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For simulatingGl/G/1 queueswe investigate estimators of stationary delay-in-
queue moments that were suggested but not investigated in our recent article and
we develop new ones that are even more efficidmong them aralirect spread
estimators that are functions of a generated sequence of spread idle periods and are
combinations of estimatorgve also develop correspondingnditionalestimators

of equilibrium idle-period moments and delay momelkiée show that conditional
estimators are the most efficienin fact, for Poisson arrivalsthey are exactin
simulation runs with both Erlang and hyperexponential arrivedsditional esti-
mators of mean delay are more efficient than a published method that estimates
idle-period moments by factors well over 100 and by factors of over 800 to several
thousand for estimating stationary delay variance

1. INTRODUCTION

For simulatingGl/G/1 queueswe compare the efficiency of estimators of moments
of stationary delay in queus, including standard regenerative estimators that we
call direct delay(DD), which are notoriously inefficient in heavy traffié method
in Minh and Sorli[7], which we calldirect idle (Dl), estimates average delaly
from a generated sequence of idle periddmethod in Wang and Wolff8] (abbre-
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viated here as W\ calleddirect equilibrium(DE), estimates delay moments from
a generated sequence of equilibrium idle periddghis article we continue our
investigation of delay moment estimators that are function@ny kind of) idle
periods and we call any estimator of this typeidie-period estimatofIPE).

An alternative approach to simulati®/G/1 queuesbased ortonjugateran-
dom walks is briefly described in W\\For a fuller descriptionsee Asmusseji];
for research resulisee Asmussef®,3] and Ensor and Glynfb].

We will compare the relativéstatistical efficiency of some estimata with
an alternative estimatdrof the same quantityl he statistical efficiencyf a (over
b) is the factor by which the asymptotic varianceaa$ smaller than the asymptotic
variance ot, for runs of the same lengimumber of customers or cyclesVe use
theregenerative methotb estimate efficiency factors

As shown in Section 4 of WW, the rate of convergence of IP and DD esti-
mators depends on the relative size of moments of either the interarrival or service
distribution We call distributions with a large coefficient of variatiagmegular.
Distributions irregular in this sense usually have large higher moments adtigll
a rough predictor of the relative efficiency of the estimators that we investigate

Direct idle estimators are more efficient than DD in heavy traflithough not
mentioned in Minh and Sorli7], the efficiency factor of DI over DD is greatly
increased when the service distribution is irregWeYV show that the DE estima-
tor of d is twice as efficient as DI for Poisson arrivdladependent and identically
distributed(i.i.d.) exponential interarrival tim@sFor a particular irregular inter-
arrival distribution they obtained an efficiency factor of about 20 for DE over DI
See Section 2 for a description of DE estimatars

Of coursecomputational efficiencglso is importantWe use the inverse trans-
form method for the distributions considered he&dme measure of computational
efficiency is to count the relative number of uniform random variables used by
different methodsSometimeshowever this may not reflect actual computation
times In Section Qwe present a table of computational efficiency as ratios of actual
computation times for different estimators

As backgroundwe present well-known results for thel/G/1 queue Let
S ~ G be the service time of arrival T, ~ A be the time between arrivaisand
i+1andX; =35 —T,i=212,...,where{S} and{T;} are independent sequences
of i.i.d. random variablesd~or genericS T, andX, let A = 1/E(T), u= 1/E(S), and
p = A/ Assumep < 1, E(X?) < oo, and first-in-first-out( FIFO) order of service
Heavy trafficmeans thap is near 1

Let D; be the delay in queue of arriva) the time between that customer’s
arrival and when service on that customer begitge D; satisfy the recursion

Di+1:(Di+S_Ti)+7 i:152’-~-7 (1)
wherea, = max(a,0). Whenp < 1, the D; in (1) converge in distribution to a

proper random variabl®, and the procesfD;} regenerates whenever an arrival
finds the system emptyVhen we also hav&(S?) < oo, the average delay
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m D
d= I|m Z E =E(D) < o0, with probability 1(w.p.1), )

and wherE(S™Y) < oo, r >0, >";Df/m— E(D") < oo, w.p.1, asm — oo.
Typical performance measures at@nd the varianc& (D) = E(D?) —

From generate® andT, values and initiaD;, D; = 0 in this article suppose we

generatgsay) m D, values from(1). The DD estimator oE(D") is

i:El o ©)

Suppose that arrivals K; + 1, K; + K, + 1,... find the system emptyCycles
{D1,...,Dk,}, {Dk,+15---» Dk 4k, ) -.. are ii.d., as arecycle lengths KK, ....
Related regenerative processes may be defined in continuousviimeee cycles
are calledousy cyclesThe first busy cycle has leng®, = T, + --- + Ty, . The first
busy periods B, = S, + --- + &, and the firsidle periodis I, = C; — B, where
G, B;, andl;,j =1, are each.i.d. sequencesBoth E(K;) andE(C,) are finite

For a fixed number ofsay) n cycles the DD estimator oE(D"), (3), is of the
same formwhere nowm = M, is a random variable defined as

M,=K;+ -+ +K,.
An alternative in Minh and Sorli7] exploits the well-known equation

E(X2) E(1?)

d= T2E(X)  2E(1) “)

wherel is an idle periodUnder their methogdl;, j = 1, are generated using).
After n cycles the DI estimators oE (1) andE(l ?) are the arithmetic averages of
thel; and thel”. To estimated, substitute these estimators in#).
As in WW, our IPEs are defined in terms of two distributions
ForZ~F,Z=0andE(Z) < 0, andF¢=1—F, letZ. ~ F. andZs ~ F; be
correspondingequilibrium and spreadrandom variables and distributignshere
Fe(X) = [ Fe(y) dy/E(Z) andF(x) = [JP(y < Z = x) dy/E(Z), with moments
E(zr+l) E(zr+1)

E(Zé) = m and E(Zg) = E(Z)

forr > 0. (5)

Because delay moments may be expressed in terms of equilibrium idle-period
(l¢) momentswe will compare the efficiency of estimators of the latter quantities

In this article we introduce antithetic DEADE) and independent DEDE)
estimators in Section,Zalone and in combinatio DE in WW is denoted ODE
here) We investigate a corresponding family of estimatord,ahoments called
ODS ADS, and IDS based on generated values of gpreadidle period I. For
Poisson arrivalswe derive the asymptotic efficiency of DE and Drect spreag
estimators ofd, alone and in combinatignn Section 3 In Section 4 we develop
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IPEs of delay varianc¥ (D), and when arrivals are Poissame derive their asymp-
totic efficiency

Theoretical and empirical results for Poisson arriyateere delay moments
are knownhelp validate our simulation rupand similar resultsalthough not exact
are shown empirically to be good approximations for other interarrival distributions

In Section 5we present conditional estimators GH, and CS corresponding
to DE, DI, and DS respectivelyand show that for estimating any moment gfthe
CE and Cl estimators are identickbrE(l,), the CS estimator also is identic&lor
Poisson arrivalsconditional estimators are exalrt Section §we show that a con-
ditional estimator oE(1{), r > 0, is more efficient than the corresponding IPE and
more efficient than any combination of estimators considered in Section 2

For Section 6 resultsve apply the well-known conditional variance formula

Var(Y) = E[Var(Y|C)] + Var(E[Y|C]), (6)

which holds for any random variab¥and class of events Variance is reduced by
estimatinge(Y) from generated samples B{Y|C) rather tharV.

In Section 7 we report on the relative efficiency of DDP, and conditional
estimators ofl for simulation runsusing combinations of Erlangxponentigland
hyperexponential distributions as interarrival and service distributibonSec-
tion 8, we report on the relative efficiency &f(D) estimators for similar runs

Combinations of either DE and or DS estimators are more efficient than these
estimators used alonélthough expectedwe are able to calculate the improve-
ment when arrivals are Poissoimong the many asymptotic results derived for
this casewe consider this to be rather surprisirgach of the estimators ODE
ADE, and IDE (or ODS ADS, and IDS of eitherd or V(D) have the same effi-
ciencywhen used alondS estimators are more efficient than corresponding DE
estimators

The CE(CI) estimators are the most efficient and most useful of those we con-
sider For both 2-Erlang and hyperexponential arriv&lg estimators ofl are more
efficient than corresponding DI estimators by factors well over. Fafy similar
estimators o¥/(D), factors ranging from over 800 to several thousand are achieved
Comparing CE with DD these factorsnultiply. Thus CE estimators of delay
moments appear to be far more efficient than known alternatives for regular as well
as irregular arrivalsand for moderate as well as heavy traffin Section 9 we
present a method to apply CE estimators to any interarrival distribution

2. DE AND DS ESTIMATORS OF THE AVERAGE DELAY
AND MOMENTS OF THE EQUILIBRIUM IDLE PERIOD

The method developed in WW for generating DE estimatorsaddE(1{),r > 0,
also applies to DS estimatoi/e take upV(D) estimators in Section.4

LetW= D + Sbe the stationary waiting time in the systesnd letT andT; be
respectivelyan interarrival time and apreadinterarrival time each independent
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of W. Define U ~ uniform on(0,1), independent of all elsddle periodl has the
representatioh = (T — W|T > W).
As discussed in WW and WolfP, p. 484, |, has two representations

(UTs—WIUT,> W) ~ 1, and ((1— U)T|UTs> W) ~ I, (7)

whereUT; and(1 — U)T; are~T.. The same approach gives a representatidg, of
not mentioned in these referencesit essential for constructing DS estimators

(Ts— WIUT, > W) ~ . (8)

2.1. DE Estimators

BecausdJT, ~ T,, we write (T, — W|T. > W) ~ I in place of the first representa-
tion in (7), whereT, andW are independent

Now, simulate sequences of realized valuesl,ohnd S overn cycles From
(1), this generates sequencedpfandW, = D; + S. For i.i.d. U;, uniform on(0, 1),
let T, = A"Y(U,). In paralle| using the sam¢J;, generate an.iid. sequence of,
values byT,; = A;*(U;). The realized, values are thd@, — W values on the sub-
sequence wherg,; > W,. Let §; be the indicator of the everit; > W.

This is the setup in WWwhere the DE estimator &(1%), r > 0, is

S (o= W5,
E(lé)ooe = HT (9)
>0

i=1

Let R; be the sum of thé; over cyclej, the number of generatddvalues in cycle
j. Now, call (9) the original DE (ODE) estimator ofE(l{). Forr = 1 and from(4),
we get the ODE estimator af

Except for Poisson arrivalthe generatet], values are neither independent nor
identically distributedNeverthelessthe following results were shown in WW

For everyu andv, the limiting fraction ofi for which Ty; = uandW = v is,
w.p.1, P(T. = u)P(W = v), whereW is a stationary waiting timen the long run
the generatedl, values are~ |, in the sense that the limiting fraction of them that
take on valuesst is P(l, = t) for everyt, and asn — oo,

E(I)ope = E(12),  w.p.1. (10)

Itis easy to create new DE estimators by generdtinglues in different ways
For antitheticDE (ADE), T, = A~*(U;) andT,; = Ag*(1 — U,), for the sameyJ;. For
independenbE (IDE), the sequence df; used to generate thgis independent of
the sequence used to generateTheFor any IDE sequencéhere is also a corre-
sponding antithetic versigiAIDE. EachT,; sequence generates a sequenck, of
values in the same way and produces estimators of the sametf@might-hand
side of(9). By the argument in W\M10) holds for them
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At first, we expected ADE and IDE estimators to be less efficient than ODE
becaus¢as can be showrR; is more variable for therfE(R;) must be the same for
all thred). For Poisson arrivalfioweverwe find as Theorem 2 in Section 3 that the
three estimators have the same asymptotic efficiency

This suggests using combinations of estimatéia examplegenerate ODE
and ADE quantities on the same ruwith ratio estimators of forn9): Aope/Bope
andAape/Bape, respectivelyThe combination of these estimatodenoted by BDE
is (Aope + Aape)/(Bope + Bape). Let BIDE be the estimator that combines IDE
and AIDE and let CDE be the estimator that combines all four

Empirically, BDE turns out to be twice as efficient as ODRore in light traf-
fic. In some case<DE is four times as efficient as ODE

2.2. DS Estimators

Although DS estimators were not mentioned in \Wihey are easy to generate
based ori8). We generateii.d. sequence§ = A 1(U;) andT,; = A;1(U;), i = 1. Let
U/, i =1, be another.i.d. sequence~ uniform on(0,1), and independent of all
else The realizedg values ardg; — W, on the subsequence wheawgT,; > W. Let
8/ be the indicator of the evehi/ T, > W.

Although newthe estimator denoted as ODS of ttie moment ofig, r > 0,

My
> (Ts — W)'8
i=1

S

E(l$)ops = M, s (11)
> 8
i=1
is of the same form as the ODE estimaiand by the same argument
E’(E)ODS—> E(1S), w.p.1, ash— co. (12)

As with DE estimatorswe will consider a whole family of DS estimatomsith
the same naming conventiasDS, IDS, BDS, BIDS, and CDS

There is one differengdowever It takes two uniform variatedJ; andU;, for
each arrival to generate a sequencelgValues There are three possible antithetic
versions1—U;, U/; Ui, 1 — U/’; and 1- U;,1 — U/. We use the third versio his
matters when original and antithetic versions are combifbd same issue arises
even for DE estimators when it is not practical to generate random variables as
inversege.g., T = A~%(U;)), and more than one uniform variable is used to gener-
ate a singlé€T; or T;. In our antithetic versionwe use 1—- U; for everyU;.

Because front5), E(1¢) = E(1£)/(r + 1), for r > 0, we readily obtain an esti-
mator of E(1¢) from (11). Forr = 1, we obtain a DS estimator afby replacing a
DE estimator ofE(l.) by a DS estimator oE(ls), divided by 2 Because dividing
by 2 cuts variance by a factor this appears to give DS estimators an advanthmge
fact, we show as Theorem 4 in Section 3 that for Poisson arritta¢sODS estima-
tor of d is twice as efficient as ODE
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3. PROPERTIES OF ESTIMATORS; RESULTS FOR POISSON ARRIVALS
Consider an estimator of some quantity
. Ny + -+ + N,
" R+ +R,

where{(N;, R))} is an ii.d. sequence of vectors ad= E(N;)/E(R;). These are the
standard assumptions foratio estimator Regenerative estimators are of this form
and we will think ofN; andR; as generated within some cygle

As n — o and whenE(N?) andE(R?) are finite we have the Regenerative
Central Limit Theorem9, p. 122]: For the generic paiN andR,

where-2> denotes convergence in distributj@andasymptotic variance

V= Var[N — 6R] (14)

1
E*(R)
is estimated in our simulations by

Vo= —— . (15)

(2=

Suppose generid andR are of form

N=Y,+ - + Ya (16)

where theY, are realized values of some random quantit¥hus 6, is simply the
arithmetic average of thé, overn cycles In most of our simulation runsheY, are
neither independent nor identically distributédt have the statistical properties of
Y in the long run[as defined for generatdd values betweefi9) and (10)], their
arithmetic average convergesEgY); that is 6 = E(Y).

Usually a regenerative simulation is for a fixed number of full cycdéhen
the first cycle has a different distributipasually because the simulation does not
begin with a regeneration point at timei0is readily shown that13) still holds

An alternative is to fix the number of generatgdo mvalues where the esti-
mator of @ is Y, = (Y, + --- + Yy)/m. It is well known (e.g., see Asmussefil,

p. 136]), that the asymptotic efficiency of this estimator is the samé&l@s when
normalized for equivalent run length

Vm(Y, — 0) 25 N(0,E(R)V) asm — oo. (17)
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In an important special case belome have ConditionV: {Y;k=1,2,...} is
an ii.d. sequenceY,~ Y, andR,, R, + Ry, ... are stopping times for this sequence
whereY andR (and henceN) have finite second moments

As theY, are ii.d. underV, the standard central limit theorem applies

Vm(Y, — ) =5 N(O,V(Y)) asm— co. (18)

Equating asymptotic variances (h7) and(18), we have the following theorem
TueoreM 1: Under ConditionW,

V= V(Y)/E(R). (19)

This is a remarkable result because the variande plfays no role Similarly,
aside from the requirement thRtbe a stopping timethe detailed nature of the
dependence betwedhand{Y,} is irrelevant Nevertheless(19) is an elementary
consequence of well-known properties of regenerative estimators

We now derive efficiency results for estimatorsdoivhen arrivals are Poisson

We first compare the efficiency of the ODEDE, and IDE estimators d&(l,)
andd, where the generateyj are realized values of equilibrium idle period=or
ODE, R=1, Y; ~ exp(A), andV = V(Y). For either ADE or IDE E(R) = 1. For
either casglet T; be the generated equilibrium interarrival time for arrivarhis
arrival generates th¥, value T, — W if Tg; > W.. Now, T ~ exp(A) and is inde-
pendent ofAf. Owing to the memoryless property of the exponenttzé generated
Y, value is~exp(A) and is independent &k and past historyThus the generated
Yy values form an.i.d. sequenceFor IDE, Ris independent of the entire sequence
S0 is a stopping time=or ADE, {R = k} andY, are dependennheverthelesRis a
stopping time For all three estimator419) holds and we have the following
theorem

THEOREM 2: Under Poisson arrivals, the asymptotic efficiencies of the ODE, ADE,
and IDE estimators of d are the same, with asymptotic varianeel/A°.

Now, combine IDE with either ODE or ADEAs under Poisson arrivalthe Y,
generated by IDE are independent of all ets&d we now have& (R) = 2; the asymp-
totic variance of these runs 8 = V(Y)/2. Thus the (statistica) efficiency is
improved by a factor of 2compared with either ODE or ADE alon®f course
using IDE requires generating additional random numbEmnis reduces computa-
tional efficiency compared with ODE alondout by less than a factor of 2

Combining ODE and ADE into BDEve know empirically(see Table lethat
efficiency is improved by a factor of about thore in light traffic (For BDE, no
additional random numbers are requijethe improvement in light traffic is easy
to understandin very light traffic, most cycles have only one custom@®DE and
ADE each generate on¥ valug where these values are negatively correlated
fact, as traffic intensityp — 0, the correlation is easily calculated
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f In(uIn(1—u)du—1~ —0.645 (20)
0

which gives 113 as the efficiency factor by which BDE is better than Bppar-
ently, this effect improves the efficiency of BDE in moderate traffic as will
very light traffic, however it is likely that DD is more efficient than any of these
estimators

Intriguingly, the empirical efficiencies of BDE and BIDE for these runs are
almost identical Are the true values equal? We believe that they (@tightly)
different

Combining ODEADE, IDE, and AIDE into CDE we get(empirically) an effi-
ciency improvement of 4 or more in Table,mmpared with one of these estima-
tors aloneln fact, the estimated efficiency factor of CDE is almost exactly the sum
of the estimated factors for BDE and BIDesults for IDE and BIDE are not
reported in Table JJaWe now derive a result that partially explains why this is so

For a generic cycle ifl4), let subscript denote BDE quantities and subscript
b denote BIDE quantitieg-irst, we show the following result

Var[N, + N, — (R, + R,)] = Var[N, — R, ] + Var[N, — 0R,]. (22)

Let F be theo-field of events generated by all the random variables that deter-
mine the queuing system and the generated BDE quantitisseasy to see that
E(N, — 6Ry| F) = 0 because for any generated busy perigditing time values

and BDE valueseach generated IDE and AIDE valueisexp()), independent of

the pastand(R,|F) is a stopping time for th&} sequence corresponding to IDE
and AIDE (Actually, R, is a sum of stopping timesne for the IDE sequence and
the other for AIDE) Thus (N, — #R,) and(N, — 6R;,) are uncorrelatecand(21)
holds Note that these quantities atetindependenAs E(R,) = E(R;,), we get the
asymptotic variance of CDE by dividin@1) by 4E(R2). We have the following
theorem

THEOREM 3: Under Poisson arrivals, the asymptotic variance of the CDE estima-
tor of d is the sum the asymptotic variances of the BDE and BIDE estimators, divided
by 4.

Thus if BDE and BIDE were equally efficien€DE would be twice as efficient

The same argument applies to generating additional independent pairs of type
IDE and AIDE. Each new pair increas&81) by Var[N, — 6R,]. Of course these
exact results hold only for Poisson arrivals

We now investigate DS estimatorsa@fndE(l.) when arrivals are Poissolm
this caseboth T, andl, are~2-Erlang with mean 2A and variance 22,

For ODS(ADS and IDS are similgr we generate sequencds;} and{U;' T;}.
For everyi whereU;' T;; > W, we generate ah value

(Tsi = WU/ T > W) = [(1— U T + (U T — WO U T > W . (22)
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Now, (1 — U/)Ty and U/ T are each~exp(A) and they are independenAs
(U' Ts — WU/ Ty > W) is ~exp(A), (22) is ~1g and is independent &f and the
past Thus this procedure generates a sequenceiof i values for any of these
runs used alonewith stopping times that have the same me&a(R) = 1. Unlike
ODE, howevey ODS is not guaranteed to generate exactly nalue per cycle
As far as efficiency is concerngthis does not matter

Because we are estimatifgl,), notE(ls) = 2E(l,), our estimator is the arith-
metic average of the generatedvalues divided by 2 with asymptotic variance
V(T.)/4 = 3)2. From these results and Theoremwie have the following result

THEOREM 4: Under Poisson arrivals, the asymptotic efficiencies of the ODS, ADS,
and IDS estimators of d are the same, with asymptotic varignée Used alone,
they are twice as efficient as the estimators in Theorem 2.

By the same argument used for Theoremwv@ have the following theorem

TureoreM 5: Under Poisson arrivals, the asymptotic variance of the CDS estima-
tor of d is the sum the asymptotic variances of the BDS and BIDS estimators, divided
by 4.

4. ESTIMATION OF DELAY VARIANCE
In (10) in WW, V(D) is the sum of known term®lus variance/(l,):

V(D) = EX®) +[
—3E(X)

E(X2)
—2E(X)

]2 + V(). (23)

We now investigate properties of estimatorsv@D) via (23).

Under any of ODEADE, or IDE, let | be thekth generated value df, k =
1,..., m, with arithmetic averagé.,, wheremis the number of generatéglvalues
aftern cycles The DE estimator o¥/(l) is

E (Iek_ I_em)z
k=1

— m |2 _
Vllgoe = ———— =3 —~ & (24)
k=1

Before going onpwe state a preliminary resultet {P,}, {Qm}, and{Z,} be
sequences of random variahl&sbe a distribution functionandZ,, 251,

LEmMmaA 1:
P,+ Qn-F=P,+Z,Qn->F. (25)

Although not quite Lemma,kimilar results are proven in Chufig, p. 92] by
methods that cover this case
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B LetPy = \/mzrknzl Iezk/m - \/ﬁ]v(le), Qm= _%E(le)zkmzl lew/m, andZ, =
len/E(lc). Apply Lemma 1 to(24). When convergence occurs

Zl(lezk_ E(Ie)lek)

NM(V(Ioe — V(1) and Vm| — ~ V(o) (26)

converge to the same distribution
In terms of the idle period itsel¥(l.) may be written as in Marshdl6]:

CE(0% [EIY
VUe = 3E0) [ZE(I)]' 7
The DI estimator oV/(l,) is
\mm = E/(E)DI - [E/(E)Dl]z
> 18 > 12
= T | (28)
31 |23 1k
k=1 k=1

Apply Lemma 1 to(28) with Z,, = E/(\Ie)Dl/E(Ie). When convergence occuyrs
> (212 = 3E(1)19)

k=1
m
> 6l
k=1

VM(V(lo)p — V(le) and vm ~ V(o) (29)

converge to the same distribution

Suppose that arrivals are Poiss@&wth thelg andl, are ii.d. ~ exp(A), and
under ODEm = n, asR; = 1. Under either ADE or IDEE(R;) = 1. Because the
summed quantities on the right {26) are ii.d., we have by Theorem 1 that the
asymptotic efficiencies under ODEDE, and IDE are the samé&low, apply (14)
to the right-hand expressions {86) and (29). We have after some algebrahe
following result

THEOREM 6: Under Poisson arrivals and any of ODE, ADE, or IDE,

VM(V(Io)oe — V(1)) 25 N(0,13/4%), (30)
VM(V(I)or — V(1e)) 25 N(0,38/A%). (31)

Thus for estimatingV(D) under Poisson arrivalainy of the DE estimatoyss
used alongare 2 ~ 2.9 times more efficient than DI
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Under renewal arrivalsve must estimate the asymptotic variance of each vari-
ance estimatdlre.g., the variances of the Normal distribution (80) and(31)].

Because the left-hand variance estimaton®B) and(29) are not conventional
ratio estimatorswe estimate the variances of the right-hand quantitigsch are
However they contain the unknown quantiB(|.). This situation is similar to esti-
mating(14) by (15). We replace the unknown quantity by an estimator foEitl ),
that converges to the true valuepal.

In both (26) and(29), mis the generated number of eitHgror | values after
n cycles The estimated asymptotic variance of these quantities is gived®y
but to use itwe must break up the run into cycléor (26), N; is the sum of terms
I& — E(le)lekOver cyclej, andR; is the number of these termBreaking up(29)
is similar, whereR; is the sum of generatddvalues in cyclg. Note thaté, in (15)
is now an estimator of (1), [e.9., (24), (28), or the estimator on the right-hand side
of (26) or (29), with E(l.) substituted folE(l.)]. Under DE let

K; -
N = 3 (&= E(loled and R =K,
k=1
and estimate the asymptotic variance from

n; [N, — V/(-IZ)DERj]Z

NED]

We now show how to estimadé(l.) from generated, values where

E(12) E(13)

E(ly) = = 2E(ly) and E(12)= = 3E(12).
From generated valuds, ..., lsy, With meanli,, our estimator is
—— L R
V(le)os = 23m " 4 (32)

Apply Lemma 1 to(32) with Z, = I¢/2E(l). When convergence occurs

. %(2|52k_3E(|e)lsk)
V(V(lehos = V(le)) and | = -V(l))  (33)

converge to the same distribution

For Poisson arrivalghe I, values in(33) are ii.d. ~ exp(A) X exp(A). The
asymptotic variance is the variance(@f3 — 3E(l.)lg.)/6. After some algebrave
get the following result
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THEOREM 7: Under Poisson arrivals and any of ODS, ADS, or IDS,

NM(V(I)os — V(Ie)) 5 N(0,35/6A%). (34)

Comparing this result with Theorem &ny of the DS estimators &f(D) are
approximately 2 times as efficient as DE and%6times as efficient as DI

As with DE and DS estimators af, these estimators df (D) may be com-
bined For the next resultve use the argument for TheoremeXcept that now we
are dealing with functions of generated quantities illustrate for IDE with stop-
ping timeR, {lek lek+1), - - } is independent ofR= k} and henceso is the sequence
defined byf (Io) = 13— E(lo)le; S€€(26). We have the following theorem

THEOREM 8: Under Poisson arrivals, the asymptotic variance of the CDE estima-
tor of V(D) is the sum of the asymptotic variances of the BDE and BIDE estima-
tors, divided by 4. The asymptotic variance of the CDS estimato(D} \6 the sum

of the asymptotic variances of the BDS and BIDS estimators, divided by 4.

Under renewal arrivaJ®stimating the asymptotic variance of DS variance esti-
mators may be done in the same manner described earlier for DE and DI estimators

5. CONDITIONAL ESTIMATORS OF EQUILIBRIUM-IDLE-PERIOD
MOMENTS

For an IPE there is aropportunityto generate ah I, or | value for everyi. If a
value is generated &f the numerator and denominator of an estimator increase
otherwise they do not For a correspondingonditional estimatoy the numerator
and denominator of this estimator increase for eveyy a corresponding expected
value givenW. We do not generate the actual valyescept of coursefor the idle
periods at the end of busy cycless earlier our estimators are fam busy cycles
Corresponding t@9), the DE estimator oE(l¢), we define two functions

9e(W) = E[(Te= W)"|Te > W,W]  and pe(W) = P(Te > W|W),  (35)

wherege (W) pe (W) = E[(Te — W)", |W]. The corresponding CE estimator is

L Seewpew)
E(Dce = o (36)
_:21 Pe (W)

For Poisson arrivalge (W) = E(T"), independent oV, andE(1{)ce = E(T"),
a constantThe asymptoti¢and actualvariance of the CE estimator is zero! This is
a consequence of the memoryless property of the exponential and is true only for
this caseFor renewal arrivalswe show in Section 6 that CE is better than.DE
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Because€l, has densitya.(x) = AA°(X), we rewrite(36) as

My

EJW(X—V\I,)VAC(x)dx
E/(E)CEZ . V,\\,fn - (37)
Ef A°(X) dx

The DI estimator ofE(l}) is constructed from estimated momentsl o he
same is true of CIThe Cl estimator oE(l") is

 SENT-WLIw]
E(I"N)q =

; (38)

M
i

1

Mn

> P(T>WI[W)
=1

where from(138) in Wolff [9, p. 37]

E(T — W' W) = 1 f;(x_ W) AC(X) dx

AsSE(I)=E™Y/(r + 1E(), we have

Mp o

2 f (x — W)"AS(x) dx

M o , (39)
2 A°(X) dx

W
which is identical ta(37). We have the following result
LemMA 2: The CE and Cl estimators of(El), r > 0, are identical.

For the DS estimatofl1) of E(1{), we define

gs(W) = E[(Ts— W) |[UT; > W,W] and ps(W) =PUT;> W|W).

(40)
The corresponding CS estimator©fl;) is
Mn
— > 9s(W)ps(W)
E/(I\') _ E('s)cs: i=1 (41)
e/CS (r + 1)

(r+1) 2 p(W)
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We now compare the CS and CE estimatdiisst, observe that ablT; ~ T,
ps(W) = pe(W). Now, write

[(Ts—W)|UTs > W,W]=[(1—-U)T,+ (UT,— W)|UT; > W,W].

Further conditioning this expression dg T, > W, it is readily seen thaf(1 —
U)Ts|UTs > W,W, Ts] and[(UTs — W)|UTs > W, W, T,] are both uniformly distrib-
uted on(0, Ty — W). Integrating over the conditional distribution &f, given(UTs >
W, W), we have

[(1—U)T|UTy > W, W] ~ [(UT, — W)|UT, > W, W], (42)

where each is-[(T, — W)| T, > W, W]. Combining these results wit{36) and(41),
we have a result that holds for the first moment

Lemma 3: The CE, CI, and CS estimators oflE) are identical.

The CS estimators of higher moments miaygeneral be different when dif-
ferent we expect them to be very difficult to computeor Poisson arrival]sCS
estimators of higher moments are the saiffee following is an example

For Poisson arrivalghe quantities inf42) are~exp(A), independent oV, and
they are independernit is easy to work out

E[(Ts— W)?|UT, > W,W] = 6/A2

Forr = 2, (41) is 2/A2 = E(T2), a constantin agreement witt{36).

6. LOWER BOUND

We now show that the asymptotic variance of each conditional estimald of is
a lower bound on the asymptotic variance of the corresponding IPE and also on all
possible combinations of the same estimgagrexplained below\Ve show this for
CE estimatorswhich covers ClFor CS the form of the proof is identical
Over cyclej in (9), let

M;

M;
N= > (Ta—W)'& and R= > &.

i=Mj_;+1 i=Mj_y+1

Then rewriting(9),

-
Z

Il
[

E(l)oe = : (43)

M-
S

Il
s
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where(N;,R;), j = 1, are ii.d. vectors Thus (43) is a standard ratio estimatdys
n — oo and whenE(N?) andE(R?) are finite

N(E(1D)oe — E(12)) 25 N(0, Vop),

with asymptotic variance

Voe = Var[N; — E(I)R;]. (44)

1
E*(R)
For each cyclg with the corresponding conditional estimatae condition on
C;, which isK; and the collection of\} within that cycle The asymptotic variance
of this estimator is

Vee = Var{E[N, — E(I5)R|C;1}. (45)

1
E2(R )
From(6), we have

Each of the estimators ODBDE, and IDE is of form(9); they differ only in
the way theT,; are generatedlhe conditional estimator is identical for each of
these estimatorsience (46) holds for each of them

When these estimators are combineed or moreT,; values are generated for
eachi. When for example ODE and ADE are combinegthe estimator is the ratio
of sums of the numerators and denominators of the ODE and ADE estimAfitrs
each cyclethe corresponding CE estimator suidsntical termsso the CE esti-
mator corresponding to the combined estimator is the saimes (46) still holds
where the right-hand variance is for the combined estim&tow, IDE may be
replicated and this result holds for any number and combination of estimators

The same argument applies to DS estimatdrs have the following result

THEOREM 9: The asymptotic variance of a conditional estimator ¢fE, whether
DE, DS, or DI, is a lower bound on the asymptotic variance of the corresponding
IPE used alone, or in any combination with estimators of the same type.

Applying the same approach to the right-hand sid€2®), we also have the
following.

THEOREM 10: The asymptotic variance of the CE (CI) estimator ¢fyand V(D)
is a lower bound on the corresponding asymptotic variances of the corresponding
DE and DI estimators.

7. SIMULATION RESULTS FOR ESTIMATING AVERAGE DELAY

We now report simulation results for estimating expected ddl&he interarrival
and service distributions are one of the followiegponentigl2-Erlang and hyper-
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exponential withbalanced meansienoted byM, E,, andBH, respectivelyHyper-
exponentiaH is a mixture of exponentials

H = Bexp(p) + (1— B)exp(Hs),

andBH is H with 8/, = (1 — B)/M,. The squared coefficient of variation of each
of these distributions is, %, and selected by us to be Ii@spectivelySimulation
run lengths for these comparisons aré€ bdisy cyclesThis is excessive for our
primary purposgwhich is to compare the GIDE, and DS estimators with each
other and with DIWe made long runs to stabilize the ratios in the second column

In Tables 1a—1ghe second column reports thestimated factor by which DI
is more efficient than DDEach subsequent column reports the factor by which the
designated estimator is more efficient than Dhe product of these factors is the
factor by which that estimator is more efficient than DD

To save spacewe omit results for ADEIDE, BIDE, ADS, IDS, and BIDS
runs here and in Tables 2a—2except for their contributions to combinations that
are reportedin most casgghe omitted results are nearly identical to corresponding
reported resultdVhen there is a measurable difference between ODE and(@DE
ODS and ADS, the corresponding IDEor IDS) results are in betweerfor BH
arrivals ODS is somewhatup to about 10% more efficient than ADSFor E,
arrivals ADS is slightly better than ODSut they are very clos&or Poisson arriv-
als of course the efficiencies are the same

Table 1a is consistent with Theorems 2-5 amidcourse the fact that the CE
estimator has zero variand8DE is better than ODE and ADE by a factor of 2 or
more with the factor increasing in light traffidrregular service reduces the effi-
ciency of DD but has little effect on IPEs

In Tables 1d and 1&€DE (CDS) falls well short of twice the efficiency of BDE
(BDS). Ultimately, the CE bound must cause the efficiency increase from generat-
ing additionalT; or Tg; values to be subadditiyéhat is the combined improvement
is less that the sum of the individual improvemer@sibadditivity also occurs in
Tables 1b and 1dut the effect is smaller and the bound is further away

8. SIMULATION RESULTS FOR ESTIMATING DELAY VARIANCE

These results are for the same set of runs and table layout as in Sedidnes 2a—2e
are consistent with Theorems 6-Jhese tables exhibit patterns observed earlier

9. CONCLUSION

As observed in W\\Mthe advantage DE has over DI for estimataharises from the
fact that varianc&/(l,) is a function of only the first three moments lpfwhereas
the variance of the DI estimatavhich requires separate estimatiorgf 2), depends
on the fourth moment of. As moments ol are closely related to moments ©f
irregular arrivals strongly favor DE over DThe explanation for DS is similaand
our simulation runs are consistent with these observatiBos estimatingv(D),
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TaBLE 1. Efficiency Improvement for Estimating of Various Queues

p DD/DI ODE BDE CDE OoDSs BDS CDs CE
a. M/BH/1 queues
0.1 0.29 201 633 127 394 162 324 g
0.3 308 199 474 946 398 126 250 o0
0.5 469 202 439 878 397 110 220 o0
0.7 52X 10° 1.99 415 830 403 104 208 o0
0.9 2.7 X10° 1.94 394 791 389 959 192 o0
095 28x10° 2.02 411 819 405 989 198 0
b. E;/M/1 queues
0.1 0.002 107 274 437 248 984 196 1.8x10°
0.3 0.18 110 254 437 239 721 142 525
0.5 324 109 242 428 237 642 126 343
0.7 485 109 239 429 234 596 117 279
0.9 27 X 10° 1.09 235 428 236 576 113 246
095 24x10* 1.10 236 433 235 570 111 242
c. E;/BH/1 queues
0.1 0.84 108 294 448 249 110 219 20x10°
0.3 117 108 264 435 242 838 165 768
0.5 17 X103 1.10 255 436 244 742 146 507
0.7 25x10% 1.10 250 436 242 6.88 135 394
0.9 12x10° 1.08 241 427 234 632 124 325
095 74x10° 1.09 243 433 239 640 125 320
d. BH/M/1 queues
0.1 0.000 256 602 742 354 66.6 751 67x10°
0.3 0.001 235 523 706 355 699 834 409
0.5 0.05 220 406 591 355 64.3 817 165
0.7 179 211 385 64.0 372 706 103 238
0.9 177 206 385 692 402 798 131 464
095 17x10° 206 391 714 401 805 136 514
e. BH/BH/1 queues
0.1 0.001 230 521 631 346 622 692 11x103
0.3 0.10 222 449 565 323 558 636 191
0.5 152 216 403 527 310 513 599 123
0.7 224 209 374 519 317 531 64.7 115
0.9 11x10° 210 377 565 337 582 757 151
095 10x10* 203 369 56.1 362 639 84.6 153
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TABLE 2. Efficiency Improvement for Estimating (D) of Various Queues

p DD/DI ODE BDE CDE OoDSs BDS CDs CE

a. M/BH/1 queues
0.1 0.25 293 587 118 6.75 155 311 o0
0.3 307 290 564 112 6.06 130 260 9]
0.5 22 x10* 292 568 114 6.86 144 289 ©
0.7 9.6 X 10° 2.85 552 111 6.52 136 270 o
0.9 6.4 x 108 2.77 528 106 6.48 132 264 o0
095 39x10% 3.04 592 118 6.73 139 276 0

b. E;/M/1 queues
0.1 0.000 154 322 603 375 900 179 80X 10°
0.3 0.05 166 339 647 360 810 162 21x10°
0.5 4.88 160 323 611 372 822 163 13x103
0.7 446 155 317 603 366 7.95 158 10x10°
0.9 32x10° 1.60 325 621 359 770 152 896
095 11x107 1.62 331 645 368 7.86 156 883

c. E;/BH/1 queues
0.1 186 160 340 623 392 976 196 86x10°
0.3 34 x10° 1.58 330 618 375 874 174 31x10°
0.5 18x10° 1.65 339 641 354 7.95 159 19x10°
0.7 15x107 1.64 338 646 367 813 161 14x10°
0.9 7.4x10° 1.53 312 597 368 809 161 13x103
095 16x10% 1.61 331 6.37 363 791 156 12x103

d. BH/M/1 queues
0.1 0.000 369 780 140 711 158 255 4 %104
0.3 0.000 315 627 118 500 109 187 3% 10°
0.5 0.003 291 54.6 104 619 127 227 2 x10°
0.7 122 297 56.8 111 651 129 246 P x 103
0.9 35x10° 281 538 106 663 133 260 &% X 10°
095 16x10° 285 556 111 616 124 242 71X 108

e. BH/BH/1 queues
0.1 0.000 265 554 995 658 143 227 77 X 10°
0.3 0.02 313 621 112 673 140 228 15X 10°
0.5 124 340 66.3 121 691 139 231 11x 108
0.7 113 320 606 114 787 157 271 11x 103
0.9 6.8x10* 349 658 126 685 137 247 17 X 103
095 25x10° 293 556 107 582 115 211 16 X 10°
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DE and DS do even bettaelative to DI for similar reasonsin both casesDS is
more efficient than DEas our analysis for Poisson arrivals would lead us to expect
In generalhowever using DS requires generating more uniform random variables
and is less efficient computationally

For DE or DS estimators used algrhis is the primary source of increased
efficiency over DI It does not matter much how we generate these estim@@E,
ADE, and so ol and results are only weakly dependentgwand the service dis-
tribution. Initially, combinations such as BDE and BDS produce substantial and
worthwhile efficiency gainsEventually howevey the CE bound takes oveand
the efficiency gains from adding more combinations become subadditicept in
the unique case where arrivals are Poisson

The CE(or what turned out to be the equivalent)@stimators not only pro-
vide boundsbut they also give achievable efficiency gains that are compelling

The Cl estimators could have been considered much edalieno one thought
of them They are certainly much easier to explain than @&there is no need to
discuss the generation of equilibrium idle periods

For E, andBH arrivals the CE integrations are easy to perform analytically
When analytical integrations are not possjlolee can prepare precalculated numer-
ical values of the integrals as functions of waiting tilveand then use a hashing
function for efficient hash-table lookup

In Table 3 we report computational efficiency as the ratio of actual running
times of our simulation rung he computation of conditional probability and expec-
tation involves exponential functiophich, apparentlyconsumes more computer
time than the generation of extra uniform random variableverthelesghe com-
putational efficiency of DI over the others is not more than a factor of 2 in Table 3
We believe computational efficiency will be similar for a broader class of phase-
type distributions but have not investigated this matter beyond what is presented
here

The interarrival distributions in our runs have infinite tal¥e also experi-
mented on one distribution with finite tailhe U/BH/1 queue where interarrival
times are uniformly distributed o(0,2/)). CE estimators ofl are more efficient
than DI by factors from 70 to,&asp increases from.Q to 0.9. Because this distri-
bution is very regulgrODE does not perform well her@dlso note that for deter-
ministic interarrival timesthe Cl and thus CEestimator is exactly the same as DI

The CE estimators of delay moments appear to be far more efficient statisti-
cally than known alternatives for regular as well as irregular arrivals and for mod-

TaBLE 3. Computational Efficiency for Estimating

Queue DDDI DI /ODE DI/BDE DI/ODS DI/BDS DI/CE

E,/M/1 100 080 070 062 056 065
BH/M/1 100 098 084 064 051 050
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erate as well as heavy traffi€ompared with DDefficiency factors sometimes are
astronomicalUsing hash-table lookyCE applies to any interarrival distribution
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