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Abstract

Invasive species face new selective pressures and low genetic variation caused by genetic bottle-
necks and founder effects when they are introduced into novel environments. Epigenetic varia-
tion may help them to cope with these problems. Mile-a-minute (Mikania micrantha Kunth) is
a highly invasive exotic weed that has seriously damaged biodiversity and agricultural ecosys-
tems. We first adopted methylation-sensitive amplified polymorphism (MSAP) markers to
investigate epigenetic variation of 21M. micrantha populations in southern China, and further
explored the effects of environmental factors on population epigenetic differentiation by cor-
relating epigenetic and climate and soil data. Adaptive epiloci positively correlated with climate/
soil variables were identified. Minimum temperature of the coldest month and mean temper-
ature of the coldest quarter were considered as decisive factors for its distribution. Climate is
presumed to play a relatively more important role than soil in shaping the adaptive epigenetic
differentiation inM. micrantha. Under ongoing global warming, populations ofM. micrantha
are predicted to expand northward. In addition, the weed also presented higher epigenetic
variation comparedwith genetic variation. Leaf shape variation was detected related tomethyla-
tion-state change at the population level.

Introduction

How species can become invasive is a core issue in invasive biology. Invasive species usually
face new selective pressures when they are initially introduced into novel environments.
How to deal with these pressures directly determines their fate (Matesanz et al. 2010).
Generally, invasive species are expected to have low genetic variation, due to genetic bottle-
necks and founder effects (Dlugosch and Parker 2008), which may not be enough to support
their survival (Crawford and Whitney 2010). However, they are still able to successfully
colonize new habitats and defeat native species. Epigenetic variation may play a critical role
in this process and may facilitate invasive species’ rapid response to environmental stress
(Ni et al. 2018).

Revealing populations’ epigenetic variation has attracted increasing attention from inva-
sive biologists. Independent from genetic control, epigenetic modifications can be directly
induced by environmental stimuli and are reflected in phenotypic changes through modu-
lation of gene expression without changing the underlying DNA sequences (Ni et al. 2018;
Richards et al. 2017; Shi et al. 2019). As an additional, accelerated pathway to evolutionary
change (Bossdorf et al. 2008), epigenetic modifications of various types, such as DNA
methylation, modifications on histones and other chromosomal proteins, and the genera-
tion of extrachromosomal regulatory small RNAs and noncoding RNAs, have been widely
described in eukaryotes (Ni et al. 2018; Richards et al. 2017). Among these, DNA methyla-
tion is regarded as the most common type of epigenetic variation and has been intensively
studied for eukaryotes. DNA methylation is referred to as the addition of a methyl group to
cytosine to form 5-methylcytosine. It has been shown to function in multiple biological
processes, including hindering transcription initiation, restraining transcription elongation,
silencing transposons, inactivating the X chromosome, and shaping phenotypic variation
(Akimoto et al. 2007; Jones 2012; Ni et al. 2018). For plants, cytosine methylation is main-
tained by methyltransferase, chromomethylase, or an RNA-dependent DNA methylation
pathway; it tends to position in symmetric (CG, CHG) and asymmetric (CHH) contexts
(H = A, C, or T) and mainly distribute in transposons and repeat regions (Henderson
and Jacobsen 2007). In non-model plants, the global DNAmethylation state can be screened
in natural populations using methylation-sensitive amplified polymorphism (MSAP) mark-
ers (Angers et al. 2010), a restriction enzyme-based modified amplified fragment-length
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polymorphism (AFLP) technique. In addition, the MSAP tech-
nique can also provide a quick glance for potential effects of
environmental factors on population epigenetic differentiation.

In a heterogeneous environment, climate may exhibit high spa-
tial variation that acts as an important abiotic factor to promote

adaptive evolution of plants (Abdala-Roberts and Marquis 2007;
Savolainen et al. 2007). Climate not only profoundly influences
seed germination, productivity, and distribution of plants, but also
controls other critical variables like the length of a wet or dry sea-
son (Concilio et al. 2009; Poncet et al. 2010). Correlations between

Table 1. Sampling information of Mikania micrantha populations.

ID Populationa No. of samples Longitude Latitude Altitude

1 DG2 15 113.800°E 22.879°N 48
2 DG3 15 113.768°E 22.905°N 182
3 DG4 15 113.793°E 22.854°N 113
4 HK1 15 114.043°E 22.489°N 4
5 HK3 15 114.234°E 22.391°N 80
6 HK4 15 114.261°E 22.527°N 4
7 HK5 10 114.153°E 22.397°N 227
8 HK6 15 114.197°E 22.257°N 100
9 HK7 11 114.142°E 22.451°N 39
10 HK8 10 114.134°E 22.387°N 48
11 MA1 15 113.556°E 22.140°N 10
12 MA4 16 113.563°E 22.122°N 135
13 NLD2 15 113.817°E 22.409°N 48
14 NLD3 16 113.804°E 22.404°N 11
15 NLD5 15 113.800°E 22.420°N 2
16 NLD6 16 113.811°E 22.415°N 24
17 SZ1 16 114.058°E 22.554°N 47
18 SZ4 15 114.037°E 22.574°N 39
19 SZ5 15 114.170°E 22.580°N 85
20 ZH1 15 113.631°E 22.428°N 6
21 ZH2 16 113.678°E 22.414°N 13

aDG, Dongguan; HK, Hong Kong; MA, Macao; NLD, Nei Lingding Island; SZ, Shenzhen; ZH, Zhuhai.

Figure 1. Sampling map of 21 Mikania micrantha populations in southern China. See Table 1 for population codes.
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climatic factors and epi-adaptive evolution have been found in a
number of plants. For instance, an adaptive epigenetic memory
of the local temperature prevailing during zygotic embryogen-
esis and seed maturation has been observed in the progeny of
Norway spruce [Picea abies (L.) Karst.] (Yakovlev et al. 2011).
Associations between DNA methylation variation and climate
variables were also detected in Arabidopsis thaliana: CHH
methylation was found to increase with temperature and con-
centrate in transposable elements, whereas CG methylation
showed a correlation with the latitude of origin and primarily
occurred on genic regions (Dubin et al. 2015; Keller et al.
2016). These findings underscore the contribution of epigenetic
variation to local adaptation. Currently, rapid climatic change is
exerting new selection pressure on plants, which will eventually
affect their adaptability (Corre and Kremer 2012; Eveno et al.
2008; Jump et al. 2006). For invasive species, investigating the
contribution rate of climatic factors to epi-adaptation may pro-
vide better understanding of the mechanisms underlying
response to climate change and improve the prediction for
expansion speed and area.

Soil is another crucial factor associated with plant adaptive evo-
lution (Hancock et al. 2011). It provides essential nutrients for
plants, including water, mineral matter, organic matter, and metal
elements. Any subtle change in soil metal content has the potential
to drive local adaptation of plants (Alberto et al. 2010). Because
changes in soil compositions have a strong impact on biochemical
and physiological processes of plants, they are frequently posited to
be an important driver of divergent selection (Lechowicz and Bell
1991;Macel et al. 2007). Soil factor–driven population-level genetic
differentiation and adaptive loci associated with soil properties and
metal content have been found in plants such as [Arabidopsis hal-
leri (L.) O’Kane & Al-Shehbaz] (Meyer et al. 2009), common gum
cistus (Cistus ladanifer L.) (Quintela-Sabarís et al. 2012), and
[Eucalyptus tricarpa (L.A.S. Johnson) L.A.S. Johnson & K.D.
Hill] (Steane et al. 2015). It is of note that changes in soil water
content, temperature, and organic matter are closely related to cli-
mate change, so specific plant genotypes may be generated under
the simultaneous selection by climate and soil factors (Fischer and

Whitham 2014). As for epipopulation genetics, Kim et al. (2016)
have reported the soil metal–associated adaptive methylation
variation in red maple (Acer rubrum L.).

Mile-a-minute (Mikania micrantha Kunth; tribe Eupatorieae,
family Asteraceae) is a highly invasive weed. It is a perennial ter-
restrial herbaceous vine with a slender and branched stem, having a
creeping or twining growth habit. As its common name indicates,
M. micrantha shows a strong invasiveness, which is due to its
efficient sexual and vegetative reproduction coupled with
wind-dispersed seed (Swamy and Ramakrishnan 1987). It also
demonstrates a strong phenotypic plasticity in the introduced envi-
ronmental conditions (Hong et al. 2006; Wen et al. 2000; Xu et al.
2013, 2014). This weed is highly destructive for local plants, smoth-
ering them and blocking sunlight. Mikania micrantha has caused
serious damage to local biodiversity and agricultural ecosystems.
Originating from Latin America, M. micrantha was introduced
into Hong Kong in 1884 for horticultural purposes (Wang et al.
2003). It became naturalized in 1919 and started to expand on a
large scale in southern China since 1984 (Wang et al. 2003).
With recent climatic change, M. micrantha has shown the poten-
tial to invade to inland provinces such as Jiangxi in China (Hu
et al. 2014).

In this study, we used MSAP, in junction with environmental
conditions, to explore the (epi)genetic variation and local adap-
tation of introduced M. micrantha populations in southern
China. Our specific objectives are: (1) to estimate and compare
the amount and structuring of genetic and epigenetic variation
in the introduced populations; (2) to identify the candidate (epi)
loci for selection that are associated with local climatic/soil fac-
tors; and (3) to search for the selective effects of environmental
variables on population expansion. In addition, we examined
the correlation between leaf shape variation and methylation-
state change.

Materials and Methods

Sample Collection

To cover as much of the substantial environmental gradient ofM.
micrantha as possible, we collected 306 individuals from 21 inva-
sive populations in Dongguan, Nei Lingding Island, Hong Kong,
Macao, Shenzhen, and Zhuhai in southern China (Figure 1;
Table 1). Leaves were first stored in silica gel and then at −20 C
until DNA extraction. Total genomic DNA was isolated using
the modified CTAB method (Porebski et al. 1997). The quality
and quantity of DNA were measured using a NanoDrop 2000
spectrophotometer (Thermo Scientific, Wilmington, DE, USA).
In addition, we measured the leaves of M. micrantha in different
populations with the same growth period. Length:width ratio was
used as a metric of leaf phenotypic variation.

MSAP Assay

We selected a pair of isoschizomers, MspI and HpaII, which rec-
ognize and cleave the same 5 0-CCGG-3 0 sequence with different
sensitivities to the methylation at the internal or external cytosine
(Schulz et al. 2013). Total genomic DNA was digested at 37 C for 3
h in two parallel reactions using 10 U EcoRI and 5 UHpaII or 10 U
MspI (New England Biolabs, Beverly, MA, USA) in a final volume
of 20 μl, followed by 65 C for 20 min to inactivate the enzymes.
EcoRI and HpaII/MspI adapters were ligated to digested products,
and the reaction was carried out in a 20-μl volume containing
5 pmol adaptor and 60 U of T4 DNA ligase (New England

Table 2. Information for adopted adapters and primers used in this study.

Primers Sequences

Adapters
EcoRI–adapter top 5 0-CTCGTAGACTGCGTACC-3 0

EcoRI-adapter bottom 5 0-AATTGGTACGCAGTCTAC-3 0

HpaII/MspI-adapter top 5 0-GATCATGAGTCCTGCT-3 0

HpaII/MspI -adapter bottom 5 0-CGAGCAGGACTCATGA-3 0

Pre-PCR primers
EcoRI þ CA 5 0-GACTGCGTACCAATTCA-3 0

HpaII/MspI 5 0-ATCATGAGTCCTGCTCGG-3 0

Selective PCR primers
EcoRI þ AG (E2) 5 0-GACTGCGTACCAATTCAAG-3 0

EcoRI þ CG (E3) 5 0-GACTGCGTACCAATTCACG-3 0

EcoRI þ CT (E4) 5 0-GACTGCGTACCAATTCACT-3 0

EcoRI þ CC (E5) 5 0-GACTGCGTACCAATTCACC-3 0

EcoRI þ GC (E7) 5 0-GACTGCGTACCAATTCAGC-3 0

EcoRI þ GG (E8) 5 0-GACTGCGTACCAATTCAGG-3 0

HpaII/MspI þ TAA (H/M1) 5 0-ATCATGAGTCCTGCTCGGTAA-3 0

HpaII/MspI þ TCC (H/M2) 5 0-ATCATGAGTCCTGCTCGGTCC-3 0

HpaII/MspI þ TTC (H/M3) 5 0-ATCATGAGTCCTGCTCGGTTC-3 0

HpaII/MspI þ TAG (H/M6) 5 0-ATCATGAGTCCTGCTCGGTAG-3 0

HpaII/MspI þ TTG (H/M7) 5 0-ATCATGAGTCCTGCTCGGTTG-3 0

HpaII/MspI þ TCA (H/M8) 5 0-ATCATGAGTCCTGCTCGGTCA-3 0
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Figure 2. Methylation-sensitive amplified polymorphism (MSAP) electrophoresis was performed on an ABI 3730 DNA analyzer with internal size standard LIZ 500 for E7/H8 primer
combination. H and M represent digestion with EcoRI/HpaII and EcoRI/MspI, respectively. Blue and orange bands show the amplification products and the standard marker,
respectively.

Table 3. Methylation status, band pattern, and scoring methods.

Type Methylation status Band pattern Salmon Scoring AFLP Scoring

Mixing Scoring 2

H M U

I CCGG
GGCC

11 0 1 0 0 1

II CmCGG
GGmCC

01 1 1 0 1 0

CmCGG
GGCC

III mCCGG
GGCC

10 1 0 1 0 0

IV mCCGG
GGCmC

00 0 0 0 0 0

mCmCGG
GGmCmC
mCmCGG
GGCC
mCmCGG
GGmCC
mCmCGG
GGCmC
mCCGG
GGmCC
mutation
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Biolabs). After incubation at 16 C overnight, the reaction was heat
deactivated at 65 C for 20 min. All adapter and primer sequences
for the MSAP protocol are listed in Table 2.

A preselective polymerase chain reaction (PCR) was performed
in a total volume of 20 μl, containing 10 μl of the ligation product,
5 pmol of each preselective primers, 1 U Taq DNA polymerase
(Takara), and 3.75 mmol dNTP (with Mg2þ). Thermocycling con-
ditions were as follows: 94 C for 5 min followed by 20 cycles of 94 C

for 40 s, 56 C for 45 s, and 72 C for 1 min. After preselective
amplification, the PCR products were diluted 1:50 with sterile
distilled water.

We selected 31 EcoRI andMspI/HpaII primer combinations for
selective PCRs (Table 2). The amplification reaction was per-
formed in a total volume of 20 μl with 3.75 mmol dNTP (with
Mg2þ), 5 pmol of fluorescently labeled (6-FAM) forward primer,
5 pmol of reverse primer, 1.25 U of Taq DNA polymerase, and

Table 4. Genetic and epigenetic diversity in regions based on the six matrices.

Populationb N Na Ne I %P He UHe

MS-AFLP
DG 45 1.046 1.135 0.145 52.1% 0.088 0.089
HK 91 1.472 1.102 0.129 73.6% 0.072 0.072
MA 31 0.626 1.057 0.072 31.1% 0.041 0.041
NLD 62 1.164 1.125 0.139 58.0% 0.082 0.083
SZ 46 1.077 1.121 0.134 53.7% 0.080 0.080
ZH 31 0.728 1.104 0.110 35.9% 0.067 0.068
Average 55 1.077 1.108 0.124 53.7% 0.072 0.073
Total 306 2.000 1.116 0.141 100.0% 0.079 0.080
Salmon
DG 45 1.072 1.131 0.146 53.6% 0.087 0.088
HK 91 1.571 1.117 0.148 78.6% 0.083 0.083
MA 31 1.011 1.103 0.126 50.5% 0.072 0.073
NLD 62 1.249 1.126 0.147 62.5% 0.086 0.086
SZ 46 1.082 1.112 0.132 54.1% 0.077 0.077
ZH 31 0.844 1.106 0.120 41.9% 0.071 0.072
Average 55 1.197 1.118 0.140 59.8% 0.081 0.082
Total 306 2.000 1.119 0.152 100.0% 0.084 0.084
H
DG 45 0.819 1.065 0.083 41.0% 0.046 0.047
HK 91 1.497 1.077 0.110 74.9% 0.058 0.058
MA 31 0.972 1.086 0.111 48.6% 0.062 0.063
NLD 62 1.074 1.065 0.089 53.7% 0.048 0.048
SZ 46 0.837 1.053 0.075 41.9% 0.040 0.040
ZH 31 0.663 1.059 0.076 33.1% 0.042 0.043
Average 55 1.040 1.069 0.094 52.0% 0.051 0.051
Total 306 2.000 1.068 0.102 100.0% 0.052 0.052
M
DG 45 1.088 1.119 0.136 54.4% 0.080 0.081
HK 91 1.348 1.077 0.103 67.4% 0.056 0.056
MA 31 0.505 1.042 0.054 25.2% 0.030 0.030
NLD 62 1.185 1.111 0.132 59.2% 0.076 0.076
SZ 46 1.046 1.106 0.124 52.3% 0.072 0.073
ZH 31 0.677 1.088 0.097 33.4% 0.058 0.059
Average 55 1.034 1.091 0.110 51.7% 0.063 0.063
Total 306 2.000 1.094 0.124 100.0% 0.067 0.068
U
DG 45 0.684 1.065 0.076 34.2% 0.044 0.044
HK 91 1.409 1.058 0.087 70.5% 0.044 0.044
MA 31 0.546 1.037 0.052 27.3% 0.028 0.028
NLD 62 0.922 1.060 0.077 46.1% 0.042 0.043
SZ 46 0.776 1.055 0.069 38.8% 0.038 0.039
ZH 31 0.533 1.054 0.063 26.6% 0.036 0.037
Average 55 0.867 1.055 0.072 43.4% 0.039 0.040
Total 306 2.000 1.057 0.083 100.0% 0.042 0.042
HMU
DG 45 0.866 1.081 0.097 43.3% 0.056 0.056
HK 91 1.431 1.072 0.102 71.5% 0.054 0.054
MA 31 0.727 1.061 0.079 36.3% 0.044 0.044
NLD 62 1.069 1.078 0.099 53.5% 0.055 0.055
SZ 46 0.884 1.070 0.088 44.2% 0.049 0.050
ZH 31 0.635 1.066 0.079 31.6% 0.046 0.046
Average 55 0.995 1.072 0.093 49.8% 0.051 0.052
Total 306 2.000 1.073 0.104 100.0% 0.054 0.054

aN, number of samples;Na, number of different alleles;Ne, number of effective alleles= 1/(p2þ q2); I, Shannon’s diversity index=−1*[p*Ln (p)þ q*Ln(q)];%P, percentage of polymorphic loci;He,
expected heterozygosity= 2*p*q; UHe, unbiased expected heterozygosity = [2N/(2N − 1)]*He.
bDG, Dongguan; HK, Hong Kong; MA, Macao; NLD, Nei Lingding Island; SZ, Shenzhen; ZH, Zhuhai.

Weed Science 311

https://doi.org/10.1017/wsc.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.13


2.5 μl of diluted preselective PCR product. The PCR profile was as
follows: 94 C for 5 min, 13 touchdown cycles of 94 C for 30 s, 65 C
for 30 s reduced by 0.7 C per cycle, and 72 C for 1 min; 23 cycles of
94 C for 30 s, 56 C for 30 s, and 72 C for 1 min, and a final elon-
gation step at 72 C for 7 min. Selective PCR products were sepa-
rated and visualized on an ABI 3730 DNA analyzer (Applied
Biosystems, Foster City, CA, USA) with internal size standard
LIZ 500 (Figure 2). Final profiles were analyzed using
GeneMarker v. 2.2.0 software (SoftGenetics, State College, PA,
USA), and translated into a presence (1)/absence (0) data matrix.
To minimize the potential impact of size homoplasy (Caballero
et al. 2008), we selected fragments ranging from 150 bp to 500
bp. A peak height threshold was set as 1,000 to 30,000.
Furthermore, to ensure low error rates, an E4-H/M3 primer pair
was used to assess the reproducibility of the MSAP assay in 306
individuals. Error rate was estimated as only 0.027%.

Methylation Scoring

As isoschizomers, HpaII and MspI cleave the same sequence
(CCGG) with subtle differences. The former only recognizes
methylated external cytosine on a single strand, while the latter rec-
ognizes methylated internal cytosine on a single or both strands.
Hence, four methylation types can be obtained: Type I denotes
no methylation due to cleavage by both enzymes; Type II denotes
full-/hemi-methylation of internal cytosine only when MspI cuts;

Type III denotes hemi-methylation of external cytosine only when
HpaII cuts; and Type IV is free of any enzyme cutting, possibly due
to full methylation of external cytosine, full methylation of both
cytosines, hemi-methylation of both cytosines, or a restriction site
mutation. In this study, Type IV was considered to be uninform-
ative, because it could be attributed to multiple and equivocal
reasons.

Three scoring approaches were adopted for our data (Schulz
et al. 2013): (1) EcoRI/MspI data were treated using the methyla-
tion-sensitive (MS)-AFLP “10” matrix or genetic matrix; (2) Type
II and Type III were considered to be methylated loci “1,”while the
other two types were marked as “0,” which we called the “Salmon
matrix” or “Salmon Scoring” (Salmon et al. 2008); (3) a “Mixing
Scoring 2” method was used to obtain four different matrices: H,
M, U, and HMUmatrix. In matrix H, only Type III was considered
as “1”; in matrix M, only Type II was considered as “1”; in matrix
U, only Type I was regarded as “1”; and matrix HMU included H,
M, and U in order (Table 3). All our analyses proceeded based on
these six matrices.

Soil Chemical Analyses

Soil samples collected from 21 M. micrantha invasive populations
were air-dried for 14 d and ground to pass through a sieve with an
aperture size of 1 mm and 0.2 mm, respectively. Water contents of
fresh and air-dried soil were determined by oven-drying for 6 h at

Table 5. Percentage of three methylation states.

Population/region/speciesa No. of samples Un-methylated Hemi-methylated Full-methylated

DG DG2 15 18.58% 36.02% 45.40%
DG3 15 20.24% 36.33% 43.43%
DG4 15 20.22% 37.84% 41.94%
Average 15 19.68% 36.73% 43.59%
DG 45 19.86% 35.37% 44.76%

HK HK1 15 15.70% 58.25% 26.05%
HK3 15 16.61% 51.80% 31.59%
HK4 15 18.23% 57.03% 24.74%
HK5 10 14.96% 59.08% 25.96%
HK6 15 26.11% 36.90% 36.99%
HK7 11 23.54% 36.34% 40.12%
HK8 10 26.51% 37.31% 36.18%
Average 13 20.24% 48.10% 31.66%
HK 91 20.07% 47.25% 32.68%

MA MA1 15 12.28% 68.33% 19.40%
MA4 16 17.43% 60.60% 21.97%
Average 15.5 14.86% 64.47% 20.69%
MA 31 15.04% 62.85% 22.11%

NLD NLD2 15 18.37% 34.47% 47.16%
NLD3 16 18.02% 39.82% 42.15%
NLD5 15 18.75% 40.40% 40.85%
NLD6 16 19.89% 40.62% 39.50%
Average 15.5 18.76% 38.83% 42.42%
NLD 62 19.16% 37.32% 43.51%

SZ SZ1 16 21.77% 37.20% 41.02%
SZ4 15 19.22% 33.89% 46.89%
SZ5 15 18.32% 34.91% 46.78%
Average 15.3 19.77% 35.33% 44.90%
SZ 46 19.37% 34.23% 46.40%

ZH ZH1 15 20.25% 40.06% 39.69%
ZH2 16 19.57% 40.89% 39.54%
Average 15.5 19.91% 40.48% 39.62%
ZH 31 20.25% 40.00% 39.75%

Total 306 19.23% 41.69% 39.09%

aSee Table 1 for codes.
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105 C. Soil pH and electrical conductivity were measured in a
solution of soil mixed with water at a ratio of 200 g L−1 using
a pH meter (DPS-307A, INESA, Shanghai, China) and a con-
ductivity meter (DPS-307A, INESA, Shanghai, China), respec-
tively. Soil organic matter content was measured by using the
potassium dichromate volumetry method. Soil total nitrogen
was quantified by the Kjeldahl method using a KjeltecTM 8400
Analyzer Unit (Foss, Hillerod, Denmark) after digestion at a
ratio of 100 g L−1 soil to H2SO4. Total carbon was determined
in a total organic carbon analyzer (Shimadzu, Kyoto, Japan)
at 720 C. Soil K, Ca, Na, Mg, Al, P, S, Si, Fe, Mn, Zn, Cu, Pb,
Cr, As, Se, Ni, and Cd were assayed using an inductively coupled
plasma optical emission spectrometer (ICP-OES, PerkinElmer,
Waltham, MA, USA) after digestion with HNO3/HCl/HF at a
ratio of 3:1:1 (v/v/v) using a MARS 6 Microwave Reaction
System (CEM, Matthews, NC, USA). Experimental treatments
without soil samples served as a control. All measurements were
repeated three times.

Data Analysis

GenAlEx v. 6.41 (Peakall and Smouse, 2012) was used to assess
(epi)genetic parameters, including observed number of alleles
(Na), effective number of alleles (Ne), Shannon’s diversity index
(I), number of private bands, percentage of polymorphic loci (%P),

expected heterozygosity (He), and unbiased expected heterozygosity
(UHe). We also calculated pairwise geographic distance and (epi)
genetic distance matrices between populations.

Analysis of molecular variance (AMOVA) was carried out
using Arlequin v. 3.5 (Excoffier and Lischer 2010) to estimate
MS-AFLP genetic and epigenetic variation partitioned among
groups of populations (Fct), among populations within groups
(Fsc), and among populations (Fst) with 10,000 permutations. A
Mantel test was performed to explore linear correlation between
geographic distance and (epi)genetic distance. A partialMantel test
was used to detect correlation between MS-AFLP genetic matrix
and different epigenetic matrices. Significance level was evaluated
using 10,000 permutations (Smouse et al. 1986).

We assessed (epi)genetic structure by using Structure v. 2.3.4
(Falush et al. 2007) to allocate individuals into clusters based on
a Bayesian clustering method. The best K value was determined
according to Ln P (D), which is an estimate of the posterior prob-
ability of the data for a given K, and ΔK. Principal coordinate
analysis (PCoA) based on Dice’s distance matrices (Zoldoš et al.
2018) was performed to visualize the population relationship using
PAST v. 3.18 (Hammer et al. 2011). Sequentially, the “10” data set
was aligned in MEGA v. 6.0 and further converted to a nexus for-
mat (Tamura et al. 2013). An UPGMA tree was constructed using
PAUP v. 4.0 with 1,000 permutations (Swofford 2001). Candidate
adaptive loci were identified using Dfdist (Beaumont and Nichols

Figure 3. Leaf shape of Mikania micrantha varied by population and region. (A) Leaf shape parameter in 21 populations. (B) Leaf shape variation in six regions. (C) A high leaf
length:width ratio is represented using individual 6 of the HK5 population. (D) A low leaf length:width ratio is represented using individual 11 of the NLD3 population. See Table 1
for population codes.
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1996) and BayeScan 2.1 (Foll and Gaggiotti 2008). The former was
conducted to detect outliers with 50,000 simulations with a
99.5% confidence interval (CI), while the latter was run with
a sample size of 5,000, a thinning interval of 20, and 10 pilot
runs of 5,000 iterations for burn-in. Only loci that were simul-
taneously detected by Dfdist and with a strong detection level
(posterior odds, PO ≥ 100) in BayeScan were considered as can-
didate adaptive loci. Samβada v. 0.4.5 (http://lasig.epfl.ch/
sambada; Joost et al. 2007; Stucki et al. 2017) was adopted to
identify candidate loci that may play important roles in
response to changing environments. To ensure accuracy, we
also applied the spatial analysis method (SAM) to identify
the correlation of candidate loci and environmental factors,
including climatic and soil variables based on multiple univari-
ate logistic regression (Joost et al. 2007). Climatic data were
downloaded from WorldClim v. 2 (http://www.worldclim.
org) and extracted by ArcGis software. Soil data were generated

in our lab (see above). Linkage disequilibrium (LD) among
adaptive loci was detected using TASSEL software (Bradbury
et al. 2007) with criteria of R2 > 0.3 and P < 0.001 (Keller
et al. 2012).

In addition, SAM (Joost et al. 2007) was also used to analyze the
large-scale spatial (epi)genetic structure. Shannon’s diversity index
(I) was used for population diversity data. Distances were divided
into five classes according to themaximum actual distance between
two populations (85 km). SAM analyses were conducted with 9,999
permutations and 95%CI. The fine-scale spatial (epi)genetic struc-
ture was assessed by linear regression of pairwise relationship coef-
ficients for 10 distance classes using SPAGeDi v. 1.3 (Hardy and
Vekemans 2002).

We collected geographic information such as longitude and lat-
itude of M. micrantha in southern China from the literature, the
Global Biodiversity Information Facility (https://www.gbif.org),
the National Specimen Information Infrastructure (http://www.

Table 6. Results of analysis of molecular variance (AMOVA).

Variation source df
Variation
percentage

Differentiation
value

AFLP
Among populations within groups 5 10.39% Fsc= 0.1005
Among populations 15 9.08% Fst= 0.1939
Among groups 285 9.00% Fct= 0.1039
Salmon
Among populations within groups 5 6.85% Fsc= 0.0719
Among populations 15 6.73% Fst= 0.1355
Among groups 285 6.70% Fct= 0.0685
H
Among populations within groups 5 5.34% Fsc= 0.0734
Among populations 15 6.95% Fst= 0.1229
Among groups 285 6.95% Fct= 0.0534
M
Among populations within groups 5 10.07% Fsc= 0.0844
Among populations 15 7.68% Fst= 0.1766
Among groups 285 7.59% Fct= 0.1007
U
Among populations within groups 5 6.66% Fsc= 0.0885
Among populations 15 8.22% Fst= 0.1492
Among groups 285 8.26% Fct= 0.0666
HMU
Among populations within groups 5 7.27% Fsc= 0.0801
Among populations 15 7.45% Fst= 0.1470
Among groups 285 7.43% Fct= 0.0727

aFsc, (epi)genetic variation among populations within groups; Fst, (epi)genetic variation among populations; Fct, (epi)genetic variation among groups.

Table 7. Fst value from six matrices at regional and species levels.a

AFLP Salmon H M U HMU

DG 0.0593 0.0404 0.0339 0.0502 0.0489 0.0435
HK 0.1292 0.0838 0.0856 0.1128 0.1062 0.0979
MA 0.0940 0.0748 0.0735 0.0707 0.0968 0.0769
NLD 0.0941 0.0688 0.0671 0.0774 0.0803 0.0736
SZ 0.1016 0.0891 0.0946 0.0892 0.0929 0.0921
ZH 0.0250 0.0211 0.0192 0.0317 0.0185 0.0235
Total 0.1808 0.1263 0.1156 0.1637 0.1404 0.1374

aDG, Dongguan; HK, Hong Kong; MA, Macao; NLD, Nei Lingding Island; SZ, Shenzhen; ZH, Zhuhai.Fst, (epi)genetic variation among populations.
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nsii.org.cn), and the Chinese Virtual Herbarium (http://www.cvh.
ac.cn). After removal of duplicate locations, we obtained 298 dis-
tribution sites for niche model prediction. Maxent software
(Phillips et al. 2006) was used to predict current and future distri-
bution ofM. micrantha with 10 cross-validated replicated runs, of
which the latter proceeded based on theHadGEM2-ES and RCP4.5
model (Collins et al. 2011; Thomson et al. 2011). Area under the
curve (AUC) was used to assess model performance. AUC values >

0.9 are usually taken as an indicator of high-accuracy models
(Swets 1988) and efficient model performance (Manel et al. 2001).

Sequencing of Methylated Polymorphic Fragments

After 6% denaturing polyacrylamide gel electrophoresis and silver
staining for visualization, clear and methylated bands were
extracted, purified, and sequenced (Zhou and Wang 2013)

Figure 4. STRUCTURE results with different K values for the six matrices. See Table 1 for population codes.
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(Guangzhou Tsingke Biotechnology, Ltd., Guangzhhou,
Guangdong, China). Their sequences were BLAST searched
against the NCBI and Ensembl databases.

Results and Discussion

Impacts of MSAP Scoring Approaches on (Epi)genetic
Variation Estimates

This is the first report on effects of environmental factors on pop-
ulation epigenetic differentiation inM. micrantha using MSAP. So

far, there exists no consensus method for scoring the information
generated from theMSAP banding patterns. As for the six matrices
we generated, except for the MS-AFLP genetic matrix, all other
matrices were treated as epigenetic data. Of note, Mixing Score
2 included matrices H, M, and U, which were further combined
into matrix HMU. Descriptive (epi)genetic parameters were then
estimated for all six matrices at the population, regional, and spe-
cies levels (Table 4; Supplementary Table S1). For each matrix,
differences were found for such (epi)genetic parameters as the
number of alleles and effective alleles, Shannon information index
(I), percentage of polymorphic loci (%P), expected heterozygosity

Figure 5. Principal coordinate analysis (PCoA) results for the six matrices. See Table 1 for population codes.
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Figure 6. UPGMA tree computed using PAUP based on the six matrices. The number on the branch indicates the bootstrap value. See Table 1 for population codes.
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(He), and unbiased expected heterozygosity (UHe) (Friedman test,
P< 0.05). At the species level, the highest (epi)genetic diversity
occurred in the Salmon matrix, while the lowest was in the U
matrix. Our results are consistent with Schulz et al.’s (2013) find-
ings that scoring schemes had strong effects on the estimates of
epigenetic diversity and differentiation. In this study, we adopted
both Salmon Scoring and Mixing Scoring 2 to evaluate the epige-
netic variation ofM. micrantha. In comparison to Salmon Scoring,
Mixing Scoring 2 incorporates scoring for both methylated and
unmethylated bands, utilizing more of the underlying banding pat-
tern information. Nevertheless, it needs to be noted that there does
not seem to be one best method for scoringMSAP bands for multi-
locus analyses (Schulz et al. 2013).

MS-AFLP genetic matrix was used to survey genetic diversity
(Foust et al. 2016; Schulz et al. 2013). We detected 1,800 polymor-
phic MS-AFLP genetic loci, whose percentage (%P) ranged from
16.17% to 40.5%. The Shannon diversity index (I) varied from
0.052 to 0.137, while the expected heterozygosity (He) ranged from
0.031 to 0.083. These results are not quite consistent with those
obtained by using actual AFLP to assess M. micrantha (Wang
et al. 2012). Similar instances have been observed in South
African ragwort (Senecio inaequidens DC) (Lachmuth et al.
2010; Monty et al. 2013). This is not unexpected, considering that
MSAP is technically a modification of AFLP.

We also evaluated epigenetic parameters. Based on the Salmon
matrix, 2,523 polymorphic loci were identified with percentages of
31.11% to 41.78%; I and He values ranged from 0.110 to 0.138 and
0.066 to 0.084, respectively. Using the H matrix, 2,260 were

identified as polymorphic loci with percentages of 20.49% to
38.1%; I valued from 0.06 to 0.109, and He from 0.035 to 0.063.
For the M matrix, 1,487 polymorphic loci were detected with per-
centages of 13.45% to 39%; I varied from 0.042 to 0.128, and He

from 0.025 to 0.078. For the Umatrix, 1,239 polymorphic loci were
detected with percentages of 12.5% to 33.82%; I ranged from 0.035
to 0.094, and He from 0.02 to 0.055. The HMU matrix produced a
total of 4,966 loci, with %P from 21.1% to 33.33%, I from 0.002 to
0.092, and He from 0.002 to 0.054.

Patterns of Population (Epi)genetic Variation and the
Association of Epigenetic Variation with Leaf Plasticity

In this study, a total of 2,840 scorable polymorphic loci were
obtained using 31 pairs of selective PCR primers across 306
individuals. Overall, the percentage of hemi-methylated loci
ranged from 33.89% (SZ4) to 68.33% (MA1), with an average
of 41.69%, followed by fully methylated loci from 19.40%
(MA1) to 46.89% (SZ4), with an average of 39.09%. By contrast,
the percentage of unmethylated loci ranged from 12.28% (MA1)
to 26.51% (HK8), with an average of 19.23% (Table 5). Hong
Kong populations exhibited the lowest level of full methylation.

Twenty-one populations were found to have three different
methylation levels (t-test, P< 0.05), and different methylation lev-
els were also detected at regional levels. Total methylation (full and
hemi-methylation) was different between Macao and Hong Kong
and the other four regions. For hemi- or full methylation, Macao,
Hong Kong, and Zhuhai each were found to be different from the

Figure 7. Large-scale spatial structure with five distance classes based on the six matrices. An asterisk (*) indicates significance level (P< 0.05).
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other regions. Regarding hemi-methylation, a significant differ-
ence was detected between Nei Lingding and Zhuhai.

Mikania micrantha had the highest epigenetic diversity at the
species level based on Salmon Scoring, followed by MS-AFLP
genetic variation, implying that methylation variation plays a role
in its invasive evolution. The genetic variation of M. micrantha is
lower (0.08) in comparison to other invasive plants like lantana
(Lantana camara L.) (0.28), annual bluegrass (Poa annua L.)
(0.17), maritime pine (Pinus pinaster Aiton) (0.15) (Blignaut
et al. 2013), S. inaequidens (0.30) (Monty et al. 2013), and smooth
cordgrass (Spartina alterniflora Loisel.) (0.38) (Foust et al. 2016),
based on the same molecular marker. Importantly, M. micrantha
also has lower epigenetic variation (0.04 to 0.08) than another
invasive plant, S. alterniflora (0.37) (Foust et al. 2016). In addi-
tion, it also maintains lower population-level genetic differentia-
tion compared with other invasive Asteraceae plants in China like
Jack in the bush [Chromolaena odorata (L.) R.M. King &H. Rob.]
and Santa Maria feverfew (Parthenium hysterophorus L.)
(Ma et al. 2011; Tang et al. 2009; Ye et al. 2004). The low level

of population-level genetic differentiation ofM. micranthamight
be related to its clonal reproduction and relatively short invasive
history in China.

Compared with noninvasive species, invasive species tend to
display higher phenotypic plasticity (Davidson et al. 2011). In this
study, the length:width ratio was used to characterize leaf shape
and evaluate leaf plasticity (Figure 3). Leaf shape was found to
exhibit considerable difference among populations. In particular,
leaf shape in Nei Lingding was much different from that in
Dongguan, Hong Kong, and Macao. Pearson analysis showed that
leaf shape was significantly related to H matrix–based Ne

(r2 = 0.502), He (r2= 0.468), and UHe (r2= 0.497) and the full-
methylation level (r2 = −0.433) at the population level; and I
(r2 = 0.865) and UHe (r2= 0.816) at the regional level (P< 0.05).
These results imply that the leaf shape variation of M. micrantha
may be linked to methylation-state changes. Similarly, Gao et al.
(2010) described the correlation between phenotypic variation
and methylation alternations in the invasive weed alligatorweed
[Alternanthera philoxeroides (Mart.) Griseb.].

Figure 8. Fine-scale spatial structure at 10 distance classes based on six matrices. An asterisk (*) indicates significance level (P< 0.05).
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Population (Epi)genetic Differentiation among Regions

Based on regions, the 21 populations were divided into six groups,
and AMOVA was performed (Table 6). Populations exhibited
higher levels of epigenetic differentiation than genetic differentia-
tion. Fst values among Hong Kong populations were found to be
significantly higher than those among the Dongguan, Macao,
Nei Lingding, and Zhuhai populations, but similar to those of
Shenzhen populations (P < 0.05; Table 7).

Based on the genetic matrix, intrapopulation and interpopula-
tion variation accounted for 80.61% and 19.39% of the total varia-
tion, respectively. As for the epigenetic Salmonmatrix, 86.45% and
13.55% of the variation resided within and among populations sep-
arately. When using the H, M, U, and HMU matrices, 87.72%,

82.34%, 85.08%, and 85.30% of the variation were partitioned
within populations, while 12.29%, 17.66%, 14.92%, and 14.70%
were among populations, respectively.

Genetic differentiation (Fst= 0.1939) was higher in comparison
to epigenetic differentiation (Fst: 0.1229 to 0.1766; Table 6). A
Mantel test was performed based on Nei’s genetic distance and
geographic distance between populations. Except for the Umatrix,
most matrices were found to have a significant correlation between
geographic and (epi)genetic distance (P< 0.05). Among them, the
highest correlation occurred with the Salmon matrix (r2 = 0.235),
while the lowest occurred with the M matrix (r2= 0.178). It is of
interest to note that no clear geographic genetic structure was
detected among the roadside populations of M. micrantha in

Figure 9. Outliers were identified by Dfdist analysis. The red dots indicate positively selective loci.
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southern China when using microsatellite markers (Geng
et al. 2017).

The relationship between the genetic and five epigenetic matri-
ces was further investigated. The correlation index was 0.8951,
0.4812, 0.9404, 0.7528, and 0.9192 for the Salmon, H, M, U, and
HMUmatrices, respectively, indicating a high correlation between
genetic and epigenetic variation.

Investigation of Spatial (Epi)genetic Structure

We found that there was a clear (epi)genetic structure in genetic,
Salmon, and Mmatrix (Figure 4). Based on the genetic matrix, the
Hong Kong and Macao populations formed one cluster, while the
remaining populations formed another. Comparatively, epigenetic
structure was more complex (Figure 4). Different epigenetic

matrices yielded distinct clustering results, indicating the potential
effects of methylation states on population structure. Based on the
Mmatrix, the Hong Kong andMacao populations also formed one
cluster; three Nei Lingding populations (NLD3, NLD5, and NLD6)
clustered into one group together with Dongguan populations,
while one Nei Lingding population (NLD2) clustered into another
group with Shenzhen and Zhuhai populations. The epigenetic
structure constructed from the Salmon matrix was more subtly
complicated. The structure between the four Nei Lingding popu-
lations and the other populations was similar to that from the M
matrix, with the main difference seen with the Hong Kong popu-
lations; three Hong Kong populations (HK6, HK7, and HK8) clus-
tered together, while the other four (HK1, HK3, HK4, and HK5)
grouped with the Macao populations. As for the other three matri-
ces, H, U, and HMU, no clear epigenetic structure was detected.

Figure 10. Candidate positively selective loci were detected by Bayescan analysis. Decisive selected loci were determined according to ln (PO) ≥ 2.
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PCoA and UPGMA revealed similar results (Figures 5 and 6), with
subtle differences when using the HMUmatrix, in which the Hong
Kong populations (HK1, HK3, HK4, and HK5) grouped with the
Macao populations in the UPGMA tree (Figure 6). These results
suggested that there existed a certain degree of gene flow between
the populations and highlighted the importance of Hong Kong
populations in the invasion of M. micrantha in southern China;
the Hong Kong and Macao populations tend to cluster together
based on either genetic or epigenetic data. This may be related
to historical reasons, as Hong Kong had more trade exchange with
Macao than mainland China in the 1980s, which possibly contrib-
uted to the population mixture (Wang et al. 2003; Zhang
et al. 2004).

We further examined spatial (epi)genetic structure at two
scales. At the large scale, for the genetic matrix, a significant neg-
ative Moran’s I value (−0.272, P= 0.035) was observed for the 80-
to 100-km distance class. Similarly, for the Salmon matrix, a sig-
nificant negative I value (−0.743, P= 0.021) was returned for the
same distance class. For the H matrix, a significant negative I value
(−0.29, P= 0.035) was detected in the 20- to 40-km distance class.
Base on the M matrix, a significant positive I value (0.265, P=
0.047) was detected in the 0- to 20-km distance class, while a

significant negative I value (−0.341, P= 0.028) was observed in
the 40- to 60-km distance class. No significant value was detected
for I for any distance classes based on the U and HMU matrices
(Figure 7).

At the fine scale, the spatial structure was examined in 50-m
intervals (Figure 8). For the genetic matrix, a significant positive
autocorrelation was found in the first three distance classes (0 to
50 m, 50 to 100 m, and 100 to 150 m; P < 0.05). For the Salmon
matrix, a similar spatial structure was detected. Using the U and
HMU matrices, significant positive autocorrelation was found in
the first two distance classes (0 to 50m and 50 to 100m; P < 0.05).
For the M matrix, significant positive autocorrelation was
detected in the first and third distance classes (0 to 50 m and
100 to 150 m; P < 0.05). And for the H matrix, the spatial struc-
ture was observed only in the first distance class (0 to 50 m,
P < 0.05).

Identification of Candidate Selective Loci and Local Adaptive
Response to Novel Environment

We detected adaptive loci and epiloci. Using Dfdist, 47 and 151 loci
were identified with positive and negative selection in the genetic

Figure 11. Correlation was investigated between adaptive loci and environmental factors. The correlation range was from −1 to 1. Positive and negative values
indicated that loci were positively and negatively correlated with the environmental factors, respectively. The greater the absolute value, the stronger the correlation,
and vice versa.
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matrix, respectively. By contrast, 61 and 118 loci were detected
under positive and negative selection for the Salmon matrix, 34
and 63 for the H matrix, 32 and 100 for the M matrix, 21 and
37 for the U matrix, and 93 and 226 for the HMU matrix, respec-
tively (Figure 9).

Using Bayescan, 66 and 1 loci were found to be under positive
and negative selection in the genetic matrix, respectively.
Comparatively, the corresponding loci were 87 and 1 for the
Salmon matrix, 38 and 1 for the H matrix, 48 and 1 for the M
matrix, 20 and 1 for the U matrix, and 124 and 1 for the HMU
matrix, respectively (Figure 10). To ensure accuracy, only those loci
that had been simultaneously identified by both Dfdist and
Bayescan were finally considered as being under selection. As a
result, we found 39 candidate selective loci in the genetic matrix,
56 for the Salmon matrix, 22 for the H matrix, 27 for the M
matrix,15 for the U matrix, and 81 for the HMU matrix,
respectively.

We used Samβada software to detect locus–environmental var-
iable associations. It identified 182, 122, 13, 136, 37, and 199 can-
didate loci for the genetic, Salmon, H, M, U, and HMU matrices,

respectively. The majority of these candidate loci were associated
with multiple environmental variables. The majority of these can-
didate loci were further subjected to univariate linear regression
model analysis. Only loci with R2 ≥ 0.5 were considered as adap-
tive (Figure 11), which was 11, 4, 2, 11, 1, and 17 for the genetic,
Salmon, H, M, U, and HMUmatrices, respectively. Among them,
five loci were simultaneously detected in three matrices, and four
were detected in four matrices. In total, for the six matrices, 21
adaptive loci were detected that were positively correlated with
such environmental factors as soil Mn, Zn, Ni, P, and S; latitude;
mean diurnal range; temperature seasonality; temperature annual
range; precipitation of driest month; precipitation of driest quar-
ter; and precipitation of coldest quarter. Of note, there were more
adaptive epiloci (20) than adaptive loci (11) related to environ-
mental factors. Moreover, LD was found in the adaptive (epi)loci
(Figure 12). Our results underscore the relative importance of
methylation-based epigenetic variation in the adaptive response
to environmental conditions (Herrera and Bazaga 2010). Also of
note, no adaptive (epi)loci were found to be solely linked to tem-
perature, but some were simultaneously associated with both

Figure 12. A linkage disequilibrium (LD) test was conducted among adaptive loci. Areas above and below the diagonal indicate the R2 and P-value, respectively.
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temperature and precipitation. Similar results have been obtained
in other plants like black spruce [Picea mariana (Mill.) Britton,
Sterns & Poggenb.] (Prunier et al. 2012) and European larch
(Larix decidua Mill.) (Mosca et al. 2012). These findings suggest
that the interaction between temperature and precipitation might
be more important than their separate action in causing differen-
tiation at the adaptive (epi)loci. It has been shown that transcrip-
tional networks responsive to dehydration and cold stresses are

interconnected in Arabidopsis (Yamaguchi-Shinozaki and
Shinozaki 2006).

Mikania micrantha was predicted to expand northward in the
future (Figure 13), which is in line with previous suggestion byHu
et al. (2014). Environmental factors, including minimum temper-
ature of coldest month, mean temperature of coldest quarter,
mean temperature of driest quarter, temperature annual range,
annual precipitation, and precipitation of warmest quarter, made

Figure 13. Current (A) and potential future distribution (B) of Mikania micrantha predicted based on Maxent.
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the greatest contribution during the expansion (Figure 14). Of
them, minimum temperature of the coldest month and mean
temperature of the coldest quarter were the decisive factors (con-
tribution rate of 62.3%). More importantly, the optimum growth
conditions were revealed as follows (Figure 15): minimum tem-
perature of coldest month, 10 to 24 C; mean temperature of cold-
est quarter, 14 to 27 C; mean temperature of driest quarter, 16 to
23 C; temperature annual range, 8 to 20 C; annual precipitation,
1,800 to 4,900 mm; and precipitation of warmest quarter, 800 to
3,100 mm.

Soil factors have strong effects on the invasion ofM. micrantha
(Chen et al. 2018). Here, five soil factors (Mn, Zn, Ni, P, and S) were
found to be positively related to adaptive (epi)loci. Our results not

only highlight the specific selective soil components but also the
candidate loci involved in the response to edaphic selection for
M. micrantha.

Our findings are not unexpected considering the important
functions of Mn, Zn, Ni, P, and S. Mn plays a crucial role in many
redox reactions as a cofactor for enzymes (Doncheva et al. 2005).
Mn deficiency may cause oxidative damage (Shenker et al. 2004),
while excess Mn imposes toxic effects by interfering with a plant’s
use of other mineral elements (Arya and Roy 2011; Doncheva et al.
2005). Zn fulfills functions in auxin synthesis, signal transduction,
transcriptional regulation, the defense against reactive oxygen spe-
cies, and as component of zinc finger protein and enzymes (Bharti
et al. 2013; Cakmak 2000; Cherif et al. 2011; Epple et al. 2003;

Figure 14. Response curves of Mikania micrantha to environmental gradients. The edges of the red and blue curves represent the average response and the standard deviation
range, respectively.
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Riechmann et al. 2000). Zn concentration influences germination,
branch growth, and light system II (Bonnet et al. 2000). P is a major
element in soil organic matter (Herrera-Estrella and López-
Arredondo 2016). It participates in many metabolic processes
and plays an important role in stress resistance to hostile environ-
ments. P excess will affect the absorbance of Fe, Mn, and
Zn (Huang 2004). Ni is an important micronutrient for plant
growth and metabolism (Lin and Gao 2005). Ni2þ generally leads
to phytotoxicity in soils (Mishra and Kar1974; Sheoran et al. 1990).
Ni may reduce the photosynthetic rate and the activities of key
enzymes of the photosynthetic carbon reduction cycle (Sheoran
et al. 1990). S represents an essential nonmetallic element for plants
(Piotrowska-Dlugosz et al. 2017). Soil S excess and deficiency
have serious effects on plant growth (Behera et al. 2020). Of note,
S enables increased Ni2þ uptake (Hashem et al. 2020). This offers a
clue for understanding the preference of M. micrantha for heavy
metal–contaminated soils (Ho et al. 2019; Leung et al. 2019).
This study also provided evidence that selective pressures resulting
from soil factors were important in structuring the M. micrantha
populations (Nosil et al. 2007).

Comparison of Neutral and Adaptive (Epi)Loci Data Sets

Our results showed that adaptive (epi)loci exhibited higher (epi)
genetic diversity and differentiation than neutral (epi)loci.
Importantly, epigenetic diversity was higher than genetic diversity
(Table 8). Compared with neutral loci, adaptive loci data set

yielded significantly higher Fst values (Table 9). For neutral (epi)
loci, the Fst value based on the genetic matrix was greater
than values based on the epigenetic matrices (Table 9); while
the correlation between genetic and geographic distance was
weaker than those between epigenetic and geographic distance
(Table 10).

By controlling genetic distance, an isolation by geographic dis-
tance pattern still can be detected based on the Salmon matrix.
After removing adaptive (epi)loci, the Hong Kong andMacao pop-
ulations were more clearly clustered together based on the genetic
and epigenetic matrices (Figure 16), indicating the roles of adaptive
(epi)loci in M. micrantha invasion. The fine-scale spatial (epi)
genetic structure was examined based on neutral and adaptive loci,
respectively (Figure 17).

In conclusion, effects of environmental factors on population
epigenetic differentiation of M. micrantha were first revealed by
using MSAP to correlate epigenetic loci and climate/soil data.
We found 20 candidate adaptive epiloci correlated with climate
(precipitation and temperature) and/or soil variables (Mn, Zn,
Ni, P, and S). Minimum temperature of the coldest month and
mean temperature of the coldest quarter were identified as decisive
factors forM. micrantha distribution. Climate is presumed to play
a relatively more important role than soil in shaping the adaptive
(epi)genetic differentiation. Under ongoing global warming, pop-
ulations of M. micrantha are predicted to expand northward.
Compared with genetic diversity, their epigenetic diversity was
higher. Population-level (epi)genetic variation showed the pattern

Figure 15. Evaluation of climate variable contribution using the jackknife test. Blue bars represent contribution of each variable; green bars, without variable; red bar, with all
variables.
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Table 8. Genetic and epigenetic diversity of neutral and adaptive loci.a

Population N

Na Ne I %P He UHe

Neutral Adaptive Neutral Adaptive Neutral Adaptive Neutral Adaptive Neutral Adaptive Neutral Adaptive

AFLP
DG 45 1.040 2.000 1.130 1.818 0.142 0.632 51.8% 100.0% 0.085 0.442 0.086 0.447
HK 91 1.468 2.000 1.102 1.154 0.128 0.214 73.4% 100.0% 0.071 0.117 0.072 0.117
MA 31 0.624 0.909 1.058 1.031 0.072 0.064 31.0% 45.5% 0.041 0.029 0.041 0.029
NLD 62 1.159 2.000 1.122 1.620 0.137 0.507 57.7% 100.0% 0.081 0.347 0.081 0.350
SZ 46 1.073 1.636 1.119 1.482 0.133 0.395 53.5% 81.8% 0.078 0.267 0.079 0.270
ZH 31 0.721 1.818 1.102 1.506 0.108 0.426 35.6% 90.9% 0.066 0.286 0.067 0.290
Average 55 1.014 1.727 1.105 1.435 0.120 0.373 50.5% 86.4% 0.070 0.248 0.071 0.251
Total 306 2.000 2.000 1.114 1.496 0.139 0.488 100.0% 100.0% 0.078 0.315 0.078 0.316
Salmon
DG 45 1.070 2.000 1.130 1.710 0.145 0.587 53.5% 100.0% 0.086 0.401 0.087 0.406
HK 91 1.570 2.000 1.117 1.137 0.148 0.223 78.5% 100.0% 0.083 0.116 0.083 0.116
MA 31 1.011 1.000 1.103 1.071 0.126 0.123 50.5% 50.0% 0.072 0.062 0.073 0.063
NLD 62 1.248 2.000 1.125 1.836 0.146 0.645 62.4% 100.0% 0.085 0.453 0.086 0.457
SZ 46 1.081 2.000 1.111 1.866 0.131 0.650 54.0% 100.0% 0.076 0.459 0.077 0.464
ZH 31 0.842 2.000 1.105 1.800 0.119 0.632 41.8% 100.0% 0.071 0.441 0.072 0.448
Average 55 1.137 1.833 1.115 1.570 0.136 0.477 56.8% 91.7% 0.079 0.322 0.080 0.326
Total 306 2.000 2.000 1.118 1.731 0.151 0.611 100.0% 100.0% 0.084 0.420 0.084 0.421
H
DG 45 0.818 2.000 1.065 1.498 0.083 0.374 40.9% 100.0% 0.046 0.258 0.046 0.261
HK 91 1.497 2.000 1.077 1.138 0.110 0.221 74.8% 100.0% 0.058 0.115 0.058 0.116
MA 31 0.971 2.000 1.086 1.356 0.110 0.339 48.5% 100.0% 0.061 0.218 0.062 0.222
NLD 62 1.074 2.000 1.065 1.634 0.089 0.530 53.7% 100.0% 0.048 0.356 0.048 0.359
SZ 46 0.836 2.000 1.053 1.221 0.074 0.305 41.8% 100.0% 0.040 0.172 0.040 0.174
ZH 31 0.662 2.000 1.059 1.924 0.075 0.672 33.0% 100.0% 0.042 0.480 0.043 0.487
Average 55 0.976 2.000 1.067 1.462 0.090 0.407 48.8% 100.0% 0.049 0.266 0.050 0.270
Total 306 2.000 2.000 1.067 1.434 0.102 0.445 100.0% 100.0% 0.052 0.282 0.052 0.282
M
DG 45 1.081 2.000 1.113 1.821 0.133 0.633 54.1% 100.0% 0.077 0.443 0.078 0.448
HK 91 1.344 1.818 1.077 1.074 0.103 0.137 67.2% 90.9% 0.056 0.066 0.056 0.066
MA 31 0.503 0.727 1.042 1.025 0.054 0.051 25.1% 36.4% 0.030 0.023 0.030 0.023
NLD 62 1.180 1.818 1.107 1.631 0.129 0.508 59.0% 90.9% 0.074 0.351 0.074 0.353
SZ 46 1.043 1.455 1.104 1.391 0.123 0.330 52.1% 72.7% 0.071 0.221 0.072 0.223
ZH 31 0.668 1.818 1.085 1.474 0.095 0.414 33.0% 90.9% 0.057 0.275 0.057 0.279
Average 55 0.970 1.606 1.088 1.403 0.106 0.345 48.4% 80.3% 0.061 0.230 0.061 0.232
Total 306 2.000 2.000 1.092 1.438 0.122 0.447 100.0% 100.0% 0.066 0.284 0.066 0.285
U
DG 45 0.683 2.000 1.064 1.835 0.076 0.648 34.2% 100.0% 0.044 0.455 0.044 0.460
HK 91 1.409 2.000 1.058 1.422 0.086 0.473 70.4% 100.0% 0.044 0.297 0.044 0.298
MA 31 0.544 2.000 1.037 1.033 0.052 0.083 27.2% 100.0% 0.028 0.032 0.028 0.033
NLD 62 0.921 2.000 1.060 1.016 0.077 0.047 46.0% 100.0% 0.042 0.016 0.043 0.016
SZ 46 0.775 2.000 1.055 1.022 0.069 0.060 38.8% 100.0% 0.038 0.022 0.039 0.022
ZH 31 0.534 0.000 1.054 1.000 0.063 0.000 26.7% 0.0% 0.036 0.000 0.037 0.000
Average 55 0.811 1.667 1.055 1.221 0.071 0.219 40.5% 83.3% 0.039 0.137 0.039 0.138
Total 306 2.000 2.000 1.057 1.223 0.083 0.329 100.0% 100.0% 0.042 0.182 0.042 0.183
HMU
DG 45 0.862 2.000 1.079 1.807 0.095 0.611 43.1% 100.0% 0.054 0.430 0.055 0.434
HK 91 1.429 1.882 1.072 1.169 0.102 0.220 71.5% 94.1% 0.053 0.122 0.054 0.122
MA 31 0.725 1.059 1.060 1.077 0.079 0.107 36.2% 52.9% 0.044 0.057 0.044 0.058
NLD 62 1.066 2.000 1.076 1.595 0.097 0.493 53.3% 100.0% 0.054 0.334 0.054 0.337
SZ 46 0.882 1.647 1.068 1.399 0.087 0.358 44.1% 82.4% 0.048 0.234 0.049 0.237
ZH 31 0.631 1.882 1.065 1.518 0.078 0.436 31.4% 94.1% 0.045 0.293 0.045 0.297
Average 55 0.933 1.745 1.070 1.427 0.090 0.371 46.6% 87.3% 0.050 0.245 0.050 0.248
Total 306 2.000 2.000 1.072 1.467 0.103 0.462 100.0% 100.0% 0.053 0.296 0.053 0.296

aN, number of samples; Na, number of different alleles; Ne, number of effective alleles= 1/(p2 þ q2); I, Shannon’s diversity index = −1*[p*Ln(p) þ q*Ln(q)]; %P, percentage of polymorphic loci; He, expected heterozygosity= 2*p*q; UHe, unbiased expected
heterozygosity = [2N/(2N − 1)]*He; DG, Dongguan; HK, Hong Kong; MA, Macao; NLD, Nei Lingding Island; SZ, Shenzhen; ZH, Zhuhai.
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Table 9. Analysis of molecular variance (AMOVA) based on neutral and adaptive loci.

Variation sources

Neutral loci Adaptive loci

Variation percentage Differentiation value Variation percentage Differentiation value

AFLP
Among populations within groups 9.41% Fsc= 0.1003 47.90% Fsc= 0.0720
Among populations 9.08% Fst= 0.1850 5.89% Fst= 0.5378
Among groups 81.50% Fct= 0.0941 46.22% Fct= 0.4790
Salmon
Among populations within groups 6.53% Fsc= 0.0720 53.56% Fsc= 0.0530
Among populations 6.73% Fst= 0.1326 2.46% Fst= 0.5602
Among groups 86.74 Fct= 0.0653 43.98% Fct= 0.5356
H
Among populations within groups 5.22% Fsc= 0.0733 32.81% Fsc= 0.1040
Among populations 6.95% Fst= 0.1217 6.99% Fst= 0.3980
Among groups 87.83% Fct= 0.0522 60.20% Fct= 0.3281
M
Among populations within groups 8.81% Fsc= 0.0842 48.88% Fsc= 0.09377
Among populations 7.68% Fst= 0.1649 4.79% Fst= 0.53670
Among groups 83.51% Fct= 0.0881 46.33% Fct= 0.48877
U
Among populations within groups 6.58% Fsc= 0.0883 26.60% Fsc= 0.2459
Among populations 8.22% Fst= 0.1480 18.05% Fst= 0.4465
Among groups 85.20% Fct= 0.0658 55.35% Fct= 0.2660
HMU
Among populations within groups 6.66% Fsc= 0.0799 42.29% Fsc= 0.1054
Among populations 7.45% Fst= 0.1411 6.08% Fst= 0.4837
Among groups 85.89% Fct= 0.0666 51.63% Fct= 0.4229

Table 10. Mantel test based on neutral and adaptive locus matrices.

Matrix

Neutral loci Adaptive loci

r2 P r2 P

AFLP 0.1690 0.0255 0.2408 0.0094
Salmon 0.2327 0.0044 0.2676 0.0056
H 0.1973 0.0202 0.2460 0.0159
M 0.1443 0.0469 0.2382 0.0100
U 0.1178 0.0962 0.0003 0.4452
HMU 0.1958 0.0124 0.2563 0.0073

Figure 16. Structure results of neutral or adaptive loci based on the six matrices. See Table 1 for population codes.
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Figure 17. Fine-scale spatial structure of neutral and adaptive loci based on the six matrices. An asterisk (*) indicates significance level (P< 0.05).
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of isolation by distance and spatial structure at a small scale.
Moreover, leaf shape variation was found to be related to popula-
tion methylation percentage and epigenetic diversity. These results
may be helpful for formulating a control strategy forM.micrantha.
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