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The boundary layer instability of a gliding fish
helps rather than prevents object identification

Audrey P. Maertens1,† and Michael S. Triantafyllou1
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(Received 28 April 2014; revised 22 July 2014; accepted 17 August 2014;
first published online 19 September 2014)

Inspired by the function of the lateral line in aquatic animals, we study the shape
identification of a stationary cylinder through pressure measurements made by sensors
located on the surface of a steadily moving foil, modelling a fish gliding in close
proximity to an object. Comparing experimental results, potential flow predictions and
viscous simulations, we first show that the pressure in the boundary layer of the foil
is significantly affected by unsteady viscous effects, especially in the posterior half of
the foil. Therefore, even after the effects of the boundary layer thickness are accounted
for, potential flow predictions are inaccurate. Subsequently, we show that the spatial
features of the unsteady patterns developing when the foil is moving near a cylinder
can be predicted accurately through linear stability analysis of the average boundary
layer velocity profile under open water conditions. Because these unsteady patterns
result from amplification of the potential flow-like disturbance caused in the front
part of the foil, they are specific to the cylinder that generated them and could be
used to identify its shape. We develop and demonstrate a methodology to calculate
the unsteady pressure based on combining potential flow predictions with results from
linear stability analysis of the boundary layer. The findings can be useful for object
identification in underwater vehicles, and support the intriguing possibility that the
significant viscous effects caused by nearby bodies on the fish boundary layer, far
from preventing detection, could actually be used by animals to identify objects.

Key words: absolute/convective instability, biological fluid dynamics, boundary layers

1. Introduction
The development of smaller, inexpensive autonomous underwater vehicles is rapidly

expanding with the emergence of new actuators, sometimes inspired by marine
animals (Chu et al. 2012). The goal is to enable these vehicles to navigate the ocean
and conduct complex tasks, such as inspecting offshore and submerged structures,
and patrolling harbours autonomously. However, unlike the intricate sensory systems
that allow aquatic animals to map their environment, currently available sensors for
engineered vehicles, such as sonar, require large amounts of power and cannot fit in
small spaces. Vision is not a reliable modality either, as underwater environments are
often dark and turbid. To design more efficient and robust sensors, one can turn to
the sensory systems of aquatic animals for inspiration.

† Email address for correspondence: maertens@mit.edu
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In order to detect prey, predators or mates, and navigate through obstacles in the
dark, fish can rely on several modalities: chemical sensing (Consi et al. 1994), electric
sensing (MacIver, Fontaine & Burdick 2004) and flow sensing through their lateral
line (Coombs & Montgomery 1999; Coombs et al. 2014). Because of its versatility,
flow sensing is a very widely used modality. It can be used passively to detect
moving bodies, or actively to detect stationary objects by exploiting the fish’s own
motion. Biotic or abiotic bodies can be identified, as well as flow features, including
those generated by the fish itself. A prime example is the blind Mexican cave fish
(Astyanax fasciatus) that is known to rely on its lateral line for most of its behaviours
(Montgomery, Coombs & Baker 2001), including object detection and identification
(von Campenhausen, Riess & Weissert 1981; Hassan 1986). Implementation of
artificial lateral lines in underwater robots has already shown promising results such
as station holding in a laboratory setting (Salumäe & Kruusmaa 2013). However, a
fundamental understanding of the complex hydrodynamics at play is necessary to
implement more complex and robust behaviours in unpredictable environments.

The lateral line consists of hundreds of flow sensing units, called neuromasts,
located either directly on the fish skin, in direct contact with the flow, or embedded
in canals connected to the external fluid through pores on the skin (Webb 2000).
The surface neuromasts act as local flow velocity or skin friction sensors (McHenry,
Strother & van Netten 2008). When the fish moves rapidly or is holding station
in external flow, these sensors are believed to saturate and lose their sensitivity
to perturbations (Engelmann, Hanke & Bleckmann 2002). The canal lateral line,
identified as measuring pressure gradient, is considered to be the major subsystem
involved in prey detection and obstacle identification (Coombs & Braun 2003). A
convenient implementation of the canal subsystem consists of an array of pressure
sensors (Salumäe & Kruusmaa 2013). As discussed by Windsor & McHenry (2009),
the pressure remains constant across the thickness of the boundary layer, therefore
previous studies relied on potential flow models ignoring viscous effects to estimate
the pressure sensed by a fish. The inviscid flow theory can indeed very accurately
model prey localization with a vibrating dipole (Ćurčić-Blake & van Netten 2006;
Goulet et al. 2007).

A gliding fish can use its lateral line to sense changes in the patterns of
its self-generated flow, caused by interaction with stationary obstacles (Windsor,
Tan & Montgomery 2008). Hassan (1985) studied the disturbances caused by
circular cylinders with a potential flow model, but viscous simulations of a fish
gliding toward or parallel to a wall showed that viscous effects are substantial
(Windsor et al. 2010a,b). Fernandez et al. (2011) showed that the flow disturbances
caused by a stationary cylinder actively interact with the boundary layer of
a sensing body, rendering potential flow predictions inaccurate. Despite some
encouraging results obtained using a potential flow model in a Bayesian framework
for cylinder identification (Fernandez et al. 2011), accuracy is limited because of
the rapid breakdown of the potential flow model. While the difficulty of solving the
Navier–Stokes equations makes their real-time application computationally infeasible,
accounting for viscous effects is essential for accuracy.

In order to develop procedures to model the development of unsteady disturbances,
we rely on methods of linear stability analysis that have proven effective in predicting
the dominant features of unsteady flows, such as wakes (Triantafyllou, Triantafyllou
& Chryssostomidis 1986; Oertel 1990) and separating boundary layers (Marquillie
& Ehrenstein 2003). The methods are widely used to study the transition of airfoil
boundary layers from laminar to turbulent (Reed, Saric & Arnal 1996), and can also
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predict the selective intensification that occurs when certain disturbances interact with
the boundary layer (Wu et al. 1999). In this paper, we show through a combination of
experiments, potential flow and viscous two-dimensional flow simulations, that linear
stability analysis can accurately model the interactions between the boundary layer of
a foil and the flow disturbances caused by a circular cylinder. More specifically, we
show that the boundary layer of the foil acts as a tuned amplifier whose properties
can be predicted using open water flow results. The accuracy of the potential flow
approximation can therefore be significantly improved by combining it with a linear
amplifier whose properties depend only on the Reynolds number, and which models
the boundary layer effects. Unlike previous work, such as Huerre & Monkewitz (1990)
and Theofilis (2011), we consider how a signal of interest, as opposed to noise, is
amplified by the boundary layer. By amplifying the disturbance caused by an object,
the boundary layer could help fish detect and identify obstacles using their lateral line.

The model problem, the experimental set-up, and the numerical methods used are
described in § 2. Specifically, the symbols and dimensionless numbers are defined in
§ 2.1, followed by a description of the experiments (§ 2.2) and the viscous (§ 2.3)
and potential flow (§ 2.4) simulations. The methodology of the boundary layer linear
stability analysis is presented in § 2.5. In § 3, we first describe the viscous effects on
a foil passing an elliptical or circular cylinder (§§ 3.1 and 3.2). We then show that
the boundary layer of the foil is subject to a convective instability that can amplify
the pressure disturbances caused by a passing cylinder (§ 3.3) and present a method
for incorporating this knowledge to improve potential flow predictions (§ 3.4 and
appendix B). In § 4, we consider the implications of the results presented in § 3. In
particular, we reconcile our results with the well accepted role of the boundary layer
as a mechanical filter affecting the lateral line. (§ 4.1). Finally, we provide numerical
results for the typical frequency of the disturbance along a blind Mexican cave fish,
and discuss how the boundary layer instability could help fish detect (§ 4.2) and
identify (§ 4.3) objects.

2. Materials and methods
We define a model problem with two-dimensional geometry to study the sensing

mechanisms of a fish detecting an object: the gliding fish is modelled as a rigid foil of
chord length L, while the object to be detected is represented by a stationary cylinder
of elliptical or circular cross-section.

2.1. Symbols and dimensionless numbers
The Reynolds number is based on the foil length L and the foil gliding speed Us as
defined in figure 1, such that for kinematic viscosity ν, Re=UsL/ν. In the simulations,
the reference frame is attached to the foil, and the free-stream Us =Usix defines the
positive x direction. All lengths are normalized by L, velocities by Us and times
by L/Us. The results are presented in dimensionless units where the leading edge
of the foil is located at x = 0, its trailing edge at x = 1 and t = 0 corresponds to
the time when the centre of the cylinder is at x = 0. The pressure coefficient Cp is
calculated from the pressure p such that Cp = 2p/(ρU2

s ), where the pressure is 0 at
infinity. The average velocity field around the foil in open water is denoted u0 and
the instantaneous velocity field is u = u0 + u′. Similarly, the instantaneous pressure
is decomposed as p = p0 + p′. Here, C denotes a circular cylinder with radius r
that passes at distance d from the foil (projected onto the y-axis). C1 is the cylinder
characterized by r= 0.1 and d= 0.1.
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FIGURE 1. (Colour online) (a) Sketch of the cross-section of the experimental apparatus
showing the location of the pressure ports (S1, S2 and S3). (b) Picture of the experimental
set-up. (c) Picture showing the laser sheet in a particle tracking set-up.

2.2. Towing tank experiments
Experiments were conducted in the SMART (Singapore–MIT Alliance for Research
and Technology) Centre testing tank in Singapore that has dimensions 3.6 m ×
1.2 m× 1.2 m. A NACA0018 foil with chord length L= 15 cm and span s= 60 cm
was towed past a stationary cylinder using an x–y gantry system supplied by Parker
Engineering and controlled using Parker motor controllers and proprietary motion
control software. The foil was cast with internal 3.18 cm PVC tubing to transmit
pressure from taps at the foil midspan to the top. Honeywell 19C015PG4K pressure
sensors were mounted on top of the foil, and measurements were collected at a
sampling rate of 500 Hz via a NI USB-6289 data acquisition card. The experimental
set-up and the location of the sensor ports are shown in figure 1.

The foil was towed at speed Us = 0.5 m s−1 (corresponding to Reynolds number
Re = 75 000) past a stationary cylinder of circular or elliptical cross-section. At its
closest point, the foil was d= 5–10 mm (0.03L< d< 0.07L) away from the cylinder.
A laser sheet and particle tracking system were used to visualize the flow as shown
in figure 1(c).

Note that the parameters used in the experiments do not match the values typically
found in nature. Whereas blind cave fish are best modelled by foils of 12–13 %
thickness (Windsor et al. 2010a), a thicker foil was necessary to fit the pressure
sensors and tubing. The Reynolds number was one order of magnitude larger than
values typically found in the cave fish to ensure a large signal-to-noise ratio. The
effects of Reynolds number and foil thickness are at most moderate in this subcritical
regime and do not change qualitatively the results.

2.3. Viscous numerical simulations
In order to map the entire velocity and pressure fields, we performed two-dimensional
viscous simulations on a Cartesian grid using the boundary data immersion method
(BDIM) described by Weymouth & Yue (2011) and Maertens & Weymouth (2014).
In BDIM, the prescribed body kinematics and Navier–Stokes equations are integrated
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over the fluid and solid domains with a kernel of finite radius ε. The resulting
blended equations are valid over the complete domain and enforce the no-slip
boundary condition at the fluid/solid interfaces. Problems previously studied with this
robust immersed boundary method include ship flows and flexible wavemaker flows
(Weymouth et al. 2006), shedding of vorticity from a rapidly displaced foil (Wibawa
et al. 2012), and a cephalopod-like deformable jet-propelled body (Weymouth &
Triantafyllou 2013). In Maertens & Weymouth (2014) we demonstrate the ability
of BDIM to handle several moving bodies and generalize the original method to
accurately simulate the flow around streamlined foils at Reynolds numbers of the
order of Re = 104. The numerical details of the simulation method follow those in
Maertens & Weymouth (2014) and are summarized in appendix A.

In the present simulations, the sensing vehicle is represented by a NACA0012
foil of unit length L = 1 attached to the computational frame, whereas a circular
cylinder moves with the free stream and passes at a distance d from the foil as
illustrated in figure 1. The computational domain extends 10L upstream of the foil,
12L downstream and 5.5L on either side. Constant velocity u=Us on the inlet, upper
and lower boundaries and a zero gradient exit condition with global flux correction
were used. The grid spacing was set to 200 points per chord length near the foil
(corresponding to 24 points across the thickness of the foil) with a 1 % geometric
expansion ratio for the grid spacing in the far-field.

Blind cave fish have typical lengths from L = 5 to 10 cm and swim at speeds
between Us = 5 and 15 cm s−1, corresponding to Reynolds numbers exceeding Re=
2500 (Teyke 1988). In the present paper, Reynolds numbers ranging from 2000 to
20 000 are considered. Since the parameters in the simulations were chosen to match
the values found in nature rather than those of the experiments, experimental and
viscous simulated results will only be qualitatively compared (§§ 3.1 and 3.2).

2.4. Potential flow model
In order to calculate the potential flow approximation to the problem, we implemented
in Matlab a two-dimensional constant source panel method. Using the same notation
as in the previous sections, we consider a free-stream Us and we denote by V
the prescribed body velocity, which is a function of the location x for multiple or
deforming bodies. n is the unit normal vector to the fluid/solid interface. The velocity
potential Φ is decomposed as

Φ(x)=Us · x+ φ(x), (2.1)

and satisfies ∇2Φ = 0 in the fluid with the boundary conditions:
∂φ

∂n
= (V −Us) · n along the fluid/solid boundary,

∇φ = 0 at infinity.
(2.2)

We solve this boundary-value problem by uniformly discretizing the periphery of
each object. The foil and the cylinder were discretized into 200 and 50 segments,
respectively.

If the viscous velocity field v is known, the potential flow model can be improved
by moving the fluid/solid interface δ∗ in the direction of its normal vector n. Here, δ∗
is the displacement thickness, calculated as

δ∗ =
∫ δ

0

(
1− v(y)

v(δ)

)
dy, (2.3)
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where y is the distance to the boundary and v the component of v tangential to the
boundary. δ is the overall thickness of the boundary layer, which we define as the
distance y normal to the wall where

dv
dy
(y)= 0.01

dv
dy
(0). (2.4)

If the boundary layer velocity is approximated by its time average, a constant
displacement thickness δ∗0 is used. In cases where the instantaneous displacement
thickness δ∗(t) is used, the rate of change of the displacement thickness directly
impacts the source strengths since the normal velocity of the boundary used in (2.2)
is

V · n=Vb · n+ dδ∗

dt
(2.5)

where Vb denotes the solid body velocity. Therefore, viscous effects responsible for
dynamic changes in the displacement thickness directly affect the pressure on the
surface of the foil.

2.5. Linear stability analysis of the boundary layer
A gliding fish or a foil in steady motion develops a boundary layer and steady-state
flow characterized by the velocity field u0 and pressure field p0. This basic flow field
satisfies the incompressible Navier–Stokes and continuity equations. The presence of
a solid object in the neighbourhood of the foil causes a perturbation to that basic
flow characterized by velocity field u′ and pressure field p′. Writing the Navier–Stokes
equation for the total flow field leads to the following disturbance equations:

∂u′

∂t
− 1

Re
∇2u′ + (u0 · ∇)u′ + (u′ · ∇)u0 + (u′ · ∇)u′ +∇p′ = 0, (2.6a)

∇ · u′ = 0. (2.6b)

Assuming that the radius of curvature is significantly larger than the boundary layer
thickness, we can omit curvature effects. As discussed in Reed et al. (1996), inclusion
of curvature and non-parallel effects improves the predictions only marginally.
Assuming that the perturbation is small and keeping only the first-order terms,
we get the linear disturbance equation for parallel flow. We then express the velocity
field u′ in terms of the streamline function that we write as a superposition of normal
modes:

ψ(x, y, t)= ϕ(y)ei(kx−ωt) (2.7)
where ω is a complex frequency and k a complex wavenumber. Their real parts
ωr and kr represent the physical frequency and wavenumber of the disturbance,
respectively, while their imaginary parts ωi and ki represent the time and space
growth (or decay) rates, respectively. The resulting linearized disturbance equation is
the Orr–Sommerfeld equation:

(u0 −ω/k)
(

d2

dy2
− k2

)
ϕ − d2u0

dy2
ϕ − i

k Re

(
d4

dy4
+ 2k2 d2

dy2
+ k4

)
ϕ = 0 (2.8)

with boundary conditions ϕ(y) = 0 and dϕ/dy = 0 at y = (0, +∞). Here, u is the
component of u tangent to the boundary and y is the normal distance to the boundary.
The pressure perturbation associated with mode ϕ is then given by

p(y)= (ω/k− u0)
dϕ
dy
+ ϕ du0

dy
+ i

k Re
d
dy

(
d2ϕ

dy2
− k2ϕ

)
. (2.9)
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FIGURE 2. (Colour online) Boundary layer fit for Re= [2000, 6250, 20 000]. (a) Number
of data points used to fit each boundary layer profile. (b) Maximum error between the
viscous simulation data points and the fitted profiles (normalized by Ue). (c) Boundary
layer velocity profiles (solid lines) fitted from viscous simulations data points (•) at
x= 0.8.

Re Ue δ99 a b c

2000 1.054 0.094 0.741 1.123 0.841
6250 1.042 0.060 0.438 1.214 0.878
20 000 1.038 0.040 0.394 0.797 1.130

TABLE 1. Fitted parameters for the velocity profiles at x= 0.8.

We discretize (2.8) using Chebyshev polynomials, which are particularly well suited to
solve the Orr–Sommerfeld equation (Orszag 1971), although other discretizations are
also commonly used (Theofilis 2011). For a given wavenumber k, the corresponding
eigenvalues ω and eigenmodes ϕ can be identified by solving the resulting eigenvalue
problem. We used a Matlab code adapted from Weideman & Reddy (2000) to solve
(2.8) with 128 points across a domain of length 1. The eigenvalue (frequency) with
largest imaginary part corresponds to the most unstable mode, called principal mode.
The frequency and wavenumber of principal modes are linked by the dispersion
relation that we write D(ω, k, Re)= 0.

The basic boundary layer is computed using the Navier–Stokes solver described
in § 2.3. In order to easily compute the velocity and its derivatives at any point in
the boundary layer, even at the wall where the immersed boundary method is least
accurate, the maximum velocity Ue and boundary layer thickness δ99 are estimated
and a profile of the form:

u0(y)=Ue tanh

[
a

y
δ99
+ b

(
y
δ99

)2

+ c
(

y
δ99

)3
]

(2.10)

is fitted for each x location and Reynolds number. The number of data points used to
fit the profiles and associated errors are shown in figure 2(a,b) for various Reynolds
numbers and locations along the foil. Only locations x> 0.3 are shown as this ensures
enough data points to properly fit the profile. Moreover, locations x< 0.3 will not be
needed in this study (see figure 7 for instance). Examples of profiles at x = 0.8 are
shown in figure 2(c) and the corresponding parameters can be found in table 1. These
profiles are used to compute u0 and its second-order derivative in (2.8).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.483


186 A. P. Maertens and M. S. Triantafyllou

0.4

(a) (b)

(c) (d )

Sensor 1

Sensor 1

Sensor 2

Sensor 2

Sensor 3

Sensor 3

0.2

0

–0.2

–0.4

0.2

0

–0.2

–0.4
–0.6

0.4 0.12

0.08

0.04

0

0.04

0.08

0.2

0

–0.2

–0.4

–0.5 0 0.5 –0.5 0 0.5

–0.5 0 0.5 –0.5 0 0.5 1.0

t t

FIGURE 3. (Colour online) Pressure traces at the three sensor locations shown in figure 1.
A vertical black dashed line at t= 0.2 shows a visual indication of when the potential flow
pressure starts diverging from the viscous pressure. (a–c) Experimental (solid lines) and
potential flow (dashed lines) traces for a NACA0018 (Re = 75 000) passing an elliptical
cylinder at various orientations θ and distances d indicated on the plots. The ellipse has
major radius 0.3 and minor radius 0.2. (d) Traces from viscous (solid lines) and potential
flow (dashed lines) simulations of a NACA0012 (Re= 6250) passing cylinder C1 (r= 0.1,
d= 0.1). In the potential flow simulation of (d) only, the foil has been augmented by its
displacement thickness δ∗0 (it is much thinner and not exactly known in the experimental
cases).

3. Results
3.1. Viscous and inviscid pressure traces

We first compare pressure traces recorded in the experiments and those simulated
with BDIM with potential flow estimates. Figure 3(a–c) shows traces of the pressure
at the three sensor locations indicated in figure 1(b) as the NACA0018 passes an
elliptical cylinder at three different orientations. For all orientations, as the foil passes
the cylinder (0< t< 1), significant differences arise between the pressure recorded by
the sensors and the inviscid theory predictions.

The value of the pressure coefficient measured by the first sensor increases as
the foil approaches the cylinder and slowly returns to its initial value after t = 0.
A displacement of the stagnation point toward the cylinder is responsible for the
pressure increase and this pressure trace is similar to what would be expected from
an inviscid fluid.

The pressure measured by the second sensor decreases as it approaches the cylinder
and the fluid accelerates as it has to go through the channel formed by the foil and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.483


Boundary layer instability helps identify objects 187

the cylinder. Once the sensor has passed the cylinder (t ≈ 0.2), the potential flow
model predicts that the pressure slowly returns to its initial value. However, the
experimentally measured pressure recovers much faster, before undergoing potentially
large oscillations. This feature, consistently observed across all experiments, cannot
be accounted for by the potential flow theory.

At the third sensor location, the potential flow model predicts that the pressure
slightly decreases as the foil approaches the cylinder, which is experimentally
observed. After the front of the foil has passed the cylinder (t ≈ 0), the inviscid
model predicts that the pressure returns to its initial value, before slightly decreasing
and increasing again as the sensor passes the cylinder. The experimental pressure,
however, keeps decreasing until the sensor passes the cylinder (t ≈ 0.5), and only
then does it rapidly recover its initial pressure. As has been observed for the second
sensor, the experimentally measured pressure roughly matches the inviscid pressure
until the second sensor passes the cylinder (t≈ 0.2), but afterwards the two pressures
differ significantly.

The experiments have shown consistently similar results for various orientations of
the ellipse. In figure 3(d) we compare the pressure traces calculated by the viscous
code with potential flow estimates for the circular cylinder C1 at Re= 6250. Despite
differences in the cylinder size and geometry, and the Reynolds number and foil
thickness, the viscous pressure traces present the same features as observed in the
experiments. The mechanism responsible for the discrepancy between an ideal and a
viscous fluid appears to have only a weak dependence on the geometry and Reynolds
number. Therefore, results from the present case are assumed to be representative of
most configurations and will be used in the remaining part of this study to illustrate
the discussion.

3.2. Flow field around a foil passing a cylinder: viscous effects
Figure 4(a,b) shows the velocity and pressure coefficient fields at two different times
for a NACA0012 passing near the cylinder C1 (r = 0.1, d = 0.1) at Re = 6250. The
presence of the cylinder deflects the streamlines, and in particular, figure 4(a) shows
that at t=0.3 the flow between the foil and the cylinder is accelerated and the pressure
decreased. In order to better visualize the changes due to the cylinder, figure 4(c,d)
shows the instantaneous velocity and pressure fields from which the steady state
has been subtracted. At t = 0.3, the cylinder pushes the flow near the leading edge
toward the upstream direction, resulting in a stagnation point shifted toward y > 0
and an increase in pressure on the cylinder side. Just downstream of the cylinder, the
flow is accelerated toward the trailing edge, resulting in a faster flow and therefore a
decrease in pressure. As the cylinder moves downstream (t= 0.9), the cylinder keeps
accelerating the flow between itself and the foil, causing a decrease in pressure. Even
though the pressure drop near the cylinder is much weaker at t= 0.9 than at t= 0.3,
the amplitude of the pressure drop on the foil is not reduced significantly. Upstream
of the low-pressure region on the foil, there is also a high-pressure region (x≈ 0.55)
that does not appear to be directly caused by the cylinder.

While in figure 4(e) magnification does not reveal any additional features, figure 4(f )
shows a pair of counter-rotating vortices in the foil boundary layer, around x= 0.55
and x= 0.8. These vortices correspond to the high- and low-pressure areas along the
foil and are responsible for the discrepancies observed earlier between viscous and
inviscid pressure predictions. Similarly, swirling flow along the rear half of the foil
passing near a cylinder has been observed experimentally, as illustrated in figure 5.
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FIGURE 4. (Colour online) Snapshots at t=0.3 (a,c,e) and t=0.9 (b,d, f ) as a NACA0012
foil passes near the cylinder C1 (r = 0.1, d = 0.1) at Re = 6250. (a,b) Velocity field
and pressure coefficient. (c,d) The steady fields u0 and Cp0 have been subtracted and the
displacement thickness δ∗(t) is shown by a solid grey line. (e,f ) Magnified view of the
area enclosed within the dashed line of (c,d).

(a) (b) (c)

FIGURE 5. (Colour online) Experimental flow visualization as a NACA0018 foil passes
near a cylinder at Re = 75 000. (a,b) Particles pathlines from t = 0.88 to t = 1.08. The
locations of the foil at the start and end times are represented with their respective colour
(the intersection is shown by an intermediate colour). (b) Magnified view of the swirling
flow region. (c) A representative pathline from t= 0.1 to t= 1 is represented with arrows
showing the direction of motion.

The presence of vortices implies that the pressure changes along the surface of a
foil passing close to a cylinder, cannot be accounted for solely by inviscid theory.
A second component, resulting from the boundary layer dynamics and containing
memory effects, is needed to complement the potential flow model. We argue
that if the changes in the boundary layer thickness are known, a potential flow
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FIGURE 6. (Colour online) (a,b,d) Pressure coefficient changes along a NACA0012
foil passing near the cylinder C1 at Re = 6250, as a function of space and time:
(a) calculated from potential flow using the steady-state displacement thickness;
(b) calculated with the Navier–Stokes solver; (d) calculated from potential flow using
the instantaneous displacement thickness. (c) Rate of change of displacement thickness.
Dashed line: cylinder location projected onto the x-axis; dotted line: location of a
hypothetical feature moving along the foil at half the free stream.

model accounting for them can provide pressure predictions in good agreement with
experiments and viscous simulations.

Figure 6(a) shows the pressure changes along the foil passing near the cylinder C1
as a function of time and space, simulated with the potential flow code, augmenting
the foil thickness by its steady-state boundary layer displacement thickness at
Re = 6250. Vertical sections of this plot at x = [0.03, 0.3, 0.57] would result in
the pressure traces of figure 3(d). As has been discussed previously, the cylinder
causes an increase in pressure near the leading edge, followed by a decrease in
pressure around the thickest part of the foil. Along the thinner rear half of the foil,
the pressure changes are much weaker.

Comparing the corrected potential flow prediction with the viscous simulation of
figure 6(b), we see very good agreement downstream of the cylinder, but very poor
agreement upstream of it. A strong low-pressure region moving at about half the
free stream (dotted line) characterizes the viscous pressure changes along the rear
half of the foil (top right quadrant). The amplitude of this secondary contribution to
the pressure changes varies with Reynolds number and cylinder geometry, but it is
noteworthy that it moves at about half the free-stream velocity for all of the cases we
have tested. In order to assess how much improvement to the potential flow model
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can be gained from knowledge of the boundary layer dynamics, the instantaneous
displacement thickness has been estimated from the viscous simulations.

Figure 6(c) shows the rate of change of displacement thickness as a function of
space and time. Here again, we can distinguish two components: a direct contribution
from the cylinder following its displacement (dashed line), and a delayed contribution
moving at half the free stream (dotted line). Even though the velocities involved
are only a few per cent of the free-stream velocity, their contribution to the local
source strength can be significant, as they are normal to the boundary. In other words,
although the boundary layer thickness δ∗(t) does not vary much, its changes result in
additional sources and sinks that significantly impact the pressure field.

Finally, in figure 6(d) we show the pressure changes estimated from the potential
flow using the instantaneous displacement thickness δ∗(t). Even though the amplitude
is slightly underestimated, the potential flow model is now able to predict the main
features observed on figure 6(b), including the low-pressure region moving at half the
free stream. This confirms our hypothesis that if the changes in the boundary layer
thickness are known, a potential flow model accounting for them can provide pressure
predictions in good agreement with viscous simulations.

3.3. Convective instability in the foil boundary layer
In the previous section, we showed that the discrepancy between the inviscid and
viscous pressure estimates can be accounted for by the dynamics of the boundary layer.
In this section we show that these dynamics can be predicted simply from the average
shape of the foil boundary layer in open water flow. In particular, we explain why the
secondary perturbation always moves at half the free-stream velocity and discuss the
effects of the Reynolds number.

As described in § 2.5, the Orr–Sommerfeld equation identifies the eigenvalues ω and
eigenmodes ϕ for a given boundary layer profile and wavenumber k. A boundary layer
profile is unstable if for a real wavelength kr, the imaginary part of the eigenvalue
corresponding to its principal mode, ωi, is positive. The boundary layer acts as an
amplifier for the selected waves that grow exponentially in time while travelling with
phase velocity cr=ωr/kr and group velocity cg= ∂ωr/∂kr determined by the dispersion
relation D(ω, k, Re)= 0.

Figure 7(a–c) shows isocontour plots of positive ωi as a function of space and
wavelength. At Re = 2000, only the posterior 10 % of the foil boundary layer is
unstable for wavenumbers between 10 and 20. However, as the Reynolds number
increases, the unstable region grows larger and encompasses more wavenumbers. At
Reynolds number 20 000, as much as half of the foil boundary layer span is unstable
and the most unstable wavenumbers are between 30 and 40. For all three Reynolds
numbers, unstable waves are convected downstream as they grow in time, which is
referred to as convective instability (Bers 1983).

A wave with wavelength 2π/k and initial amplitude A0(k) at onset time t0 and
position x0, has amplitude A(k, t, x) as it evolves in time and propagates downstream.
The amplitude ratio a is given by

a
(
k, t, x(t)

) = A/A0 = exp
[∫ t

t0

ωi
(
k, τ , x(τ )

)
dτ
]

= exp
[∫ x

x0

ωi
(
k, t(ξ), x

)
/cg dξ

]
. (3.1)
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FIGURE 7. Properties of the mean boundary layer velocity profiles computed from
viscous simulations, as a function of the location along the foil and wavenumber.
(a–c) Isocontours of positive ωi for the principal modes (0.5 between successive contours).
The dotted line shows the most unstable wavenumber at each location. (d–f ) Isocontours
of the maximum amplification in logarithmic scale (0.25 between successive contours).
The dotted line shows the wavenumber of largest amax at each location. (g–i) Isocontours
of the group velocity (0.1 between successive contours).

So if we denote by x1(k) the location where ωi(k)= 0, the maximum amplification is

amax(k, x)=max(A/A0)= exp
[∫ x

x1

ωi(ξ , k)/cg dξ
]
. (3.2)

Figure 7(d–f ) shows isocontours of positive amax. Similarly to what has been observed
in figure 7(a–c), as the Reynolds number increases, the unstable region starts earlier
in space and encompasses a wider frequency range. At Reynolds number 2000, the
most amplified wavenumber at the trailing edge is approximately 13 but amax remains
small (less than 1.1). At Re = 6250, the most amplified wavenumber at the trailing
edge is close to 23 and amax is now approximately 2. At Reynolds number 20 000,
the most amplified wavenumber is 36 with amax now greater than 12. When the
foil passes near a cylinder, principal modes of its boundary layer get excited with
an amplitude depending on the cylinder size and distance. The unstable modes are
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FIGURE 8. (Colour online) (a) Pair of counter-rotating vortices observed in the boundary
layer of a NACA0012 passing near the cylinder C1 at Re = 6250. Arrows show the
disturbance to the velocity field and colours the perturbation to the pressure field (the
colour scale is the same as in figure 4f ). (b) Principal mode for x= 0.7 and kr= 15 shown
above a boundary located at y= 0.04. The colour scale has been chosen to roughly match
that of (a).

amplified and propagate at the velocity determined by the dispersion relation, resulting
in the secondary perturbation observed in § 3.2.

Since for the range of Reynolds numbers considered disturbances with certain
wavenumbers will grow faster (exponentially, due to the instability of the boundary
layer) than with other wavenumbers, figure 7(d–f ) shows that the boundary layer
acts as a wavenumber-selective signal amplifier. The amplification rate and preferred
frequency range strongly depend on the Reynolds number: the larger the Reynolds
number, the larger the frequency and amplification rate. There is, however, one
property of the boundary layer that remains constant across our range of Reynolds
numbers: the phase velocity of the amplified waves. As shown in figure 7(g–i),
the phase velocity of the most unstable modes is always between 0.45 and 0.55,
explaining the observation made earlier that the secondary perturbation moves at half
the free-stream velocity.

In figure 8(a) we show a close-up of the pair of counter rotating vortices observed
in figure 4(f ) in the boundary layer of the NACA0012 foil. Next to it, in figure 8(b),
is shown the principal mode from the linear theory at x= 0.7 for kr= 15 (Re= 6250).
Despite the finite angle of the airfoil boundary with respect to the free-stream and a
noticeable difference between the strength of the two vortices in figure 8(a), this figure
is strikingly similar to figure 8(b). This similarity is another indication that despite the
approximations employed, the linear stability theory is able to capture the dynamics of
the boundary layer responsible for the secondary pressure perturbation. As observed
by Chomaz (2005), linear stability theory has been shown ‘by serendipity’ to provide
accurate predictions of the frequency and wavenumber of basically nonlinear flows.
This proves once more to be the case in this problem.

Finally, figure 9 illustrates how the boundary layer properties discussed above
impact the pressure distribution along a foil passing near a cylinder. Similarly to
figure 6(b), figure 9 shows the pressure changes along the foil passing near the
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FIGURE 9. (Colour online) Viscous simulations of pressure coefficient changes as a
function of time t and space x along a NACA0012 foil passing near the cylinder C1 for
(a) Re=2000 and (b) Re=20 000. Dashed line: cylinder location projected onto the x-axis;
dotted line: location of a hypothetical feature moving along the foil at half the free stream.

cylinder C1, now at Reynolds number Re= 2000 and 20 000. The primary disturbance,
in the bottom half of the figure, is very similar for both Reynolds numbers, but the
secondary perturbation, characterized by a low pressure in the top right quadrant,
changes with Reynolds number. Whereas at Re= 2000 the secondary perturbation is
small, at Re= 20 000 the amplification is such that by the time the instability reaches
the trailing edge, its amplitude is larger than the disturbance that caused it.

3.4. Enhancing potential flow predictions with instability results
We have shown that the pressure changes along a foil passing near a cylinder have
two main components: the first part can be approximated accurately by potential flow
model, while the second part can be accounted for by the dynamics of the boundary
layer, acting as an amplifier. The properties of the latter can be predicted from the
average boundary layer shape in open water, but the resulting convective instability
amplifies the features of the unsteady flow initially predicted by inviscid theory.

Let us consider a cylinder C causing a change in pressure coefficient Cp′(x, t, C ).
We denote by p̃(k, t, C ) the discrete Fourier transform of Cp′ from the space to the
wavenumber domain, using for our numerical results 128 points. We decompose the
pressure changes into two components:

p̃(k, t,C )= p̃1(k, t,C )+ p̃2(k, t,C ). (3.3)

If we denote by p̃i the pressure changes estimated by inviscid theory augmenting the
foil by δ∗0 :

p̃1(k, t,C )' p̃i(k, t,C ). (3.4)

Following linear stability analysis, the secondary pressure changes can be approximated
by

p̃2(k, t,C )' p̃i(k, t0,C ) exp
(∫ t

t0

ωi(k, τ ) dτ
)

1t>t0 ' p̃i(k, t0,C ) a(k, t) (3.5)

for an appropriate time t0. This expression is valid until the disturbances reach the
trailing edge and are shed into the wake.
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FIGURE 10. Pressure coefficient changes along a NACA0012 foil passing near the
cylinder C1, as a function of wavenumber and time, for three Reynolds numbers,
(a,d) Re = 2000, (b,e) Re = 6250 and (c,f ) Re = 20 000: (a–c) |p̃i(k, t, C )| inviscid
simulation; (d–f ) |p̃(k, t, C )| viscous simulation. Resolution in the wavenumber domain
is limited to 2π.

Using simulations for cylinders ranging in radius from 0.025 to 0.8 and placed
at distances ranging from 0.05 to 0.8 (see appendix B), an estimated amplification
coefficient â(k, t) has been calculated, where

|p̃(k, t,C )− p̃i(k, t,C )| = â(k, t)|p̃i(k, t0,C )| + ε. (3.6)

Here, t0 = 0.15 has been chosen, which roughly corresponds to the time when the
amplitude of the inviscid disturbance reaches its maximum. Equations such as (3.6)
are referred to as varying-coefficient models, which arise in many scientific areas,
and numerous algorithms have been developed in the last 20 years to estimate their
parameters (Hastie & Tibshirani 1993; Fan & Zhang 1999). The main advantage of
these models over the more general form

p̃(k, t,C )= f (k, t, p̃i(k, t,C ), p̃i(k, t0,C ))+ ε (3.7)

is that they can handle large dimensions, especially when their use is physically
motivated as here. Details about varying-coefficient models and the algorithm used to
estimate â(k, t) are found in appendix B.

Figure 10 shows the pressure coefficient changes along a NACA0012 foil passing
near the cylinder C1, as a function of the wavenumber k and time t, for three Reynolds
numbers 2000, 6250 and 20 000. Note that since the length of the foil is L = 1,
the resolution in the wavenumber domain is limited to 2π. As in the space domain
plots, the potential flow pressure changes shown in figure 10(a–c) are similar for all
Reynolds numbers and are only measurable as the cylinder passes the front half of
the foil (0 < t < 0.5). The viscous simulations shown in figure 10(d–f ) predict a
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FIGURE 11. Amplification coefficient â(k, t) estimated from viscous simulations as a
function of wavenumber and time for (a) Re= 2000, (b) Re= 6250 and (c) Re= 20 000.

distinctive second component to pressure changes that appears later in time, is stronger
in magnitude, and spans a wider range of wavenumbers for larger Reynolds numbers.

Figure 11 shows isocontours of the estimated coefficient â(k, t) for three Reynolds
numbers. The results are consistent with the observations from § 3.3: the higher the
Reynolds number, the larger the amplification rate and the value of the most amplified
wavenumber are. The values of the most amplified wavenumbers are also very close
to those predicted by linear theory: around k= 18 at Re= 2000, k= 26 at Re= 6250
and k = 37 at Re = 20 000. The values found for amplification, however, are much
smaller than the upper bound amax found from linear theory and plotted in figure 7(d–
f ). Whereas according to the linear stability theory â(k, t) could reach 2 for Re= 6250
and 10 for Re = 20 000, the values found here do not exceed 1 and 3, respectively.
This difference can be explained by the fact that pressure changes near the leading
edge of the foil largely contribute to p̃i(k, t0,C ), whereas they do not contribute much
to p̃2(k, t0,C ) due to the high stability of the boundary layer near the leading edge.

We define the test error as the average value of the residual ε as defined by (3.6),
calculated on a test set randomly chosen from the available data set and not used
to estimate â(k, t). The remaining part of the data is referred to as the training set
(see appendix B for details). Table 2 shows the average and standard deviation of
the inviscid and viscous pressure changes for three Reynolds numbers and compares
the test error to the difference between the viscous and potential flow models. While
the magnitude of the inviscid perturbation decreases with increasing Reynolds number
due to a thinner boundary layer, increased boundary layer instability induces a larger
viscous disturbance. As a result, even after using the steady displacement thickness,
the average error in the potential flow model is between 65 and 80 %. By adding the
Reynolds number dependent component â(k, t)|p̃i(k, t0,C )| to the model, we are able
to reduce the error substantially, bringing it down to values between 25 and 40 %.

Figure 12 compares the viscous residual |p̃(k, t, C ) − p̃i(k, t, C )| (figure 12a–c)
to the fitted function â(k, t)|p̃i(k, t0, C )| (figure 12d–f ). The simple form of (3.6) is
able to enhance the potential flow model and reproduce the basic Reynolds number
dependent features. In particular, the increased amplification of high frequencies and
increased delay of the secondary perturbation at high Reynolds number are captured
by the model. The memory and amplification effects due to the boundary layer are
thus added to the inviscid perturbation without significant complexity. Thanks to its
simplicity and the wide range of cylinder sizes and distances used to fit it, the model
is likely to generalize well to other obstacle shapes. A more complex model could,
however, achieve better quantitative agreement with the viscous simulations.
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FIGURE 12. Pressure coefficient changes along a NACA0012 foil passing near the
cylinder C1, as a function of wavenumber and time, for three Reynolds numbers,
(a,d) Re= 2000, (b,e) Re= 6250 and (c,f ) Re= 20 000. (a–c) Viscous residual |p̃(k, t,C )−
p̃i(k, t, C )|, (d–f ) fitted model â(k, t)|p̃i(k, t0, C )|. Resolution in the wavenumber domain
is limited to 2π.

Re 2000 6250 20 000

|p̃i| 0.123 (±0.009) 0.096 (±0.007) 0.092 (±0.006)
|p̃| 0.149 (±0.008) 0.168 (±0.008) 0.251 (±0.010)
|p̃− p̃i|/|p̃| 0.668 (±0.051) 0.704 (±0.032) 0.772 (±0.018)
|ε|/|p̃| 0.272 (±0.016) 0.284 (±0.015) 0.389 (±0.020)
|ε|/|p̃− p̃i| 0.409 (±0.025) 0.404 (±0.017) 0.504 (±0.025)

TABLE 2. Average and standard deviation of the training data set inputs and test error.

4. Discussion
4.1. The boundary layer: filter or amplifier?

We showed that the fish boundary layer acts as an amplifier of the pressure disturbance
caused by a nearby cylinder. In the lateral line literature, the boundary layer is often
viewed as a filter (McHenry et al. 2008), damping mostly low frequencies. The two
views, however, are not contradictory as they refer to different problems.

The superficial neuromasts are located on the skin of the fish, contained within
the boundary layer. Therefore, the measured velocity is attenuated depending on the
ratio of neuromast height to boundary layer thickness. When the fish is stationary, the
thickness of the boundary layer that develops due to an external stimulus reduces with
increasing stimulus frequency; hence the boundary layer acts as a high-pass filter for
the superficial neuromast excitation (McHenry et al. 2008). The neuromasts located
inside the canals have been shown to respond to the gradient of pressure below
typically a few hundred Hertz (van Netten 2006). In the absence of free-stream
velocity, it is possible to predict the stimulus detected by the canal neuromasts
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using a potential flow model (Ćurčić-Blake & van Netten 2006; Goulet et al. 2007;
Rapo et al. 2009). Indeed, the thin boundary layer that develops over the fish does
not affect the pressure, as there is no pressure gradient across the thickness of the
boundary layer.

All of these studies have been conducted assuming a stationary fish next to
a vibrating sphere, when the fish boundary layer is solely due to the vibrating
dipole. Several studies have shown that moving fish can also use their lateral line
to discriminate stationary objects or arrangements (von Campenhausen et al. 1981;
Hassan 1986), but little is known about how the viscosity affects the measured signal.
In this paper, the fish is assumed to be gliding, resulting in a thicker boundary layer
and typically much higher velocities than for a stationary fish. In this configuration,
the surface neuromasts may be already saturated and, hence, unable to detect external
stimuli, but the canal neuromasts are still able to detect external stimuli (Engelmann
et al. 2002). Windsor et al. (2010a,b) recently showed that inviscid simulations
significantly underestimate the pressure changes along a fish gliding toward or
parallel to a wall. Indeed, viscosity causes the fish to displace more water, which can
be modelled by adding a stationary displacement thickness. We have shown here that
the dynamics of the boundary layer can further enhance the signal measured by the
lateral line, as the boundary layer amplifies certain wavelengths and frequencies.

In conclusion, depending on the specific problem studied, the boundary layer can
either act as a filter or an amplifier.

4.2. Lateral line stimulus and effect of swimming speed
In order to assess the effect of the fish gliding speed we consider specific examples.
We start with a fish of length L = 10 cm gliding at two body lengths per second,
with a Reynolds number Re = 20 000. A large portion of its boundary layer will be
convectively unstable with the most unstable wavelength equal to 17 mm (figure 7f ),
corresponding to a frequency around 5 Hz. If the same fish glides at 0.8 body lengths
per second, with a Reynolds number Re = 6250, the most unstable wavelength is
27 mm (figure 7e), with a frequency of 1.5 Hz.

We estimate next the magnitude of the stimulus caused by a nearby cylinder.
Figure 13 shows the magnitude of the pressure coefficient changes due to a cylinder as
a function of its radius r and distance d. The upper threshold in the detectable distance
depends on the background noise, so the isocontour lines represent detectability limits
for various noise levels. As expected, a cylinder is more likely to be detected the
larger its radius is and the closer it gets. Figure 13(a–c) shows that according to the
potential flow model, the signal from a given cylinder is slightly stronger at lower
Reynolds number due to a thicker boundary layer, but the increase in detectability
from Re= 20 000 to Re= 2000 is no more than 30 %.

For Reynolds numbers Re = 2000 and Re = 6250, the amplitude predicted by the
potential flow model is in good agreement with the viscous simulations, also within
30 %. Indeed, despite qualitative differences between the pressure signal predicted by
the two methods, the amplification factor for these Reynolds numbers is less than one,
as shown in figure 11, so the boundary layer does not increase the amplitude of the
pressure signal.

However, at Re = 20 000, we have estimated amplification factors greater than
two for wavelengths between 0.1 and 0.2. As a result, the amplitude of the viscous
pressure signal can be much larger than what would be predicted within an inviscid
fluid. If, for example, we assume that pressure coefficient changes larger than 0.4
can be detected, without the effects of the pressure amplification by the boundary
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FIGURE 13. Magnitude of the pressure coefficient changes (max |Cp′ |) estimated from
potential flow (a–c) and viscous simulations (d–f ).

layer, a cylinder of radius r= 0.3 could only be detected at a distance less than 0.06.
Because of the amplification, however, it can be detected from twice as far.

It is important to note that since only two-dimensional flows are considered in this
paper, pressure changes are overestimated compared with a three-dimensional case.
However, the same methodology can be applied to three-dimensional flow, and the
results qualitatively transfer to three dimensions. Moreover, comparison between two-
and three-dimensional viscous and inviscid simulations of a fish approaching a wall
suggest that viscosity impacts the magnitude of the pressure changes more importantly
than three-dimensionality (McHenry & Liao 2014).

4.3. Can the boundary layer facilitate object identification?
As we have shown, the boundary layer acts as a pressure signal amplifier in the
posterior part of the foil, whereas in an inviscid fluid a cylinder would cause
significant pressure changes only along the anterior half of the foil. Since both
the anterior and posterior parts of the foil are subject to large pressure variations,
object detection becomes easier in a viscous rather than in an inviscid fluid. An
important question is whether viscous effects can also help with shape identification.

Figure 7 shows that the boundary layer amplifier has a large bandwidth. The
bandwidth, defined as the range of wavenumbers for which the amplification is at
least 1/

√
2 of the maximum amplification, is indeed around 20 for both Re = 6250

and Re = 20 000. Therefore, the frequency content of the original signal is largely
preserved in the pressure signal after amplification, preserving information concerning
the size, distance and shape of the cylinder.

For example, figure 14 shows the difference between the pressure coefficient along
a NACA0012 foil passing near the cylinder C1, with r = 0.1, d = 0.1, and a slightly
larger cylinder, placed further away, cylinder C2, with r = 0.125, d = 0.12, both
at Reynolds number Re = 6250. Stimulus differences estimated by potential flow
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FIGURE 14. (Colour online) Difference between the pressure coefficient changes due to
two cylinders: (i) C1, Cp(r = 0.1, d = 0.1) and (ii) C2, Cp(r = 0.125, d = 0.12) using
potential flow predictions (a) and viscous simulations (b), both at Re= 6250.

(figure 14a) and by viscous simulations (figure 14b) are provided. Both estimates
agree that the magnitude of the stimulus due to C1 is larger, as indicated by
the positive difference at (x = 0, t = 0) followed by a negative difference around
(x = 0.15, t = 0.1), corresponding to the positive and negative peaks of the stimulus
as seen in figure 6, respectively. The peaks associated with C2 are also wider, as
evidenced by the negative difference on either side of the positive difference, and vice
versa. Along the rear half of the foil, however, the inviscid difference is much weaker
and has a much lower frequency than the viscous one. In the viscous simulation, the
information that the stimulus is stronger but narrower is amplified by the boundary
layer, and hence a negative difference, surrounded with positive difference, is seen
moving along the posterior half of the foil at half the free-stream velocity. This
demonstrates that the boundary layer, in addition to amplifying the pressure signal
due to a cylinder, also amplifies the difference between signals caused by two different
cylinders, therefore facilitating object identification.

This difference in the amplified disturbance due to different cylinders is even
stronger at higher Reynolds number, Re = 20 000, where the amplification is larger.
Figure 15(a–c) shows disturbances due to three different cylinders, with radius
r= 0.10, 0.25 and 0.50; and placed at distances d= 0.06, 0.10 and 0.12, respectively.
All three figures contain a characteristic clockwise vortex, corresponding to a pressure
coefficient drop of approximately 0.25. The typical width of this main vortex increases
from approximately 0.07 on figure 15(a), to 0.1 in figure 15(b), to 0.12 in figure 15(c).
Whereas the small wavelength of the clockwise vortex in figure 15(a) leaves room for
a counter-clockwise vortex of comparable strength, this second vortex is much weaker
in figure 15(b), and hardly exists in figure 15(c). It appears clearly from these three
figures that the wavelength of the amplified disturbance increases with the distance
and radius of the cylinder. The difference in the frequency content of the disturbance
caused by different objects, as convected by the unstable boundary layer, can clearly
be used to distinguish between the objects.

5. Conclusion
The inspiration for this study derives from the reported function of the fish canal

neuromasts for detecting pressure gradients. The model problem used in the study, that
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FIGURE 15. (Colour online) Snapshots at t = 1 showing the velocity field and pressure
coefficient disturbances as a NACA0012 foil passes near three different cylinders with
radius r at a distance d: (a) d = 0.06, r = 0.10; (b) d = 0.10, r = 0.25; (c) d = 0.12,
r= 0.50; all at Re= 20 000.

of a rigid two-dimensional foil moving at a steady speed near a stationary cylinder, is
intended to represent a gliding fish mapping a stationary object, as observed by von
Campenhausen et al. (1981).

In an inviscid formulation, potential flow can predict accurately the pressure
induced by the object on the foil and hence continuous pressure measurements
at a finite number of locations can yield the shape of the object (Hassan 1985;
Fernandez et al. 2011). The experiments we conducted, however, show that potential
flow predictions are accurate only over the front half of the body and deviate
substantially over the posterior half, with large pressure oscillations present, as shown
in figure 3. Hence, potential flow predictions, although easy to obtain even in real
time, cannot be used. Whereas under certain conditions the pressure along the body
of the fish is not influenced by the viscosity (Rapo et al. 2009), when moving in the
proximity of objects, it is affected by the viscous interaction between the body and
the surrounding flow. When moving toward or gliding parallel to a wall, the inviscid
assumption predicts the correct shape of the pressure changes but underestimates
them (Windsor et al. 2010a,b). We show that for objects of general shape, dynamic
interactions between the boundary layer and the object generate flow and pressure
features that do not exist in an inviscid fluid. While there is no pressure gradient
across the thickness of the boundary layer, the velocity profile selectively amplifies
unsteady perturbations in the form of large vortices travelling at half the free-stream
velocity, creating large unsteady pressure variations.

Linear stability analysis of the average boundary layer profile in open water,
i.e. in the absence of any nearby obstacle, shows that the large pressure fluctuations
in the boundary layer consist of the pressure disturbances induced by the object,
amplified through a convective instability of the flow; hence, they are predictable. A
methodology is established whereby the potential flow predictions are used to drive an
amplification function derived through stability analysis. Without significant additional
computations, the resulting model adds to the potential flow pressure prediction a
Reynolds number dependent component caused by the passing cylinder, featuring
memory and amplification effects. The predictions agree with viscous simulation
results, reducing the error by a factor of two compared to the potential flow model,
even when the latter includes the steady displacement thickness. Such a model can
dramatically improve the performance of existing object identification algorithms
(Fernandez et al. 2011) and the ability of underwater vehicles to identify objects by
measuring pressure fluctuations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.483


Boundary layer instability helps identify objects 201

The unsteady pressure fluctuations predicted by linear stability analysis can enhance
detectability of the object only if they are combined with potential flow results,
because one must know the features of the signal that is being amplified. Therefore,
the devised methodology places importance on both the potential flow and the linear
instability results. While the features of the pressure induced by a stationary object
within the potential flow theory are rather simple and intuitive, the features of the
selectively amplified disturbances in the boundary layer are not, and hence would
require animal learning in order to be used for detection. There are, indeed, examples
of animals training themselves to perform complex tasks, such as trout holding place
in the vortical wake of bluff cylinders in steady flow (Liao et al. 2003). Given the
simple decomposition of the pressure signal we show in this paper, it is plausible
that live fish could employ such self-training to detect and map nearby objects.
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Appendix A. Boundary data immersed method
In BDIM, the prescribed body kinematics and Navier–Stokes equations are

integrated over the fluid and body domains (respectively Ωf and Ωb) and convolved
with a kernel of radius ε = 21x, where 1x is the finest grid spacing of the mesh.
This has the effect of blending the equations smoothly over the fluid/body interface.
The kernel used is

Kε(x)=
{
(1+ cos(|x|π/ε))/(2ε) if |x|< ε
0 if |x|> ε (A 1)

and we call respectively µε0 and µε1 its zeroth and first central moments (see Maertens
& Weymouth 2014 for details).

The BDIM equations for the smoothed velocity field uε are valid over the complete
domain Ω = Ωf ∪ Ωb and enforce the no-slip boundary condition at the interface.
These equations, integrated over a time-step 1t, are

uε(t+1t)= v(t+1t)+
(
µε0(d)+µε1(d)

∂

∂n

)
(uε(t)− v(t+1t)+R1t − ∂P1t)

(A 2)
∇ · uε(t+1t)= 0 (A 3)

where v is the velocity field associated with the closest body, n the unitary normal to
the closest fluid/solid boundary (pointing toward the fluid), and d the signed distance
to the closest boundary (d > 0 within the fluid, d < 0 inside a body). ∂P1t is the
pressure impulse over 1t and R1t accounts for all of the non-pressure terms:

∂P1t =
∫ t+1t

t
∇p dτ (A 4)

R1t =
∫ t+1t

t

[
− (uε · ∇) uε + 1

Reu
∇2uε

]
dτ . (A 5)
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FIGURE 16. Flow past a stationary cylinder at Re= 100 with grid size 1x/D= 1/120. (a)
Instantaneous vorticity field in the whole computational domain. Dashed lines show where
the grid expansion starts. (b) L∞ norm of the velocity and pressure error versus grid size.
The grid spacing is 1x/D= h/120.

Equation (A 2) have been implemented in a Cartesian grid implicit large eddy
simulation (ILES) code using an Euler explicit integration scheme with Heun’s
corrector. They are posed on a staggered Cartesian mesh and central differences are
used for all spacial derivatives except in the convective term which uses a flux-limited
QUICK scheme for stability.

The canonical case of two-dimensional flow past a static cylinder at Reynolds
number Re= 100, illustrated in figure 16(a), is first considered in order to assess the
numerical properties of the proposed method. The flow is simulated in a 28 × 28
diameter D domain, constant velocity u=U on the inlet, upper and lower boundaries,
and a zero gradient exit condition with global flux correction. The grid size is
parametrized by parameter h such that the spacing is 1x/D= h/120 near the cylinder
and uses a 1 % geometric expansion ratio for the spacing in the far-field. Since an
exact solution for this flow does not exist, we use the solution computed on a highly
resolved grid (h = 1) as a baseline for computing the error. The same flow is then
computed for h = [3, 4, 6, 8, 12], and the velocity and pressure errors are shown
on log–log plots in figure 16(b), together with a dashed line denoting quadratic
convergence.

Next BDIM is applied to a more challenging high-Reynolds-number streamlined-
body case relevant to the present work. The two-dimensional flow past a stationary
SD7003 aerofoil at 4◦ angle of attack is computed in a 15 × 20 chord lengths
domain, as illustrated in figure 17. Constant velocity u = U on the inlet, upper and
lower boundaries, and a zero gradient exit condition with global flux correction are
used. The grid spacing is set to 200 points per chord length L near the aerofoil
(corresponding to 16 points across the thickness of the aerofoil) with a 1 % geometric
expansion ratio for the grid spacing in the far-field. Figure 18(a) shows the average
pressure coefficient Cp along the aerofoil and compares it with the body-fitted
simulation from Castonguay, Liang & Jameson (2010). Since calculation of the
skin friction is carried out ε away from the boundary, it is accurate only if the
viscous sublayer is thicker than ε, which is not the case in the simulations above. In
order to accurately calculate the skin friction coefficient Cf and separation point for
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FIGURE 17. Flow past a stationary SD7003 aerofoil at 4◦ angle of attack and Re= 10 000
with grid size dx/L=1/200. Instantaneous vorticity field. (a) Whole computational domain.
(b) Zoomed in around the aerofoil. Dashed lines show where the grid expansion starts.
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FIGURE 18. (Colour online) Average pressure (a) and skin friction (b) coefficients around
a SD7003 aerofoil at 4◦ angle of attack and Re = 10 000 with grid size 1x/L = 1/200.
For (b), 1y=1x/4.

this stationary, low angle of attack aerofoil, a finer grid in the cross-flow direction
is needed. Here, we increased the density in the y direction by a factor of four.
Correcting for the fact that uε(0)=µε1∂uε/∂n, we calculated the skin friction as

Cf (x)= 2ν
U2

uε(x+ εn) · n
ε +µε1(0)

, (A 6)

where uε(x + εn) is linearly interpolated from the grid. As shown in figure 18(b),
BDIM predictions compare well with the body-fitted simulations from Uranga et al.
(2011). We are able to accurately predict the skin friction, the location of separation
(around x/L= 0.38 versus x/L= 0.37 for Uranga et al. (2011)) and even the transition
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of the boundary layer to turbulent as indicated by the sudden dip in Cf around x/L=
0.94.

Appendix B. Varying-coefficient model

Varying-coefficient models form a locally parametric family of structured models
that assume the form of the multivariate regression function as

g(s, z)= zta(s). (B 1)

Varying-coefficient models can be seen as a generalization of linear regression in
which the coefficients are adjusted locally. By reducing the dimensionality of the
functions that need to be identified, structured models are a popular way to avoid
the difficulties of large dimensions. If the data to model indeed has the structure of
(B 1), then a varying coefficient model can significantly decrease the variance while
not increasing the bias, and is therefore expected to fit better than an unstructured
model such as (3.7). There are several approaches to estimate a(s) in (B 1), among
which kernel-local linear regression (Fan & Zhang 1999), which has been selected
here for its simplicity.

The model from (B 1) is estimated from a data set consisting of n triplets (sj, zj, yj).
The local linear estimator â(s) is calculated by minimizing:

L(a, B)=
n∑

j=1

[yj − zt
ja− zt

jB(sj − s)]2Kh(‖sj − s‖), (B 2)

where Kh(t) = K(t/h)/h with K the unit Gaussian kernel. In the case of (3.6), sj =
(kj, tj) with dimensionality ds= 2, zj= p̃i(kj, tj,Cj) with dz= 1, and yj= |p̃(kj, tj,Cj)−
p̃i(kj, tj, Cj)|. Here, a is a dz-vector while B is a dz × ds matrix. The smoothing
parameter h is chosen by 10-fold cross-validation.

Let us define

Z = [z1, . . . , zn]t, y= [y1, . . . , yn]t
Ss = [s1 − s, . . . , sn − s], ws = diag

[
Kh(‖s1 − s‖), . . . ,Kh(‖sn − s‖)]

Γs =
[
Z , diag[Ss(1, :)]Z , . . . , diag[Ss(ds, :)]Z

]
.

 (B 3)

The local linear estimator solution to the optimization problem (B 2) is

â(s)= [Idz, 0(dz,ds)

] (
Γ t

s wsΓs
)−1

Γ t
s ws, y, (B 4)

where Idz is a size dz identity matrix and 0(dz,ds) a size dz× (dz ∗ ds) matrix with each
entry being 0.

The viscous simulations used to estimate â consist of cylinders ranging in radius r
from 0.025 to 0.8 and in distance d from 0.05 to 0.8. For each cylinder, wavenumbers
k = 2π[2, 3, . . . , 8] are used, as well as a number of time steps proportional to the
distance between the centre of the cylinder and the foil. Table 3 shows the size and
distance of the cylinders used to estimate â, as well as the number of time step for
each cylinder. This represents a total of 363 × 7 = 2541 data points, half of which
were randomly assigned to the learning set, while the other half was only used for
testing and to compute the test error reported in table 2.
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r d
0.05 0.1 0.2 0.4 0.8

0.8 5 5 5 4 4
0.4 9 9 7 6 6
0.2 17 14 11 7 —
0.1 27 21 14 9 —
0.05 39 27 17 — —
0.025 49 33 18 — —

TABLE 3. Number of time steps used for each cylinder radius r and distance d.
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