
Euro. Jnl of Applied Mathematics (2019), vol. 30, pp. 400–425. c© Cambridge University Press 2018

doi:10.1017/S0956792518000177
400

Applications of Magnus expansions and
pseudospectra to Markov processes†

A. ISERLES1 and S. MACNAMARA2

1Department of Applied Mathematics and Mathematical Physics, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, UK

email: a.iserles@damtp.cam.ac.uk
2Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School

of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, Australia

email: shev.macnamara@uts.edu.au

(Received 22 August 2017; revised 18 March 2018; accepted 19 March 2018; first published online 17 April 2018)

New directions in Markov processes and research on master equations are showcased by

example. The utility of Magnus expansions for handling time-varying rates is demonstrated.

The useful notion in applied mathematics often turns out to be the pseudospectra and not

simply the eigenvalues. We highlight that general principle with our own examples of Markov

processes where exact eigenvalues are found and contrasted with the large errors produced by

standard numerical methods. As a motivating application, isomerisation provides a running

example and an illustration of our approaches to chemical kinetics. We also present a brief

example of a totally asymmetric exclusion process.
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1 Introduction

The term ‘master equation’ goes back at least as far as the work of Kac in the middle

of the twentieth century [27, page 105], and the subject of master equations admits

a Feynman–Kac stochastic path integral formulation [44]. The general principle of a

governing equation emerging from ensemble averages goes back much further in the

history of statistical mechanics, including the kinetic theories of Boltzmann and, earlier,

of Bernoulli in the 1700s. Generalised master equations can cater to some form of

memory in non-Markovian models but the most common application of master equations

is to Markov processes. Perhaps the first application of the eponymous Markov process

was Andrei Markov’s model of a poem ‘Eugeny Onegin’ as a Markov chain, which

he presented in 1913 in St. Petersburg. Other famous applications include Shannon’s

Information Theory and Google’s PageRank to find order in the information on the

World Wide Web [23]. Choosing the simplest examples, we describe applications to

exclusion processes and chemical processes, although the computational methods we

present have wider applicability.

† This research and Shev MacNamara have been partially supported by a David G. Crighton

Fellowship to DAMTP, Cambridge.
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The purpose of this paper is to elucidate connections between Markov processes and

a number of diverse computational issues, as surveyed in Section 4. These seem to have

received limited attention in the Markov process literature but are nevertheless significant

for computational approaches. Here is a summary of our major contributions:

• Theorem 3.1 is a restatement of a known result concerning the spectra of a Kac matrix

arising in a Markov process, and we find an original proof. All other theorems and

algorithms are original results. Theorem 2.1 and the explicit formula that we derive in

(2.16) for the Magnus expansion are examples of particular contributions.

• Exact results for the spectra are further extended computationally, leading to especially

attractive contributions in Figures 1–3.

• As a primary and important application, isomerization serves as a running example.

In particular, and as a major focus of the work, we have demonstrated how to apply

the techniques described in (2.5) for the Magnus expansion in (2.6) to Markov processes

with time-varying rates.

1.1 Models of isomerisation

The same chemical species can sometimes exist in two distinct molecular forms, S1 and

S2, and can reversibly convert from one form, or isomer, to the other in a process

named isomerisation: S1 ←→ S2. A mathematical model involves two rate constants (this

terminology is common, but in our examples the rate ‘constants’ are often time-dependent),

c1(t) associated with the forward reaction S1
c1−→ S2, and c2(t) for the backward reaction

S1
c2←− S2.

A hierarchy of three mathematical frameworks for modelling chemical reactions is

provided by the reaction rate equations (RRE), the chemical Langevin equation, and

the chemical master equation (CME). Typically, when all species are present in high

concentrations, the deterministic RRE are a good model at a macroscopic scale, but

if some species are present in small numbers of molecules then often the discrete and

stochastic CME is a more appropriate model at a mesoscopic scale [10,32,38]. Stochastic

differential equations such as the Langevin equation for isomerisation [15] and their

corresponding Fokker–Planck partial differential equations provide models at scales that

are intermediate between those of the deterministic rate equations and the discrete and

stochastic master equations.

The RRE for this model of isomerisation are the two linear ordinary differential

equations (ODEs)

d

dt
[S1] = −c1(t)[S1] + c2(t)[S2],

d

dt
[S2] = +c1(t)[S1] − c2(t)[S2], (1.1)

where [Si] indicates the concentration (molecules per unit volume) of species i.

These chemical reactions can also be modelled by a continuous time, discrete state

Markov process for which a linear system of ODEs known as the master equation,

p′ = Ap, describes the evolution of the associated probability distribution p. (This is also

sometimes known as a Chapman–Kolmogorov forward equation, our notation involves a

matrix A that is the transpose of the ‘Q-matrix’ notation that is sometimes encountered,
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and statements of the master equation for isomerisation in notation without a matrix can

be found in [15].) The state records the integer number of molecules of each species, and,

after enumeration of all possible states, the probability of the ith state is recorded in the

ith entry of the vector p. In a small time dt, the probability mass that flows from state

j to a different state i is approximately given by Aijdt. The matrix A has non-negative

off-diagonals and zero column sum, and is thus a graph Laplacian. As an example, if

we start with N molecules of species S1 and zero molecules of S2, then there are N + 1

states, (i, N− i) for i = 0, . . . , N, where state i has i molecules of S1. If our initial condition

has all probability concentrated on state (0, N), then our initial probability vector is

p(0) = (0, 0, . . . , 1)�. With rates c1(t) = 1 + f(t) and c2(t) = 1 − f(t), the probability

vector evolves according to the linear ODE (1.2), introduced below, which is the CME

for isomerisation.

‘Generally, the CME has such extremely high dimension that it cannot be handled

analytically or computationally’ [21]. In this article, we focus on some exceptions. A large

class of important and solvable models, including isomerization, arise when reaction rates

are linear as a function of the state [26]. For this special class of models, we have exact

agreement between the average value of the stochastic CME model and the solution of the

corresponding deterministic RRE. (Usually these models agree only approximately.) The

exact solution to the CME (1.2) for our isomerisation example is a binomial distribution,

where the time-varying parameter in the binomial distribution originates in the solution

to the corresponding RRE (1.1). This makes it an ideal candidate for demonstrating novel

applications of Magnus methods, which as we will see, reveal finer structure in the master

equations.

1.2 A master equation for isomerisation with explicitly time-varying rates

We are concerned with the linear ODE

d

dt
p =

[
A[0] + A[1]f(t)

]
p, p(0) = p0 ∈ R

N+1, (1.2)

involving two matrices A[0] and A[1] defined by, for k, � = 0, . . . , N,

A
[0]
k,� =

⎧⎪⎪⎨
⎪⎪⎩

−N, k = �,

�, k = �− 1,

N − �, k = � + 1,

0, otherwise;

A
[1]
k,� =

⎧⎪⎪⎨
⎪⎪⎩

N − 2�, k = �,

�, k = �− 1,

−N + �, k = � + 1,

0, otherwise.

(1.3)

The A[0] matrix is remarkably close to the ‘clement’ matrix in the MATLAB gallery, which

has a zero main diagonal but is otherwise the same.

If −1 � f(t) � 1 then A = A[0] + A[1]f(t) has the usual properties of a graph

Laplacian matrix (sometimes called the infinitesimal generator of the Markov process).

In that case (1.2) is a master equation, which was originally simulated for the special

case f(t) = sin t [28]. Here, we generalize. It turns out (1.2) has a truly miraculous

structure.
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2 The Magnus expansion

The matrix exponential is the solution of a linear ODE when the coefficient matrix is

constant, i.e.,

d

dt
p = �p with solution p(t) = exp(t�)p(0). (2.1)

When the matrix varies in time, � = �(t), the solution is no longer simply the matrix

exponential, but it can still be expressed in an exponential form. We write

d

dt
p = �(t)p with solution p(t) = exp(Ω(t))p(0). (2.2)

Here, the Magnus expansion [35] tells us how to find the crucial matrix Ω(t) as an infinite

series, namely

Ω(t) =

∫ t

0

�(s)ds− 1

2

∫ t

0

[∫ s

0

�(r)dr,�(s)

]
ds + . . . . (2.3)

All higher order terms in the expansion can be generated recursively by integration and

commutation, thus involving commutators as a factor. The commutator of two matrices

is, as usual, [A,B] ≡ AB−BA. In the special case that the time-varying matrix commutes

with itself at different time points, i.e., ∀t1,∀t2, [�(t1),�(t2)] ≡ 0, those commutators

are all zero so the expansion simplifies to Ω(t) =
∫ t

0
�(s)ds, agreeing with our intuition

from the scalar case. This expansion, which is valid for all sufficiently small times t, was

originally motivated by applications in quantum mechanics where it was derived by an

analogy with Cauchy–Picard iteration in the 1950s. For a long time it remained merely a

theoretical tool, and it was only nearing the turn of the century that it was fashioned into

an effective computational tool [25].

The next higher order contribution in (2.3) is the sum of two terms, namely,

1

12

∫ t

0

[∫ s1

0

�(s2)ds2,

[∫ s1

0

�(s2)ds2,�(s1)

]]
ds1

+
1

4

∫ t

0

[∫ s1

0

[∫ s2

0

�(s3)ds3,�(s2)

]
ds2,�(s1)

]
ds1.

The next higher order contribution is the sum of four terms. The point is that successively

higher order contributions in the expansion involve a growing number of terms, so

the expansion quickly becomes difficult to work with directly. Instead, using graph

theory, more specifically rooted trees, is a successful way to manage the expansion. A

remarkable correspondence between terms in the Magnus expansion and rooted, binary

trees (elucidated in [25, equation (4.10)]) allows (2.3) to be written as

Ω(t) =

∞∑
m=0

∑
τ∈Tm

∫ t

0

α(τ)Gτ(x) dx. (2.4)

All terms in the expansion are identified with a rooted, binary tree in the set of Magnus

trees, denoted ∪mTm. In this correspondence, vertical lines correspond to integration and

joining trees corresponds to commutation. Here is the four-step recipe.
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(1) Tm is the set of Magnus trees with m vertical lines.

(2) The only member of T0 is
�
.

(3) τ → Gτ is a mapping from Magnus trees to matrices. Specifically, G• = A and, given

m � 1, any τ ∈ Tm can be represented in the form

τ = ��� ��
�

τ1

τ2

, τ1 ∈ Tm1
, τ2 ∈ Tm2

, m1 + m2 = m− 1. (2.5)

In that case

Gτ(t) =

[∫ t

0

Gτ1
(x) dx, Gτ2

(t)

]
.

(4) α : τ → Q is a mapping from Magnus trees to rational numbers. Specifically, α(•) = 1

and, for any τ ∈ Tm for m � 1, with Bs denoting Bernoulli numbers,

τ = ��� ��
�

η1

��� ��
�

η2
��� ��

� �

ηs

�
� �
�

⇒ α(τ) =
Bs

s!

s∏
j=1

α(ηj).

In general, this procedure elegantly expresses the Magnus expansion (2.4) as

Ω(t)� �

�

− 1

2
�

��� ��
� �

�

+
1

12
�

��� ��
� �

�

�� ��
� �

�

+
1

4
�

��� ��
� �

��� ��
� �

�

− 1

8
�

��� ��
� �

��� ��
� �

��� ��
� �

�

− 1

24
�

��� ��
� �

�

�� ��
� �

��� ��
� �

�

− 1

24
�

��� ��
� �

��� ��
� �

�

�� ��
� �

�

− 1

24
�

��� ��
� �

��� ��
� �

�

�� ��
� �

�

+ · · · . (2.6)

2.1 A special property of isomerisation matrices

Recognising the following special property (confirmed by an easy matrix multiplication)

[A[0], A[1]] = −2A[1] (2.7)

https://doi.org/10.1017/S0956792518000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000177


Magnus expansions and time-varying Markov processes 405

usefully simplifies our Magnus expansion. This simple form of the commutator (2.7)

is fundamental because the Magnus expansion is constructed as a linear combination

of terms that can be obtained from A(t) = A[0] + A[1]f(t) using only integration and

commutation. It thus resides in the free Lie algebra F generated by A[0] and A[1]. In light

of (2.7), that F is

F(A[0], A[1]) = Span {A[0], A[1]}. (2.8)

In other words, although in general the Magnus expansion of the solution may require

many terms, the Magnus expansion of (1.2) for isomerisation is simply a linear combination

of the form1 Ω(t) = σ[0](t)A
[0] + σ[1](t)A

[1]!

2.2 A Magnus expansion of isomerisation

We now specialize the general form of the expansion (2.4) to our application of isomer-

isation (1.2), for which

•� A[0] + f(t)A[1].

By following the four step algorithm near (2.5), we find the first few terms in the series

(2.3) and the corresponding trees are

�

�

:

∫ t

0

A(x) dx = tA[0] +

∫ t

0

f(x) dxA[1],

�

��� ��
� �

�

:

∫ t

0

∫ x1

0

[A(x2),A(x1)] dx2 dx1

=

∫ t

0

[
x1f(x1) −

∫ x1

0

f(x2) dx2

]
dx1[A

[0], A[1]]

= 2

∫ t

0

(t− 2x)f(x) dxA[1].

Note we made use of (2.7) for the commutator to simplify the expressions. Moreover, a

matrix commutes with itself so some terms are zero, such as

�

��� ��
� �

��� ��
� �

�

�� ��
� �

�

:

[
2

∫ t

0

(t− 2x)f(x) dxA[1],−2

∫ t

0

[f(t) − f(x)] dxA[1]

]
= O.

We claim that for τ ∈ Tm, m � 1, necessarily Gτ is a scalar multiple of A[1], i.e.,

Gτ(t) = στ(t)A
[1].

1 Indeed, more is true. A Lie algebra g is solvable if there exists M � 0 such that g
[M] = {0},

where g
[0] = g and g

[k+1] = [g[k], g[k]]. By (2.7), dimF [1] = 1 so it is a commutative algebra and

F [2] = {0}. The algebra is solvable!
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We already know from (2.7) and (2.8) that our Magnus expansion is of the form

σ[0](t)A
[0] + σ[1](t)A

[1]. In view of the first few trees above, our claim immediately implies

σ[0](t) = t. Having now found σ[0], it remains only to find σ[1], so to simplify notation, we

drop the subscript from now on and let σ = σ[1].

The proof of the claim is by induction. For m = 1 there is only one Magnus tree,

τ = ��� ��
� �

�

⇒ Gτ(t) = −2

∫ t

0

[f(t) − f(x)] dxA[1].

Therefore, στ(t) = −2
∫ t

0
[f(t) − f(x)] dx.

Consider next m � 2 and (2.5). If m1, m2 � 1 then, by the induction assumption, both

Gτ1
and Gτ2

are scalar multiples of A[1] and we deduce that Gτ ≡ O. There are two

remaining possibilities: either m1 = 0, m2 = m− 1 or m1 = m− 1, m2 = 0. In the first case

τ = ��� ��
�

�

τ2

, (2.9)

so Gτ(t) =
[
tA[0] +

∫ t

0
f(x) dxA[1], στ2

(t)A[1]
]

= tστ2
(t)[A[0], A[1]] = −2tστ2

(t)A[1], and

στ(t) = −2tστ2
(t).

Finally, for m1 = m− 1 and m2 = 0, we have

τ = ��� ��
� �

τ1

(2.10)

for which Gτ(t) =
[∫ t

0
στ1

(x) dxA[1], A[0] + f(t)A[1]
]

= −
∫ t

0
στ1

(x) dx[A[0], A[1]] =

2
∫ t

0
στ1

(x) dxA[1] and στ(t) = 2
∫ t

0
στ1

(x) dx. This completes the proof of

Theorem 2.1 The Magnus expansion for isomerisation (1.2) is of the form

Ω(t) = tA[0] + σ(t)A[1] (2.11)

for a function σ which has been described above in a recursive manner.

Next, we will explicitly find in the next theorem the function σ of (2.11), thus finding

the Magnus expansion of isomerisation. We do not present all steps in the derivations to

come. Theorem 2.1 and the steps leading to it were deliberately chosen for presentation

partly because this quickly gives a good sense of the style of arguments needed in this

area, while still being very accessible. The steps required in our other proofs follow a

similar pattern, albeit more detailed.

2.3 Constructing the trees

In general, when we want to find the Magnus trees, we can follow the four-step algorithm

near (2.5). That always works. Often though, particular applications allow simplifications,
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as we now use our application to illustrate. The main question to be answered for this

example is how to connect the coefficients α(τ) to the trees in the situations of (2.9) and

of (2.10).

The situation for (2.10) is trivial: since s = 1, we have

α(τ) =
B1

1!
α(τ1) = −1

2
α(τ1).

It is more complicated in the situation of (2.9). There we have

τ2 = ��� ��
�

η1

��� ��
�

η2
��� ��

� �

ηs

�
� �
�

⇒ τ = ��� ��
�

�

��� ��
�

η1

��� ��
�

η2
��� ��

� �

ηs

� �
�
�

Therefore,

α(τ2) =
Bs

s!

s∏
j=1

α(ηj), α(τ) =
Bs+1

(s + 1)!

s∏
j=1

α(ηj).

Hence, to summarize

s = 1 : α(τ2) = −1

2
α(η1), α(τ) =

1

12
α(η1) = −1

6
α(τ2);

s even : Bs+1 = 0 ⇒ α(τ) = 0;

s � 3 odd : Bs = 0 ⇒ α(τ2) = 0.

This is a moment to comment on the mechanisms giving rise to some of our simpli-

fications. Not all Magnus trees feature — with non-zero coefficients — in the expansion

(2.4). There are two mechanisms that explain this: (a) The coefficient α(τ) is zero; or (b)

στ ≡ 0, because a matrix commutes with itself and τ originates in trees τ1 and τ2 such

that Gτk (t) = στk (t)A
[1], for k = 1, 2. There is an important difference between these two

situations. For the first mechanism, while we do not include the tree τ in (2.4), we must

retain it for further recursions. In the second mechanism, though, if a tree is zero then all

its ‘children’ are zero too.

The long-and-short is that in every Tm, m � 1 we have 2m−1 trees (some with a zero

coefficient). What we really have is a binary ‘super-tree’
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τ�
������

������
τ0 τ1

�
�

���

�
�

��	

�
�

���

�
�

��	
τ00 τ10 τ01 τ11





�

�
��






�

�
��






�

�
��






�

�
��


τ000 τ100 τ110 τ010 τ001 τ101 τ011 τ111

. . . and so on.

The rule is: Each move ‘left’ (i.e., in the 0 direction – the subscripts are binary strings)

corresponds to ‘scenario’ (2.9); Each move ‘right’ corresponds to ‘scenario’ (2.10). Now

that we have simplified our system for dealing with the trees, we are ready to proceed to

find σ.

2.4 An explicit formula for σ

As we have seen, except for T0, every τ ∈ Tm leads to an expression of the form στ(t)A
[1].

For example, setting f̃(x) = xf′(x),

T1 : τ� = ��� ��
� �

�

⇒ στ� = −2

∫ t

0

f̃(x) dx, α(τ�) = −1

2
.

By continuing to find these trees, we see a pattern emerge: For any τ ∈ Tm, m � 1, our

στ(t) is of the form στ(t) =
∫ t

0
Kτ(t, x)f̃(x) dx for some kernel Kτ. To find the kernels, it is

convenient for τ ∈ Tm, m � 2, to work with

τ = ��� ��
� �

�

��
�

�

�
� �
�
��� �

��� �

�

��
� �

η

r
tim

es

︷ ︸︸
︷

(2.12)

Let r ∈ {0, 1, . . . , m− 2} and η ∈ Tm−r . Straightforward computation shows that

η � Kη(t, x), �

η

�

∫ t

x

Kη(y, x) dy, ��� ��
� �

η

� 2

∫ t

x

Kη(y, x) dy.

This pattern motivates arguments by induction for (2.12), that lead to

Kτ(t, x) = 2(−2t)r
∫ t

x

Kη(y, x) dy, α(τ) =
Br+1

(r + 1)!
α(η). (2.13)
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We left out one exceptional case, namely τ = τ0. In that case, the representation (2.12)

is still true but η ∈ T0, so is not associated with a kernel. However, easy computation

confirms that Kτ0
(t, x) = −2(−2t)m−1, α(τ0) = Bm

m!
.

Now that we have the kernels, we sum them. Let Θm(t, x) =
∑

τ∈Tm
α(τ)Kτ(t, x), for

m ∈ N. For example, Θ1(t, x) ≡ 1 and Θ2(t, x) = − 2
3
t+x. Next, let Θ(t, x) =

∑∞
m=1 Θm(t, x).

After some recursion we are led to the Volterra-type equation

t(1 − e−2t)

1 − 2t− e−2t
Θ(t, x) =

∫ t

x

Θ(y, x) dy − 1, (2.14)

with the solution

Θ(t, x) = − exp

(
−4

∫ t

x

1 − y − (1 + y)e−2y

(1 − e−2y)(1 − 2y − e−2y)
dy

)
1 − 2x− e−2x

x(1 − e−2x)
. (2.15)

Now integrate στs, scaled by α(τ), for all trees: σ(t) =
∫ t

0

∑∞
m=0

∑
τ∈Tm

α(τ)στ(ξ) dξ =∫ t

0
f(x) dx +

∫ t

0

∑∞
m=1

∑
τ∈Tm

α(τ)
∫ ξ

0
Kτ(ξ, x)f̃(x) dx dξ. Swapping integration and summa-

tion, we have σ(t) =
∫ t

0
f(x) dx +

∫ t

0
xf′(x)

∫ t

x
Θ(ξ, x) dξ dx. Substituting (2.14), we attain

our desired goal: σ(t) =
∫ t

0
f(x) dx +

∫ t

0
xf′(x)

[
t(1−e−2t)

1−2t−e−2t Θ(t, x) + 1
]
dx, or

σ(t) = tf(t) +
t(1 − e−2t)

1 − 2t− e−2t

∫ t

0

xf′(x)Θ(t, x) dx. (2.16)

Here, we used integration by parts,
∫ t

0
xf′(x) dx = tf(t)−

∫ t

0
f(x) dx. With (2.15), everything

is now explicit. Combining σ in (2.16) with Theorem 2.1, we have now found the

(complete!) Magnus expansion of isomerisation.

Note that (2.16) is bounded for all t � 0, because t(1− e−2t)/(1− 2t− e−2t) is bounded2

for all t ∈ R. As a consequence, the Magnus series (2.11) for isomerisation converges for

every t � 0. That is a significant finding for isomerisation, because in general the Magnus

series is only convergent for small times.

There is further significance. Our own exposition of the Magnus expansion here also

explains the intriguing numerical evidence appearing in earlier work that time-steps

larger than the bound in the Moan–Niesen sufficient condition for convergence of the

Magnus expansion can be taken while still maintaining good accuracy with Magnus-

based numerical methods [28, Figure 1]. That good experience of taking larger time steps

(larger than the bound in the Moan–Niesen condition) with Magnus-based methods has

previously been reported in numerous numerical studies in the context of the Schrödinger

equation, and was eventually carefully explained by Hochbruck and Lubich [24]. We

are also seeing it here in a novel context of master equations, although our explanation

via the Magnus expansion shows that same good experience in this novel context is for

completely different reasons.

2 Actually, it is analytic.
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2.5 A role for automorphisms

Theorems 2.1 and 2.16 tell us, explicitly, the matrix Ω(t) in the Magnus expansion.

Ultimately, we want the solution (2.2). For that, we need the exponential, exp(Ω(t)). This

is an opportunity to show how automorphisms can simplify exponentials arising in master

equations.

Let P be the (N + 1) × (N + 1) persymmetric identity: Pi,j = 1 if j = N − i, and is zero

otherwise (with indexing beginning at 0). Note that P ∈ O(N + 1) ∩ Sym(N + 1) so P is

an orthogonal involution: P−1 = P� = P and P 2 = I . Matrix multiplication confirms the

useful properties

PA[0]P = A[0], PA[1]P = −A[1]. (2.17)

Being an orthogonal involution, P defines an inner automorphism on gl(N+1), namely

ι(B) = PBP for B ∈ gl(N + 1). Following [37], we let k = {B ∈ gl(N + 1) : ι(B) = B}
and p = {B ∈ gl(N + 1) : ι(B) = −B} be the fixed points and anti-fix points of the

automorphism ι. Here is a list of the three main features of our general strategy. First, in

the Generalised Cartan Decomposition , gl(N + 1) = k ⊕ p. That is, given B ∈ gl(N + 1),

we split it into 1
2
[B + ι(B)] ∈ k and 1

2
[B − ι(B)] ∈ p. Second, here k is a subalgebra of

gl(N + 1), while p is a Lie triple system: [k, k], [p, p] ⊆ k and [k, p], [p, k] ∈ p. Third, letting

B = k + p, where k ∈ k and p ∈ p, we have (and we will apply this form to our example

momentarily)

etB = eXeY ,

where X ∈ k, Y ∈ p have the Taylor expansion

X = tp− 1

2
t2[p, k] − 1

6
t3[k, [p, k]] + t4

(
1

24
[p.[p, [p.k]]] − 1

24
[k, [k, [p, k]]]

)
(2.18)

+ t5
(

7

360
[k, [p, [p, [p, k]]]] − 1

120
[k, [k, [k, [p, k]]]] − 1

180
[[p, k], [p, [p, k]]]

)

+ t6
(
− 1

240
[p, [p, [p, [p, [p, k]]]]] +

1

180
[k, [k, [p, [p, [p, k]]]]]

− 1

720
[k, [k, [k, [k, [p, k]]]]] +

1

720
[[p, k], [k, [p, [p, k]]]]

+
1

180
[[p, [p, k]], [k, [p, k]]]

)
+ O

(
t7

)
,

Y = tk − 1

12
t3[p, [p, k]] + t5

(
1

120
[p, [p, [p, [p, k]]]] +

1

720
[k, [k, [p, [p, k]]]] (2.19)

− 1

240
[[p, k], [k, [p, k]]]

)
+ O

(
t7

)
.

Now, let k = A[0] and p = A[1] so by (2.7), [p, k] = 2p. Look again at (2.18) and

(2.19). Each term necessarily contains the commutator [p, k]. Suppose that, except for this

commutator, the term contains at least one additional p. Then, necessarily, it is zero. The

reason is there must be a sub-term of the form [p, [k, [k, [. . . , [k, [p, k]] · · · ]]]]. Beginning

from the inner bracket, we replace [p, k] by 2p, so [k, [p, k]] = −4p, and so on, until we

reach the outermost commutator: up to a power of 2, it will be [p, p] = 0, proving our
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assertion. We deduce that the only terms surviving in (2.18), except for the first, are of

the form (where in this line we are also introducing an adjoint operator notation adr+1
k ,

to simplify expressions with nested commutators)

[

r�0 times︷ ︸︸ ︷
k, [k, · · · , k, [p, k]]] = −adr+1

k p = (−1)r2r+1p

so

X = −
∞∑
r=1

tr

r!
adr−1

k p =
1 − e−2t

2
p. (2.20)

Insofar as Y is concerned, things are even simpler. While p features an odd number of

times in X (because X ∈ k), Y ∈ p implies that p features there an even number of times.

Except for the leading term, it features p at least twice, and each such term must vanish,

so

Y = tk. (2.21)

Of course, what we really need to compute is exp(Ω(t)) = exp(tA[0] + σ(t)A[1]) = etB =

eXeY . For that, we keep (2.21) intact (hence Y = tA[0]), but t in (2.20) need be replaced

by σ(t)/t (which is not problematic since σ(0) = 0), i.e.,

X =
1

2

[
1 − exp

(
−2σ(t)

t

)]
A[1].

Thus automorphisms have simplified the required exp(tA[0] + σ(t)A[1]) to computing

exponentials of A[0] and of A[1] separately. Those come from the spectral decomposition,

which we set about finding next.

3 Spectra and pseudospectra of isomerisation matrices

3.1 Spectral decomposition of A[0]

We wish first to determine the eigenvalues and eigenvectors of A[0]. They are essentially

given by [11, Theorem 2.1]. Here, we provide an alternative proof and an explicit formula

for the eigenvectors.

Theorem 3.1 The spectrum of A[0] is

{−2r : r = 0, 1, . . . , N}.

Moreover, an (unnormalised) eigenvector corresponding to the eigenvalue −2r, for r =

0, . . . , N, is

vm = (−1)m
(
r

m

)
2F1

[
−N + r,−m;

r − m + 1;
− 1

]
, m = 0, . . . , r, (3.1)

vm = (−1)r
(
N − r

m− r

)
2F1

[
−N + m,−r;

m− r + 1;
− 1

]
, m = r, . . . , N. (3.2)

where kF� is the generalized hypergeometric function.
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Proof By definition, λ is an eigenvalue of A[0] and v �= 0 a corresponding eigenvector if

and only if

(N + 1 − m)vm−1 − (N + λ)vm + (m + 1)vm+1 = 0, m = 0, . . . , N, (3.3)

with the boundary conditions v−1 = vN+1 = 0. One way to arrive at the theorem is to let

V(t) :=

N∑
m=0

vmt
m

and establish V = (1 + t)N+λ/2(1 − t)−λ/2 using (3.3). Then impose conditions on λ to

ensure V is a polynomial of degree N. The exact details of the eigenvectors v can come

by expanding (1 + t)N+λ/2(1 − t)−λ/2. �

Incidentally, (3.1)–(3.2) reveal symmetry. Denoting the eigenvector corresponding to the

eigenvalue −2r by v[r], we have: v[r]
N−m = (−1)m−rv[N−r]

m , m = 0, . . . , N.

What else can we say about the eigenvector matrix V = [v0], v[1], . . . , v[N]]? Computer

experiments seem to demonstrate the remarkable result V 2 = 2NI , hence

V−1 = 2−NV (3.4)

and this is true: for brevity we omit the proof. More importantly, having the spectral

decomposition and having V−1, we now have the exponential, exactly:

etA
[0]

=
1

2N
VΛ(t)V , where Λ(t) = diag

(
1, e−2t, e−4t, · · · , e−2Nt

)
.

It is tempting to compute matrix exponentials via diagonalization. In general, this is not

necessarily a good numerical choice, even in situations where the spectral decomposition

is cheaply available. An issue is that the condition number of the eigenvector matrix can

be very large, as happens here3 — κ(V ) grows quickly with N. Also, expressions such as

e−2Nt are at risk of underflow error.

3.2 A Jordan form of A[1]

Unlike A[0], the matrix A[1] is not diagonalizable. It can still be usefully factorized in

Theorem 3.2 The Jordan form of A[1] is

A[1] = WEW−1, (3.5)

3 In hindsight, such poor conditioning of the eigenvector matrix was to be expected because

A[0] exhibits a humongous pseudospectrum. The best case scenario is when eigenvectors form

an orthogonal basis (consistent with our intuition from numerical linear algebra that orthogonal

matrices have the ideal condition number of 1), as happens in the real symmetric case. Pseudospectra

measures the departure of a nonnormal matrix from that good orthogonal case. Our example has

eigenvectors in Theorem 3.1 that are far from orthogonal.
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where E is the standard shift matrix, with Ei,j = 1 if j = i + 1 and is zero otherwise, while

W is a lower-triangular matrix,

Wm,n =

⎧⎪⎨
⎪⎩

0, m � n− 1,

(−1)m−n

n!

(
N − n

m− n

)
, m � n,

m, n = 0, . . . , N.

An immediate consequence of this Jordan form (3.5) is that A[1] is nilpotent.

Proof The Jordan form (3.5) is equivalent to A[1]W = WE and the latter is easier to

check. The matrix WE is easy to find because E is the shift matrix: each column of W

is shifted rightwards, the Nth column disappears, and the zeroth column is replaced by

zeros, so

(WE)m,n =

{
0, n = 0,

Wm,n−1, n = 1, . . . , N.

We proceed to evaluate A[1]W and demonstrate that it is the same.

For every m, n = 0, . . . , N (and with A
[1]
0,−1 = A

[1]
N,N+1 = 0) we have

(A[1]W )m,n = A
[1]
m,m−1Wm−1,n + A[1]

m,mWm,n + A
[1]
m,m+1Wm+1,n.

For n � m+ 2 this obviously vanishes. For n = m+ 1, A[1]
m,m+1Wm+1,m+1 = 1

m!
= Wm,m is all

that survives, and for n = m

A[1]
m,mWm,m + A

[1]
m,m+1Wm+1,m = −m

N + 1 − m

m!
=

{
0, m = 0,

Wm,m−1, m � 1.

Finally, for n � m− 1 all three terms are nonzero and their sum is

(−N + m− 1)
(−1)m−1−n

n!

(
N − n

m− 1 − n

)
+ (N − 2m)

(−1)m−n

n!

(
N − n

m− n

)

+ (m + 1)
(m + 1 − n)

n!

(
N − n

m + 1 − n

)

=
(−1)m−nn(N − n + 1)!

n!(m− n + 1)!(N − m)!
=

{
0, n = 0,

Wm,n−1, n � 1

and we are done. �

Next, we set about applying our newly found Jordan form to find the matrix exponential.

Let C = diag (0!, 1!, 2!, . . . , N!) be a diagonal matrix and

Zm,n =

⎧⎪⎨
⎪⎩

0, m � n− 1,

(−1)m−n

(
N − n

m− n

)
, m � n,

m, n = 0, . . . , N.
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As is trivial to verify, W = ZC−1, so A[1] = ZC−1ECZ−1. Equally trivial to verify is that

Z−1 is given by

Z−1 = Z̃m,n :=

⎧⎪⎨
⎪⎩

0, m � n− 1,(
N − n

m− n

)
, m � n,

m, n = 0, . . . , N.

Consequently, A[1] = ZC−1ECZ̃. We have proved

Theorem 3.3 The matrix exponential is, in an explicit form,

etA
[1]

= ZC−1etECZ̃ . (3.6)

3.2.1 Evaluating the exponential via (3.6)

Let u ∈ R
N+1 (again, indexed from zero). We wish to compute y = Z̃u. A näıve approach

would require O
(
N2

)
flops but herewith an algorithm that accomplishes this in just

O
(
N2

)
additions, without requiring multiplications!

For reasons that become clear, it is useful to indicate N explicitly in the notation, i.e.,

y[N] = Z̃ [N]u[N]. Start by observing that

y[N]
m =

m∑
n=0

(
N − n

m− n

)
un, m = 0, . . . , N

(no need to place superscripts on un). Therefore, for m = 0, . . . , N − 1,

y[N]
m + y

[N]
m+1 =

m∑
n=0

(
N − n

m− n

)
un +

m+1∑
n=0

(
N − n

m + 1 − n

)
un =

m+1∑
n=0

(
N + 1 − n

m + 1 − n

)
un

= y
[N+1]
m+1 .

Rewrite this as

y[N]
m = y

[N−1]
m−1 + y[N−1]

m , m = 0, . . . , N − 1 (3.7)

(in the case m = 0 of course y
[N]
0 = y

[N−1]
0 = u0, so the above is consistent with y

[N]
−1 = 0.)

Now proceed from y
[0]
0 = u0 and then, for M = 1, 2, . . . , N, add

y[M]
m = y

[M−1]
m−1 + y[M−1]

m , m = 0, . . . ,M − 1,

y
[M]
M =

M∑
n=0

un = y
[M−1]
M−1 + uM.

and we are done.

Of course, similar reasoning applies also to a product y = Zu. The only difference

vis-á-vis (3.7) is that now y[N]
m = y[N−1]

m − y
[N−1]
m−1 , m = 0, . . . , N − 1, therefore the recursion
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steps are

y[M]
m = y[M−1]

m − y
[M−1]
m−1 , m = 0, . . . , N − 1,

y
[M]
M =

M∑
m=0

(−1)M−nun = −y
[M−1]
M−1 + uN.

Having dealt with the Z̃u and the Zu components, we are left only with the C−1etEC

portion of (3.6). We address that now. It is trivial that

(etE)m,n =

⎧⎨
⎩

tn−m

(n− m)!
, m = 0, . . . , n,

0, m = n + 1, . . . , N.

Therefore (cf. (3.6))

(C−1etEC)m,n =

⎧⎪⎨
⎪⎩

(
n

m

)
tn−m m = 0, . . . , n,

0, m = n + 1, . . . , N.

Let us pause to reflect on the exact exponentials that we have just found. We expect the

solution to our model of isomerization to be a binomial distribution [26]. In general, that

means we expect a linear combination of the columns of the solution matrix exp(Ω(t))

to be a binomial distribution, when the weights in that linear combination likewise come

from a binomial distribution. Perhaps the simplest example is that the first column of the

solution of (1.2) must be a binomial distribution.

As an example, set e0 = (1, 0, . . . , 0)� and compute the leading column, eqA
[1]

e0 =

Z(C−1eqEC)Z̃e0. Notice that (Z̃e0)m = Z̃m,0 =
(
N
m

)
. So we have [(C−1eqEC)Z̃e0]m =(

N
m

)∑N−m
n=0

(
N−m
n

)
tn =

(
N
m

)
(1 + q)N−m and after some simplifications,

(eqA
[1]

e0)m = [Z(C−1eqEC)Z̃e0] = (−1)m
(
N

m

)
qm(1 + q)N−m.

We are seeing on the right that the binomial distribution survives the first term in

X(t) = etA
[0]

eqA
[1]

e0, where q = σ(t)/t. Thus, the explicit forms of our exponentials that we

have derived allow us to confirm the ‘binomial stays binomial’ theorem [26].

3.3 Pseudospectra

Having established exact analytic formulæ for spectral decomposition, we are now in a

good position to compare exact spectra to numerical estimates of the pseudospectra [43].

Two striking contrasts between the numerically computed eigenvalues and the exact

eigenvalues are worth pointing out.

First, we proved the matrix A[1] is nilpotent: exact eigenvalues are precisely zero. Non-

etheless, A[1] has an enormous pseudospectrum, and standard numerical methods lead to

wrongly computed non-zero eigenvalues of a large magnitude.
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Figure 1. An ‘almond eye:’ Pseudospectrum [43] of a 500×500 example of the A[0] matrix, defined

in (1.3), as computed by Eigtool [46]. Contours of the minimum singular value, smin(zI − A), are

displayed on a log scale.

Second, we found the eigenvalues of A[0] in Theorem 3.1, and they are purely real.

(Indeed, the same ideas described by Trefethen and Embree [43] also show our A[0] is

similar to a real symmetric matrix, so even before Theorem 3.1, we knew eigenvalues had

to be real.) However, standard numerical methods to compute the eigenvalues wrongly

produce complex numbers (!) with very large imaginary parts.

The reason for the numerical errors in computing the eigenvalues is that the eigenvalues

of these matrices are very sensitive to small perturbations. That phenomenal sensitivity is

often characterised by the pseudospectra. For ε > 0, the ε-pseudospectrum is the region

of the complex plane, z ∈ �, where the norm of the resolvent is large: ||(zI−A)−1|| > 1/ε.

In the 2-norm, this is equivalent to the region where the minimum singular value, smin, is

small: smin(zI − A) < ε.

The pseudospectrum of the convection-diffusion operator is known to be significant [39],

and master equations are closely related to convection-diffusion, suggesting they will also

exhibit interesting pseudospectra. Indeed, the matrices that arise in our applications

of master equations to isomerizaiton exhibit truly humongous pseudospectra. They are

examples of the class of twisted Toeplitz matrices and operators, which have recently been

understood to exhibit distinctive pseudospectra, captivating more general interest [42].

Figure 1 displays the pseudospectrum for A[0] and Figure 2 displays the pseudospectrum

for A[1]. These are numerical estimates based on the algorithms underlying eigtool. In

future work it may be possible to analytically bound the region of the complex plane

where the pseudospectra are large. For example, the pseudospectrum of the convection-

diffusion operator has been shown to be approximately bounded by a parabola [39], and

such knowledge of this bounded region has recently been exploited to develop effective

contour integral methods based on inverse Laplace transform techniques. Usually the

idea of such methods is to choose a contour that stays away from the eigenvalues
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Figure 2. The ‘athletics track:’ Pseudospectrum [43] of the A[1] matrix, defined in (1.3), as

computed by Eigtool [46]. Top: 30 × 30. Bottom: 500 × 500.

[31, Figure 1]. That works well for real symmetric matrices. But if the operator has a

significant pseudospectrum, then more is required: the contour must stay safely away

from regions where the resolvent ||(zI − A)−1|| is large. The figures here show some

diversity in pseudospectra. This might inspire research into a computational method that

is adaptive: instead of requiring detailed knowledge of the pseudospectrum in advance,

we require computational methods that adapt the contour of integration so as to control

||(zI − A)−1|| to be, say, O(1).

4 Discussion

Master equations and increasingly their applications continue to bring new directions in

scientific computation [34]. Monte Carlo approaches, such as Gillespie-like algorithms, are

attractive alternatives to directly solving master equations, especially when confronting the

grand challenge of high dimensions. To demonstrate Magnus methods, we only considered

the matrix case in this article, not the case of operators, but the operator case is important

for many models with unbounded state spaces. Anderson & Kurtz give special attention

to ‘first order systems’ [4] where the analysis is more tractable, and our own success here

is certainly in large part because the isomerization model is an example of that class [26].
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Here is an incomplete list of contemporary topics where activity is growing fast.

4.1 Matrix functions of graph Laplacians

A general framework for models of biochemical kinetics has recently been elucidated in

terms of graph Laplacians [17]. A simple example of a graph Laplacian on a line of

nodes appears in [40], and, like the matrix exponential, it has been shown that a Mittag-

Leffler function [16] of a graph Laplacian matrix is also a stochastic matrix [33]. All

of this suggests research into non-Markovian generalisations of Gillespie-like stochastic

simulation algorithms allowing waiting times not exclusively drawn from an exponential

distribution [31].

It is known that if we generalise (2.1) to a Caputo fractional derivative of order

0 < α < 1, dα/dtα, then the matrix exponential is generalised to the Mittag–Leffler

function Eα, so that (2.1) becomes dαp/dtα = �p with solution p(t) = Eα(t
α�)p(0). This

is assuming the coefficient matrix is constant. However, if we allow a time-varying matrix,

� = �(t), and generalise (2.2) to dαp/dtα = �(t)p, then an important open question arises:

how do we generalise the Magnus expansion of the solution? There is certainly some

work in the literature on discrete constructions of continuous-time random walks and their

generalised master equations aimed at accommodating time-varying rates. Nevertheless,

the authors are not aware of a fractional generalisation of the Magnus expansion. Given the

current interest in fractional processes and processes with memory, such a generalisation

of the Magnus expansion would seem a timely contribution, and would presumably also

suggest a fractional generalisation of the Baker–Campbell–Hausdorff formula as a special

case.

4.2 Products of matrix exponentials

When matrices commute, a product of exponentials has an especially simple form. Evans,

Sturmfels & Uhler recently showed how to successfully exploit this property for master

equations governing birth-death processes [13].

This computational approach has the potential for wider applications to master equa-

tions where tensor structures involving shift operators often arise. So, let us revisit (1.2)

to find, explicitly, solutions (without Wilhelm Magnus and without Sophus Lie) in a way

that generalises and suggests connections to products of exponentials. To generalise (1.2),

consider linearly independent matrices, A and B, such that

[A,B] = aA + bB (4.1)

for some a, b ∈ R, not both zero, and the differential equation

X′ = [α(t)A + β(t)B]X, t � 0, X(0) = I. (4.2)

Here α and β are given scalar functions.

We wish to prove the solution of (4.2) can be expressed in the form

X(t) = eρA(t)AeρB (t)B, (4.3)

https://doi.org/10.1017/S0956792518000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000177


Magnus expansions and time-varying Markov processes 419

where ρA and ρB are scalar functions obeying a certain ODE. Obviously,

ρA(0) = ρB(0) = 0.

Assume (without loss of generality) that b �= 0. Differentiating (4.3) and substituting

into (4.2), we have X′ = eρAA(ρ′AA + ρ′BB)eρBB = (αA + βB)eρAAeρBB and, multiplying on

the right by e−ρBB , we have

(ρ′A − α)AeρAA + ρ′BeρAAB − βBeρAA = O. (4.4)

A proof by induction using (4.1) shows that

BAm = (A + bI)mB − a

b
A[Am − (A + bI)m], m ∈ Z+. (4.5)

Consequently, BeρAA =
∑∞

m=0
ρmA
m!
BAm =

∑∞
m=0

ρmA
m!

(A + bI)mB − a
b
A

∑∞
m=0

ρmA
m!

[Am − (A +

bI)m] = ebρAetAB− a
b
(1− ebρA )AeρAA. Now substitute into (4.4), (ρ′A − α)AeρAA + ρ′BeρAAB−

βebρAetAB + a
b
β(1 − ebρA )AetA. Separating between AeρAA and eρAAB above, we obtain two

ODEs for ρA and ρB ,

ρ′A = α− a

b
β(1 − ebρA ), ρA(0) = 0, (4.6)

ρ′B = βebρA , ρB(0) = 0, (4.7)

reducing the computation of ρA to a scalar ODE and of ρB to quadrature.

Specialising to master equations, α ≡ 1, β = f, a = 0 and b = −2, so (4.6) becomes

ρA(t) = t and ρB(t) =
∫ t

0
e−2τf(τ) dτ. Putting (4.7) in (4.6), we obtain ρ′A = α − a

b
β + a

b
ρ′B.

Multiplication by b and integration implies the integral bρA(t) − aσ(t) = b
∫ t

0
α(τ) dτ −

a
∫ t

0
β(τ) dτ.

Can all this be (further) generalised, beyond two exponentials? We now suggest the

answer to this question is affirmative although applications form the subject of ongoing

research. Indeed what we have done thus far is to exemplify precisely the Wei–Norman

approach of expressing the solution of a linear ODE using canonical coordinates of the

second kind [45]. Specifically, let A : R+ → g, where g is a Lie algebra, dimg = d, and

consider the ODE

X′ = A(t)X, t � 0, X(0) = I. (4.8)

Let P = {P1, P2, . . . , Pd} be a basis of g. Wei & Norman [45] prove that for sufficiently

small t > 0 there exist functions g1, g2, . . . , gd such that

X(t) = eg1(t)P1eg2(t)P2 · · · egd(t)Pd . (4.9)

This is the situation we have in (1.2) or, with greater generality, in (4.2): P1 = A, P2 = B

and, because of (4.1), the dimension of the free Lie algebra spanned by A and B is d = 2.

Interestingly enough, this example does not feature in [45].

Coordinates of the second kind have been used extensively in the theory of Lie-group

integrators [25] where it always followed an organising principle that also shows promise

for master equations. Specifically, the assumption was – unlike our simple d = 2 example

– that d is large (e.g., that g is the special orthogonal group of matrices SO(n), say, or
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Figure 3. The ‘seed pod:’ Pseudospectrum [43] of a 1513× 1513 finite section of the singly infinite

matrix associated with a totally asymmetric exclusion process (TASEP) with six particles beginning

in a ‘step’ initial configuration [9, Figure 9, q=0], as computed by Eigtool [46].

the special linear group of matrices SL(n)) and the basis P selected so that it is easy to

evaluate the exponentials exp(gkPk) (e.g., using root space decomposition) [7].

4.3 Pseudospectra of master equations

This is a subject worthy of more attention. For example, we have shown here that even

simple isomerisation models exhibit a highly non-trivial pseudospectra. We conjecture that

Michaelis–Menten enzyme kinetics and a whole host of other important models in biology

also exhibit significant pseudospectra [31, 34]. In the usual model of Michaelis–Menten

kinetics, a catalytic enzyme E reversibly forms a complex intermediate C with a substrate

S , that is eventually irreversibly converted to a product P , viz. S +E ↔ C → P +E. There

is a need for visualisations of the pseudospectrum of such Michaelis–Menten kinetics,

for example. Another open question is how the pseudospectrum of the usual model

compares to the pseudospectrum of a more reasonable model suggested by Gunawardena

to repent for the ‘Original Thermodynamic Sin’ of including the irreversible reaction

C → P + E [18].

As a demonstration of this topic going far beyond merely the isomerisation examples

that we have studied here, we have also computed here in Figure 3 the pseudospectrum of

the totally asymmetric exclusion process (TASEP) [9, Figure 9]. If all that is observed in the

picture of the pseudospectrum is merely some ‘ε−balls’, centred around each eigenvalue,

and well-separated, then the situation is not interesting. For that is simply the picture we

would expect for a well-behaved real symmetric matrix anyway. To be interesting, more

complex behaviour is required. It is too early to tell for the TASEP, but our preliminary
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numerical picture here in Figure 3 suggests this is likely to be worthwhile pursuing further.

The figure depicts the case with six particles and we can already discern the beginnings

of some interesting interactions emerging. Such examples of TASEP models have found

applications to single molecule studies of RNA polymerase and protein synthesis. More

generally, exclusion processes have witnessed a renaissance of mathematical interest, partly

in relation to exactly integrable probabilistic systems, the Kardar–Parisi–Zhang (KPZ)

universality class, and the KPZ stochastic partial differential equation [8, 19].

Random Matrix Theory [12] connects to master equations. For example, an important

limiting distribution associated with the TASEP master equation is the famous Tracy–

Widom distribution for the biggest eigenvalue of a large, random Hermitian matrix [8].

Although less in the sense of the CME (at least so far but that could change) and more

in the physicists’ sense of Wigner and Freeman Dyson, random matrix theory is also

playing a role in recent studies of random graph Laplacians. The resulting distributions

are very similar to the standard Gaussian ensembles but the special algebraic properties of

graph Laplacians do lead to peculiar discrepancies that persist for large matrix dimension

N [41]. Interestingly, the Matrix-Tree Theorem, which gives a formula for the stationary

distribution (and confirmation of positivity) of such master equations in terms of sums of

positive off-diagonal entries, seems yet to be exploited in this random matrix context.

4.4 The Magnus expansion and Kurtz’s random time-change representation

Denote the forward rate by αf (x(s), s) = c1(s)n1 and the backward rate by αb (x(s), s) =

c2(s)n2. Here, n1 and n2 are the number of molecules of S1 and S2, respectively. The Kurtz

random time-change representation [29] of the sample paths corresponding to our master

equation (1.2) with initial state x(0) is

x(t) = x(0) +

(
−1

+1

)
Y1

(∫ t

0

αf (x(s), s) ds

)
+

(
+1

−1

)
Y2

(∫ t

0

αb (x(s), s) ds

)
.

At time t, this stochastic equation has two internal time frames: Tj =
∫ t

0
αj(x(s), s)ds,

j = 1, 2. Here, Y1 and Y2 are independent, unit-rate Poisson processes but dependencies

arise through the rates in these internal time-frames. Thus Kurtz and Magnus offer two

different representations of the same solution when rates are time-varying. Although much

work has appeared on each representation separately, there has been almost no work

exploring connections. Such connections would perhaps allow probabilistic interpretations

of the Magnus expansion.

More generally, time-varying rates are one way to model extrinsic noise (and there

are also other approaches not discussed here such as the Nosé–Hoover thermostat), so

methods that can accommodate time-varying rates, such as Magnus expansions described

here, may find wider applications [20,22]. Exploring the robustness of master equations to

perturbations, including time-varying perturbations, might bring together methods from

Magnus-like approaches, pseudospectral studies, and perhaps even stochastic operator

approaches [12].

Kurtz’s representation has also inspired multi-level Monte Carlo (MLMC) methods to

be adapted from the setting of SDEs to the setting of master equations, and in turn this
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has led to MLMC methods for estimating the sensitivity [3]. It will be interesting to see

if adjoint methods for sensitivity estimates in the setting of continuous SDEs such as the

methods for which Giles and Glasserman won Risk ‘Quant-of-the-Year’ [14] are likewise

adaptable to the discrete setting of master equations [28].

4.5 Preserving positivity

Moler and Van Loan discuss more than 19 dubious ways for computing the matrix

exponential [36]. When such methods are applied to the important class of graph Laplacian

matrices — as arise in all master equations and Markov processes, and for which the matrix

exponential is provably non-negative and indeed a stochastic matrix — a fundamental

question is: do these numerical methods preserve non-negativity? For example, does

MATLAB’s expm function preserve positivity when applied to a graph Laplacian matrix?

This question seems especially ripe for research in relation to Krylov-like approximations,

Padé-like approximations with scaling and squaring, and recent methods of Al-Mohy and

Higham (which are currently the basis of expm in MATLAB) [1, 2].

We found the complete Magnus expansion for our isomerisation model. Being the

full and exact Magnus expansion, it respects the original properties of the system, such

as maintaining positivity. Numerical methods in other contexts are often derived by

truncation of the Magnus expansion, to a certain prescribed order. In general, truncation

of the Magnus expansion does not result in the same properties as a graph Laplacian, so

positivity is no longer guaranteed. (Although if we are willing to settle for second-order

accuracy, then it is possible to truncate so as to maintain these desirable properties.) The

issue is that the commutator of two graph Laplacians is not in general a graph Laplacian;

it may have negative off-diagonal entries. This observation is motivating ongoing research

whose roots are in geometric numerical integration — a subject usually concerned with

maintaining equalities — to allow the preservation of inequalities, such as preserving

positivity.

More generally it has been known for a long time in the context of ODEs that standard

numerical methods such as Runge–Kutta methods, usually do not preserve positivity

unless they are of first-order accuracy [6]. This also presents a contemporary challenge

for Monte Carlo simulation of the sample paths of master equations: the widely used

tau-leap methods and other analogues of the Euler method or of the Euler–Maruyama

method, cannot be guaranteed to preserve positivity. This challenge is motivating much

current research appearing on approximations that are able to maintain positivity in these

settings, as exemplified in the Kolmogorov Lecture at the most recent World Congress In

Probability and Statistics [30].

5 Conclusions

Pafnuty Chebyshev was an academic parent of Markov and today the world has come full

circle with Chebyshev polynomials being a useful basis for numerical solvers of Markovian

master equations in the quantum world [5]. Here, the adjective ‘master’ is not used in

the sense of an overlord; rather it is in the sense of an ensemble averaging principle that

emerges at larger scales from the collective behaviour of the mob of microscopic particles,
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each following their own random walk. Edelman and Kostlan take such a walk on ‘the

road from Kac’s matrix to Kac’s polynomials’ and our own matrix examples A[0] and A[1]

of (1.3) also lie at the end of that road, being almost the ‘Kac matrix ’ (as named by Olga

Taussky and John Todd) and ‘anti-Kac matrix’ [11]. These matrices have served us well as

wonderful running examples to illustrate new directions in research for Markov processes.

Kac did not foresee our applications to isomerisation, nor the way those isomerisation

master equations are so naturally amenable to Magnus expansions. This motivated us

to derive a number of original results, as outlined in the introduction. Additionally, we

believe the methods in the four step procedure described around (2.5) for the Magnus

expansion in (2.6) will find wider applicability to Markov processes with time-varying

rates. Similarly, these and other applications that we have surveyed, such as the inchoate

subject of the pseudospectra of master equations, no doubt have a bright future that we

have yet to fully imagine.
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