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We study equational presentations of functors and monads defined on a category K that is

equipped by an adjunction F � U : K −→ X of descent type. We present a class of

functors/monads that admit such an equational presentation that involves finitary signatures

in X .

We apply these results to an equational description of functors arising in various areas of

theoretical computer science.

1. Introduction

In categorical universal algebra, it is well known that a finitary equational presentation of

algebras in a finitary variety K amounts to the existence of a coequaliser of a pair of

morphisms between finitely generated free algebras.

The essence of a universal-algebraic flavour of a finitary functor L : K −→ K is that

L is determined by its behaviour on finitely generated free algebras. In fact, such functors

also admit an equational presentation, but this time the coequaliser is more complex,

though it again involves functors freely generated from Set-functors.

Recently, such functors L have appeared naturally in the study of modal algebras for

coalgebraic modal logic, see, for example, Bonsangue and Kurz (2006) or Kurz and

Rosický (2006). In fact, for the case of one-sorted varieties K , functors L that are

determined by their values on finitely generated free algebras are exactly the functors

preserving a class of colimits and referred to as sifted or, equivalently, they are exactly

the class of functors admitting an equational presentation (Kurz and Rosický 2006).

In the current paper we study presentations of functors/monads on K that are

determined by finitely generated free algebras, but we want the requirements on K to be

as relaxed as possible in view of Kurz et al. (2010). Hence we again study functors/monads

L : K −→ K , but K is now only required to be a full subcategory of a variety, though

K must still contain free objects on finitely many generators.

Thus, the initial setting is now given by a finitary adjunction F � U : K −→ X that

is of descent type, that is, such that K embeds fully into the Eilenberg–Moore category
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X T where T is the finitary monad on X generated by F � U. In order that we can speak

of finitely generated free algebras, we further require both K and X to be locally finitely

presentable. We say that (necessarily finitary) functors/monads on K that are determined

by their values on finitely generated free objects are finitely based .

Our main results are the following:

(1) We prove that finitely based functors/monads on K can be equationally presented

using finitary signatures on X . This is the content of Theorems 3.18 and 4.4 below.

(2) In Theorem 4.1 we prove that algebras for finitely based monads on a monadic

category also form a monadic category.

Since we expect applications in coalgebraic modal logic in enriched category theory, we

state and prove all results in the enriched setting.

Organisation of the paper

We gather together the necessary definitions and notational conventions of enriched

category theory in Section 2. We introduce the notion of finitely based functors in

Section 3 and prove the presentation result in Theorem 3.18. In Section 4, we prove the

presentation result for finitely based monads . Finally, we give various applications of our

results in Section 5 by showing presentations of functors/monads arising in various areas

of theoretical computer science.

Related work

The fact that every finitary endofunctor of Set can be equationally presented is stated

in Adámek and Trnková (1990) – see also Example 3.19. This presentation result was

generalised in Kurz and Rosický (2006) to a certain class of finitary endofunctors of a

(one-sorted) finitary variety.

2. Preliminaries

In this section, we recall the necessary notions from enriched category theory we will use

in the rest of the paper. Our standard reference for enriched category theory is the book

Kelly (1982a); for the details of locally finitely presentable categories enriched in V , see

Kelly (1982b).

We assume that V = (Vo,⊗, I) is a symmetric monoidal closed category that is locally

finitely presentable as a closed category. The latter means that the (ordinary) category

Vo is locally finitely presentable, that I is a finitely presentable object in Vo and that the

tensor product X ⊗ Y is a finitely presentable object in Vo whenever X and Y are. See

Gabriel and Ulmer (1971) and Adámek and Rosický (1994) for the details on locally

finitely presentable categories.

Our assumptions on V allow us to develop category theory enriched in V , and in the

following we work with V -categories, V -functors, and so on. We will frequently omit the

prefix V - and just write categories, functors, and so on. Whenever we work with V = Set,

we will say the categories, functors, and so on, are ordinary .
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In enriched category theory we need to consider weighted colimits as the basic colimit

concept. Recall that a colimit of a diagram D : D −→ X weighted by W : Dop −→ V is

an object W ∗D in X together with an isomorphism

X (W ∗D,X) ∼= [Dop ,V ](W,X (D−, X))

natural in X.

The dual notion is that of a limit of D : D −→ X weighted by W : D −→ V , which is

an object {W,D} in X together with an isomorphism

X (X, {W,D}) ∼= [D ,V ](W,X (X,D−))

natural in X.

In fact, the assumptions on V allow us to consider locally finitely presentable (l.f.p.)

categories in the enriched sense. For these we only need to define the concept of being

a filtered colimit in the enriched setting, and then we can proceed as in the classical

ordinary case. We define filtered colimits as those weighted by flat weights, where a weight

W : Dop −→ V is flat whenever the functor

W ∗ (−) : [D ,V ] −→ V

preserves finite limits. In enriched category theory a limit {K,C} is finite if K : C −→ V

is a finite weight. The last assertion means that C has finitely many objects, and that

every hom-object C (c, c′) and every value Kc are finitely presentable in Vo.

Then one defines the notions of being a finitely presentable object, finitary functor, and

so on, in the usual manner. See Kelly (1982b) for more details.

3. Finitely based functors and their presentations

In this section we introduce the class of finitary functors that are fully determined by

their values on ‘finitely generated’ free algebras and refer to them as finitely based (see

Definition 3.8). We will show using examples in Section 5 that such functors arise naturally

and that they enjoy nice properties: for example, one can give their equational presentation

just using operations and equations coming from the category from which we pick the

generators of the algebras. This is the main result of this section – see Theorem 3.18.

The idea of being determined by values on free algebras suggests that we need to work

relative to a certain fixed adjunction.

Assumption 3.1. We fix a finitary adjunction

F � U : K −→ X

between locally finitely presentable categories and assume that the adjunction is of descent

type.

Remark 3.2. Being of descent type means that the comparison functor K : K −→ X T is

fully faithful, or, equivalently, that every commutative diagram

FUFUA
εFUA ��

FUεA
�� FUA

εA �� A (3.1)
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is a coequaliser, where ε denotes the counit of F � U. We will say the above coequaliser

is the canonical resolution of A.

Any adjunction of descent type can be considered as the existence of an equational

presentation , as will become clearer in Theorems 3.18 and 4.4. In other words, the parallel

pair in a coequaliser (3.1) can be considered as a system of equations that the object

A satisfies. See Kelly and Power (1993) for more details of equational presentations and

more properties characterising adjunctions of descent type.

Notation 3.3. We use

J : A −→ K

to denote the embedding of the full subcategory spanned by objects of the form Fn, with

n finitely presentable in X .

Remark 3.4. The category A consists of finitely presentable objects in K . Indeed, due to

the adjunction F � U, we have that for every finitely presentable n, the isomorphism

K (Fn,−) ∼= X (n,U−) ∼= X (n,−) · U

holds. The latter functor preserves filtered colimits since both U and X (n,−) do.

We prove now that objects in A suffice to reconstruct all objects of K . More precisely,

we prove that the inclusion J of A in K is a dense functor. Recall that a functor

J : A −→ K is dense if the left Kan extension of J along itself is (naturally isomorphic

to) the identity functor on K . This statement means that every object X of K can be

expressed as a canonical colimit

K (J−, X) ∗ J
see Kelly (1982a, Chapter 5).

Lemma 3.5. The functor J : A −→ K is dense.

Proof. The idea of the proof is essentially contained in Bird (1984, Theorem 6.9). Since

J is fully faithful, we can use Kelly (1982a, Theorem 5.19(v)): J is dense, if there is a class

of colimits such that the category K is the closure of A under these colimits, and every

such colimit is preserved by the functor

J̃ : K −→ [A op ,V ], A �→ K (J−, A).

We will derive the required class of colimits in two steps:

(1) For every object of the form FX, we do the following.

Consider the canonical colimit

X (E−, X) ∗E
expressing X as a filtered colimit of finitely presentable objects in X , where E :

Xfp −→ X denotes the full embedding of the subcategory representing all finitely

presentable objects of X .

Then FX can be expressed as a colimit

X (E−, X) ∗FE
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since F is a left adjoint, and thus preserves (all) colimits.

We still need to prove that the colimit X (E−, X) ∗FE is preserved by J̃ : K −→
[A op ,V ]. But this is clear since J̃ preserves filtered colimits (= colimits weighted by

flat weights) because objects of A are finitely presentable. And the weight X (E−, X)

is flat, since Xfp consists of finitely presentable objects.

(2) For every object A of K , we do the following.

Express A as a coequaliser (3.1). This is possible because the adjunction F � U is

assumed to be of descent type.

We claim that the coequaliser (3.1) is preserved by J̃ . First observe that for every

finitely presentable object n in X , we have

K (Fn,−) ∼= X (n,U−) = X (n,−) · U.

Since the coequaliser (3.1) is U-absolute (it is known to be a U-split coequaliser –

see Mac Lane (1998)), the image of it under any X (n,−) · U is also a coequaliser.

Hence, the image of (3.1) under every K (Fn,−) is a coequaliser, so J̃ preserves the

coequaliser (3.1).

Remark 3.6. In fact, in the above result we have obtained the density presentation of

J : A −→ K . The density presentation is (see the comments just before Proposition 5.20

in Kelly (1982a)) a family

Φ = 〈Wγ : Dop
γ −→ V , Dγ : Dγ −→ K | γ ∈ Γ〉

such that each colimit Wγ ∗Dγ exists and is preserved by J̃ , and K is the closure of A

under these colimits.

From the above remark and the fact that A consists of finitely presentable objects, we

immediately obtain the following corollary from Kelly (1982a, Theorem 5.29).

Corollary 3.7. For L : K −→ K , the following are equivalent:

(1) L is of the form LanJLJ .

(2) L is finitary and preserves all canonical resolutions (3.1).

Definition 3.8. We will say a finitary endofunctor of K that preserves canonical resol-

utions (3.1) is finitely based . The category of all finitely based functors is denoted by

FinB(K ,K ).

Remark 3.9. By passing from l.f.p. categories to locally λ-presentable categories (in the

enriched sense – see Bird (1984)), where λ is a regular cardinal, we obtain the obvious

generalisation of finitely based functors: a functor is λ-based (relative to a λ-accessible

adjunction F � U of descent type) if it preserves λ-filtered colimits and the canonical

resolutions (3.1).

Remark 3.10. By Remark 3.6, we know that there is an equivalence

FinB(K ,K ) � [A ,K ]

of categories that we will often use below. Hence the category FinB(K ,K ) is locally

finitely presentable; in particular, it is complete and cocomplete.
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Example 3.11. The following are examples of finitely based functors:

(1) Suppose K is a finitary, one-sorted variety. Thus we work within ordinary category

theory, that is, V is the category Set of sets and mappings.

The fact that K is a finitary one-sorted variety is equivalent to the existence of a

finitary monadic adjunction F � U : K −→ Set. Suppose L : K −→ K has the form

LA =
∐
n

Set(n,UA) • ∆n

where the coproduct is taken over all finite ordinals, n �→ ∆n is the assignment of

an object of K to each finite ordinal, and Set(n,UA) • ∆n is the coproduct in K of

Set(n,UA)-many copies of ∆n. We will show that L is finitely based.

It is clear that L preserves filtered colimits since every Set(n,U−) does and colimits

commute with colimits. To prove that L preserves canonical resolutions, observe that

each Set(n,U−) preserves canonical resolutions since they are U-absolute coequalisers.

As a special case, observe that Id � Id : Set −→ Set is clearly a finitary monadic

adjunction and functors L of the form described above are exactly the polynomial

functors . Hence every polynomial functor is finitely based.

(2) The above can be extended to all l.f.p. base categories V as follows.

Suppose F � U : K −→ X is a finitary monadic adjunction. Then every functor

L : K −→ K having the form

LA =
∐
n

X (n,UA) • ∆n

is finitely based. The reasoning is the same as in (1) above.

Above, the coproduct is taken over all finitely presentable objects of X , n �→ ∆n is

the assignment of an object of K to each finitely presentable n, and X (n,UA) • ∆n is

the X (n,UA)-th tensor of ∆n in K (see (3.4) for the definition of a tensor).

Example 3.12. As an example of a finitary functor that is not finitely based, consider the

finitary variety Ab of Abelian groups and their homomorphisms, and its full reflective

subcategory I∗ � I : TorFree −→ Ab of torsion-free groups. Then the composite L =

I ·I∗ : Ab −→ Ab is a finitary functor that does not preserve the canonical resolutions (3.1).

The reason is that L coincides with the identity functor on every finitely generated free

Abelian group, but L is clearly not isomorphic to the identity functor on Ab.

Every finitary endofunctor has a finitely based coreflection.

Lemma 3.13. The full embedding FinB(K ,K ) −→ Fin(K ,K ) has a right adjoint. In

particular, the category FinB(K ,K ) is closed in Fin(K ,K ) under colimits.

Proof. We use J ′ : A −→ Kfp to denote the full embedding of A into the category

representing all finitely presentable objects. Then we have an adjunction

LanJ ′ (−) � [J ′,K ] : [Kfp ,K ] −→ [A ,K ].

Since, using the fact that Fin(K ,K ) ∼= [Kfp ,K ] and FinB(K ,K ) � [A ,K ], the full

embedding FinB(K ,K ) −→ Fin(K ,K ) is given by the left Kan extension along J ′, and

the result then follows.
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We will employ the following technical lemma in proving the presentation results on

finitely based functors in Proposition 3.15 and Theorem 3.18.

Lemma 3.14. Suppose S : B −→ C is a functor surjective on objects, where the categories

B and C are small. Then the composite

[C ,K ]
[S,K ]

�� [B,K ]
[B,U]

�� [B,X ]

has a left adjoint and the resulting adjunction is of descent type.

Proof. The functor [S,K ] is monadic. This follows from the fact that S is surjective on

objects since then [S,K ] is faithful and reflects isomorphisms, and since [S,K ] has both

left and right adjoints given by Kan extensions, we can conclude that [S,K ] is monadic

by Beck’s Theorem.

The functor [B, U] has a left adjoint [B, F], this adjunction being the image of the

adjunction F � U under the 2-functor [B,−]. Moreover, [B, F] � [B, U] is an adjunction

of descent type since F � U is.

Since [S,K ] sends coequalisers to epimorphisms (in fact, it preserves coequalisers, since

it is a left adjoint), the composite [S,U] = [B, U] · [S,K ] is of descent type by Kelly and

Power (1993, Proposition 3.5).

We will now establish the first presentation result for finitely based functors and

endofunctors of the ‘base’ category X .

Proposition 3.15. The functor

[F,U] : FinB(K ,K ) −→ Fin(X ,X ), L �→ ULF

has a left adjoint H �→ Ĥ , and the adjunction is of descent type.

Proof. Using the identifications FinB(K ,K ) � [A ,K ] and Fin(X ,X ) � [Xfp ,X ],

observe that the forgetful functor [F,U] : FinB(K ,K ) −→ Fin(X ,X ) can be written as

the composite

[F ′, U] ≡ [A ,K ]
[F ′ ,K ]

�� [Xfp ,K ]
[Xfp ,U]

�� [Xfp ,X ] (3.2)

where we use F ′ : Xfp −→ A to denote the restriction of F : X −→ K . Now use

Lemma 3.14 with S = F ′.

Remark 3.16. The finitely based functor Ĥ : A −→ K free on H is given explicitly at

F ′m in A by the formula

Ĥ(F ′m) = (LanF ′ (FH))(F ′m)

∼=
∫ n

A (F ′n, F ′m) • FHn

∼=
∫ n

K (Fn, Fm) • FHn

∼=
∫ n

X (n,UFm) • FHn

∼= FHU(Fm),
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where the last isomorphism is by the Yoneda Lemma.

Remark 3.17. As always, in the presence of an adjunction of descent type, we have a

presentation result: Proposition 3.15 states that every finitely based L : K −→ K can be

expressed as a coequaliser

Ĥ1

λ ��

ρ
�� Ĥ2

γ
�� L

for some suitable finitary functors H1, H2 : X −→ X . In the following we want to improve

this coequaliser presentation to involve finitary signatures rather than endofunctors.

Before we state our main presentation result, recall the monadic adjunction

LanE(−) � [E,X ] : Fin(X ,X ) −→ [|Xfp |,X ] (3.3)

where E : |Xfp | −→ X is the inclusion of the discrete underlying category of Xfp

into X .

The functor category [|Xfp |,X ] is best perceived as the category of finitary signatures

on X (Kelly and Power 1993), and we denote it by

Sigfin (X ).

Such a signature Σ is a collection (Σn) indexed by finitely presentable objects of X . The

object Σn is then an object of n-ary operations for each finitely presentable object n in X .

The left adjoint in (3.3) sends each signature Σ to its corresponding polynomial

endofunctor

HΣX =
∐
n

X (n,X) • Σn,

where the coproduct is taken over objects in |Xfp | and X (n,X) • Σn is the X (n,X)-th

tensor of Σn in X defined by the isomorphism

X (X (n,X) • Σn,X ′) ∼= V (X (n,X),X (Σn,X ′)) (3.4)

natural in X ′.

Theorem 3.18. The composite

FinB(K ,K )
[F,U]

�� Fin(X ,X )
[E,X ]

�� Sigfin (X ) (3.5)

has a left adjoint and the resulting adjunction is of descent type.

Proof. We first recall that F ′ : Xfp −→ A denotes the restriction of F : X −→ K , and

we will use E ′ : |Xfp | −→ Xfp to denote the restriction of the inclusion E : |Xfp | −→ X .

Then, using the identifications FinB(K ,K ) � [A ,K ] and Fin(X ,X ) � [Xfp ,X ], the

composite (3.5) can be written as the composite

[A ,K ]
[F ′E ′ ,K ]

�� [|Xfp |,K ]
[|Xfp |,U]

�� [|Xfp |,X ]

Putting S = F ′ · E ′ in Lemma 3.14 completes the proof.
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The above theorem states that every finitely based functor L : K −→ K can be

expressed as a coequaliser in the spirit of Bonsangue and Kurz (2006), and it generalises

results of Kurz and Rosický (2006) from finitary varieties (over Set) to finitary adjunctions

of descent type (over an arbitrary l.f.p. category X , enriched in V ).

Indeed, Theorem 3.18 states that every finitely based endofunctor L : K −→ K can

be written as a coequaliser

ĤΓ

λ ��

ρ
�� ĤΣ

γ
�� L (3.6)

for some suitable finitary signatures Σ and Γ. In fact, the pair λ, ρ in (3.6) can equivalently

be given by a parallel pair

Γ
λ� ��

ρ�
�� UĤΣF

of signature morphisms. In fact, by Remark 3.16, we have

UĤΣFn ∼= UFHΣUFn,

so the purpose of Γ and the pair λ�, ρ� is to pick up, for every n, Γn-many pairs of ‘terms’

in UFHΣUFn to be equal. This is exactly the type of equation treated in Bonsangue and

Kurz (2006) and Kurz and Rosický (2006) – see Section 5 below for more details.

Example 3.19. Suppose V = Set in this example and also let K = X = Set. In

this setting, Theorem 3.18 reduces to equational presentations of finitary endofunctors

L : Set −→ Set by the basic (or, flat) equations of Adámek and Trnková (1990):

For every finitary endofunctor L : Set −→ Set, there exists a finitary signature Σ and a

set E of equations between Σ-terms of depth � 1, such that every LX can be obtained

from HΣX by quotienting by equations in E.

In fact, one can find a canonical equational presentation of the above form as follows:

(1) Since L is finitary, it has a canonical coend representation

LX ∼=
∫ n

Set(n,X) • Ln.

(2) Since a coend is a colimit, it can be represented using coequalisers and coproducts

as follows:

∐
n,m Set(m, n) • (Set(n,X) • Lm)

λX ��

ρX
��
∐

n Set(n,X) • Ln
γX �� LX

where:

— λX sends (h : m −→ n, x : n −→ X, σ ∈ Lm) to (x · h : m −→ X, σ ∈ Lm);

— ρX sends (h, x, σ) to (x, Lh(σ)); and

— γX sends (x : n −→ X, τ ∈ Ln) to Lx(τ).

See, for example, (the dual of) Formula (3.68) of Kelly (1982a).

After shuffling the coproducts, we can write down the above coequaliser as

∐
n Set(n,X) • (

∐
m Set(m, n) • Lm)

λX ��

ρX
��
∐

n Set(n,X) • Ln
γX �� LX.
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(3) Define two finitary signatures

Σn = Ln

Γn =
∐
m

Set(m, n) • Lm

where n and m range through finite sets. Then the above coequaliser takes the form

∐
n Set(n,X) • Γn

λX ��

ρX
��
∐

n Set(n,X) • Σn
γX �� LX

or, more suggestively, the form

HΓX
λX ��

ρX
�� HΣX

γX �� LX,

which is exactly an equational presentation of L in the spirit of Theorem 3.18.

We can illustrate this procedure using the example of the finitary powerset functor Pfin .

Its canonical equational presentation is given by signatures

Σn = Pfinn

Γn =
∐
m

Set(m, n) • Pfinm,

and the above pair λ, ρ of natural transformations is induced uniquely by the pair

λ
�
k : Γk −→ HΣk

ρ
�
k : Γk −→ HΣk

indexed by finite sets k, or, when writing Γ and HΣ explicitly, by the pair

∐
m Set(m, k) • Pfinm

λ
�
k ��

ρ
�
k

��
∐

n Set(n, k) • Pfinn,

that represents the system of equations of the form

(h, σ) ≈ (id k, Pfinh(σ))

for every m, k, every h : m −→ k and every σ ∈ Pfinm.

Such an equation ‘holds’ in PfinX, that is, after employing an interpretation x : k −→ X

of variables, the mapping γX sends both sides of the above equation to the same element

of PfinX, that is, we have an actual identity

Pfin (x · h)(σ) = Pfinx · Pfinh(σ)

in PfinX.

Note that one usually wants to find a more ‘effective’ equational presentation since the

above canonical one expresses exactly the information that L is a finitary functor, and it

does not care about any possible special properties of L.
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For example, a more effective equational presentation of Pfin consists of signatures

Σk = {σk}

Γk =
∐
m

Set(m, k) • {σm}

with

λ
�
k (h : m −→ k, σm) = (h, σm)

ρ
�
k ((h : m −→ k, σm)) = (id�, σ�)

where � is the direct image h[m] ⊆ k.

This more economical presentation presents elements of PfinX as flat terms, subject to

equations σn(x) ≈ σm(y) for all pairs n, m of finite sets and all x : n −→ X, y : m −→ X

with {x(i) | i ∈ n} = {y(j) | j ∈ m}. See also Adámek et al. (2009, Example 3.8).

The above canonical presentation of a finitary functor L : K −→ K can be found

in the same manner as in Example 3.19 for any l.f.p. base category V and any l.f.p.

category K .

We will give some more examples of presentations in Section 5.

4. Presentations of finitely based monads

A monad M = (M, η, µ) on K is said to be finitely based if its underlying functor

M : K −→ K is finitely based. The category of all finitely based monads on K is

denoted by

Mndfinb(K ).

Before we turn to equational presentations of finitely based monads, note that such

monads fulfil the ‘monadic composition’ property. More precisely, the following result

holds.

Theorem 4.1. Suppose F � U : K −→ X is monadic. Consider a finitely based monad

M = (M, η, µ) on K . Then the composite

K M UM
�� K

U �� X

is monadic, where UM is the forgetful functor from the category of Eilenberg–Moore

algebras for M.

Proof. By Beck’s Theorem (see, for example, Mac Lane (1998, Chapter VI.7, Exercise 2)),

we need to prove that K M has and UUM preserves and reflects UUM-absolute coequalisers.

Since the monad M, being finitely based, is finitary, the category K M is locally finitely

presentable (Bird 1984, Theorem 6.9). In particular, K M has coequalisers.

Take a pair

A
f

��

g
�� B (4.7)

https://doi.org/10.1017/S0960129510000575 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000575


J. Velebil and A. Kurz 374

in K M that has a UUM-absolute coequaliser. Consider its image under UM:

UMA
UMf

��

UMg

�� UMB . (4.8)

The above pair (4.8) in K has a U-absolute coequaliser

UUMA
UUMf

��

UUMg

�� UUMB
q

�� Z (4.9)

in X . Since U is assumed to be monadic, there is a coequaliser

UMA
UMf

��

UMg

�� UMB
c �� X (4.10)

with Uc ∼= q.

To complete the proof we only need to endow X in (4.10) with the structure of an

M-algebra such that c : UMB −→ X is an M-algebra homomorphism. To do this, it suffices

to prove that both M and MM preserve the coequaliser (4.10).

Consider the following 3 × 3 scheme:

FUFUUMA
FUFUUMf

��

FUFUUMg

��

FUεUMA

��

εFUUMA

��

FUFUUMB
FUFUc ��

FUεUMB

��

εFUUMB

��

FUFUX

FUεX

��

εFUX

��

FUUMA
FUUMf

��

FUUMg

��

εUMA

��

FUUMB
FUc ��

εUMB

��

FUX

εX

��

UMA
UMf

��

UMg

�� UMB
c �� X

(4.11)

Observe that, by assumption, the first two ‘rows’ are absolute coequalisers and all three

‘columns’ are coequalisers preserved by M.

Hence, by applying M to (4.11), we obtain a 3 × 3 scheme where all ‘columns’ and the

first two ‘rows’ are coequalisers. Therefore the bottom ‘row’ must be a coequaliser, which

is exactly what we wanted.

The argument for MM is analogous.

Having proved that M and MM preserve the coequaliser (4.10), we define the M-algebra

structure x : MX −→ X on X as the unique mediating morphism in

MUMA
MUMf

��

MUMg

��

a

��

MUMB
Mc ��

b

��

MX

x

��

UMA
UMf

��

UMg

�� UMB
c �� X

(4.12)
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It is now just a standard proof (Linton 1969, Page 67, Proposition 3) to show that x :

MX −→ X is indeed an M-algebra structure (for this one needs that MM preserves (4.10))

and that c : UMB −→ X is a coequaliser in the category of M-algebras.

Remark 4.2. Observe that the assumption that U and UM are finitary is irrelevant in the

above theorem. Indeed, the theorem holds more generally:

Suppose F � U : K −→ X is an arbitrary monadic adjunction. Suppose further

that M = (M, η, µ) is an arbitrary monad on K such that the functor M preserves

canonical resolutions (3.1). Then the composite UUM : K M −→ X is monadic.

Proposition 4.3. The forgetful functor Mndfinb(K ) −→ FinB(K ,K ) is monadic.

Proof. It suffices to prove that the free finitary monad FL on a finitely based functor

L is finitely based. Recall from Adámek (1974) that the underlying finitary functor FL of

FL is given by a colimit of the countable chain

WL
0

wL
0,1

�� WL
1

wL
1,2

�� . . .

where WL
0 = Id and WL

k+1 = L · WL
k + Id , wL

0,1 = inr and wL
k+1,k+2 = LwL

k,k+1 + id .

To prove that FL is finitely based, observe that each Wk is, and then use the fact that

finitely based functors are closed in the category of finitary functors under colimits (see

Lemma 3.13).

We will now prove that finitely based monads on K can be presented using finitary

signatures on X .

Theorem 4.4. The functor Mndfinb(K ) −→ Sigfin (X ) sending M = (M, η, µ) to the

signature n �→ UMFn has a left adjoint, and the resulting adjunction is of descent

type.

Proof. For the purposes of this proof, we introduce the following notation:

(1) The forgetful monadic functor Mndfinb(K ) −→ FinB(K ,K ) is denoted by W and its

left adjoint is denoted by F.

(2) The forgetful functor FinB(K ,K ) −→ Sigfin (X ) of Theorem 3.18 is denoted by V .

By the same theorem, V has a left adjoint, denoted by G, and the adjunction G � V

is of descent type.

We need to prove that the composite adjunction FG � VW is of descent type. We will

closely follow the proof of Kelly and Power (1993, Theorem 5.1).

We use α to denote the counit of the adjunction FG � VW . We will prove that αT
is W -final, for every finitely based monad T = (T , ηT, µT). This amounts to proving the

following:

For every finitely based monad S = (S, ηS, µS) and every natural transformation

τ : T −→ S such that the composite τ · αT : FGVW (T) −→ S is a monad morphism, τ

is a monad morphism.
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Therefore, we assume that the perimeters of the following two diagrams commute:

FGV (T ) · FGV (T )
αT∗αT ��

µ
FGV (T )

��

T · T τ∗τ ��

µT

��

S · S

µS

��

FGV (T )
αT �� T

τ �� S

FGV (T ) αT
�� T τ

�� S Id

η
FGV (T )

�����������
ηT

��

ηS

����������

There is nothing to prove for the right-hand triangle since the equality τ · ηT = ηS

clearly holds. To prove that the right-hand rectangle commutes, we will show that αT ∗ αT,

or, more precisely, W (αT) ∗ W (αT) is an epimorphism in FinB(K ,K ).

We will prove that both

W (αT) ∗ idW (FGV (T )) : W (FGV (T )) · W (FGV (T )) −→ T · W (FGV (T ))

and

idW (T) ∗ W (αT) : T · W (FGV (T )) −→ T · T

are epimorphic, and the transformation W (αT) ∗W (αT) will then be a composition of two

epimorphisms.

(1) The natural transformation W (αT) ∗ idW (FGV (T )) is an epimorphism.

To prove this, observe that VW (αT) is a split epimorphism in Sigfin (X ) by the triangle

equality for FG � VW . Since V is faithful (being of descent type by Theorem 3.18),

W (αT) is an epimorphism. Now the functor − · W (FGV (T )) is a left adjoint, so it

preserves epimorphisms. Therefore W (αT) ∗ idW (FGV (T )) is an epimorphism.

(2) The natural transformation idW (T) ∗ W (αT) is an epimorphism.

We again use the fact that VW (αT) is a split epimorphism in Sigfin (X ). Then

from Kelly and Power (1993, Lemma 5.2), it follows that idW (T) ∗ W (αT) is an

epimorphism.

Theorem 4.4 states that, for every finitely based monad M, there is a coequaliser of the

form

FΓ

λ ��

ρ
�� FΣ

γ
�� M

in the category Mndfinb(K ) for some suitable finitary signatures Γ and Σ on the category

X . The above coequaliser then represents an equational presentation of M in the same

way as discussed for functors at the end of the previous section.

5. Examples

Theorems 3.18 and 4.4 are new in two respects: they generalise previous results from

‘ordinary’ categories to V -categories and from monadic categories to categories of descent

type. In this section we give some examples to show where and how our results can be

applied.
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5.1. Presenting functors on varieties: modal algebras

We will first illustrate Theorem 3.18 in the case of K = BA and show how we can use it

to generalise the notion of a modal algebra (Blackburn et al. 2001) from Kripke frames

X −→ PX to arbitrary set-coalgebras ξ : X −→ TX.

Recall that there are contravariant functors P : Set −→ BA and S : BA −→ Set, which

are adjoint on the right. P maps a set to the Boolean algebra of subsets and S maps a

Boolean algebra to the set of ultrafilters. On arrows, both act as the inverse image, and

we use F to denote the left adjoint of the forgetful functor U : BA −→ Set.

Given P, we define L : BA −→ BA by LFn = PPSFn on finitely generated free algebras,

and then extend L continuously to all of BA. By Theorem 3.18, L has a presentation

where n-ary operations are given by ULFn = UPTSFn ∼= 2T (2n).

We call a � ∈ 2T (2n) an n-ary modal operator since it gives rise to an operation on

n-tuples of subsets of X taking ϕ : X −→ 2n to the predicate

X
ξ−→ TX

Tϕ
−→ T (2n)

�−→ 2 (5.13)

on X. In the particular case of T = P, it can be shown that, together with the Boolean

operations, all n-ary modal operators can be generated from the particular unary one

given by

P(2)
�−→ 2 {0, 1} �→ 0, {0} �→ 0, {1} �→ 1, {} �→ 1,

which, using (5.13), does indeed reveal itself to be the usual � of modal logic (Blackburn

et al. 2001). Furthermore, the equations (3.6) defining L amount to the usual axioms of

modal logic, namely that � preserves finite meets.

To summarise, we recalled from Kurz and Rosický (2006) how to recover the classic

modal algebras from the powerset-functor P and, at the same time, how to generalise the

notion of a modal algebra from Kripke frames to coalgebras for an arbitrary set-functor

T . The generalisation of Theorem 3.18 opens the way to transfer the same analysis to

coalgebras over enriched categories such as posets, ω-cpo’s and certain kinds of metric

space. We leave this for future work (first steps in this direction were taken in Kapulkin

et al. (2010)) and will restrict ourselves here to some examples of such functors and their

presentations.

5.2. Presenting monads on nominal sets

The category Nom of nominal sets (Gabbay and Pitts 1999) plays an important role

in the modelling of calculi involving the notion of name-binding, be it first-order logic,

λ-calculus or process algebras such as the π-calculus. It is well known, see, for example,

Fiore and Staton (2006) or Gadducci et al. (2006), that Nom embeds into the presheaf

category [I,Set], where I is the category of finite sets with injections. Since [I,Set] is

monadic over the category of many-sorted sets Set|I| (where |I| denotes the set of objects

of I), this suggests we do universal algebra over nominal sets as standard many-sorted

universal algebra over Set|I|. Indeed, as shown in Kurz and Petrişan (2010), it is possible

to translate the logics of Gabbay (2009) and Clouston and Pitts (2007) into many-sorted
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equational logic and then make use of classical results of universal algebra such as

Birkhoff’s HSP-theorem on equationally definable classes of algebras.

Theorems 4.1 and 4.4 give a conceptual explanation of this approach as follows.

The full and faithful embedding I : Nom −→ [I,Set] gives rise to a forgetful functor

Nom −→ Set|I|, which is of descent type. According to Theorem 4.4, every finitely based

monad M on Nom has a presentation. Since it takes arities from Set|I|, it is also a

presentation of a monad M′ on SetI, which is also finitely based. By Theorem 4.1, the

category of M′-algebras is monadic not only over SetI but also over Set|I|, that is, it falls

into the realm of standard many-sorted set-based universal algebra. In particular, we can

study M-algebras over Nom by studying the standard many-sorted universal M′-algebras

and their representation by operations and equations. For further details, see Kurz and

Petrişan (2010) and Kurz et al. (2010).

5.3. Presenting functors on posets

In this section V = Pos, the category of all posets and monotone maps. It is an l.f.p.

cartesian closed category (see, for example, Adámek and Rosický (1994)), hence it is a

suitable base category.

Convex powerset. Consider a signature Σ where Σn has one operation symbol for each

finite discrete poset n and is empty otherwise. The induced functor

HΣ : Pos −→ Pos

HΣX =
∐
n

Pos(n,X) = {[x1, . . . , xn] | xi ∈ X, n < ω}

maps a poset X to the poset of lists, ordered pointwise, over X. Also consider equations

Γ that quotient lists to sets (expressing the fact that the order and repetition of elements

can be ignored). We write {x1, . . . , xn} for the equivalence class of [x1, . . . , xn].

Note that the presentation Σ,Γ above is exactly the one of Example 3.19, except for

the fact that the coequaliser (3.6) defining L is now computed over Pos instead of Set.

It follows from the equations Γ that the pointwise order on [x1, . . . , xn] turns into the

Egli–Milner order on LX: the inequality

{x0, . . . , xn−1} � {y0, . . . , ym−1}

holds in LX if and only if for all i ∈ n there exists j ∈ m such that xi � yj and for all

j ∈ m there exists i ∈ n such that xi � yj .

Furthermore, it follows from the way coequalisers are computed in Pos that the functor

L presented by Σ, Γ identifies the sets that are equal according to the Egli–Milner order.

Moreover, calculating in LX and assuming x1 � x � x2,

{x1, x2 . . . , xn−1} = {x1, x1, x2 . . . , xn−1}
� {x1, x, x2 . . . , xn−1}
� {x1, x2, x2 . . . , xn−1}
= {x1, x2 . . . , xn−1}
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shows that we can represent the elements of LX as the finitely generated convex subsets

of X. To summarise, we have shown the following proposition.

Proposition 5.1. The functor L presented by Σ,Γ maps a poset X to the poset of finitely

generated convex subsets ordered by the Egli–Milner order.

Remark 5.2. The above functor L is a ‘Pos-enriched analogy’ of the finitary powerset

functor Pfin of Example 3.19. We will show one more example of such an analogy in

Proposition 5.4.

Note that by definition, L is a Pos-functor, that is, L preserves the order on the homsets.

It is this condition that is responsible for interesting poset phenomena (convexity) arising

even though the arities and the sets of operation symbols (co-arities) are discrete. We will

now look at two examples where arities and co-arities are non-discrete posets.

Arities that are posets. Consider the functor Pos −→ Pos that maps a poset to the

discrete poset of its connected components. It is presented by:

— arities: 1,2
— operations: Σ1 is the (po)set {�}. Σ2 is the (po)set {�}
— equations: �(x1) = �(x1, x2),�(x2) = �(x1, x2)

(where 2 is {0 < 1}). Intuitively, � just makes a copy of the poset and � is used to

identify all elements that are related in the order.

Co-arities that are posets. Consider the functor Pos −→ Pos, X �→ 2× X. It is presented

by:

— arities: 1

— operations: Σ1 is the poset {l, r} with l < r.

— no equations.

Here, each of l, r makes a copy and l < r guarantees that x on the left is smaller than x

on the right.

5.4. Presenting functors on metric spaces

The category CUMet of all complete 1-bounded ultrametric spaces and non-expanding

maps is cartesian closed and locally ℵ1-presentable. A 1-bounded ultrametric space is a set

X with a function d : X × X −→ [0, 1] such that:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) � max{d(x, z), d(z, y)}.
A non-expanding map f : (X1, d1) −→ (X2, d2) is a map f : X1 −→ X2 satisfying

d2(f(x), f(y)) � d1(x, y), for all x, y. See de Bakker and de Vink (1996).

Hence, V = CUMet can serve as a base category and our theory applies (see Remark 3.9

for the shift from finitely based to ℵ1-based).

Consider a signature Σ where ΣX has one operation symbol for each finite discrete X,

one operation symbol for the countable discrete space ω, and Σn is empty otherwise. The
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induced functor

HΣ : CUMet −→ CUMet

HΣX =
∐
n�ω

CUMet(n,X)

maps a metric space X to the metric space of (finite or infinite) lists over X. The distance

between two lists l, l′ of the same length λ is

sup{d(li, l′i ) | i < λ}. (5.14)

Now consider adding equations Γ that quotient lists to sets (expressing the fact that the

order and repetition of elements can be ignored) and denote by L the functor presented

by Σ, Γ as in (3.6).

It follows from the equations Γ that the distance (5.14) between lists turns into the

Hausdorff distance between sets. In detail, we consider two lists l, l′ of elements from X

and use l̄, l̄′ to denote the corresponding sets. We write C(l, l′) for the set of pairs (k, k′)

of lists of length ω such that we have k̄ = l̄ and k̄′ = l̄′. It then follows from the way

colimits are calculated in CUMet that

d(̄l, l̄′) = inf{d(k, k′) | (k, k′) ∈ C(l, l′)}.

Lemma 5.3. The equality

inf{d(k, k′) | (k, k′) ∈ C(l, l′)}
= inf{α > 0 | ∀x ∈ l̄.∃y ∈ l̄′.d(x, y) < α &∀y ∈ l̄′.∃x ∈ l̄.d(x, y) < α}

holds.

The lemma shows that d(̄l, l̄′) is equal to the Hausdorff distance (de Bakker and de Vink

1996, Definition 2.2), which can also be expressed as

max{sup
x∈l̄

inf
y∈l̄′

d(x, y), sup
y∈l̄′

inf
x∈l̄

d(x, y)}.

Subsets with distance 0 are identified in LX. It is not difficult to see that two subsets have

distance 0 if and only if they have the same completion if and only if they have the same

topological closure. In particular, on closed subsets, the Hausdorff distance becomes a

metric. Also recall that a (subset of a) topological space is said to be separable if it has a

dense, countable subset; for example, finite dimensional Euclidean space is separable. We

can now summarise with the following proposition.

Proposition 5.4. The functor L : CUMet −→ CUMet presented by Σ, Γ maps a space X to

the the space of its closed and separable subsets with the Hausdorff metric.
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Kurz, A. and Petrişan, D. (2010) On universal algebra over nominal sets. Mathematical Structures

in Computer Science 20 (2) 285–318.
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