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We examine the regularity of the extremal solution of the nonlinear eigenvalue
problem

∆2u =
λ

(1 − u)p

on a general bounded domain Ω in R
N , with Navier boundary condition u = ∆u on

∂Ω. Firstly, we prove the extremal solution is smooth for any p > 1 and N � 4,
which improves the result of Guo and Wei (Discrete Contin. Dynam. Syst. A34
(2014), 2561–2580). Secondly, if p = 3, N = 3, we prove that any radial weak solution
of this nonlinear eigenvalue problem is smooth in the case Ω = B, which completes
the result of Dávila et al . (Math. Annalen 348 (2009), 143–193). Finally, we also
consider the stability of the entire solution of ∆2u = −1/up in R

N with u > 0.
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1. Introduction

In this paper, we consider the following fourth-order elliptic problems with negative
exponents:

∆2u =
λ

(1 − u)p
in Ω,

0 < u � 1 in Ω,

u = ∆u = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(F )λ

and
∆2u = − 1

up
in R

N with u > 0, (E)

where 0 < λ, 0 < p and Ω is smooth and bounded in R
N . Recently, higher-

order equations with a singular nonlinearity have attracted the interest of many
researchers. In particular, the corresponding second-order problem for (F )λ has
been intensively studied; this models a simple electrostatic microelectromechanical
systems (MEMS) device (see, for example, [7, 19] and the references therein).
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Recently, Lin and Yang [16] derived (F )λ with p = 2 in the study of charged
plates in electrostatic actuators. Here λ = aV 2, where V is the voltage and a is a
positive constant. The following energy functional is associated with (F )λ:

E(u) =
∫

Ω

{
|∆u|2

2
− λ

1 − u

}
dx,

where the first term is the bending energy and the second is the potential energy.
Lin and Yang considered two kinds of boundary conditions: the Navier boundary
condition,

u = ∆u = 0 on ∂Ω,

and the Dirichlet boundary condition,

u =
∂u

∂n
= 0 on ∂Ω.

They found that there exists 0 < λ∗ < ∞, called the pull-in threshold, such that,
for λ ∈ (0, λ∗), (F )λ has a smooth solution uλ. For λ > λ∗, (F )λ does not have
any smooth solution. Physically, this is a natural relation because a higher supply
voltage results in greater elastic deformation or deflection.

Equation (E) has its roots in Riemannian geometry for N = 3. Let us briefly
describe the background of this equation. Let g = (gij) be the standard Euclidean
metric on R

N , N � 3, with gij = δij . Let ḡ = u4/(N−4)g, N �= 4, be a second metric
derived from g by the positive conformal factor u : R

N → R. Then u satisfies

∆2u =
N − 4

2
Qḡu

(N+4)/(N−4),

where Qḡ is the scalar curvature of ḡ. If we assume that Qḡ > 0 is a constant, we
can obtain (E) via scaling. The existence and properties of the solution have been
considered by various authors (for details see [6,10,17] and the references therein).

The first aim of this paper is to consider the regularity of the extremal solution
defined below, and the weak solutions of (F )λ, and the second aim is to study the
stability of the solution associated with (E).

1.1. Navier boundary-value problem

In this subsection, we state some results associated with (F )λ. First, we list some
of the known results one comes to expect when studying (F )λ (for more details
see [2–4] and the references therein).

(i) There exists a extremal parameter 0 < λ∗ < ∞ such that for each 0 < λ < λ∗

there exists a unique stable classical solution uλ for (F )λ. Moreover, uλ is the
minimal solution and λ → uλ is increasing. By the minimal solution, we mean
here that if v is another solution of (F )λ, then v � uλ almost everywhere (a.e.)
in Ω.

(ii) For 0 < λ < λ∗ the minimal solution uλ is semi-stable in the sense that

pλ

∫
Ω

(1 − uλ)−p−1ψ2 dx �
∫

Ω

|∆ψ|2 dx ∀ψ ∈ H2(Ω) ∩ H1
0 (Ω). (1.1)
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(iii) No weak solution exists for λ > λ∗.

(iv) The monotone limit u∗ = limλ→λ∗ uλ belongs to H2(Ω) ∩ H1
0 (Ω), called the

extremal solution.

An interesting problem is the regularity of the extremal solution u∗. This is of
interest since one can then apply the Crandall–Rabinowitz bifurcation theorem to
start a second branch of solutions from (λ∗, u∗). If the domain Ω is the unit ball,
then one can use the method of [3,5] to obtain optimal results for the radial extremal
solution in the case when p = 2 (see, for example, [18]). For the general case, Cowan
and Ghoussoub proved in [2, 4] that if

N

4
<

p

p + 1
+

p − 1
p + 1

(√
2p

p + 1
+

√
2p

p − 1
−

√
2p

p − 1
− 1

2

)
, 1 < p �= 3,

then u∗ is smooth. The restriction for p �= 3 is because of the borderline Sobolev
imbedding theorem (for details see [2, 4]). Very recently, Guo and Wei [12] proved
that if the following hold, then the extremal solution u∗ is smooth:

N = 3, p ∈ (p1(3), p2(3)) ⊂ (1, +∞);

N = 4, p ∈ (p1(4), p2(4)) ⊂ (1, +∞);

5 � N � 12, 1 < p∗(N) < p;

the definitions of p1(3), p2(3), p1(4), p2(4), and p∗(N) are found in [12].
Inspired by the arguments in [9, 13], we shall prove that the regularity of the

extremal solution u∗ is very well understood for N � 4, p > 1, i.e. u∗ is smooth for
N � 4, p > 1.

Another aim concerning (F )λ is the regularity of the weak solutions. By a weak
solution of (F )λ, we mean here that

1
(1 − u)p

, uλ ∈ L1(Ω),

and uλ satisfies ∫
Ω

uλ∆2φ dx =
∫

Ω

λφ

(1 − uλ)p
dx ∀φ ∈ C∞

0 (Ω);

a weak solution uλ to (F )λ is called singular if ‖uλ‖L∞(Ω) = 1 and regular if
‖uλ‖L∞(Ω) < 1. In addition, if Ω = B, the radial singular solutions can be only
singular at the origin by the maximum principle.

To illustrate the ideas in this paper in detail, we now recall some corresponding
results for (F )λ.

• For N � 4 and p > 1, or N = 3 and 1 < p < 3, (F )λ with Ω = B admits a
unique weak solution, uλ(r), which is singular and such that

lim
r→0

r−4/(p+1)(1 − uλ(r))

exists [6].

• For N = 3, p > 3 or N = 2, p > 1, any weak solution of (F )λ is regular [11,13].
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A natural question is ‘what about the critical case?’; namely, for 0 < p � 1 or
N = 3 and p = 3, is there regularity of the weak solution of (F )λ? We consider a
simple case, Ω = B, and prove that any radial weak solution of (F )λ is regular for
N = 3, p = 3. In order to achieve this proof, we suppose by contradiction that (F )λ

admits a weak solution uλ(r) with uλ(0) = 1. Then, according to some ordinary
differential equation techniques, we see that

lim
r→0

r−1(− log r)−1/4(1 − uλ(r)) = 21/4 if N = 3, p = 3;

lim
r→0

r−2(− log r)−1/2(1 − uλ(r)) =
√

(N(N − 2))−1 if N � 4, p = 1;

lim
r→0

r−2(1 − uλ(r)) = c0 if N � 5, 0 < p < 1.

From this asymptotic, we immediately obtain a contraindication to (1−uλ)−3 ∈ L1

for N = 3. However, for other critical cases, it is unclear whether any weak solution
is regular or singular. Note that the rate of vanishing of 1 − uλ(r) for the critical
case as r → 0 is in striking contrast to the case when N � 4 and p > 1 or N = 3
and 1 < p < 3.

Making use of the above discussion, we state our results associated with (F )λ as
follows.

Theorem 1.1.

(i) For any p > 1, the extremal solution u∗ of (F )λ∗ is regular for dimensions
N � 4.

(ii) Let Ω be a unit ball centred at 0. Then any radial weak solution of (F )λ is
regular for p = 3, N = 3.

Remark 1.2. In our recent work [15], we proved that (E) has no positive entire
solution for 0 < p � 1. From the blow-up point of view, we conjecture that the
extremal solution of (F )λ is smooth for 0 < p � 1.

1.2. Stability of entire solutions

In this subsection, we state some stability results concerning (E). In this paper
we only consider the classical solution of (E), where of course u > 0 in R

N . We
now start by explaining what we mean by stability.

Definition 1.3. A solution u ∈ C4(RN ) to (E) is stable if∫
RN

|∆ϕ|2 dx − p

∫
RN

u−p−1ϕ2 dx � 0 ∀ϕ ∈ C∞
0 (RN ).

A solution u ∈ C4(RN ) to (E) is stable outside the compact set K if∫
RN \K

|∆ϕ|2 dx − p

∫
RN \K

u−p−1ϕ2 dx � 0 ∀ϕ ∈ C∞
0 (RN \ K).

First, we note that, according to Warnaut’s result [20], (E) admits no stable
solution for N = 3, 4.
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Proposition 1.4. Equation (E) admits no stable solution for N = 3, 4.

Now we discuss some stability results for the radial case, and we rewrite the
radial version of (E) as follows:

∆2u(r) = −u−p for r ∈ (0, Rmax(β)),
u(0) = 1, ∆u(0) = β, u′(0) = (∆u)′(0) = 0,

}
(1.2)

where [0, Rmax(β)) is the interval of existence of the solution. We say that a solution
of (1.2) is entire (respectively, local) if Rmax(β) = ∞ (respectively, Rmax(β) < ∞).

We now list the properties one comes to expect when studying (1.2).

Proposition 1.5. Assume p > 1. Then there exists a unique β0 > 0 such that the
following hold.

(a) If β < β0, then Rmax(β) < ∞.

(b) If β � β0, then limr→∞ ∆uβ(r) � 0 and Rmax(β) = ∞.

(c) For β = β0, we have the following:

(1) if N = 3, p > 3, then

lim
r→∞

uβ0

r
= α > 0 (for some fixed α);

(2) if N = 3, p = 3, then

lim
r→∞

uβ0

r(log r)1/4 = 21/4;

(3) if N � 4, p > 1 or N = 3, 1 < p < 3, then

lim
r→∞

r−4/(p+1)uβ0(r) =
(

−Q4

(
−4

p + 1

))−1/(p+1)

,

where Q4 is defined in (1.3).

The proofs of (a), (b) and (3) can be found in [6]. The proofs of (1) and (2) were
obtained in [10]. And the argument to prove (1) and (2) is the complex analysis
of a dynamical system. In fact, we can simplify the proof of [10], according to the
arguments that we use to prove lemma 2.5.

Although (E) admits no stable solution for N = 3, 4, it has a solution that is
stable outside a compact set under a certain range of p. First, we need the following
notation, which will be used throughout the paper.

Set
m = − 4

p + 1
, Q4(β) := β(β + 2)(N − 2 − β)(N − 4 − β). (1.3)

The polynomial Q4(β) is yielded by the following identity:

∆2|x|−β = Q4(β)|x|−β−4 ∀x ∈ B \ {0}.
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This polynomial is closely related to Rellich’s inequality,∫
RN

(∆u)2 dx � N2(N − 4)2

16

∫
RN

|x|−4u2 dx,

which is valid for each u ∈ H2(RN ) and each N > 4. Namely, the constant that
appears on the right-hand side is merely the unique local maximum value of Q4(β).
From [6], we see that there exist pc > 0, p+

c > 0 such that if

p =

{
pc or p+

c for N = 3,

pc for N � 4,
(1.4)

then −pQ4(m) = 1
16 (N2(N − 4)2). And if

N = 3 and pc < p < p+
c or 4 � N � 12 and pc < p < +∞,

then −pQ4(m) > 1
16 (N2(N −4)2). In addition, we always assume that β0 is defined

as proposition 1.5 and that uβ(r) is a radial solution of (E).

Theorem 1.6. Let N = 3, p > 1. Then we have the following.

(i) If p+
c < p < 3 or 1 < p < pc, then uβ0(r) is stable outside a compact set;

if pc < p < p+
c , uβ0(r) is unstable outside every compact set; if p � 3, then

uβ0(r) is stable outside a compact set.

(ii) If β > β0, then uβ(r) is stable outside a compact set.

Theorem 1.7. Let N = 4. Then uβ0 is unstable outside every compact set and uβ

is stable outside a compact set for β > β0.

Question 1.8 (open problem). What is the stability behaviour outside compact
sets for β = β0, N = 3, p = pc, p = p+

c ?

The case N � 5 is strikingly different from the cases N = 3, 4. For this we have
the following.

Theorem 1.9. Let N � 5. The following statements hold.

(i) If 5 � N � 12 and 1 � p � pc or N � 13, p > 1, then uβ is stable for every
β � β0.

(ii) For 5 � N � 12 and p < pc, uβ0 is unstable outside every compact set; if
β ∈ (β0, β1), then uβ is unstable; uβ is stable outside a compact set, and is
stable for β ∈ [β1, +∞).

2. Proof of theorem 1.1

2.1. Proof of theorem 1.1(i)

We start by proving the following lemma.

https://doi.org/10.1017/S0308210515000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000426


Semilinear fourth-order elliptic problems with negative exponents 201

Lemma 2.1. Let uλ be the minimal solution of (F )λ. Then there exists a constant
C independent of λ such that∫

Ω

|∆uλ|2 dx +
∫

Ω

(1 − uλ)−p−1 dx � C. (2.1)

Proof. Testing (F )λ on uλ ∈ H2(Ω) ∩ H1
0 (Ω), we see that

λ

∫
Ω

uλ(1 − uλ)−p dx =
∫

Ω

(∆uλ)2 dx � pλ

∫
Ω

u2
λ(1 − uλ)−p−1 dx.

In particular, for δ > 0 small we have∫
uλ�δ

(1 − uλ)−p−1 dx � 1
δ2

∫
uλ�δ

u2
λ(1 − uλ)−p−1 dx

� 1
δ2

∫
Ω

(1 − uλ)−p dx

� δ−p−1
∫

Ω

(1 − uλ)−p−1 dx + Cδ

by means of Young’s inequality with δ. Since, for δ small,∫
uλ�δ

(1 − uλ)−p−1 dx � C

for some C > 0, we get that ∫
Ω

(1 − uλ)−p−1 dx � C

for some C > 0 and for every λ ∈ (0, λ∗). Since∫
Ω

|∆uλ|2 dx = λ

∫
Ω

uλ(1 − uλ)−p dx �
∫

Ω

(1 − uλ)−p−1 � C,

we obtain ∫
Ω

|∆uλ|2 dx +
∫

Ω

(1 − uλ)−p−1 dx � C,

where C is an absolute constant.

Proof of theorem 1.1(i). As already observed, estimate (2.1) implies (1 − u∗)−p ∈
L(p+1)/p(Ω). We need to show that

u∗(x0) = sup
x∈Ω

u∗(x) < 1 for some x0 ∈ Ω

to get the regularity of u∗. In fact, on the contrary, suppose that u∗(x0) = 1. The
standard elliptic regularity theory shows that u∗ ∈ W 4,(p+1)/p(Ω). The Sobolev
imbedding theorem, i.e. W 4,(p+1)/p(Ω) ↪→ Cm(Ω̄) (0 < m � 4 + pN/(p + 1),
1 � N � 4), yields that u∗ is a Lipschitz function in Ω for 1 � N � 3.

Now suppose u∗(x0) = 1 and 1 � N � 2. Since

1
1 − u∗ � C

|x − x0|
in BR(x0) ⊂ Ω
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for some C > 0, R > 0, we see that

+∞ = Cp+1
∫

BR(x0)
|x − x0|−p−1 dx �

∫
Ω

(1 − u∗)−p−1 dx < +∞.

A contradiction arises, and hence u∗ is regular for 1 � N � 2.
For N = 3, by the Sobolev imbedding theorem, we have u∗ ∈ C(p+4)/(p+1)(Ω̄). If

(p + 4)/(p + 1) � 2, then u∗(x0) = 1, ∇u∗(x0) = 0 and

|∇u∗(ε) − ∇u∗(x0)| � M |ε − x0| � M |x − x0|,

where 0 < |ε − x0| < |x − x0|. Thus,

|u∗(x) − u∗(x0)| � |∇u∗(ε)| |x − x0| � M |x − x0|2.

This inequality shows that

+∞ = M−p−1
∫

BR(x0)
|x − x0|−2p−2 dx �

∫
Ω

(1 − u∗)−p−1 dx < +∞.

A contradiction arises and hence u∗ is regular for N = 3; if (p + 4)/(p + 1) < 2,
then

|∇u∗(ε) − ∇u∗(x0)| � M |ε − x0|(p+4)/(p+1)−1 � M |x − x0|3/(p+1)

where 0 < |ε − x0| < |x − x0|. Thus,

|u∗(x) − u∗(x0)| � |∇u∗(ε)| |x − x0| � M |x − x0|(p+4)/(p+1),

and a contradiction is obtained as above.
For N = 4, by the Sobolev imbedding theorem, we have u∗ ∈ C4/(p+1)(Ω̄). If

1 < 4/(p + 1) < 2, then u∗(x0) = 1, ∇u∗(x0) = 0 and

|∇u∗(ε) − ∇u∗(x0)| � M |ε − x0|4/(p+1)−1 � M |x − x0|4/(p+1)−1,

where 0 < |ε − x0| < |x − x0|. Thus,

|u∗(x) − u∗(x0)| � |∇u(ε)||x − x0| � M |x − x0|4/(p+1).

If 4/(p + 1) � 1, then u∗ is a Hölder continuity,

1 − u∗(x) � M |x − x0|4/(p+1)

and we obtain a contradiction, as above. Combining the above elements of discus-
sion, we complete the proof of theorem 1.1(i).

2.2. Proof of theorem 1.1(ii)

Let uλ(r), r = |x|, be a radial singular solution of (F )λ. Then, according to
the maximum principle, uλ(r) may be singular only at the origin, and hence uλ ∈
C4(B \ {0}). In what follows, we always denote uλ by u for simplicity. We now
rewrite the radial version of (F )λ as follows:

d4u

dr4 +
2(N − 1)

r

d3u

dr3 +
(N − 1)(N − 3)

r2

d2u

dr2 − (N − 1)(N − 3)
r3

du

dr
=

λ

(1 − u)p
,

0 < r < 1. (2.2)
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In order to make the ordinary differential equation techniques accessible to our
present work, we first set

U(x) := 1 − u(r/ 4
√

λ), v(t) := emtU(et), t ∈ (−∞, 1
4 log λ). (2.3)

Then v(t) solves the autonomous equation

viv + K3v
′′′(t) + K2v

′′(t) + K1v
′(t) + K0v(t) = − 1

vp(t)
, t ∈ (−∞, 1

4 log λ), (2.4)

where K0 is defined in (1.3) and K1, K2, K3 are fixed constants dependent only on
N and p.

Obviously, (2.4) admits a constant solution only if K0 < 0; this is given by

v ≡ (−K0)−1/(p+1) = (−Q4(m))−1/(p+1).

But condition Q4(m) < 0 holds if and only if

N = 3, 1 < p < 3,

N � 4, 1 < p.

From this, we know that (2.4) does not have a constant solution if 0 � p � 1 or if
N = 3 and p � 3. In addition, (2.4) may be rewritten as

Lv := (∂t − ν1)(∂t − ν2)(∂t − ν3)(∂t − ν4)v(t) = − 1
vp

, t ∈ (−∞, 1
4 log λ), (2.5)

where

ν1 = m − N + 4, ν2 = m − N + 2, ν3 = m + 2, ν4 = m.

For K0 � 0, we have the following.

Lemma 2.2. Let 0 � p < 1, or N = 3 and p ∈ [3, +∞), or N = 2 and p > 1, and
let v be a solution of (2.4) corresponding to a solution of (F )λ. Then v is unbounded
in (−∞, t0).

Proof. Suppose by contradiction that v is bounded. Indeed, since 0 < p � 1, or
N = 3 and p ∈ [3, +∞), or N = 2 and p > 1, we have K0 � 0, and there exists
ε > 0 such that

−K0v(t) − v−p(t) � −v−p(t) < −ε ∀t ∈ (−∞, t0). (2.6)

After integration in (2.4), by (2.6) we obtain

v′′′(t) + K3v
′′(t) + K2v

′(t) > −ε(t − t0) + O(1) as t → −∞.

Two further integrations yield

v′(t) > − 1
6ε(t − t0)3 + O(t2) as t → −∞.

This contradicts the fact that v(t) > 0 for any t ∈ (−∞, t0).

Inspired by [8], we give the following lemma.
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Lemma 2.3. Let v be a solution of (2.4). Then,

lim
t→−∞

inf v(t) > 0.

Proof. Suppose by contradiction that there exist tk → −∞ such that

v′(tk) � 0 and lim
tk→−∞

v(tk) = 0. (2.7)

Define
λk = v−p−1(tk),

so that
lim

k→+∞
λk = +∞.

Since (2.4) is an autonomous equation, the translated function

ṽk(t) = v(t + tk − 1
4 log λk), t ∈ (−∞, 1

4 log λ − tk + 1
4 log λk),

also solves (2.4). In particular, the function

Ũk(r) = r−mṽk(log r)

is a radial solution of

∆2u = −u−p, x ∈ Bã(0) (ã = λ1/4λ
1/4
k e−tk) (2.8)

and satisfies the conditions

Ũk( 4
√

λk) = λ
1/(p+1)
k ṽk( 1

4 log λk) = λ
1/(p+1)
k v(tk) = 1

and, by (2.7),

Ũ ′
k( 4

√
λk) = −mλ

(−m−1)/4
k ṽk( 1

4 log λk) + λ
(−m−1)/4
k ṽ′

k( 1
4 log λk)

> −mλ
(−m−1)/4
k v(tk)

> 0.

Next, we define the radial function

uk(r) = 1 − Ũk( 4
√

λkr) = 1 − λ
−1/(p−1)
k r−4/(p−1)ṽk(t + 1

4 log λk).

So that we have

∆2uk(r) = λk(1 − uk)−p, uk > 0 in B,

uk = 0 on ∂B,
∂uk

∂n
� mv(tk) < 0 on ∂B.

This boundary-value problem is solved in a weak sense, since Ũ(r) is a weak solution
of (2.8). This also shows that uk is a supersolution of the following equation with
parameter λ = λk:

∆2u(r) = λ(1 − u)−p in B,

u =
∂u

∂n
= 0 on ∂B.
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Then we obtain a solution of the above equation for any k by the method of sub-
and supersolutions. From [3], we see that there exists λ∗ > 0 such that the above
equation admits no solution for λ > λ∗. And then we obtain a contradiction from
the fact that λk → +∞.

Lemma 2.4. If a smooth function h satisfies

(∂t − m)h � C0ent as t → +∞,

where m < n, C0 > 0, then there exists a constant C2 > 0 such that

h � C2ent ∀t � 1.

The proof of this lemma is trivial, so we omit it here.
The following lemma plays a key role in the proof of theorem 1.1(ii).

Lemma 2.5. Let u be a radial singular solution of (F )λ.

(i) If N = 3, p = 3, then

lim
r→0

(1 − u(r)) · r−1(− log r)−1/4 = 21/4.

(ii) If N � 4, p = 1, then us is such that

lim
r→0

(1 − u(r)) · r−2(− log r)−1/2 =
√

d1,

where d1 = 1/(N(N − 2)).

(iii) If N � 5, 0 < p < 1, then there exists a constant c0 such that

lim
r→0

(1 − u(r)) · r−2 = c0.

Proof. First we give the proof of (i) (the argument for (ii) is the same as for (i),
so we omit it here). Let v(t) be defined as in (2.3). We first claim v(t) → +∞ as
t → −∞. Combining this with lemma 2.2, we only need to prove v′(t) < 0 for large
|t|. Indeed, let s = −t, v′(t) = w(s). Then w(s) satisfies

(∂s − 2)(∂s − 1)(∂s + 1)w(s) = v−3 > 0.

Multiplying by e−2s, we get (e−2s(∂s − 1)(∂s + 1)w(s))′ > 0. We first claim

lim
s→+∞

e−2s(∂s − 1)(∂s + 1)w(s) � 0.

Indeed, if

lim
s→+∞

e−2s(∂s − 1)(∂s + 1)w(s) = C0,

then for large s we deduce (∂s − 1)(∂s + 1)w(s) > Ce2s. From lemma 2.4, we have
(∂s + 1)w(s) > Ce2s. Again using lemma 2.4, one can see that

v′(t) = w(s) > Ce−2t for large |t|,
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where the constant C > 0 is different from line to line. This contradicts the fact that
v(t) > 0 for any t ∈ (−∞, t0). So our claim is proved, and then (e−s(∂s +1)w(s))′ <
0. If lims→+∞ e−s(∂s + 1)w(s) > 0, we have a contradiction by the above argument,
so lims→+∞ e−s(∂s + 1)w(s) := C1 � 0. If C1 < 0, then, since v(t) is unbounded,
there exists s0 > 0 such that w(s0) < 0. We immediately obtain that v′(t) = w(s) <
0 for s > s0. If C1 = 0, then (esw(s))′ > 0. Since there is a sequence sk → +∞
such that w(sk) < 0, we have lims→+∞ esw(s) � 0, and again w(s) < 0.

Now, by the variation of parameters formula, v(t) can be represented by

v(t) =
4∑

i=1

Cievit + 2−1
∫ t0

t

v−3(τ) dτ

−
3∑

i=2

di

∫ t

−∞
evi(t−τ)v−3(τ) dτ − d4

∫ t0

t

e(t−τ)v−3(τ) dτ,

where v1 = 0, v2 = −2, v3 = −1, v4 = 1 and t0 < 0 is fixed. Since v(t) = o(et) and

−
3∑

i=2

di

∫ t

−∞
evi(t−τ)v−3(τ) dτ − d4

∫ t0

t

e(t−τ)v−3(τ) dτ → 0 as t → −∞,

we have C2 = C3 = 0 and we can rewrite v(t) as

v(t) = C + 2−1
∫ t0

t

v−3(τ) dτ + r(t), (2.9)

where

r(t) = −
3∑

i=2

di

∫ t

−∞
evi(t−τ)v−3(τ) dτ − d4

∫ t0

t

e(t−τ)v−3(τ) dτ + C4et = o(1)

as t → −∞.

Moreover, we have
r′(t) = o(1) as t → −∞.

From (2.9), we have

v′v3 = 2−1 + r′(t)v3(t) and v′(t) → 0 as t → −∞. (2.10)

By l’Hôpital’s rule and the fact that v′(t) → 0 as t → −∞, we have r′(t)v3(t) → 0
as t → −∞. Integrating the first equality of (2.10), we have

1
4v4(t) = 2−1(t0 − t) + o(t0 − t) for t 
 −1.

From this, we immediately have

lim
t→−∞

v(t)
4
√

−t
= 21/4, i.e. lim

r→0
(1 − u(r)) · r−1(− log r)−1/4 = 21/4.

Now we prove (iii). Since

v(t) =
4∑

i=1

Cievit +
4∑

i=1

di

∫ t

−∞
evi(t−s)v−1(s) ds,
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where

v1 = − 4
p + 1

− N + 4, v2 = − 4
p + 1

− N + 2, v3 = − 4
p + 1

+ 2, v4 = − 4
p + 1

,

and since v(t) = o(e−4t/(p+1)) as t → −∞, we have C1 = C2 = C4 = 0. Now we
claim C3 �= 0. Indeed, by contradiction, if C3 = 0, then

v(t) =
4∑

i=1

di

∫ t

−∞
evi(t−s)v−1(s) ds.

But from lemma 2.3 and vi < 0, i = 1, 2, 3, 4, we have∫ t

−∞
evi(t−s)v−1(s) ds = O(1),

which contradicts v(t) being unbounded. So, we have

lim
r→0

r2(1 − u(r)) = C,

where C denotes a constant depending on u and λ.

Proof of theorem 1.1(ii). From lemma 2.5, we immediately obtain the proof of the-
orem 1.1(ii). Indeed, if we suppose by contradiction that there is a weak solution
u(r) such that ‖u(r)‖L∞(B) = 1, we then have

lim
r→0

(1 − u(r)) · r−1(− log r)−1/4 = 21/4,

which contradicts that (1 − u(r))−3 ∈ L1(B).

3. Stability of the entire solution

In this section, we study the stability of the entire solution of (E). For completeness,
we give the proof of proposition 1.4, which appears in [20].

Proof of proposition 1.4. We argue by contradiction, assuming that (E) admits a
stable solution for N = 3, 4. Then we have∫

RN

|∆ϕ|2 dx � p

∫
RN

u−p−1ϕ2 dx ∀ϕ ∈ C∞
0 (RN ).

First, we consider the case N = 3 and take η ∈ C∞
0 (R3) such that

η = 1 on B1, η = 0 on R
N \ B2 and 0 � η � 1.

We set ηR(r) = η(r/R). Then

p

∫
BR

u−p−1 dx �
∫

R3
|∆ηR(|x|)|2 dx � CR−4

∫ 2R

0
r2 dr → 0 as R → ∞,
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which is a contradiction to u > 0. Now we consider the case when N = 4. For this
we set

ϕR(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 on [0, R],

1
2 lnR

(
−R2

r2 + 1 + 4 lnR − 2 ln r

)
on [R, R2],

R2(R2 − 1)
2r2 lnR

on [R2, +∞).

By a simple calculation, we have ϕR(r) ∈ C1[0, +∞), ∆ϕR(r) = 0 on [R2, +∞)
and ϕR(r) ∈ Ḣ2(R4), where Ḣ2(R4) is the closure of C∞

0 (R4) for the semi-norm
‖∆ · ‖L2 . Moreover, we have

∫
R4

|∆ϕR(|x|)|2 dx =
C

2 lnR

∫ R2

R

∣∣∣∣∆
(

−R2

r2 + 1 + 4 lnR − 2 ln r

)∣∣∣∣
2

r3 dr

=
C

lnR
→ 0 as R → ∞.

Then we obtain the contradiction, as for the case when N = 3.

In what follows we shall consider the radial case, and we now give some Hardy–
Rellich inequalities in exterior domains, which play a key role in the research of the
stability of radial solutions.

Lemma 3.1. Let BR a the ball of radius R > 0, centred at the origin in R
N . The

following Hardy-type inequalities with optimal constants hold true:

2
∫

R2\BR

|∆ϕ|2 dx �
∫

R2\BR

ϕ2

r4 log2 r
dx ∀ϕ ∈ C∞

0 (R2 \ B̄R), (3.1)

16
9

∫
R3\BR

|∆ϕ|2 dx �
∫

R3\BR

ϕ2

r4 dx ∀ϕ ∈ C∞
0 (R3 \ B̄R), (3.2)

∫
R4\BR

|∆ϕ|2 dx �
∫

R4\BR

ϕ2

r4 log2 r
dx ∀ϕ ∈ C∞

0 (R4 \ B̄R), (3.3)

∫
RN \BR

|∆ϕ|2 dx � N2(N − 4)2

16

∫
RN \BR

ϕ2

r4 dx ∀ϕ ∈ C∞
0 (RN \ B̄R), N � 5.

(3.4)

For the proof, see [1, corollaries 4.3 and 4.4].

Proof of theorem 1.6.
(i) First, we consider the case p+

c < p < 3, 1 < p < pc. Indeed, for this case we have
that

lim
r→∞

r−4/(p+1)uβ0(r) = (−Q4(m))−1/(p+1) and 0 < −pQ4(m) < 9
16 .
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And using the Hardy-type inequality (3.2), we see there exist R > 0 such that∫
R3\BR

|∆ϕ|2 dx − p

∫
R3\BR

u−p−1ϕ2 dx

�
∫

R3\BR

|∆ϕ|2 dx + (−pQ4(m) − εR)
∫

R3\BR

ϕ2

r4 dx

>

∫
R3\BR

|∆ϕ|2 dx − 9
16

∫
R3\BR

ϕ2

r4 dx

> 0

for all ϕ ∈ C∞
0 (R3 \ B̄R), where εR → 0 as R → ∞. Then uβ0 is stable outside a

compact set.
Second, we consider the case pc < p < p+

c . Indeed, by contradiction, we assume
that uβ0 is stable outside a compact set K. We can always choose R so large that
K ⊂ BR(0) and then∫

R3\BR

|∆ϕ|2 dx − p

∫
R3\BR

u−p−1
β0

ϕ2 dx > 0 (3.5)

for all ϕ ∈ C∞
0 (R3 \ BR). Now let εR → 0+ as R → ∞. Since

−pQ4(m) > 9
16 for pc < p < p+

c ,

we can choose R so large that −pQ4(m) − εR > 9
16 . Combining proposition 1.5(3)

with (3.5), we have∫
R3\BR

|∆ϕ|2 dx − ( 9
16 + εR)

∫
R3\BR

ϕ2

r4 dx

�
∫

R3\BR

|∆ϕ|2 dx + (−pQ4(m) − εR)
∫

R3\BR

ϕ2

r4 dx

�
∫

R3\BR

|∆ϕ|2 dx + p

∫
R3\BR

u−p−1
β0

ϕ2 dx

> 0,

which contradicts the optimality of the Hardy–Rellich inequality (3.2). And so
uβ0(r) is unstable outside every compact set for this case.

Finally, we consider the case p � 3. Since in this situation the solution uβ0 satisfies

lim
r→∞

uβ0

r(log r)1/4 = 21/4, p = 3,

lim
r→∞

uβ0

r
= α > 0, p > 3,

by combining the Hardy–Rellich inequality (3.2) with the argument above, we
obtain that uβ0 is stable outside a compact set.

(ii) Since
lim

r→∞
∆uβ(r) → γ > 0 for β > β0,
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we immediately have

lim
r→∞

uβ(r)
r2 = γ1 > 0 for β > β0.

Combining this with the Hardy–Rellich inequality, (3.2), we find the solutions are
stable outside a compact set, and this completes the proof of this theorem.

Proof of theorem 1.7. We prove by contradiction that uβ0(r) is stable outside a
compact set K. Choosing R so large that K ⊂ BR(0) and log2 R · (pQ4(m) + εR) >
1, and using proposition 1.5(3), we have, for all ϕ ∈ C∞

0 (R3 \ BR),

0 <

∫
R4\BR

|∆ϕ|2 dx − p

∫
R4\BR

u−p−1ϕ2 dx

=
∫

R4\BR

|∆ϕ|2 dx + (−pQ4(m) − εR)
∫

R4\BR

ϕ2

|x|4 dx

<

∫
R4\BR

|∆ϕ|2 dx − log2 R · (−pQ4(m) + εR)
∫

R4\BR

ϕ2

|x|4 log2 |x|
dx,

which is a contradiction of the optimality of the Hardy–Rellich inequality (3.3).
For the case when β > β0, the proof is the same as for theorem 1.6 and we omit

it here.

Now, we give the following lemma, which plays a key role in the proof of theo-
rem 1.9.

Lemma 3.2. If N � 13, or 4 < N � 12 and 1 < p � pc, then

uβ(r) > (−Q4(m))−1/(p+1)r4/(p+1) for all r > 0, β � β0.

For the proof of this lemma, see [14].

Proof of theorem 1.9.
(i) Since p, N satisfy

N � 13 or 5 � N � 12 and 1 < p � pc

from lemma 3.2, we have

uβ(r) > (−Q4(m))−1/(p+1)r4/(p+1)

for r > 0, β � β0 and −pQ4(m) > 1
16 (N2(N − 4)2).

Combining this with the following Hardy-type inequalities:∫
RN

|∆ϕ|2 dx � N2(N − 4)2

16

∫
RN

ϕ2

r4 dx ∀ϕ ∈ C∞
0 (RN ), N � 5, (3.6)

we see for β � β0 that∫
RN

|∆ϕ|2 dx − p

∫
RN

u−p−1
β ϕ2 dx �

∫
RN

|∆ϕ|2 dx + pQ4(m)
∫

RN

ϕ2

|x|4 dx > 0,

which implies uβ is stable and completes the proof of (i).
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(ii) The case β = β0 is similar to theorem 1.7, so we omit it here. Now we consider
the case when β > β0. Indeed, we first recall that

uβ � uβ0 +
β − β0

2N
r2 for all r � 0.

Simply choose β̄ > β0 and r0 such that

pu−p−1
β̄

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N2(N − 4)2

16
1
r4 for r � r0,

p

(
β̄ − β0

2N

)−p−1

r−2(p+1) � N2(N − 4)2

16
1
r4 for r > r0.

Combining the above inequality with the Hardy–Rellich inequality (3.6), we deduce
that uβ is stable for β � β̄. So, we may define

Λ = {β > β0 | uβ is stable} and β1 = inf{Λ}.

By standard ordinary differential equation theory, one may easily prove that β1 =
min{Λ}. Since uβ0 is unstable, β1 > β0. Also, the solutions are ordered: if β2 > β1,
then uβ2 > uβ1 . So, Λ is the interval [β1, +∞). Obviously, uβ is stable outside a
compact set for β ∈ (β0, β1).
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