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We study swirling electrovortex flows in a cylinder filled with GaInSn metal using
axisymmetric and large-scale three-dimensional numerical simulations. In our set-up
electrical currents enter and exit the cell symmetrically through wires and the result is
a von Kármán-like flow. Three inductionless and an inductive flow regimes are identified.
Scaling laws for the magnitude of the velocity in each of these regimes are obtained both
numerically and explained theoretically. We study how the aspect ratio of the cell affects
the flow and how symmetrically wired cells are different from asymmetrical wired cells.
We vary the radius of the connecting wires and propose a simple model that captures how
the flow’s intensity varies with the wire radius.
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1. Introduction

When an intense electrical current is injected into a liquid metal domain by using a thin
wire, fluid motion is generated by the Lorentz force in the liquid metal. These flows are
called electrovortex flows (EVFs) and the reader is referred to Bojarevičs et al. (1989) for
an extensive review and early references on this topic.

Recently, different types of EVFs have been investigated within the applied context of
liquid metal batteries (LMBs); see Kelley & Weier (2018) for a review. The idea is that
EVFs can enhance the mixing of the alloy layer and, hence, contribute to improving the
battery efficiency. This idea was first proposed in Kelley & Sadoway (2014) and triggered
the numerical studies of Ashour et al. (2018), Weber et al. (2018), Herreman et al. (2020).
Small vertical magnetic fields can significantly modify the EVF, giving it a swirling
character (see, for example, Millere, Sharamkin & Shcherbinin 1980; Bojarevics, Millere
& Chaikovsky 1981; Davidson et al. 1999; Davidson 2001). In LMBs it was shown by
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Weber et al. (2020), Herreman et al. (2021) that such swirling EVFs are intense enough to
enhance mixing.

In addition to being dedicated to the analysis of alloy mixing in LMBs, Herreman et al.
(2021) also reports results obtained by performing highly resolved three-dimensional (3-D)
numerical simulations of turbulent swirling EVFs using the code SFEMaNS (Guermond
et al. 2007, 2009; Cappanera et al. 2018). These simulations have been done at high
Reynolds numbers (up to 104) without using any turbulence model. Other numerical
studies on EVFs often use turbulence models (k−ε in Davidson et al. (1999) for example)
and early work is often restricted to axisymmetric simulations. One interesting result
established in Herreman et al. (2021) is that the intensity of the swirling EVF in a
cylindrical cell can obey the following scaling law:

U ∼
(

JB
ρ

)2/3 R
ν1/3 . (1.1)

Here J is the typical current density in the bulk of the liquid metal, B is the imposed axial
magnetic field, ρ and ν are the metal’s density and kinematic viscosity, respectively, and
R is the radius of the cylindrical cell. This result is obtained in Herreman et al. (2021) by
invoking a three-term balance between the inertia, the viscous and the Lorentz forces in
a thin boundary layer near the electrical contact. A slightly different scaling law for the
intensity of the swirling EVF was suggested in Davidson et al. (1999), i.e.

U ∼
(

JBR
ρ

)5/9 (R
ν

)1/9

or U ∼
(

JBR
ρ

)1/2

. (1.2)

The above scaling laws are not explicitly written in this way in Davidson et al. (1999),
but can be easily recovered (see Appendix A). Since the 5/9 law is clearly observed in
the axisymmetric k−ε model simulations reported in Davidson et al. (1999), one is led to
wonder why a different scaling law is observed in Herreman et al. (2021). Recent work
by Kolesnichenko et al. (2020) also studies swirling EVFs in 3-D simulations and with a
k−ω turbulence model and finds a scaling law that is somewhere in between the 2/3 and
5/9 laws.

The above observations have led us to do a systematic and fundamental study on swirling
EVFs, outside the context of LMBs. What are the different scaling regimes that can be
observed in swirling EVFs and how does this depend on JB/ρ and ν? What happens when
the imposed axial magnetic field is large, when inductive effects are no longer negligible?
How are the scaling laws influenced by the axisymmetry assumption? To answer these
questions, we have performed numerical simulations of the unsteady swirling EVF at high
Reynolds numbers using our numerical solver SFEMaNS.

At variance with Millere et al. (1980), Liu et al. (2020), Kolesnichenko et al. (2020),
Herreman et al. (2020), Herreman et al. (2021), where there is only one ‘thin’ wire
bringing the current to the cell (i.e. the current is extracted from the whole upper disk
closing the cell or from the whole side), the majority of the simulations reported in the
present article are done by bringing and extracting the current through two cylindrical
wires whose axes are aligned with that of the cell; one is connected to the bottom of the cell
and the other one is connected to the top; see figure 1. This setting has also been studied
in Weber et al. (2015). In the presence of an axial magnetic field Bez, the azimuthal force
densities −jrBeθ in the top and bottom halves of the cell have opposite directions and they
are also of equal strength. This Rπ-symmetric forcing produces a counter-rotating EVF that
should have many structural similarities with von Kármán flows, which were the subject
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Figure 1. Sketch of the investigated set-up and flow. (a) A pair of solid copper wires injects and extracts an
electrical current in a cylinder filled with liquid GaInSn eutectic metal. The current density lines spread out as
shown by the blue lines. The set-up is immersed in a vertical magnetic field B. The Lorentz force j × Bez is
predominantly azimuthal, localized near the rim of the electrical contact and Rπ symmetric. (b) The EVF that
is thus produced is structurally similar to a von Kármán flow. The fluid rotates in opposite directions in the top
and bottom halves of the cell and is pumped towards the wires along the axis.

of many hydrodynamical and magnetohydrodynamical investigations (see, e.g. Nore et al.
2003, 2004; Monchaux et al. 2007; Berhanu et al. 2007). We are then led to consider
the following two additional questions. Does the considered set-up indeed produce a von
Kármán-like flow? Does the symmetry of the forcing affect the scaling laws of the swirling
EVF?

The objective of the paper is to answer the above questions using numerical simulations.
We start by defining the model in § 2. In § 3 we study the influence of the control
parameters J, B, ν on the intensity of the EVF in a cell with fixed geometry. We show that
the flow is indeed von Kármán-like and describe and explain the various scaling regimes.
In § 4 we study geometrical influences on EVFs. We vary the radius of the wires and
propose a simple model to describe the variation intensity of the swirling EVF with this
radius. We also vary the height of the cell and study the impact of asymmetrical current
injection/extraction. We conclude the paper and summarize our findings in § 5.

2. Model and discretization

The configuration investigated in the paper is described in figure 1. A cylinder of radius R
and height H is filled with liquid GaInSn eutectic alloy. Two identical cylindrical copper
wires of radius Rw and height Hw are electrically connected to the fluid, one is attached
at the top of the cell and the other one is attached at the bottom of the cell. The axes of
the two wires are aligned with the vertical axis of the cell. An external vertical magnetic
field Bez is applied and an electrical current of intensity I is driven through the cell. Let
J = I/πR2 be the reference current density; this would be the current density if the current
were homogenous inside the cylinder. We systematically use the cylindrical coordinates
(r, θ, z) with the convention that the equatorial plane of the cell is defined by z = 0.

We model the evolution of the velocity and the electromagnetic fields in the liquid
GaInSn alloy by the incompressible magneto-hydrodynamics equations,

ρ(∂tu + (u · ∇)u) = −∇p + ρνΔu + j × b, (2.1a)

∂tb = ∇ × (u × b) + (μ0σ)−1Δb, (2.1b)
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∇ · u = 0, (2.1c)

∇ · b = 0. (2.1d)

Here u is the velocity of the fluid, p is the pressure, j = μ−1
0 ∇×b is the current density

and b is the magnetic field. The symbol μ0 denotes the magnetic permeability of vacuum.
The density ρ, the kinematic viscosity ν and the electrical conductivity σ of the GaInSn
eutectic alloy at T = 303 K are taken from Plevachuk et al. (2014),

ρ = 6345 kg m−3, ν = 3.2 × 10−7 m2 s−1, σ = 3.24 × 106 S m−1. (2.2a–c)

The magnetic field in the solid copper wires, bw, satisfies the induction equation

∂tbw = (μ0σw)−1Δbw, (2.3a)

∇ · bw = 0, (2.3b)

where σw = 5.96 × 107 S m−1 is the electrical conductivity of the copper wires.
The fluid is supposed to be initially at rest. We impose the no-slip boundary condition

on the velocity on the entire surface of the cylinder. We also use the following boundary
conditions and transmission conditions for the magnetic field:

bz|r=R = B, bθ |r=R = μ0JR/2,

br|z=±H/2 = 0, bθ |z=±H/2 = μ0JR2/2r, ∀ r ∈ [Rw, R],
ez × (b − bw)|z=±H/2 = 0, ez × ((j/σ) − (jw/σw))|z=±H/2 = 0, ∀ r ∈ [0, Rw],

bw,z|r=Rw = B, bw,θ |r=Rw = μ0JR2/2Rw,

bw,r|z=±(H/2+Hw) = 0, bw,θ |z=±(H/2+Hw) = μ0JR2r/2R2
w.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

Here jw = μ−1
0 ∇ × bw is the current density in the wire. The above conditions are known

to yield a suitable approximation of the EVF in devices surrounded by vacuum as long
as the magnetic Reynolds number remains small (Herreman et al. 2019, 2021). These
simplified conditions avoid having to calculate the external potential magnetic field outside
the cylinder.

The solution to the problem defined in the previous section is approximated by using the
massively parallel code SFEMaNS. This code has been thoroughly validated. The reader
is referred to Guermond et al. (2007), Guermond et al. (2009), Cappanera et al. (2018) for
the algorithmic details and the verification and validation tests. The code SFEMaNS uses
a Fourier decomposition in the azimuthal direction and a finite element representation in
the meridional plane. Every field A, scalar- or vector-valued, is decomposed as

A(r, z, θ, t) =
M−1∑
m=0

Ac
m(r, z, t) cos(mθ) +

M−1∑
m=1

As
m(r, z, t) sin(mθ). (2.5)

Here Ac
m(r, z, t) are As

m(r, z, t) are finite element functions, and M is the number of
complex Fourier modes. The outputs delivered by the code are either temporal snapshots
or global quantities. Denoting by 〈· · · 〉V the volume average over the entire cylindrical
fluid domain, we are going to use the following global quantities:

u =
√

〈‖u‖2〉V , umax = max
x∈V

‖u(x, t)‖. (2.6a,b)

Here ‖u‖2 = ∫
V(u2

r (x, t) + u2
θ (x, t) + u2

z (x, t)) dV , with V the volume of the entire
cylindrical fluid domain.
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Simulations of swirling electrovortex flows in cylinders

Letting δkl be the Kronecker symbol, we further define the following quantities for all
m ∈ {0, . . . , M − 1} to measure the modal content of the flow:

um =
√

0.5〈(1 + δm,0)‖uc
m‖2 + (1 − δm,0)‖us

m‖2〉V . (2.7)

We measure the toroidal and poloidal parts of the axisymmetric component of the flow by
using the following indicators:

utor =
√

〈(uc
0,θ )

2〉V , upol =
√

〈(uc
0,r)

2 + (uc
0,z)

2〉V . (2.8a,b)

We finally use bars over the above indicators to mean that the indicators have been averaged
over time; for instance, ū and ūmax are the time averages of u and umax. The time-averaging
operation allows us to define the following non-dimensional quantities:

Re = ūR
ν

, Π̄ = σ ūB
J

. (2.9a,b)

The parameter Re is a Reynolds number, and Π̄ measures the ratio of the inductive currents
over the imposed current. The inverse of Π is also named the load factor (Sutton &
Sherman 1965; Geindreau & Auriault 2002).

3. Influence of J , B and ν on swirling EVFs

In this section we report the results of a series of simulations in the set-up with the
following fixed geometry (R, H, Rw, Hw) = (10, 18, 2, 4) cm. The aspect ratio H/R = 1.8
is chosen to be identical to that used in the von Kármán sodium experiment (Monchaux
et al. 2007; Berhanu et al. 2007). We vary J, B and ν and compare axisymmetric and 3-D
simulations.

3.1. Variable J, axisymmetric study
We first set the value of imposed magnetic field to be B = 1 mT and we use the following
value for the kinematic viscosity ν = 3.2 × 10−7 m2 s−1. We vary the imposed electrical
current J as detailed in the leftmost column in table 1. We also provide in this table the
main numerical parameters used for each numerical simulation: the time step Δt, the
meridional mesh size Δl and the measured values of Re and Π̄ . The meshes used are
non-uniform, the two values of Δl indicate the smallest and largest mesh sizes. All the
simulations reported in this section are done by taking M = 1 in the azimuthal Fourier
approximation; i.e. the flow is forced to be axisymmetric.

We show in figure 2(a) the time evolution of the volume-averaged velocity, u, in log
scale for the ordinate axis, for different values of J. We observe that the flow reaches a
steady state for J = 5, 10 A m−2. For J = 50, 100 A m−2, the flow seems to converge to
a state that is almost steady (the oscillations around this state are small), but a transition
occurs at later times, and the second state that is then reached is characterized by large
fluctuations (e.g. at t ≈ 7200 s for J = 50 A m−2). For the largest values of the current,
J = 500, 2000 A m−2, the flow starts oscillating after a very short transient. The time- and
space-averaged velocity, ū, increases monotonously with J, as can be seen in figure 2(b).
For low J, we clearly observe a power law ū ∼ J1. For intermediate J, the scaling ū ∼ J2/3

is perhaps visible over a short interval. At high J, we can observe a power law ū ∼ J1/2

or J5/9. In figure 2(c) we show the ratio ūpol/ūtor as a function of J. This ratio is small
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J(A m−2) Δl (m) Δt (s)(a) Re
(a)

Π̄ (a) Δt (s)(b) Re
(b)

Π̄ (b)

M = 20
10−2 0.0025 → 0.005 2 0.25 0.27
10−1 0.0025 → 0.005 5 × 10−1 2.5 0.27
1 0.0025 → 0.005 1 × 10−1 22 0.23 1 × 10−1 22 0.23
5 0.0025 → 0.005 5 × 10−2 85 0.18 5 × 10−2 77 0.16
10 0.0025 → 0.005 2 × 10−2 144 0.15 5 × 10−2 124 0.13
25 0.0025 → 0.005 5 × 10−2 216 0.09
50 0.0025 → 0.005 4 × 10−2 409 0.086 3 × 10−2 328 0.068
100 0.0005 → 0.0025 1 × 10−2 603 0.063 1 × 10−2 499 0.052
500 0.0005 → 0.0025 4 × 10−3 1502 0.031 6 × 10−3 1180 0.024
2000 0.0005 → 0.0025 1 × 10−3 2964 0.016 2 × 10−3 2519 0.013

M = 40
100 0.0005 → 0.0025 1 × 10−2 603 0.063 1 × 10−2 499 0.052
500 0.0005 → 0.0025 4 × 10−3 1502 0.031 6 × 10−3 1180 0.024
2000 0.0005 → 0.0025 1 × 10−3 2964 0.016 2 × 10−3 2519 0.013

Table 1. Numerical parameters for the simulations with variable J. Mesh size Δl (non-uniform meshes,
smallest −→ largest mesh size), time step Δt, non-dimensional numbers Re = ūR/ν and Π̄ = σ ūB/J. (a)
Axisymmetric simulations, (b) 3-D simulations with M = 20 or M = 40.
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Figure 2. Variable J, axisymmetric simulations. (a) Time evolution of the volume-averaged velocity u for
different values of J. (b) Time- and space-averaged velocity ū as a function of J (time average done after the
transient). (c) Ratio ūpol/ūtor as a function of J.

for J = 0.01 A m−2. It then increases as J grows until reaching a maximum almost equal
to 0.5 at J = 5 A m−2. For higher values of J, it first decreases and eventually fluctuates
around a plateau. We also observe that the magnitude of the toroidal component of the
velocity always dominates that of the poloidal component.

In figure 3 we show the spatial structure of the axisymmetric EVF at various values of
the current. We show in figures 3(a) and 3(b) 3-D streamlines of the velocity field coloured
by the magnitude of the velocity. The geometric organisation of the flow is similar to that
of the von Kármán flows found in (Nore et al. 2003): the fluid is pumped along the axis
from the equatorial plane towards the top and bottom caps; it is then expelled outwards
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Simulations of swirling electrovortex flows in cylinders

along the two cylindrical caps and returns back to the equatorial plane along the side wall
of the cell in a spiral fashion; the spiral motion of the fluid in the upper half of the cell
is opposite to that of the fluid in the lower half. For J = 5 A m−2, the velocity field is
stationary and Rπ symmetric, meaning that⎛

⎝ur
uθ

uz

⎞
⎠ (r, θ, z) =

⎛
⎝ ur

−uθ

−uz

⎞
⎠ (r, −θ, −z). (3.1)

For J = 500 A m−2, the invariance under the Rπ symmetry is broken and the streamlines
of the velocity form a chaotic web. We show in figure 3(c) the magnitude of the velocity
‖u‖ in meridional planes for various values of the current J. For the smallest value of
the current, J = 0.1 A m−2, the flow is steady and is the most intense near the rim of the
electrical contact with the wires. Up until J = 10 A m−2, the intensity of the flow gradually
increases close to the vertical axis while still being invariant under the Rπ symmetry. At
J = 50 A m−2 and above this value the system becomes time dependent: the Rπ symmetry
is broken. The flow eventually becomes chaotic for large values of J. The intensity of the
flow is notably small near the axis and in two regions close to the two contacts with the
connecting wires.

The large change in the spatial structure of the flow between J = 10 A m−2 and J =
50 A m−2 indicates that a symmetry-breaking bifurcation occurs for a critical value Jc
in the interval [10, 50] A m−2. Figure 4(a) shows two snapshots of the magnitude of the
velocity, ‖u‖, for J = 50 A m−2. The flow is (quasi)-symmetric, (quasi)-steady and intense
close to the axis at t = 4000 s, but steadiness is lost and the symmetry is broken at t =
30 000 s. Note also that at this time the magnitude of the velocity is small in a small
cylinder close to the axis. To measure the critical current density Jaxi

c of the bifurcation,
we calculate the volume average of the kinetic energy in the top half and in the bottom
half of the cell. The volume average computed over the upper half is denoted Etop and
the volume average computed over the lower half is denoted Ebot. If, starting from 0, the
difference |Etop − Ebot| grows in time, we conclude that there is a loss of symmetry. We
use this quantity to measure the growth rate of the instability. This concept is illustrated in
the inset of figure 4(b) where we show how |Etop − Ebot| increases exponentially with time
before reaching a plateau. Using a semi-logarithmic scale, we measure the growth rate λ
as the slope of the straight line fitting the growth of |Etop − Ebot| in the transient regime.
The growth rates computed with seven values of J are shown in figure 4(b). Using linear
extrapolation, we estimate that the instability threshold is Jaxi

c ≈ 17 A m−2.

3.2. Variable J, 3-D study
We now present the results of 3-D simulations done with M = 20 or M = 40 Fourier
modes. We focus on M = 20 and then justify why we use 20 modes by comparing cases
with 20 and 40 modes.

In figure 5 we show the time evolution of the volume-averaged velocity u and its
Fourier components u0, u1, u2, u3. For J = 1 A m−2, the system remains axisymmetric.
At J = 5 A m−2 a first symmetry-breaking bifurcation has occurred: the flow becomes
three dimensional. The Fourier mode m = 2 grows exponentially, saturates at t = 20 000 s
and reaches a steady state at t = 30000 s. For J = 10 A m−2, a Hopf-like bifurcation
has occurred: the mode m = 2 remains dominant but the flow periodically oscillates. For
J = 50 A m−2, the transition to 3-D turbulence has occurred. Although the flow exhibits
large 3-D fluctuations, the axisymmetric Fourier component u0 remains dominant.
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0 0.54

||u|| (mm s–1)

||u|| (mm s–1)

0 7.4

||u|| (mm s–1)

J = 5 A m–2 J = 500 A m–2

0 0.023

0.1 A m–2 1 A m–2 10 A m–2 50 A m–2 100 A m–2 2000 A m–2

0 0.15 0 1.1 0 2.2 0 3.1 0 19.5

(a)

(c)

(b)

Figure 3. Variable J, axisymmetric simulations. Spatial structure of the flow. (a,b) Streamlines coloured by
the velocity magnitude in axisymmetric simulations for different values of J. (c) Transition of the axisymmetric
flow as J increases, visualized by the velocity magnitude ‖u‖ in the meridian plane.

In figure 6(a) we show the time- and volume-averaged velocity ū3D of these 3-D
simulations. For comparison, we also show in this graph the time- and volume-averaged
velocity obtained in axisymmetric simulations; we use the symbol ūaxi to differentiate
it from the 3-D velocity. Inspection of the graph reveals that three dimensionalization
appears between J = 1 and 5 A m−2. For high current densities, we observe ū ∼ J1/2 or
J5/9. A fit of the curve on the three last points gives a slope of 0.51 for the axisymmetric
simulations, which corresponds to the law ūaxi ∼ J1/2, and 0.55 for the 3-D ones, which
corresponds rather to ū3D ∼ J5/9. For medium current densities, the power law ū ∼ J2/3 is
not incompatible with the data, but we cannot say that this scaling regime is clearly visible.

We also note that the value of ū3D is just slightly below ūaxi, obtained assuming
axisymmetry. This is also visible in figure 6(b) where we plot the ratio ū3D/ūaxi as
a function of J. The flow is axisymmetric for very small values of the current (i.e.
ū3D = ūaxi). The ratio ū3D/ūaxi decreases as J grows up to the value J = 50 A m−2, after
which the ratio fluctuates around 0.8.
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Figure 4. Variable J, axisymmetric simulations. First bifurcation of the flow. (a) The ‖u‖ structure before
and after the first bifurcation for J = 50 A m−2. (b) Growth rate λ of the first axisymmetric instability as a
function of J and extrapolated threshold Jaxi

c = 17 A m−2. We measure the growth rate λ from the time series
for |Etop − Ebot|, the difference in kinetic energy between the top and bottom half of the fluid domain.
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Figure 5. Variable J, 3-D simulations, M = 20. Time series of u and modal content u0, u1, u2, u3 for
different current densities J as marked in the figures.

We show snapshots of the spatial organisation of the flow in figure 7 for the following
three values of the current J = 5, 50, 500 A m−2. The flow is clearly three dimensional.
This figure shows the value of ‖u‖ in a meridian plane and in the horizontal plane located
at z = 8.8 cm. We observe that, for J = 5 A m−2, the equatorial symmetry by reflection
is broken (there is a slight asymmetry between the lower and the upper half of the cell).
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Figure 6. Variable J, 3-D simulations, M = 20. (a) Variation of ū with J in axisymmetrical and 3-D
simulations. (b) Ratio ū3D/ūaxi as a function of J.
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Figure 7. Variable J, 3-D simulations, M = 20. Spatial structure of the flow: ‖u‖ for J = 5, 50, 500 A m−2.
The flow is steady for J = 5 A m−2 and turbulent for J = 50, 500 A m−2. Results are shown for (a)
J = 5 A m−2, (b) J = 50 A m−2 and (c) J = 500 A m−2.

Recall that the flow is time independent though. The flows for J = 50 A m−2 and J =
500 A m−2 are clearly turbulent. The large- and small-scale structures seem to be equally
distributed throughout the domain. The low-speed region near the axis that is observed in
the axisymmetric simulations for large values of J (see figure 3c) is not present in these
3-D simulations.

Because of the large fluctuations of the flow for high current densities, we can wonder
if 20 modes are enough to properly represent the flow. For this reason, we have done a
small convergence study varying the number of Fourier modes M = 20 to M = 40 and
for increasing J = 100, 500 and 2000 A m−2. On figure 8 we represent the time- and
space-averaged modal kinetic energy Ec as a function of m for M = 20 and M = 40. For
J = 100 A m−2, the spectra show small differences above m ≥ 15. For J = 500 A m−2,
we find similar differences from m ≥ 10. In both simulations the most energetic modes
are well converged and, hence, we can limit resolution to M = 20. For J = 2000 A m−2,
the spectra present more significant differences. The use of 40 modes is advisable in this
case, since the azimuthal small scales are better resolved and certainly if the purpose is to
access the fine turbulent structure of the flow. For the averaged velocity ū however, 20 or
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Simulations of swirling electrovortex flows in cylinders
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Figure 8. Variable J, 3-D simulations. Spectra of the kinetic energy averaged on time in the statistically steady
state as a function of m for J = 100, 500, 2000 A m−2 and M = 20 and M = 40. The spectra show that 20
modes are sufficient for J = 100 and J = 500 A m−2, but for J = 2000 A m−2, 40 modes are necessary to
represent properly the first modes. Results are shown for (a) J = 100 A m−2, (b) J = 500 A m−2 and (c)
J = 2000 A m−2.

40 modes yield the same result. The plots of figure 6 obtained with M = 20 remain valid
up the highest value of J.

In figure 9(a) we focus our attention on the steady state and 3-D flow obtained with
J = 5 A m−2. Recall that this value of the current is above the critical threshold for
which the axisymmetry is broken. We display in this figure several representations of
the flow structure. Note that the flow organisation is strikingly similar to that observed
in the von Kármán flows described in Nore et al. (2003). We observe that the 3-D
flow is also Rπ symmetric (see (3.1)). The predominance of the Fourier mode m = 2
is the spectral manifestation of the presence of two vortices roughly localized on the
equatorial plane, rotating in the same direction, and with axes aligned with the directions
{θ = −π/2, z = 0} and {θ = π/2, z = 0}. The centre of one vortex is visible between
the two red/orange oblong structures in the right panel in figure 9(c). The vortices are
separated by a transition layer that is oblong, roughly localized on the equatorial plane
and slightly twisted. This transition layer is materialised in the centre and the right panels
in figure 9(c) by blue regions. The numerical simulations indicate that the 3-D steady
state undergoes a second bifurcation in the interval J ∈ [5, 10] A m−2. Beyond the critical
value, the flow starts oscillating periodically, but the overall structure of the flow stays
Rπ symmetric. The reader is invited to watch the video provided in the supplementary
movie available at https://doi.org/10.1017/jfm.2022.779 to better appreciate the nature of
this periodic flow. The simulation corresponding to the video is done with J = 10 A m−2.

A third bifurcation breaking the Rπ symmetry occurs in the interval J = [10, 50] A m−2.
Increasing the value of the current beyond this point quickly leads to a fully turbulent flow;
see figure 7(c).

We determine the threshold of the first bifurcation (which we recall breaks the
axisymmetry) by inspecting the time evolution of the modal volume-averaged values um
for m = 1, 2, 3. Beyond the bifurcation threshold, some of these quantities start to grow
exponentially. For instance, the inset of figure 10 shows that the Fourier components u1
and u2 grow exponentially in time. This technique allows us to measure the growth rates λ
of the modes m = 1, 2 for J = 1, 5, 10 A m−2. By linear fit we obtain J3D

c ≈ 2.5 A m−2

for both modes m = 1 and m = 2. A similar observation was made for the first bifurcation
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Figure 9. Variable J, 3-D simulations, M = 20. Flow after the first bifurcation for J = 5 A m−2. (a) Snapshots
of uz at z = −0.03 m, z = 0 m and z = 0.03 m. (b) Contour of ‖u‖ taken for ‖u‖ =0.6 ‖u‖max coloured by uz.
(c) Snapshots of ‖u‖ at r = 0.8R for −π/2 ≤ θ ≤ π/2 (left) and 0 ≤ θ ≤ π (right). One sees the Rπ symmetry
and the dominance of the m = 2 azimuthal mode: there are two opposite vortices and two opposite aspiration
fronts, where the flow is directed towards the centre of the cylinder.

of the von Kármán flow reported in Nore et al. (2004), where there is also a bifurcation of
codimension two (the aspect ratio is H/R ≈ 1.64 therein).

3.3. Variable B, axisymmetric study
We now report the results obtained for a second series of numerical simulations where we
investigate the influence of the magnitude of the imposed magnetic field. We use the same
geometry of the cell as above, we fix J = 50 A m−2, and we use ν = 3.2 × 10−7 m2 s−1.
Most simulations are done assuming axisymmetry. We have done one 3-D simulation at
high field B = 10−1 T with M = 20 modes. The other numerical parameters used for the
simulations are reported in table 2.

We show in figure 11 the time- and volume-averaged velocity, ū, as a function of B. We
observe that the behaviour of ū is not monotone with respect to B: ū first increases with
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Simulations of swirling electrovortex flows in cylinders
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Figure 10. Variable J, 3-D simulations, M = 20. Threshold of the first bifurcation in three dimensions. Beyond
a certain current density we observe exponential growth on u1 and u2, as shown in the inset at J = 5 A m−2.
The measured growth rates allow us to locate the threshold of the first 3-D bifurcation near J3D

c ≈ 2.5A m−2

for both modes m = 1, 2.

B (T) Δl (m) Δt (s) Re Π̄

5 × 10−5 0.0025 → 0.005 5 × 10−2 52 5.4 × 10−4

1 × 10−4 0.0025 → 0.005 5 × 10−2 90 1.9 × 10−3

2 × 10−4 0.0025 → 0.005 2 × 10−2 149 6.2 × 10−3

5 × 10−4 0.0025 → 0.005 2 × 10−2 287 3.0 × 10−2

1 × 10−3 0.0025 → 0.005 4 × 10−2 409 8.6 × 10−2

2 × 10−3 0.0005 → 0.0025 5 × 10−3 594 2.5 × 10−1

1 × 10−2 0.0005 → 0.0025 1 × 10−3 858 1.8
5 × 10−2 0.0005 → 0.0025 1 × 10−3 716 7.5
1 × 10−1 0.0005 → 0.0025 1 × 10−3 521 11
5 × 10−1 0.0005 → 0.0025 1 × 10−4 105 11
1 0.001 → 0.005 5 × 10−5 52 11

Table 2. Numerical parameters for the axisymmetric simulations with variable B. Mesh size Δl (non-uniform
meshes, smallest −→ largest mesh size), time step Δt, non-dimensional numbers Re = ūR/ν and Π̄ = σ ūB/J.

ν (m2 s−1) Δl (m) Δt (s) Re Π̄

3.2 × 10−5 0.0025 → 0.005 5 × 10−2 0.14 0.0030
8.1 × 10−6 0.0025 → 0.005 2 × 10−2 2.3 0.012
1.3 × 10−6 0.0025 → 0.005 2 × 10−2 62 0.051
5 × 10−7 0.0025 → 0.005 1 × 10−2 250 0.081
3.2 × 10−7 0.0025 → 0.005 4 × 10−2 409 0.086
8.1 × 10−8 0.0025 → 0.005 5 × 10−3 1892 0.1

Table 3. Numerical parameters for the axisymmetric simulations with variable ν. Mesh size Δl (non-uniform
meshes, smallest −→ largest mesh size), time step Δt, non-dimensional numbers Re = ūR/ν and Π̄ = σ ūB/J.
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Figure 11. Variable B, axisymmetric simulations. The typical flow magnitude ū first increases with the
magnetic field B, but decreases back again for very intense imposed magnetic fields.

B and then sharply decays above a certain magnetic field strength. Power laws ū ∼ B2/3

followed by ū ∼ B1/2 and later ū ∼ B−1 are observed as B increases.
Figure 12 shows snapshots of the magnitude of the electrical current density ‖j‖ and the

magnitude of the velocity ‖u‖ for three values of the magnitude of the imposed magnetic
field: B = 10−3, 10−2, 10−1 T. In each panel of figure 12 the electrical current density is
shown on the left and the magnitude of the velocity is shown on the right. We observe
that the flow becomes steady as B increases. For the largest value of B, we observe that
the current density and the fluid motion are localised in a thin vertical cylinder whose two
extremities coincide with the contact surfaces with the two wires supplying and extracting
the current. In this case the flow is axisymmetric. We ran a 3-D simulation for B = 10−1 T.
The volume-averaged velocity ū is the same in both axisymmetric and 3-D simulations (red
point in figure 11), and the 3-D modes (m /= 0) are zero. It seems that high B makes the
flow more axisymmetric. The reorganisation of the current density distribution in the cell
and the drastic reduction of the fluid motion are due to the induction effects generated by
the term σu × Bez in (2.1b).

Note also that we do not observe any Shercliff or Hartmann boundary layers at high
magnetic field as in duct flows (Hunt & Stewartson 1965; Moresco & Alboussiere 2004)
in this set-up. Such layers are always localised near the solid boundaries of the domain and
channel the electrical current when the Hartmann number

Ha = BR
(

σ

ρν

)1/2

(3.2)

is large. Here Ha ≈ 4, 40, 400 for the three simulations reported in figure 12, and does
increase from left to right. But in our case the current density and imposed magnetic field
are roughly parallel whereas they are perpendicular in the case of duct flows.

3.4. Variable ν, axisymmetric study
We now explore the influence of the viscosity. We fix J = 50 A m−2, B = 1 mT, and we
artificially vary the viscosity ν of the liquid metal. Usually, the viscosity of a liquid metal is
between 10−7 and 10−6 m2 s−1, but we extend the study to other non-realistic viscosities in
order to better understand the flow’s behaviour. Only axisymmetric simulations are done.
The other numerical parameters used for the simulations are reported in table 3. We focus
our attention on the influence of the viscosity on the time- and volume-averaged velocity,
ū. The results of these simulations in the range ν ∈ [8×10−8, 3×10−5] m2 s−1 are shown
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Simulations of swirling electrovortex flows in cylinders
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0
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Figure 12. Variable B, axisymmetric simulations, J = 50 A m−2. The spatial structure of the current density
(left) and of the magnitude of the velocity (right) varies significantly when the intensity of the magnetic field
increases. For the lowest value of B, the flow is turbulent and the current density is barely influenced by
inductive effects (σu × Bez). For the largest value of B, the induction effects are strong. The flow becomes
steady and due to the induction effects the electrical current almost goes in straight lines from the top wire to the
bottom wire. The current density is scaled from yellow to purple in the range [0,Jw], where Jw = 1250 A m−2

is the imposed current density in the wires.

in figure 13. For small values of the viscosity, it seems that ū ∼ ν−1/9 or ν0 as in (1.2).
When the viscosity is large, we observe ū ∼ ν−1, which is a clear indication of the Stokes
regime.

3.5. One master curve for the intensity of flow in the inductionless regime
We have deliberately chosen in the previous sections to report all the results in dimensional
form to make clear that the effects of increasing J and increasing B are not always
equivalent. This difference is mainly due to inductive effects. If U is a typical velocity,
we can estimate that induction is not important as long as

Π = σUB
J

� 1. (3.3)

In this inductionless regime, we can group all our previous measures of flow intensity
using a non-dimensional representation. A natural scale for velocity in the inertial regime
is (JBR/ρ)1/2 and with it, we can define a Reynolds number as

Rein =
(

JB
ρ

)1/2 R3/2

ν
, (3.4)

which only depends on input parameters (hence, subscript in). In figure 14 we plot Re =
ūR/ν, the Reynolds number based on the measured velocity as a function of Rein for the
axisymmetric simulations that meet the requirement (3.3) (we only take the data in the
range B ∈ [0, 2] mT for the simulations with varying B). It is remarkable that all the data
points collapse on a single curve. At high Rein, we observe not unexpectedly that Re ∼
Rein.

3.6. Scaling laws for swirling EVFs
All our simulations were done in the limit Γ = μ0JR/B � 1, where the EVF always has
a strong swirling character. Here we explain the different scaling regimes of such swirling
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Figure 13. Variable ν, axisymmetric simulations. Velocity ū as a function of the viscosity ν. The slope
asymptotes between 0 and −1/9 for low viscosities and to −1 for high viscosities.
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Figure 14. Computed Reynolds number Re = ūR/ν as a function of input parameter Reynolds numbers Rein
defined in (3.4).

EVFs. We introduce [u] = U, [j] = J and [b] = B as typical scales of velocity, current
density and magnetic field.

We start with the large B, inductive regime. When induction, i.e. the term (σu×b), is
important in Ohm’s law, the Lorentz force acts as a magnetic brake on the bulk flow (Hunt
& Malcolm 1968). We conjecture that saturation of flow magnitude occurs when this bulk
magnetic braking balances the inductionless part of the Lorentz force with magnitude JB.
This balance implies that

U ∼ J
σB

(inductive) (3.5)

or Π ∼ 1. This scaling law is coherent with what we observed at high B.
When induction is not important, when Π � 1, we can imagine three possible regimes:

viscous, intermediate and inertial. For very weak Lorentz forces, the Lorentz force can be
balanced by the viscous forces, [ρν∇2u] ∼ [j × b]. In this Stokes regime the flow occupies
the entire cell, so we can use [r] = R as the length scale. From this balance we then find
that

U ∼ JBR2

ρν
, (inductionless, viscous). (3.6)
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Simulations of swirling electrovortex flows in cylinders

This viscous regime was clearly visible in our simulations when the flow speed was at its
lowest.

For the highest flow intensities, inertia will be dominant in opposing the Lorentz force.
Naively speaking, we can simply balance [ρ(u · ∇)u] ∼ [j × b] and, using somewhat
arbitrarily [r] = R as the length scale, we then find that

U ∼
(

JBR
ρ

)1/2

, (inductionless, inertial 1/2). (3.7)

A more elaborate analysis of the torque balance between the boundary and the bulk
(Davidson 1992; Davidson et al. 1999) yields

U ∼
(

JBR
ρ

)5/9 (R
ν

)1/9

, (inductionless, inertial 5/9). (3.8)

The inertial regime was clearly visible in our simulations, but we cannot conclude which
exponent, 1/2 or 5/9, is more adapted.

An intermediate regime can sometimes be observed when the viscous effects, the
inertial effects and the Lorentz force are all of the same intensity. This is possible because
forcing mainly occurs near the electrical contact, in the viscous boundary layer. The
scaling law for this intermediate regime is derived in Herreman et al. (2021). Using the z
component of the vorticity equation, the three-term balance requires that [(u · ∇)ωz −
(ω · ∇)uz] ∼ [ρ−1B∂zjz] ∼ [ν∂2

zzωz]. In a boundary layer of width δ near the electrical
contacts with the wires, we estimate [∂z] = δ−1 and [∂r] = R−1. If [ur, uθ ] = U then
[uz] = UδR−1 due to incompressibility. This yields the estimates [ωr, ωθ ] = Uδ−1 and
[ωz] = UR−1 for the vorticity. Inserting these scales in the three-term balance, we obtain
two equivalence relations U2/R2 ∼ JB/ρδ ∼ νU/Rδ2, from which, after eliminating δ,
we find that

U ∼
(

JB
ρ

)2/3 R
ν1/3 , (inductionless, laminar boundary layer), (3.9)

where the power law U ∼ J2/3 was clearly visible in the simulations of Herreman et al.
(2021), it is much less visible in the present set-up. We think that this may be due to the
fact that the von Kármán-like flow, driven here, is rather unstable and easily turbulent in
the bulk. If turbulent flow structures reach into the boundary layer, the latter will no longer
remain laminar and this will break the subtle three-term balance. In Appendix A) we show
that the 2/3 scaling can also be derived from the model of Davidson (1992), if one uses
a laminar friction law for the viscous stress, which is equivalent to supposing a laminar
boundary layer.

4. Geometrical influences on a swirling EVF

In this section we investigate the influence of the geometry of the cell and of the connecting
wires on the fluid flow.

We examine the influence of Rw, the wire radius, the influence of H, the cell’s height and
the impact of using asymmetrical wires as in Herreman et al. (2021). All the simulations
are done with the magnetic field magnitude B = 1 mT and with realistic viscosity ν =
3.23×10−7 m2 s−1.
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Figure 15. Variable Rw, axisymmetric simulations. Global measures. (a) Time series of the velocity u for
different Rw/R and J = 500 A m−2. Plot of ū as (b) a function of Rw/R for different J, and (c) a function of J
for different Rw/R. The mean velocity increases with J and decreases with Rw/R and all curves present similar
trends.

4.1. Variable wire radius Rw

As in § 3, we fix the geometry of the cell to be (R, H, Hw) = (10, 18, 4) cm and vary both
the radius Rw of the connecting wires and the current density J. We expect the intensity of
the fluid flow generated by the electrovortex to be a decreasing function of the ratio Rw/R
(Bojarevičs et al. 1989).

We show in figure 15(a) the space-averaged velocity u as a function of time for the
following four values of the ratio Rw/R: 0.2, 0.4, 0.6, 0.8, and with J = 500 A m−2. These
simulations are done assuming axisymmetry. As expected, both the time average of u and
the time fluctuations of u increase as the ratio Rw/R decreases. In figure 15(b) we show ū
as a function of Rw/R for the following five values of J: 5, 50, 100, 500, 2000 A m−2. In
figure 15(c) we show ubar as a function of J for the following four values of Rw/R: 0.2, 0.4,
0.6, 0.8. Here again, we observe that the flow intensity decreases monotonically as Rw/R
increases. This observation holds for all the values of the current.

In figure 16 we show snapshots of ‖u‖ for the following four values of the ratio
Rw/R: 0.2, 0.4, 0.6, 0.8 with J = 500 A m−2. One axisymmetric and one fully 3-D
simulation have been done for each value of Rw/R. Three-dimensional simulations have
been computed with M = 20, as justified in § 3.2. In the axisymmetric simulations (top
panels), we always observe a cylindrical region where the fluid is approximately at rest.
The diameter of this cylindrical region coincides with that of the connecting wires. In
the corresponding 3-D simulations (bottom panels), this low-speed cylindrical core is
absent and the flow is overall more turbulent. The flow speed remains close to that of
the axisymmetric simulations.
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Figure 16. Variable Rw, axisymmetric and 3-D simulations. Snapshots of the velocity field ‖u‖ for J =
500 A m−2 and different Rw/R. Top row: axisymmetric simulations; bottom row: 3-D simulations. In
axisymmetrical simulations we observe low speeds in a cylinder with radius Rw. In 3-D simulations such a
low-speed region is less visible and turbulent structures are present everywhere.

It is tempting to try to model the dependence of the typical flow speed on Rw/R.
For non-swirling EVFs (B = 0), ad hoc fitting laws are given by Vlasyuk (1987) and
Chudnovskii (1989) proposed a theoretical model based on a meridional contour integral.
Unfortunately, one cannot generalize the method of Chudnovskii (1989) to swirling EVFs.
In Appendix B we approximately calculate the torque that the Lorentz force exerts on the
bottom half of the fluid domain and how it depends on Rw. This calculation requires bθ

right above the electrical contact and we use the bθ profile that is observed with Millere
boundary conditions (Millere et al. 1980; Herreman et al. 2019) or above a uniform current
inlet. This yields torques

K = K0

{
1 − (4R2

w/3R2) (Millere),
1 − R2

w/R2 (uniform),
(4.1)

with K0 = 1
4 IBR2. Both expressions give a parabolic decay of the torque as Rw/R

increases. We compare in figure 17(a) these two expressions with the actual torque
obtained from the numerical simulations. We observe that the model based on Millere’s
approximation is very accurate in the range Rw/R ∈ [0, 0.5]. We now estimate the
dependence of the intensity of the flow motion, U, with respect to Rw/R, by assuming
U is proportional to torques

U ≈ U0

{
1 − (4R2

w/3R2) (Millere),
1 − R2

w/R2 (uniform).
(4.2)

Here U0 is the maximum of U in the limit Rw/R → 0. We show in figure 17(b) the quantity
ū/u0 as a function of Rw/R. We also show in this figure the two theoretical profiles
1 − α(R2

w/R2) with α = 4/3 and 1. We have estimated u0 by fitting the parabola
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Figure 17. Model for the geometrical dependence of flow intensity on wire radius. (a) Normalized torque
K/K0 as a function of Rw/R. The Millere model works really well for R/Rw < 0.6. (b) Normalized velocity
ū/u0 as a function of Rw/R for high J. The orange zone corresponds to the zone between the two theoretical
profiles, uniform and Millere. The fit of the velocity works well. (c) Normalized velocity ū/u0 for low J. A
linear fit seems more accurate for these low current densities.

ū = u0(1 − β(Rw/R)2) to the data shown in figure 15(b). This shows that the estimation
of the velocity dependence on Rw/R can be quite accurate for intermediate J. However, we
do observe that the parabolic profile does not fit very well the data when J is very small, a
linear profile fits better the data in this limit (see figure 17c).

4.2. Variable height H
Up until now, all simulations were done in a cell with aspect ratio H/R = 1.8. We now
vary H/R and study how this affects the flow. We run axisymmetric simulations where we
vary H for several values of the current density J and keep (R, Rw, Hw) = (10, 2, 4) cm.

In figure 18(a) we show the time history of the volume-averaged velocity observed in
simulations done with the aspect ratios H/R = 0.5, 1.0, 1.8 and with the current density
J = 500A m−2. We observe that the larger H/R, the larger u and the larger the fluctuations
of u. In figure 18(b–c) we show the quantities ū and ūmax as functions of J for the three
considered aspect ratios. The time- and space-averaged velocity scales like ū ∼ J1/2 for
large values of J for the three values of H/R investigated. The maximal speed ūmax behaves
in a slightly different manner. We observe that ūmax is independent of H/R when J is large.
The power law ūmax ∼ J1/2 seems to apply when H/R is large, whereas the power law
ūmax ∼ J2/3 seems a better fit when H/R is small. With lower H/R, we observe that the
flow is less turbulent (weaker oscillations are, for example, visible in figure 18(a) at H/R =
0.5). This probably explains why the 2/3, laminar boundary layer scaling law applies better
in cylinders with a low aspect ratio H/R.

Figure 19 shows the spatial distribution of ‖u‖ in the meridian section for the two current
densities J = 5, 500 A m−2 and for the three aspect ratios H/R = 0.5, 1.0, 1.8. The flow
is time independent for the smallest value of the current density J = 5 A m−2, but it is
turbulent for the larger value J = 500 A m−2. When the aspect ratio is small, i.e. H/R =
0.5, the fluid motion is somewhat restricted to a small region close to the vertical axis.
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Figure 18. Variable H, axisymmetric simulations. (a) Time series of u for different aspect ratios and J =
500 A m−2. The higher the cell is, the more intense and fluctuating the flow is. Plots of (b) ū and (c) ūmax as
a function of J. The scaling law 1/2 is observed for each aspect ratio for ū, but it changes when one looks at
ūmax, where the scaling law 2/3 is better adapted to cells with a smaller aspect ratio.
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Figure 19. Variable H, axisymmetric simulations. Snapshots of ‖u‖ for (a) J = 5 A m−2 and (b)
J = 500A m−2. In cells with small aspect ratios, the flow does not reach the high r regions. The flow remains
localized above and below the electrical contact.

This localisation will bias the spatial average in ū and this likely explains the difference
in behaviour of ū and ūmax observed in figure 18(b–c).

4.3. Symmetrical vs asymmetrical wires
In our set-up, current is injected and withdrawn using a symmetrical pair of wires with
the same diameter Rw. This is different from the asymmetrical cell simulated in Herreman
et al. (2021), that only has one thin wire extracting current at the bottom. We investigate the
effect of this symmetrical or asymmetrical current injection by comparing two cells with
different connections. We set R = 10 cm for both cells. In the first cell we fix the aspect

950 A28-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.779


S. Bénard, W. Herreman, J.L. Guermond and C. Nore

0.41

||u|| (mm s–1)

0.56

0

2.8

0

19.0

0

0

5.1

0

8.4

0

10–2

10–3

10–4

100 101 102

J (A m–2)

103

ū 
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Figure 20. Symmetrical and asymmetrical set-ups. (a) Time- and space-averaged magnitude of the velocity ū
as a function of J in both set-ups. (b) Snapshots of ‖u‖ in the symmetrical cell H/R = 1 and the asymmetrical
cell H/R = 0.5.

ratio to be H/R = 1 and we use connecting wires at the top and bottom of the cell with the
same radius and height (Rw, Hw) = (2, 4) cm. For the second cell, we set H/R = 0.5 and
we use only one thin wire at the bottom of the cell with (Rw, Hw) = (2, 4) cm. The current
density is supposed uniform and equal to J at the top lid as in Herreman et al. (2021). All
the simulations are axisymmetric. We fix B = 1 mT and ν = 3.2 × 10−7 m2 s−1, and we
vary J.

In figure 20(a) we show the typical velocity magnitude ū observed in the two
configurations as a function of J. It appears that ū is significantly higher in the
asymmetrical set-up than in the symmetrical one. For large values of the current, we
observe that ū ∼ J1/2 in the symmetrical set-up, but in the asymmetrical set-up we observe
the laminar boundary layer scaling law, ū ∼ J2/3, just as in Herreman et al. (2021). This
suggest that the flows are radically different in both configurations, so let us compare their
spatial structure.

In figure 20(b) we compare snapshots of ‖u‖ in the asymmetrical and symmetrical
set-ups for three values of J. At low J, the flows are quite comparable in both
configurations. The only real difference is the velocity on the axis which is almost zero in
the asymmetrical cell contrary to the symmetrical one. For higher J, there are significant
differences in the flow structure. In the case J = 50 A m−2, the flow is localized near
the axis in the symmetrical set-up, but fills the entire cell in the asymmetrical one. For
J = 500 A m−2, the flow in the symmetrical cell has a vertical structure that is significantly
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more turbulent. We think that this increased turbulence is due to the mixing layer that is
present in the equatorial plane of the symmetrical set-up but is absent in the asymmetrical
set-up. Such an equatorial mixing layer loses its stability fairly easily in von Kármán flows
(Nore et al. 2003, 2004) and here this seems to be just the same. The 2/3 scaling regime
likely requires a not too turbulent flow in the bulk.

5. Conclusion

In this paper we have characterized the fluid flow produced by the swirling electrovortex
mechanism in a cylinder filled with GaInSn metal. Using axisymmetric and 3-D
simulations, we have shown that, for a cylindrical container of aspect ratio H/R = 1.8,
the flow thus produced shares many similarities with the von Kármán flow driven by two
counter-rotating disks. Increasing J leads to a more intense flow and we observe a typical
bifurcation sequence in 3-D simulations. First, the axisymmetry is broken in favour of an
azimuthal mode m = 2 with Rπ symmetry. Secondly, there is a Hopf bifurcation and a
time-dependent Rπ symmetric state is observed. After a third bifurcation, Rπ symmetry is
lost and the flow becomes chaotic and turbulent. The spatial structure of the 3-D flow can
be significantly different from that observed in axisymmetric simulations but the typical
magnitude of the flow in both settings remains comparable.

One of the main objectives of this study was to provide deeper insights in the various
scaling regimes that can exist in swirling EVFs. Simulations done over a wide range of
parameters J, B and ν have allowed us to identify four flow regimes in which the flow
intensity U is given by the following scaling laws:

U ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JBR2

ρν
(inductionless, viscous regime),

(
JB
ρ

)2/3 R
ν1/3 (inductionless, laminar boundary layer regime),

(
JBR
ρ

)1/2
or
(

JBR
ρ

)5/9 (R
ν

)1/9
(inductionless, inertial regime),

J
σB

(inductive regime).

(5.1)

The inductive scaling regime for high imposed magnetic fields was already investigated
(Malcolm 1970; Hunt & Malcolm 1968). We find that this regime is not controlled by
Hartmann or Shercliff layers. In the inductionless limit (σUB/J � 1), the viscous and
inertial regimes are fairly classical and previously observed in Bojarevičs et al. (1989);
Davidson et al. (1999); Kolesnichenko et al. (2020). The intermediate 2/3 scaling law
reported by Herreman et al. (2021) is not really observable with the von Kármán-like
EVFs. We think that the increased level of turbulence in the bulk of this flow likely has
a drastic effect on the delicate three-term balance that governs this regime. The 2/3 law
indeed requires a laminar boundary layer; see Appendix A and Davidson (1992). We also
know that it exists as an intermediate regime in duct flows (Poyé et al. 2020; Vernet et al.
2021).

The geometry of the fluid domain and the radius of the wires have a strong impact
on the EVF. We have proposed a simple model that suggests a parabolic decay of flow
intensity with increasing wire radius Rw/R. In cells with small aspect ratios H/R, the flow
is mostly intense above the electrical contact. Our simulations of asymmetrical current
injection/withdrawal suggest that the 2/3 scaling law is more easily observed in this case
and this is likely due to the fact that the unstable mixing layer is absent.
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For future work, it would be interesting to study more precisely the transition between
the laminar boundary layer regime (2/3) and the inertial regime (1/2). In particular, what
happens in the boundary layer? To answer this question, we need extremely well-resolved
3-D simulations without any kind of turbulence model. It is not impossible that the use of
turbulence models, k−ε in Davidson et al. (1999), k−ω in Kolesnichenko et al. (2020),
prevent the subtle (2/3) laminar boundary layer scaling law from being observable. It
would also be interesting to have direct numerical simulations of EVFs in other types
of cells, such as a hemispherical device (Kharicha et al. 2015) or in a cylinder with a free
surface (Kolesnichenko et al. 2020).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.779.
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Appendix A. The 2/3 scaling law in Davidson (1992), Davidson et al. (1999)

The two- or three-term balance equations we have used in § 3.6 have the advantage of
being conceptually simple, but they also hide that complex exchanges of momentum and
energy occur between the boundary layer and the bulk regions. A finer approach has been
proposed in Davidson (1992), where the author uses a method based on the balance of
angular momentum to derive scaling laws in axisymmetric flows driven by azimuthal body
forces per unit mass Fθ in the stationary case. An example of such a global balance is

ρ

∫
V

rFθ dV +
∫

δV
rτθ dS = 0. (A1)

The volume integral on the left-hand side is the torque induced by the volumic force, and
the surface integral is the viscous torque. The term τθ is the viscous stress at the boundary.
A particular situation considered in Davidson (1992) consists of assuming that the force
Fθ is due to a transverse magnetic field slowly rotating (magnetic stirring). Denoting by ω

the angular velocity of the magnetic field and assuming that ω is not too large, this force
is therein estimated on average to be close to

Fθ = Ω2
f r with Ωf = B

(
σω

ρ

)1/2

. (A2)

Using laminar or turbulent wall friction laws for the viscous stress τθ , the following
expressions for the intensity of the swirling bulk flow are derived in Davidson (1992,
equations (25) and (26)):

U ∼ Ωf R

(
Ωf R2

ν

)1/3

(laminar), U ∼ Ωf R

(
Ωf R2

ν

)1/9

(turbulent). (A3)

At the end of § 3.1 in Davidson et al. (1999), the authors refer to these expressions when
they briefly formulate turbulent scaling laws for swirling EVFs (see also (1.2) and the
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related discussion in the introduction). Since the analogies made therein are not entirely
clear to us, we propose to revisit this presentation and give a slightly different point of
view. Using (A2), the above two scaling laws can be rewritten as U ∼ F2/3

θ R/ν1/3 in the
laminar case and U ∼ (FθR)5/9(R/ν)1/9 in the turbulent case. Replacing the body force
Fθ ∼ JB/ρ to cover the case of a swirling EVF, we obtain the following scaling laws for
the flow intensity of the swirling EVF:

U ∼
(

JB
ρ

)2/3 R
ν1/3 (laminar), (A4a)

U ∼
(

JBR
ρ

)5/9 (R
ν

)1/9

(turbulent). (A4b)

This simple argument yields the 5/9 scaling law of Davidson et al. (1999); it also
recovers the 2/3 law that we have observed in our simulations and in Herreman et al.
(2021). The 2/3 exponent is just the manifestation of a laminar boundary layer, with its
laminar boundary layer friction law. The model of Davidson (1992), Davidson et al. (1999)
also allows the 2/3 scaling law.

Appendix B. Dependence of U with respect to Rw/R

The method we propose to model the dependence of flow intensity on Rw/R is motivated
by the torque balance of Davidson et al. (1999). Approximating the Lorentz force as j ×
B ≈ −jrBeθ , the axial torque balance between the Lorentz force and the viscous stress
gives ∫

V
rjrB dV︸ ︷︷ ︸

K

≈
∫

δV
rτθ dS. (B1)

When V is the entire fluid domain, the left integral is zero due to symmetry. Let us consider
this balance with V , the bottom half of the cell (similar to the asymmetrical cell with a thin
wire connected at the bottom of the cell and an extended wire at the top). Considering that
jr ≈ −μ−1

0 ∂zbθ , due to Ampère’s law, and supposing axisymmetry, the expression for the
torque induced by the Lorentz force simplifies as

K = 2πB
μ0

∫ R

0
(bθ |z=−H − bθ |z=0)r2 dr. (B2)

Since in our simulations we have access to the magnetic field at the top and bottom of the
cell, the radial integral can be numerically evaluated. A theoretical approximation can also
be obtained as follows. Since we enforce j|z=0 = Jez at the top of the cell, we have

bθ |z=0 = μ0Ir
2πR2 . (B3)

On the insulating part of the bottom surface, that is, for r ∈ [Rw, R], the magnetic field is
directly available from the boundary conditions (2.4) or Ampère’s law. Then recalling that
I = J/πR2, we obtain

for r ∈ [Rw, R], bθ |z=−H = μ0I
2πr

. (B4a)

Above the electrical contact, for r ∈ [0, Rw], we consider two limiting cases. It is shown
in Herreman et al. (2019) that the Millere approximation is well adapted if the connecting
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wire is very thin with respect to R (see Millere et al. 1980). If, instead, the connecting wire
is thick, it is reasonable to assume that the current density is close to being uniform. These
two limiting cases give

for r ∈ [0, Rw], bθ |z=−H = μ0I
2π

{
(1 −

√
1 − (r/Rw)2)/r (Millere),

r/R2
w (uniform).

(B4b)

With the above expressions, we then calculate the dependence of the torque (4.1) on Rw/R
that is copied into that of the flow intensity (4.2).
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