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For simulatingGI0G01 queues, we investigate estimators of stationary delay-in-
queue moments that were suggested but not investigated in our recent article and
we develop new ones that are even more efficient+ Among them aredirect spread
estimators that are functions of a generated sequence of spread idle periods and are
combinations of estimators+We also develop correspondingconditionalestimators
of equilibrium idle-period moments and delay moments+We show that conditional
estimators are the most efficient; in fact, for Poisson arrivals, they are exact+ In
simulation runs with both Erlang and hyperexponential arrivals, conditional esti-
mators of mean delay are more efficient than a published method that estimates
idle-period moments by factors well over 100 and by factors of over 800 to several
thousand for estimating stationary delay variance+

1. INTRODUCTION

For simulatingGI0G01 queues,we compare the efficiency of estimators of moments
of stationary delay in queueD, including standard regenerative estimators that we
call direct delay~DD!, which are notoriously inefficient in heavy traffic+A method
in Minh and Sorli@7# , which we calldirect idle ~DI !, estimates average delayd
from a generated sequence of idle periods+A method in Wang and Wolff@8# ~abbre-
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viated here as WW!, calleddirect equilibrium~DE!, estimates delay moments from
a generated sequence of equilibrium idle periods+ In this article, we continue our
investigation of delay moment estimators that are functions of~any kind of! idle
periods and we call any estimator of this type anidle-period estimator~IPE!+

An alternative approach to simulatingGI0G01 queues, based onconjugateran-
dom walks, is briefly described in WW+ For a fuller description, see Asmussen@1#;
for research results, see Asmussen@2,3# and Ensor and Glynn@5# +

We will compare the relative~statistical! efficiency of some estimatora with
an alternative estimatorb of the same quantity+ Thestatistical efficiencyof a ~over
b! is the factor by which the asymptotic variance ofa is smaller than the asymptotic
variance ofb, for runs of the same length~number of customers or cycles!+We use
the regenerative methodto estimate efficiency factors+

As shown in Section 4+1 of WW, the rate of convergence of IP and DD esti-
mators depends on the relative size of moments of either the interarrival or service
distribution+ We call distributions with a large coefficient of variationirregular+
Distributions irregular in this sense usually have large higher moments as well+ It is
a rough predictor of the relative efficiency of the estimators that we investigate+

Direct idle estimators are more efficient than DD in heavy traffic+Although not
mentioned in Minh and Sorli@7# , the efficiency factor of DI over DD is greatly
increased when the service distribution is irregular+WW show that the DE estima-
tor of d is twice as efficient as DI for Poisson arrivals~independent and identically
distributed~i+i+d+! exponential interarrival times!+ For a particular irregular inter-
arrival distribution, they obtained an efficiency factor of about 20 for DE over DI+
See Section 2+1 for a description of DE estimators+

Of course, computational efficiencyalso is important+We use the inverse trans-
form method for the distributions considered here+ One measure of computational
efficiency is to count the relative number of uniform random variables used by
different methods+ Sometimes, however, this may not reflect actual computation
times+ In Section 9,we present a table of computational efficiency as ratios of actual
computation times for different estimators+

As background, we present well-known results for theGI0G01 queue+ Let
Si ; G be the service time of arrivali , Ti ; A be the time between arrivalsi and
i 1 1, andXi 5 Si 2 Ti , i 5 1,2, + + + , where$Si % and$Ti % are independent sequences
of i+i+d+ random variables+ For genericS, T, andX, let l 510E~T !, µ510E~S!, and
r 5 l0µ+Assumer , 1, E~X2! ,`, and first-in-first-out~FIFO! order of service+
Heavy trafficmeans thatr is near 1+

Let Di be the delay in queue of arrivali , the time between that customer’s
arrival and when service on that customer begins+ TheDi satisfy the recursion

Di11 5 ~Di 1 Si 2 Ti !1 , i 5 1,2, + + + , (1)

wherea1 [ max~a,0!+ When r , 1, the Di in ~1! converge in distribution to a
proper random variableD, and the process$Di % regenerates whenever an arrival
finds the system empty+When we also haveE~S2! , `, theaverage delay
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d [ lim
mr`

(
i51

m Di

m
5 E~D! , `, with probability 1~w+p+1!, (2)

and whenE~Sr11! , `, r . 0, ( i51
m Di

r 0mr E~Dr ! , `, w+p+1, asmr `+
Typical performance measures ared and the varianceV~D! 5 E~D2! 2 d2+

From generatedSi andTi values and initialD1, D1 5 0 in this article, suppose we
generate~say! m Di values from~1!+ The DD estimator ofE~Dr ! is

(
i51

m Di
r

m
+ (3)

Suppose that arrivals 1, K1 1 1,K1 1 K2 1 1, + + + find the system empty+ Cycles
$D1, + + + ,DK1

% , $DK111, + + + ,DK11K2
%, + + + are i+i+d+, as arecycle lengths K1,K2, + + + +

Related regenerative processes may be defined in continuous time, where cycles
are calledbusy cycles+ The first busy cycle has lengthC1 5 T1 1 {{{ 1 TK1

+ The first
busy periodis B1 5 S1 1 {{{ 1 SK1

, and the firstidle periodis I1 5 C1 2 B1, where
Cj , Bj , andIj , j $ 1, are each i+i+d+ sequences+ Both E~K1! andE~C1! are finite+

For a fixed number of~say! n cycles, the DD estimator ofE~Dr !, ~3!, is of the
same form, where nowm5 Mn is a random variable defined as

Mn 5 K1 1 {{{ 1 Kn+

An alternative in Minh and Sorli@7# exploits the well-known equation

d 5 2
E~X2!

2E~X !
2

E~I 2!

2E~I !
, (4)

whereI is an idle period+ Under their method, Ij , j $ 1, are generated using~1!+
After n cycles, the DI estimators ofE~I ! andE~I 2! are the arithmetic averages of
the Ij and theIj

2+ To estimated, substitute these estimators into~4!+
As in WW, our IPEs are defined in terms of two distributions+
For Z ; F, Z $ 0 andE~Z! , `, andF c 5 1 2 F, let Ze ; Fe andZs ; Fs be

correspondingequilibrium andspreadrandom variables and distributions, where
Fe~x! [ *0

x F c~ y! dy0E~Z! andFs~x! [ *0
x P~ y , Z # x! dy0E~Z!, with moments

E~Ze
r ! 5

E~Zr11!

~r 1 1!E~Z!
and E~Zs

r ! 5
E~Zr11!

E~Z!
for r . 0+ (5)

Because delay moments may be expressed in terms of equilibrium idle-period
~Ie! moments, we will compare the efficiency of estimators of the latter quantities+

In this article, we introduce antithetic DE~ADE! and independent DE~IDE!
estimators in Section 2, alone and in combination+ ~DE in WW is denoted ODE
here+! We investigate a corresponding family of estimators ofIe moments, called
ODS, ADS, and IDS, based on generated values of thespreadidle period, Is+ For
Poisson arrivals, we derive the asymptotic efficiency of DE and DS~direct spread!
estimators ofd, alone and in combination, in Section 3+ In Section 4, we develop
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IPEs of delay varianceV~D!, and when arrivals are Poisson,we derive their asymp-
totic efficiency+

Theoretical and empirical results for Poisson arrivals, where delay moments
are known, help validate our simulation runs, and similar results, although not exact,
are shown empirically to be good approximations for other interarrival distributions+

In Section 5, we present conditional estimators CE, CI, and CS, corresponding
to DE, DI, and DS, respectively, and show that for estimating any moment ofIe, the
CE and CI estimators are identical+ ForE~Ie!, the CS estimator also is identical+ For
Poisson arrivals, conditional estimators are exact+ In Section 6, we show that a con-
ditional estimator ofE~Ie

r !, r . 0, is more efficient than the corresponding IPE and
more efficient than any combination of estimators considered in Section 2+

For Section 6 results, we apply the well-known conditional variance formula

Var~Y! 5 E @Var~Y6C !# 1 Var~E @Y6C # !, (6)

which holds for any random variableYand class of eventsC+ Variance is reduced by
estimatingE~Y! from generated samples ofE~Y6C ! rather thanY+

In Section 7, we report on the relative efficiency of DD, IP, and conditional
estimators ofd for simulation runs, using combinations of Erlang, exponential, and
hyperexponential distributions as interarrival and service distributions+ In Sec-
tion 8, we report on the relative efficiency ofV~D! estimators for similar runs+

Combinations of either DE and or DS estimators are more efficient than these
estimators used alone+ Although expected, we are able to calculate the improve-
ment when arrivals are Poisson+ Among the many asymptotic results derived for
this case, we consider this to be rather surprising: Each of the estimators ODE,
ADE, and IDE ~or ODS, ADS, and IDS! of eitherd or V~D! have the same effi-
ciencywhen used alone+ DS estimators are more efficient than corresponding DE
estimators+

The CE~CI! estimators are the most efficient and most useful of those we con-
sider+ For both 2-Erlang and hyperexponential arrivals, CE estimators ofd are more
efficient than corresponding DI estimators by factors well over 100+ For similar
estimators ofV~D!, factors ranging from over 800 to several thousand are achieved+
Comparing CE with DD, these factorsmultiply+ Thus, CE estimators of delay
moments appear to be far more efficient than known alternatives for regular as well
as irregular arrivals, and for moderate as well as heavy traffic+ In Section 9, we
present a method to apply CE estimators to any interarrival distribution+

2. DE AND DS ESTIMATORS OF THE AVERAGE DELAY
AND MOMENTS OF THE EQUILIBRIUM IDLE PERIOD

The method developed in WW for generating DE estimators ofd andE~Ie
r !, r . 0,

also applies to DS estimators+We take upV~D! estimators in Section 4+
Let W5 D 1 Sbe the stationary waiting time in the system, and letT andTs be,

respectively, an interarrival time and aspreadinterarrival time, each independent
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of W+ Define U ; uniform on~0,1!, independent of all else+ Idle periodI has the
representationI 5 ~T 2 W6T . W!+

As discussed in WW and Wolff@9, p+ 484# , Ie has two representations:

~UTs 2 W6UTs . W! ; Ie and ~~12 U !Ts6UTs . W! ; Ie, (7)

whereUTs and~12 U !Ts are;Te+ The same approach gives a representation ofIs,
not mentioned in these references, but essential for constructing DS estimators:

~Ts 2 W6UTs . W! ; Is+ (8)

2.1. DE Estimators

BecauseUTs ; Te, we write ~Te 2 W6Te . W! ; Ie in place of the first representa-
tion in ~7!, whereTe andW are independent+

Now, simulate sequences of realized values ofTi andSi over n cycles+ From
~1!, this generates sequences ofDi andWi 5 Di 1 Si + For i+i+d+ Ui , uniform on~0,1!,
let Ti 5 A21~Ui !+ In parallel, using the sameUi , generate an i+i+d+ sequence ofTe

values byTei 5 Ae
21~Ui !+ The realizedIe values are theTei 2 Wi values on the sub-

sequence whereTei . Wi + Let di be the indicator of the eventTei . Wi +
This is the setup in WW, where the DE estimator ofE~Ie

r !, r . 0, is

ZE~Ie
r !ODE 5

(
i51

Mn

~Tei 2 Wi !
rdi

(
i51

Mn

di

+ (9)

Let Rj be the sum of thedi over cyclej, the number of generatedIe values in cycle
j+ Now, call ~9! theoriginal DE ~ODE! estimator ofE~Ie

r !+ For r 5 1 and from~4!,
we get the ODE estimator ofd+

Except for Poisson arrivals, the generatedIe values are neither independent nor
identically distributed+ Nevertheless, the following results were shown in WW+

For everyu andv, the limiting fraction ofi for which Tei # u andWi # v is,
w+p+1, P~Te # u!P~W # v!, whereW is a stationary waiting time+ In the long run,
the generatedIe values are; Ie, in the sense that the limiting fraction of them that
take on values#t is P~Ie # t ! for everyt, and asn r `,

ZE~Ie
r !ODE r E~Ie

r !, w+p+1+ (10)

It is easy to create new DE estimators by generatingIe values in different ways+
ForantitheticDE ~ADE!, Ti 5 A21~Ui ! andTei 5 Ae

21~12 Ui !, for the sameUi + For
independentDE ~IDE!, the sequence ofUi used to generate theTi is independent of
the sequence used to generate theTei+ For any IDE sequence, there is also a corre-
sponding antithetic version, AIDE+ EachTei sequence generates a sequence ofIe

values in the same way and produces estimators of the same form, the right-hand
side of~9!+ By the argument in WW, ~10! holds for them+
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At first, we expected ADE and IDE estimators to be less efficient than ODE
because~as can be shown! Rj is more variable for them@E~Rj ! must be the same for
all three# + For Poisson arrivals, however, we find as Theorem 2 in Section 3 that the
three estimators have the same asymptotic efficiency+

This suggests using combinations of estimators+ For example, generate ODE
and ADE quantities on the same run, with ratio estimators of form~9!: AODE0BODE

andAADE0BADE, respectively+The combination of these estimators, denoted by BDE,
is ~AODE 1 AADE!0~BODE 1 BADE!+ Let BIDE be the estimator that combines IDE
and AIDE, and let CDE be the estimator that combines all four+

Empirically, BDE turns out to be twice as efficient as ODE, more in light traf-
fic+ In some cases, CDE is four times as efficient as ODE+

2.2. DS Estimators

Although DS estimators were not mentioned in WW, they are easy to generate,
based on~8!+We generate i+i+d+ sequencesTi 5 A21~Ui ! andTsi 5 As

21~Ui !, i $1+ Let
Ui
' , i $ 1, be another i+i+d+ sequence, ; uniform on ~0,1!, and independent of all

else+ The realizedIs values areTsi 2 Wi , on the subsequence whereUi
'Tsi . Wi + Let

di
' be the indicator of the eventUi

'Tsi . Wi +
Although new, the estimator denoted as ODS of therth moment ofIs, r . 0,

ZE~Is
r !ODS 5

(
i51

Mn

~Tsi 2 Wi !
rdi
'

(
i51

Mn

di
'

, (11)

is of the same form as the ODE estimator, and by the same argument,

ZE~Is
r !ODSr E~Is

r !, w+p+1, asn r `+ (12)

As with DE estimators, we will consider a whole family of DS estimators, with
the same naming conventions: ADS, IDS, BDS, BIDS, and CDS+

There is one difference, however+ It takes two uniform variates, Ui andUi
' , for

each arrivali to generate a sequence ofIs values+ There are three possible antithetic
versions: 12 Ui , Ui

'; Ui , 12 Ui
'; and 12 Ui ,12 Ui

'+We use the third version+ This
matters when original and antithetic versions are combined+ The same issue arises
even for DE estimators when it is not practical to generate random variables as
inverses~e+g+, Ti 5 A21~Ui !!, and more than one uniform variable is used to gener-
ate a singleTi or Tei+ In our antithetic version, we use 12 Ui for everyUi +

Because from~5!, E~Ie
r ! 5 E~Is

r !0~r 1 1!, for r . 0, we readily obtain an esti-
mator ofE~Ie

r ! from ~11!+ For r 5 1, we obtain a DS estimator ofd by replacing a
DE estimator ofE~Ie! by a DS estimator ofE~Is!, divided by 2+ Because dividing
by 2 cuts variance by a factor 4, this appears to give DS estimators an advantage+ In
fact, we show as Theorem 4 in Section 3 that for Poisson arrivals, the ODS estima-
tor of d is twice as efficient as ODE+
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3. PROPERTIES OF ESTIMATORS; RESULTS FOR POISSON ARRIVALS

Consider an estimator of some quantityu,

Zun 5
N1 1 {{{ 1 Nn

R1 1 {{{ 1 Rn

,

where$~Nj ,Rj !% is an i+i+d+ sequence of vectors andu 5 E~Nj !0E~Rj !+ These are the
standard assumptions for aratio estimator+Regenerative estimators are of this form,
and we will think ofNj andRj as generated within some cyclej+

As n r ` and whenE~Nj
2! andE~Rj

2! are finite, we have the Regenerative
Central Limit Theorem@9, p+ 122#: For the generic pairN andR,

Mn~ Zun 2 u! D
&& N~0,V !, (13)

where D
&& denotes convergence in distribution, andasymptotic variance

V 5
1

E2~R!
Var@N 2 uR# (14)

is estimated in our simulations by

ZVn 5

n (
j51

n

@Nj 2 Zun Rj #
2

S(
j51

n

RjD2 + (15)

Suppose genericN andR are of form

N 5 Y1 1 {{{ 1 YR, (16)

where theYk are realized values of some random quantityY+ Thus, Zun is simply the
arithmetic average of theYk overn cycles+ In most of our simulation runs, theYk are
neither independent nor identically distributed, but have the statistical properties of
Y in the long run@as defined for generatedIe values between~9! and ~10!# , their
arithmetic average converges toE~Y!; that is, u 5 E~Y!+

Usually, a regenerative simulation is for a fixed number of full cycles+ When
the first cycle has a different distribution, usually because the simulation does not
begin with a regeneration point at time 0, it is readily shown that~13! still holds+

An alternative is to fix the number of generatedYk to m values, where the esti-
mator ofu is PYm 5 ~Y1 1 {{{ 1 Ym!0m+ It is well known ~e+g+, see Asmussen@1,
p+ 136# !, that the asymptotic efficiency of this estimator is the same as~13!, when
normalized for equivalent run length:

Mm~ PYm 2 u! D
&& N~0,E~R!V ! asmr `+ (17)
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In an important special case below, we have ConditionW : $Yk;k 5 1,2, + + + % is
an i+i+d+ sequence, Yk ; Y, andR1, R1 1 R2, + + + are stopping times for this sequence,
whereY andR ~and henceN! have finite second moments+

As theYk are i+i+d+ underW, the standard central limit theorem applies:

Mm~ PYm 2 u! D
&& N~0,V~Y!! asmr `+ (18)

Equating asymptotic variances in~17! and~18!, we have the following theorem+

Theorem 1: Under ConditionW,

V 5 V~Y!0E~R!+ (19)

This is a remarkable result because the variance ofR plays no role+ Similarly,
aside from the requirement thatR be a stopping time, the detailed nature of the
dependence betweenR and$Yk% is irrelevant+ Nevertheless, ~19! is an elementary
consequence of well-known properties of regenerative estimators+

We now derive efficiency results for estimators ofd when arrivals are Poisson+
We first compare the efficiency of the ODE,ADE, and IDE estimators ofE~Ie!

andd, where the generatedYk are realized values of equilibrium idle periods+ For
ODE, R 5 1, Y1 ; exp~l!, andV 5 V~Y!+ For either ADE or IDE, E~R! 5 1+ For
either case, let Tei be the generated equilibrium interarrival time for arrivali + This
arrival generates theYk valueTei 2 Wi if Tei . Wi + Now, Tei ; exp~l! and is inde-
pendent ofWi +Owing to the memoryless property of the exponential, the generated
Yk value is;exp~l! and is independent ofWi and past history+ Thus, the generated
Yk values form an i+i+d+ sequence+ For IDE, R is independent of the entire sequence,
so is a stopping time+ For ADE, $R5 k% andYk are dependent; nevertheless, R is a
stopping time+ For all three estimators, ~19! holds, and we have the following
theorem+

Theorem 2: Under Poisson arrivals, the asymptotic efficiencies of the ODE, ADE,
and IDE estimators of d are the same, with asymptotic varianceV 5 10l2.

Now, combine IDE with either ODE or ADE+As under Poisson arrivals, theYk

generated by IDE are independent of all else, and we now haveE~R! 5 2; the asymp-
totic variance of these runs isV 5 V~Y!02+ Thus, the ~statistical! efficiency is
improved by a factor of 2, compared with either ODE or ADE alone+ Of course,
using IDE requires generating additional random numbers+ This reduces computa-
tional efficiency, compared with ODE alone, but by less than a factor of 2+

Combining ODE and ADE into BDE, we know empirically~see Table 1a! that
efficiency is improved by a factor of about 2, more in light traffic+ ~For BDE, no
additional random numbers are required+! The improvement in light traffic is easy
to understand+ In very light traffic, most cycles have only one customer+ ODE and
ADE each generate oneYk value, where these values are negatively correlated+ In
fact, as traffic intensityr r 0, the correlation is easily calculated:
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E
0

1

ln~u! ln~12 u! du2 1 ' 20+645, (20)

which gives 11+3 as the efficiency factor by which BDE is better than DI+ Appar-
ently, this effect improves the efficiency of BDE in moderate traffic as well+ In
very light traffic, however, it is likely that DD is more efficient than any of these
estimators+

Intriguingly, the empirical efficiencies of BDE and BIDE for these runs are
almost identical+ Are the true values equal? We believe that they are~slightly!
different+

Combining ODE,ADE, IDE, and AIDE into CDE, we get~empirically! an effi-
ciency improvement of 4 or more in Table 1a, compared with one of these estima-
tors alone+ In fact, the estimated efficiency factor of CDE is almost exactly the sum
of the estimated factors for BDE and BIDE~results for IDE and BIDE are not
reported in Table 1a!+We now derive a result that partially explains why this is so+

For a generic cycle in~14!, let subscripta denote BDE quantities and subscript
b denote BIDE quantities+ First, we show the following result:

Var@Na 1 Nb 2 u~Ra 1 Rb!# 5 Var@Na 2 uRa# 1 Var@Nb 2 uRb# + (21)

Let F be thes-field of events generated by all the random variables that deter-
mine the queuing system and the generated BDE quantities+ It is easy to see that
E~Nb 2 uRb6F ! 5 0 because for any generated busy period, waiting time values,
and BDE values, each generated IDE and AIDE value is; exp~l!, independent of
the past, and~Rb6F ! is a stopping time for theYk sequence corresponding to IDE
and AIDE+ ~Actually, Rb is a sum of stopping times, one for the IDE sequence and
the other for AIDE+! Thus, ~Na 2 uRa! and~Nb 2 uRb! are uncorrelated, and~21!
holds+ Note that these quantities arenot independent+As E~Ra! 5 E~Rb!, we get the
asymptotic variance of CDE by dividing~21! by 4E~Ra

2!+ We have the following
theorem:

Theorem 3: Under Poisson arrivals, the asymptotic variance of the CDE estima-
tor of d is the sum the asymptotic variances of the BDE and BIDE estimators, divided
by 4.

Thus, if BDE and BIDE were equally efficient,CDE would be twice as efficient+
The same argument applies to generating additional independent pairs of type

IDE and AIDE+ Each new pair increases~21! by Var@Nb 2 uRb# + Of course, these
exact results hold only for Poisson arrivals+

We now investigate DS estimators ofd andE~Ie! when arrivals are Poisson+ In
this case, bothTs andIs are;2-Erlang, with mean 20l and variance 20l2+

For ODS~ADS and IDS are similar!, we generate sequences$Tsi% and$Ui
'Tsi % +

For everyi whereUi
'Tsi . Wi , we generate anIs value:

~Tsi 2 Wi 6Ui
'Tsi . Wi ! 5 @~12 Ui

'!Tsi 1 ~Ui
'Tsi 2 Wi !6Ui

'Tsi . Wi # + (22)
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Now, ~1 2 Ui
'!Tsi and Ui

'Tsi are each;exp~l! and they are independent+ As
~Ui
'Tsi 2 Wi 6Ui

'Tsi . Wi ! is ;exp~l!, ~22! is ;Is and is independent ofWi and the
past+ Thus, this procedure generates a sequence of i+i+d+ Is values for any of these
runs used alone, with stopping times that have the same mean: E~R! 5 1+ Unlike
ODE, however, ODS is not guaranteed to generate exactly oneIs value per cycle+
As far as efficiency is concerned, this does not matter+

Because we are estimatingE~Ie!, notE~Is! 5 2E~Ie!, our estimator is the arith-
metic average of the generatedIs values, divided by 2, with asymptotic variance
V~Ts!04 5 1

2
_l2+ From these results and Theorem 1, we have the following result+

Theorem 4: Under Poisson arrivals, the asymptotic efficiencies of the ODS, ADS,
and IDS estimators of d are the same, with asymptotic variance1

2
_l2. Used alone,

they are twice as efficient as the estimators in Theorem 2.

By the same argument used for Theorem 3, we have the following theorem+

Theorem 5: Under Poisson arrivals, the asymptotic variance of the CDS estima-
tor of d is the sum the asymptotic variances of the BDS and BIDS estimators, divided
by 4.

4. ESTIMATION OF DELAY VARIANCE

In ~10! in WW, V~D! is the sum of known terms, plus varianceV~Ie!:

V~D! 5
E~X3!

23E~X !
1 F E~X2!

22E~X !
G2

1 V~Ie!+ (23)

We now investigate properties of estimators ofV~D! via ~23!+
Under any of ODE, ADE, or IDE, let Iek be thekth generated value ofIe, k 5

1, + + + ,m, with arithmetic averageNIem, wherem is the number of generatedIe values
aftern cycles+ The DE estimator ofV~Ie! is

ZV~Ie!DE 5
(
k51

m

~Iek2 NIem!2

m
5 (

k51

m Iek
2

m
2 NIem

2 + (24)

Before going on, we state a preliminary result+ Let $Pm% , $Qm% , and $Zm% be
sequences of random variables, F be a distribution function, andZm

D
&& 1+

Lemma 1:

Pm 1 Qm
D

&& F n Pm 1 ZmQm
D

&& F+ (25)

Although not quite Lemma 1, similar results are proven in Chung@4, p+ 92# by
methods that cover this case+
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Let Pm 5 Mm(k51
m Iek

2 0m 2 MmV~Ie!, Qm 5 2MmE~Ie!(k51
m Iek0m, andZm 5

NIem0E~Ie!+ Apply Lemma 1 to~24!+When convergence occurs,

Mm~ ZV~Ie!DE 2 V~Ie!! and MmS(
k51

m

~Iek
2 2 E~Ie! Iek!

m
2 V~Ie!D (26)

converge to the same distribution+
In terms of the idle period itself, V~Ie! may be written as in Marshall@6#:

V~Ie! 5
E~I 3!

3E~I !
2 F E~I 2!

2E~I !
G2

+ (27)

The DI estimator ofV~Ie! is

ZV~Ie!DI 5 ZE~Ie
2!DI 2 @ ZE~Ie!DI #

2

5
(
k51

m

Ik
3

3 (
k51

m

Ik

2 3 (
k51

m

Ik
2

2 (
k51

m

Ik
4

2

+ (28)

Apply Lemma 1 to~28! with Zm 5 ZE~Ie!DI0E~Ie!+When convergence occurs,

Mm~ ZV~Ie!DI 2 V~Ie!! and Mm1 (
k51

m

~2Ik
3 2 3E~Ie! Ik

2!

(
k51

m

6Ik

2 V~Ie!2 (29)

converge to the same distribution+
Suppose that arrivals are Poisson+ Both theIek and Ik are i+i+d+ ; exp~l!, and

under ODE, m5 n, asRj 5 1+ Under either ADE or IDE, E~Rj ! 5 1+ Because the
summed quantities on the right in~26! are i+i+d+, we have by Theorem 1 that the
asymptotic efficiencies under ODE, ADE, and IDE are the same+ Now, apply ~14!
to the right-hand expressions in~26! and ~29!+ We have, after some algebra, the
following result+

Theorem 6: Under Poisson arrivals and any of ODE, ADE, or IDE,

Mm~ ZV~Ie!DE 2 V~Ie!! D
&& N~0,130l4!, (30)

Mm~ ZV~Ie!DI 2 V~Ie!! D
&& N~0,380l4!+ (31)

Thus, for estimatingV~D! under Poisson arrivals, any of the DE estimators,
used alone, are 38

13
_ ' 2+9 times more efficient than DI+
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Under renewal arrivals, we must estimate the asymptotic variance of each vari-
ance estimator@e+g+, the variances of the Normal distribution in~30! and~31!# +

Because the left-hand variance estimators in~26! and~29! are not conventional
ratio estimators, we estimate the variances of the right-hand quantities, which are+
However, they contain the unknown quantityE~Ie!+ This situation is similar to esti-
mating~14! by ~15!+We replace the unknown quantity by an estimator for it, ZE~Ie!,
that converges to the true value w+p+1+

In both ~26! and~29!, m is the generated number of eitherIe or I values after
n cycles+ The estimated asymptotic variance of these quantities is given by~15!,
but to use it, we must break up the run into cycles+ For ~26!, Nj is the sum of terms
Iek

2 2 ZE~Ie! Iek over cyclej, andRj is the number of these terms+ Breaking up~29!
is similar, whereRj is the sum of generatedI values in cyclej+ Note that Zun in ~15!
is now an estimator ofV~Ie!, @e+g+, ~24!, ~28!, or the estimator on the right-hand side
of ~26! or ~29!, with ZE~Ie! substituted forE~Ie!# + Under DE, let

Nj 5 (
k51

Kj

~Iek
2 2 ZE~Ie! Iek! and Rj 5 Kj

and estimate the asymptotic variance from

n (
j51

n

@Nj 2 ZV~Ie!DE Rj #
2

S(
j51

n

RjD2 +

We now show how to estimateV~Ie! from generatedIs values, where

E~Is! 5
E~I 2!

E~I !
5 2E~Ie! and E~Is

2! 5
E~I 3!

E~I !
5 3E~Ie

2!+

From generated valuesIs1, + + + , Ism, with mean NIsm, our estimator is

ZV~Ie!DS 5 (
k51

m Isk
2

3m
2
NIsm
2

4
+ (32)

Apply Lemma 1 to~32! with Zm 5 NIsm02E~Ie!+When convergence occurs,

Mm~ ZV~Ie!DS 2 V~Ie!! and MmS(
k51

m

~2Isk
2 2 3E~Ie! Isk!

6m
2 V~Ie!D (33)

converge to the same distribution+
For Poisson arrivals, the Isk values in~33! are i+i+d+ ; exp~l! 3 exp~l!+ The

asymptotic variance is the variance of~2Isk
2 2 3E~Ie! Isk!06+After some algebra, we

get the following result+
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Theorem 7: Under Poisson arrivals and any of ODS, ADS, or IDS,

Mm~ ZV~Ie!DS 2 V~Ie!! D
&& N~0,3506l4!+ (34)

Comparing this result with Theorem 6, any of the DS estimators ofV~D! are
approximately 2+2 times as efficient as DE and 6+5 times as efficient as DI+

As with DE and DS estimators ofd, these estimators ofV~D! may be com-
bined+ For the next result, we use the argument for Theorem 3, except that now we
are dealing with functions of generated quantities+ To illustrate for IDE with stop-
ping timeR, $Iek, Ie~k11!, + + + % is independent of$R$ k% and, hence, so is the sequence
defined byf ~Iek! 5 Iek

2 2 E~Ie! Iek; see~26!+We have the following theorem+

Theorem 8: Under Poisson arrivals, the asymptotic variance of the CDE estima-
tor of V~D! is the sum of the asymptotic variances of the BDE and BIDE estima-
tors, divided by 4. The asymptotic variance of the CDS estimator of V~D! is the sum
of the asymptotic variances of the BDS and BIDS estimators, divided by 4.

Under renewal arrivals, estimating the asymptotic variance of DS variance esti-
mators may be done in the same manner described earlier for DE and DI estimators+

5. CONDITIONAL ESTIMATORS OF EQUILIBRIUM-IDLE-PERIOD
MOMENTS

For an IPE, there is anopportunityto generate anI, Ie, or Is value for everyi + If a
value is generated ati , the numerator and denominator of an estimator increase;
otherwise, they do not+ For a correspondingconditionalestimator, the numerator
and denominator of this estimator increase for everyi by a corresponding expected
value, givenWi +We do not generate the actual values, except, of course, for the idle
periods at the end of busy cycles+ As earlier, our estimators are forn busy cycles+

Corresponding to~9!, the DE estimator ofE~Ie
r !, we define two functions:

gE~W! 5 E @~Te 2 W!r 6Te . W,W# and pE~W! 5 P~Te . W6W!, (35)

wheregE~W!pE~W! 5 E @~Te 2 W!1
r 6W# + The corresponding CE estimator is

ZE~Ie
r !CE 5

(
i51

Mn

gE~Wi !pE~Wi !

(
i51

Mn

pE~Wi !

+ (36)

For Poisson arrivals, gE~W! 5 E~T r !, independent ofW, and ZE~Ie
r !CE5 E~T r !,

a constant+ The asymptotic~and actual! variance of the CE estimator is zero! This is
a consequence of the memoryless property of the exponential and is true only for
this case+ For renewal arrivals, we show in Section 6 that CE is better than DE+
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BecauseTe has densityae~x! 5 lAc~x!, we rewrite~36! as

ZE~Ie
r !CE 5

(
i51

Mn E
Wi

`

~x 2 Wi !
rAc~x! dx

(
i51

Mn E
Wi

`

Ac~x! dx

+ (37)

The DI estimator ofE~Ie
r ! is constructed from estimated moments ofI+ The

same is true of CI+ The CI estimator ofE~I r ! is

ZE~I r !CI 5

(
i51

Mn

E @~T 2 Wi !1
r 6Wi #

(
i51

Mn

P~T . Wi 6Wi !

, (38)

where from~138! in Wolff @9, p+ 37#

E~~T 2 Wi !1
r 6Wi ! 5 rE

Wi

`

~x 2 Wi !
r21Ac~x! dx+

As E~Ie
r ! 5 E~I r11!0~r 1 1!E~I !, we have

ZE~Ie
r !CI 5

(
i51

Mn E
Wi

`

~x 2 Wi !
rAc~x! dx

(
i51

Mn E
Wi

`

Ac~x! dx

, (39)

which is identical to~37!+We have the following result+

Lemma 2: The CE and CI estimators of E~Ie
r !, r . 0, are identical.

For the DS estimator~11! of E~Is
r !, we define

gS~W! 5 E @~Ts 2 W!r 6UTs . W,W# and pS~W! 5 P~UTs . W6W!+ (40)

The corresponding CS estimator ofE~Ie
r ! is

ZE~Ie
r !CS 5
ZE~Is

r !CS

~r 1 1!
5

(
i51

Mn

gS~Wi !pS~Wi !

~r 1 1! (
i51

Mn

pS~Wi !

+ (41)
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We now compare the CS and CE estimators+ First, observe that asUTs ; Te,
pS~W! 5 pE~W!+ Now, write

@~Ts 2 W!6UTs . W,W# 5 @~12 U !Ts 1 ~UTs 2 W!6UTs . W,W# +

Further conditioning this expression onTs, Ts . W, it is readily seen that@~1 2
U !Ts6UTs . W,W,Ts# and@~UTs 2 W!6UTs . W,W,Ts# are both uniformly distrib-
uted on~0,Ts2 W!+ Integrating over the conditional distribution ofTs, given~UTs .
W,W!, we have

@~12 U !Ts6UTs . W,W# ; @~UTs 2 W!6UTs . W,W# , (42)

where each is;@~Te2 W!6Te . W,W# + Combining these results with~36! and~41!,
we have a result that holds for the first moment+

Lemma 3: The CE, CI, and CS estimators of E~Ie! are identical.

The CS estimators of higher moments may, in general, be different; when dif-
ferent, we expect them to be very difficult to compute+ For Poisson arrivals, CS
estimators of higher moments are the same+ The following is an example+

For Poisson arrivals, the quantities in~42! are;exp~l!, independent ofW, and
they are independent+ It is easy to work out

E @~Ts 2 W!2 6UTs . W,W# 5 60l2+

For r 5 2, ~41! is 20l2 5 E~T 2!, a constant, in agreement with~36!+

6. LOWER BOUND

We now show that the asymptotic variance of each conditional estimator ofE~Ie
r ! is

a lower bound on the asymptotic variance of the corresponding IPE and also on all
possible combinations of the same estimator, as explained below+We show this for
CE estimators, which covers CI+ For CS, the form of the proof is identical+

Over cyclej in ~9!, let

Nj 5 (
i5Mj2111

Mj

~Tei 2 Wi !
rdi and Rj 5 (

i5Mj2111

Mj

di +

Then rewriting~9!,

ZE~Ie
r !DE 5

(
j51

n

Nj

(
j51

n

Rj

, (43)
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where~Nj ,Rj !, j $ 1, are i+i+d+ vectors+ Thus, ~43! is a standard ratio estimator+ As
n r ` and whenE~Nj

2! andE~Rj
2! are finite,

Mn~ ZE~Ie
r !DE 2 E~Ie

r !! D
&& N~0,VDE!,

with asymptotic variance

VDE 5
1

E2~Rj !
Var@Nj 2 E~Ie

r !Rj # + (44)

For each cyclej with the corresponding conditional estimator, we condition on
Cj , which isKj and the collection ofWi within that cycle+ The asymptotic variance
of this estimator is

VCE 5
1

E2~Rj !
Var$E @Nj 2 E~Ie

r !Rj 6Cj #%+ (45)

From ~6!, we have

VCE , VDE+ (46)

Each of the estimators ODE, ADE, and IDE is of form~9!; they differ only in
the way theTei are generated+ The conditional estimator is identical for each of
these estimators; hence, ~46! holds for each of them+

When these estimators are combined, two or moreTei values are generated for
eachi +When, for example, ODE and ADE are combined, the estimator is the ratio
of sums of the numerators and denominators of the ODE and ADE estimators+Within
each cycle, the corresponding CE estimator sumsidentical terms, so the CE esti-
mator corresponding to the combined estimator is the same+ Thus, ~46! still holds,
where the right-hand variance is for the combined estimator+ Now, IDE may be
replicated, and this result holds for any number and combination of estimators+

The same argument applies to DS estimators+We have the following result+

Theorem 9: The asymptotic variance of a conditional estimator of E~Ie
r !, whether

DE, DS, or DI, is a lower bound on the asymptotic variance of the corresponding
IPE used alone, or in any combination with estimators of the same type.

Applying the same approach to the right-hand side of~26!, we also have the
following+

Theorem 10: The asymptotic variance of the CE (CI) estimator of V~Ie! and V~D!
is a lower bound on the corresponding asymptotic variances of the corresponding
DE and DI estimators.

7. SIMULATION RESULTS FOR ESTIMATING AVERAGE DELAY

We now report simulation results for estimating expected delayd+ The interarrival
and service distributions are one of the following: exponential, 2-Erlang, and hyper-
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exponential withbalanced means, denoted byM, E2, andBH, respectively+ Hyper-
exponentialH is a mixture of exponentials,

H 5 b exp~µ1! 1 ~12 b!exp~µ2!,

andBH is H with b0µ1 5 ~12 b!0µ2+ The squared coefficient of variation of each
of these distributions is 1, 1

2
_ , and selected by us to be 10, respectively+ Simulation

run lengths for these comparisons are 106 busy cycles+ This is excessive for our
primary purpose, which is to compare the CE, DE, and DS estimators with each
other and with DI+We made long runs to stabilize the ratios in the second column+

In Tables 1a–1e, the second column reports the~estimated! factor by which DI
is more efficient than DD+ Each subsequent column reports the factor by which the
designated estimator is more efficient than DI+ The product of these factors is the
factor by which that estimator is more efficient than DD+

To save space, we omit results for ADE, IDE, BIDE, ADS, IDS, and BIDS
runs, here and in Tables 2a–2e, except for their contributions to combinations that
are reported+ In most cases, the omitted results are nearly identical to corresponding
reported results+When there is a measurable difference between ODE and ADE~or
ODS and ADS!, the corresponding IDE~or IDS! results are in between+ For BH
arrivals, ODS is somewhat~up to about 10%! more efficient than ADS+ For E2

arrivals,ADS is slightly better than ODS, but they are very close+ For Poisson arriv-
als, of course, the efficiencies are the same+

Table 1a is consistent with Theorems 2–5 and, of course, the fact that the CE
estimator has zero variance+ BDE is better than ODE and ADE by a factor of 2 or
more, with the factor increasing in light traffic+ Irregular service reduces the effi-
ciency of DD, but has little effect on IPEs+

In Tables 1d and 1e, CDE ~CDS! falls well short of twice the efficiency of BDE
~BDS!+ Ultimately, the CE bound must cause the efficiency increase from generat-
ing additionalTei or Tsi values to be subadditive; that is, the combined improvement
is less that the sum of the individual improvements+ Subadditivity also occurs in
Tables 1b and 1c, but the effect is smaller and the bound is further away+

8. SIMULATION RESULTS FOR ESTIMATING DELAY VARIANCE

These results are for the same set of runs and table layout as in Section 7+Tables 2a–2e
are consistent with Theorems 6–8+ These tables exhibit patterns observed earlier+

9. CONCLUSION

As observed in WW, the advantage DE has over DI for estimatingd arises from the
fact that varianceV~Ie! is a function of only the first three moments ofI, whereas
the variance of the DI estimator,which requires separate estimation ofE~I 2!, depends
on the fourth moment ofI+ As moments ofI are closely related to moments ofT,
irregular arrivals strongly favor DE over DI+ The explanation for DS is similar, and
our simulation runs are consistent with these observations+ For estimatingV~D!,
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Table 1. Efficiency Improvement for Estimatingd of Various Queues

r DD0DI ODE BDE CDE ODS BDS CDS CE

a+ M0BH01 queues
0+1 0+29 2+01 6+33 12+7 3+94 16+2 32+4 `
0+3 30+8 1+99 4+74 9+46 3+98 12+6 25+0 `
0+5 469 2+02 4+39 8+78 3+97 11+0 22+0 `
0+7 5+2 3 103 1+99 4+15 8+30 4+03 10+4 20+8 `
0+9 2+7 3 105 1+94 3+94 7+91 3+89 9+59 19+2 `
0+95 2+8 3 106 2+02 4+11 8+19 4+05 9+89 19+8 `

b+ E20M01 queues
0+1 0+002 1+07 2+74 4+37 2+48 9+84 19+6 1+8 3 103

0+3 0+18 1+10 2+54 4+37 2+39 7+21 14+2 525
0+5 3+24 1+09 2+42 4+28 2+37 6+42 12+6 343
0+7 48+5 1+09 2+39 4+29 2+34 5+96 11+7 279
0+9 2+7 3 103 1+09 2+35 4+28 2+36 5+76 11+3 246
0+95 2+4 3 104 1+10 2+36 4+33 2+35 5+70 11+1 242

c+ E20BH01 queues
0+1 0+84 1+08 2+94 4+48 2+49 11+0 21+9 2+0 3 103

0+3 117 1+08 2+64 4+35 2+42 8+38 16+5 768
0+5 1+7 3 103 1+10 2+55 4+36 2+44 7+42 14+6 507
0+7 2+5 3 104 1+10 2+50 4+36 2+42 6+88 13+5 394
0+9 1+2 3 106 1+08 2+41 4+27 2+34 6+32 12+4 325
0+95 7+4 3 106 1+09 2+43 4+33 2+39 6+40 12+5 320

d+ BH0M01 queues
0+1 0+000 25+6 60+2 74+2 35+4 66+6 75+1 6+7 3 103

0+3 0+001 23+5 52+3 70+6 35+5 69+9 83+4 409
0+5 0+05 22+0 40+6 59+1 35+5 64+3 81+7 165
0+7 1+79 21+1 38+5 64+0 37+2 70+6 103 238
0+9 177 20+6 38+5 69+2 40+2 79+8 131 464
0+95 1+7 3 103 20+6 39+1 71+4 40+1 80+5 136 514

e+ BH0BH01 queues
0+1 0+001 23+0 52+1 63+1 34+6 62+2 69+2 1+13 103

0+3 0+10 22+2 44+9 56+5 32+3 55+8 63+6 191
0+5 1+52 21+6 40+3 52+7 31+0 51+3 59+9 123
0+7 22+4 20+9 37+4 51+9 31+7 53+1 64+7 115
0+9 1+13 103 21+0 37+7 56+5 33+7 58+2 75+7 151
0+95 1+0 3 104 20+3 36+9 56+1 36+2 63+9 84+6 153
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Table 2. Efficiency Improvement for EstimatingV~D! of Various Queues

r DD0DI ODE BDE CDE ODS BDS CDS CE

a+ M0BH01 queues
0+1 0+25 2+93 5+87 11+8 6+75 15+5 31+1 `
0+3 307 2+90 5+64 11+2 6+06 13+0 26+0 `
0+5 2+2 3 104 2+92 5+68 11+4 6+86 14+4 28+9 `
0+7 9+6 3 105 2+85 5+52 11+1 6+52 13+6 27+0 `
0+9 6+4 3 108 2+77 5+28 10+6 6+48 13+2 26+4 `
0+95 3+9 3 1010 3+04 5+92 11+8 6+73 13+9 27+6 `

b+ E20M01 queues
0+1 0+000 1+54 3+22 6+03 3+75 9+00 17+9 8+0 3 103

0+3 0+05 1+66 3+39 6+47 3+60 8+10 16+2 2+13 103

0+5 4+88 1+60 3+23 6+11 3+72 8+22 16+3 1+3 3 103

0+7 446 1+55 3+17 6+03 3+66 7+95 15+8 1+0 3 103

0+9 3+2 3 105 1+60 3+25 6+21 3+59 7+70 15+2 896
0+95 1+13 107 1+62 3+31 6+45 3+68 7+86 15+6 883

c+ E20BH01 queues
0+1 1+86 1+60 3+40 6+23 3+92 9+76 19+6 8+6 3 103

0+3 3+4 3 103 1+58 3+30 6+18 3+75 8+74 17+4 3+13 103

0+5 1+8 3 105 1+65 3+39 6+41 3+54 7+95 15+9 1+9 3 103

0+7 1+5 3 107 1+64 3+38 6+46 3+67 8+13 16+1 1+4 3 103

0+9 7+4 3 109 1+53 3+12 5+97 3+68 8+09 16+1 1+3 3 103

0+95 1+6 3 1011 1+61 3+31 6+37 3+63 7+91 15+6 1+2 3 103

d+ BH0M01 queues
0+1 0+000 36+9 78+0 140 71+1 158 255 4+13 104

0+3 0+000 31+5 62+7 118 50+0 109 187 3+13 103

0+5 0+003 29+1 54+6 104 61+9 127 227 2+2 3 103

0+7 1+22 29+7 56+8 111 65+1 129 246 3+0 3 103

0+9 3+5 3 103 28+1 53+8 106 66+3 133 260 6+5 3 103

0+95 1+6 3 105 28+5 55+6 111 61+6 124 242 7+13 103

e+ BH0BH01 queues
0+1 0+000 26+5 55+4 99+5 65+8 143 227 7+7 3 103

0+3 0+02 31+3 62+1 112 67+3 140 228 1+5 3 103

0+5 1+24 34+0 66+3 121 69+1 139 231 1+13 103

0+7 113 32+0 60+6 114 78+7 157 271 1+13 103

0+9 6+8 3 104 34+9 65+8 126 68+5 137 247 1+7 3 103

0+95 2+5 3 106 29+3 55+6 107 58+2 115 211 1+6 3 103
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DE and DS do even better, relative to DI, for similar reasons+ In both cases, DS is
more efficient than DE, as our analysis for Poisson arrivals would lead us to expect+
In general, however, using DS requires generating more uniform random variables
and is less efficient computationally+

For DE or DS estimators used alone, this is the primary source of increased
efficiency over DI+ It does not matter much how we generate these estimators~ODE,
ADE, and so on!, and results are only weakly dependent onr and the service dis-
tribution+ Initially, combinations such as BDE and BDS produce substantial and
worthwhile efficiency gains+ Eventually, however, the CE bound takes over, and
the efficiency gains from adding more combinations become subadditive, except in
the unique case where arrivals are Poisson+

The CE~or what turned out to be the equivalent CI! estimators not only pro-
vide bounds, but they also give achievable efficiency gains that are compelling+

The CI estimators could have been considered much earlier, but no one thought
of them+ They are certainly much easier to explain than CE, as there is no need to
discuss the generation of equilibrium idle periods+

For E2 andBH arrivals, the CE integrations are easy to perform analytically+
When analytical integrations are not possible, one can prepare precalculated numer-
ical values of the integrals as functions of waiting timeW and then use a hashing
function for efficient hash-table lookup+

In Table 3, we report computational efficiency as the ratio of actual running
times of our simulation runs+ The computation of conditional probability and expec-
tation involves exponential functions, which, apparently, consumes more computer
time than the generation of extra uniform random variables+ Nevertheless, the com-
putational efficiency of DI over the others is not more than a factor of 2 in Table 3+
We believe computational efficiency will be similar for a broader class of phase-
type distributions but have not investigated this matter beyond what is presented
here+

The interarrival distributions in our runs have infinite tails+ We also experi-
mented on one distribution with finite tail, the U0BH01 queue, where interarrival
times are uniformly distributed on~0,20l!+ CE estimators ofd are more efficient
than DI by factors from 70 to 7, asr increases from 0+1 to 0+9+ Because this distri-
bution is very regular, ODE does not perform well here+ Also note that for deter-
ministic interarrival times, the CI, and thus CE, estimator is exactly the same as DI+

The CE estimators of delay moments appear to be far more efficient statisti-
cally than known alternatives for regular as well as irregular arrivals and for mod-

Table 3. Computational Efficiency for Estimatingd

Queue DD0DI DI 0ODE DI0BDE DI0ODS DI0BDS DI0CE

E20M01 1+00 0+80 0+70 0+62 0+56 0+65
BH0M01 1+00 0+98 0+84 0+64 0+51 0+50
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erate as well as heavy traffic+ Compared with DD, efficiency factors sometimes are
astronomical+ Using hash-table lookup, CE applies to any interarrival distribution+
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