyond two flapping cycles. Hence, the
data for the mean flapping cycle are obtained by phase-averaging the data over 15
flapping cycles, starting from the fifth cycle. The standard deviation between these
15 cycles was observed to be less than 5 % for the forces and less than 8 % for
the torques. Moreover, it should be noted that the area swept by the wing and the
root attachments is roughly 13 % of the area of the oil tank. The close comparison
between the experimental and numerical data indicates that the wall effects are not
significant in the present experiments.
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FIGURE 11. The time traces of CL during the first half-stoke of successive flapping cycles,
starting from rest, are shown for (a) the experimental data and (b) numerical predictions.

The repeatability of forces in successive flapping cycles, starting from rest, is also
verified in numerical simulations, as shown in figure 11(b). Here, the time traces of
CL are highly repeatable from Cycle no. 2. Therefore, in all the numerical cases, only
three flapping cycles were simulated to limit the computational cost. Interestingly, it
can be observed that the first local peak in the lift, observed roughly at t/T = 0.04, is
greater in magnitude in the experimental data than in the numerical predictions. This
increase in magnitude can be attributed to the sudden motor jerk and vibration acting
on the wing at high flapping accelerations.

A.2. Comparison of experimental and numerical data
To observe the differences between the experimental and numerical predictions, four
combinations of the flapping profiles were chosen, using the extreme values of K
and Cψ . Figure 12 shows the data obtained at these four imposed flapping-motion
profiles. In each case, time traces of four quantities are presented since CL and CD
are the important aerodynamic force coefficients and Cmy and Cmz are the important
moment coefficients contributing to the power. The uncertainty band from experiments
was computed based on the accuracy of the measuring equipment and the standard
deviation of the time traces of an individual cycle from those of the mean cycle. This
band is shown in colour in figure 12.

Generally, the experimental data show a negligible deviation from the numerical
predictions, except for the initial peak at the start of a half-stroke at a high K and/or
a high Cψ . This deviation at the start of a half-stroke can be attributed to the sudden
jerk experienced by the motor at high sweep and/or pitch accelerations. All curves
in both the half-strokes, in all the cases, are repetitive, indicating the near-symmetric
flapping motion in both half-strokes. It can also be noted that the magnitudes of Cmz

are always less than those of Cmy , which implies that the pitching power is much lower
than the sweeping power.

The cycle-averaged values from the experimental and the computational data for the
above four flapping profile combinations are compared in table 3. The values of CL
and CP are higher in the experiments. However, the PE values show a good match
with those predicted numerically.

A.3. Effect of the wing root offset
Insects usually flap their wings about the wing root attached to the body. However, in
experiments and MAVs, the wing is usually offset from the axis of rotation on account
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FIGURE 12. The time variations of CL, CD, Cmy and Cmz are shown for four combinations
of K and Cψ with their extreme values. The solid lines indicate the phase-averaged
experimental data and the dashed lines indicate the numerical predictions from Cycle no. 3.
The uncertainty band in experiments is shown by the cyan colour.

CL CP PE
K Cψ Exp CFD Exp CFD Exp CFD

0.01 0.01 1.59 1.50 5.73 5.82 0.28 0.26
0.01 8.00 1.79 1.70 6.00 5.89 0.30 0.29
0.99 0.01 1.26 1.11 5.30 4.93 0.24 0.23
0.99 8.00 1.47 1.37 4.76 4.30 0.31 0.32

TABLE 3. Comparison of experimental and computational data.

of the presence of the holding and rotating mechanisms at the wing root. Furthermore,
a force transducer at the wing root increases the wing root offset, as is the case with
our experimental model described in § 2. Our numerical simulations also simulated
the same wing root offset ratio as that in experiments to allow a direct comparison.
However, it is also important to know the difference between the predictions with and
without the offsets, such that the results can be directly related to experimental models
as well as real insects.

The flow structure over a wing with an offset is not disturbed significantly if the
offset ratio is in the range b0/b 6 0.5 (Bhat et al. 2019). The offset ratio in the
present experiments was maintained to be b0/b = 0.5. To observe the effect of the
root offset on the aerodynamic loads, various flapping profiles were simulated on the
wing without an offset. The time traces of important quantities, i.e. CL, CD and Cmy ,
were extracted and compared with those obtained for the wing with offset, as shown
in figure 13. As shown in our earlier work (Bhat et al. 2019), the forces are expected
to decrease with an increased offset on account of the increased Rossby number. The
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FIGURE 13. The time traces of CL, CD and Cmy are shown for the wing without a
root offset (red) and the wing with an offset ratio b0/b = 0.5 (blue) in four different
combinations of K and Cψ . The dashed blue lines in the bottom panels represent the time
traces of Cmy measured at the root of the wing with offset.

same is evident from the decrease in the peak values of CL and CD of the wing with
the offset. It should be noted that the values of both CL and CD for Cψ = 8 are
less affected throughout the stroke, except at stroke reversal. Interestingly, the values
of Cmy with the offset were found to be more than those without the offset. This
is because, although the forces are smaller with offset, the moment arm is longer.
Therefore, the values of Cmy were also obtained at the wing root in this case, which
showed a better match with those of the wing without the offset.
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