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Laws and Possibilities

Arnold Koslow†

The initial part of this paper explores and rejects three standard views of how scientific
laws might be systematically connected with physical necessity or possibility. The first
concerns laws and their consequences, the second concerns the so-called counterfactual
connection, and the third concerns a possible worlds construction of physical necessity.
The remaining part introduces a neglected notion of possibility, and, with the aid of
some examples, illustrates the special way in which laws reduce or narrow down
possibilities.

1. Introduction. There are three influential theories that try to show that
there is something distinctive and insightful about scientific laws—their
modal character. The first attempts to show that scientific laws have nomic
necessity, the second claims that laws have a modality that is revealed in
the connection between laws and their associated counterfactual condi-
tionals, and the third proposes that scientific laws are those generalizations
that are true in all physically possible worlds. The aim of this study is to
review those theories, set them aside as not having much promise, and
describe a new way of connecting laws with possibilities.

The first proposal was supposed to show that laws, unlike ordinary
generalizations, have nomic or physical necessity. Something is physically
necessary if and only if it follows from the collection of all laws Equiv-
alently, something is physically possible if and only if it is compatible with
the set of all laws. It follows immediately that every law is physically
necessary since it is among the set of all laws, from which it follows
logically. That’s a little too facile a conclusion. Though the definition of
“physically possible” is logically very economical, relying just on the no-
tions of logical implication and scientific law, nevertheless this particular
account of physical necessity is a mixed blessing. On the one hand, it’s
economically constructed. On the other, it is a very strange modal, es-
pecially as a kind of necessity, since every iteration of it is false. For
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720 ARNOLD KOSLOW

example, the physical necessity of something will fail to be physically
necessary: If L is physically necessary, then it is a consequence of the set
of scientific laws, but that truth is itself not a consequence of scientific
laws. Therefore L’s being physically necessary is not physically necessary.
So this proposal for physical necessity is in worse shape than one could
imagine. There’s the simplicity of its construction on the one hand, and
its pathology as a modal of necessity on the other. Moreover, this account
of the physical necessity of laws tells us nothing significant about them,
because no specific information about laws went into this definition of
“physical necessity.” You don’t have to know anything about laws to
know that they are physically necessary: All you have to know is the
elementary fact about implication that the set of all laws logically implies
each and every one of its members. That’s not much to learn, and it’s
not a deep truth specific to laws. On balance, this first attempt to connect
laws with physical possibilities seems to me very unpromising.

One final note: This particular notion of physical necessity might be
used to try to separate laws from initial conditions or boundary condi-
tions. I think that it would be a mistake. Uppermost in the motivation
of this view of physical necessity is the justification of the view that laws
are physically necessary, so that a non-Humean account of laws is needed.
It isn’t clear that, on this account, only laws are physically necessary. In
fact, on this account of physical necessity, anything that follows from
physical necessities is also physically necessary (a closure condition). As
there are many consequences of laws that aren’t laws, it follows that being
physically necessary would not distinguish laws from nonlaws. Nor was
it intended to do so. However there is a second strategy that relates laws
to possibilities by means of a counterfactual connection.

2. The Counterfactual Connection. There is supposed to be a connection
between laws and their corresponding counterfactuals that is often used
as the hallmark for distinguishing laws from other generalizations (so-
called “matter of fact” generalizations or “accidental” generalizations).
What has seemed to have gone relatively unnoticed is that this connection
also shows how laws are related to a special kind of modal necessity or
possibility—indeed that expressed laws just are modal statements of a
special kind. The familiar connection is simply that laws are distinguished
from other generalizations in that they imply their corresponding coun-
terfactuals. There are at least two readings which are not usually distin-
guished in the literature. On the first reading, the claim is that

(1) If any A is a law, then A implies its corresponding counterfactual
CC(A).

Where “CC(A)” refers to the counterfactual corresponding to A, when

https://doi.org/10.1086/421413 Published online by Cambridge University Press

https://doi.org/10.1086/421413


LAWS AND POSSIBILITIES 721

“A” is a generalization. Let “L(A)” be the statement “It is a law that A,”
so that (1) says that if L(A), then .A ⇒ CC(A)

On the second reading,

(2) The statement that A is a law, “L(A),” implies that CC(A).

That is, . Thus the counterfactual corresponding to theL(A) ⇒ CC(A)
generalization “All Fs are Gs” is “If anything were an F, then it would
be a G,” and the counterfactual corresponding to a counterfactual gen-
eralization is just that counterfactual. To complete the characterization,
in the case when A is not a generalization, one can take “CC(A)” to be
just A itself.

According to (1), if “All Fs are Gs” is a law, then “All Fs are Gs” implies
that if anything were an F then it would be a G,” and according to (2),
“It is a law that all Fs are Gs” implies that if anything were an F, then
it would be a G.

I shall also assume the usual condition that the counterfactual corre-
sponding to a generalization also implies that generalization: “If anything
were an F then it would be a G” implies that all Fs are Gs. Consequently,
counterfactual conditionals obey the rule of Modus Ponens.

The two ways of reading the counterfactual connection are each inter-
esting. Both can be used rather effectively to show that straightforward
generalizations like “all the coins in Nelson Goodman’s pockets are
dimes” are not laws; the second version even offers a rather simple way
of showing that the prefix “It is a law that . . .” is factive (that is, “It is
a law that A” logically implies that A).

Both versions imply that there is a connection between laws and mo-
dality, though a different connection in each case. Here’s why. It is rel-
atively easy to show that any counterfactual conditional, (If A wereA 1 B
the case, then B), can be proved equivalent to a statement having the
form “ ”, where “ ” stands for a modal operator indexed to A,� (B) �A A

and “ ” is the result of applying the modal operator “ ” to “B”.� (B) �A A

If this is correct, then it explains why a simple account of such conditionals
is hard to come by. Not only is there a modal operator explicitly present
in counterfactuals (it’s the prefix “If A were the case, then it would be
the case that . . .”), but the modal operator can vary, depending upon
the antecedent of the counterfactual.

Consider the two versions of the counterfactual connection in turn.
According to (1), if it is a law that A, then A implies its corresponding
counterfactual CC(A). However, given that CC(A) implies A, it follows
that (1) yields the very implausible conclusion,

If it is a law that A, then A is equivalent to CC(A) .[A ⇔ CC(A)]

That is, all scientific laws are equivalent to counterfactual conditionals.
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With this result, the modal status of laws becomes evident with a
vengeance.

The defects of such a view are many, but I shall defer that discussion
for another time. Suffice it to say that those who thought they were
adopting a relatively modest claim with (1) have gotten more than they
bargained for. There is an additional consideration which makes the equiv-
alence of laws with their corresponding counterfactuals look way off the
mark. Counterfactuals are in general not equivalent to their contrapos-
itives (generally they don’t even imply them). However, laws that are
expressed as conditionals have equivalent contrapositives. For example,
“If there are no forces acting upon a body, then it will not accelerate”
and its contrapositive, “If a body accelerates, then there are some forces
acting upon it,” were taken rightly by Maxwell to be equivalent forms of
Newton’s first law of motion.

Lastly, the suggestion that laws are counterfactuals is not convincing
unless we can make the case for understanding how we can reason and
evaluate arguments that involve them. But if the observation that coun-
terfactuals are modal is correct, then the proper logic for them is some
kind of quantified modal logic, and it’s clear that the deep questions of
which quantified modal theory to adopt, and which semantic theory is
appropriate, are still very much unsettled matters. Thus I take it that (1),
the first reading of the counterfactual connection, is a dead end.

Of course, we might then turn to the second reading of the counter-
factual connection, according to which it is not the law A, but the state-
ment “L(A)” (“It is a law that A”) that implies the corresponding coun-
terfactual. This interesting claim, however, goes no way towards showing
that the law itself has modal status. The reason is that even if some P
implies a necessary statement (whether it is “A”, or “L(A)”), it does not
follow that P itself is necessary. For example, in the modal system S5,
every P (modal and nonmodal) implies that it is necessarily the case that
it is possible that P ( ); it doesn’t follow that every statementP ⇒ ��(P)
is modal.

One version of the counterfactual connection, namely (1), led to the
conclusion that all laws are counterfactuals. That is, I believe, an unten-
able view of laws, but it does guarantee some modal status for them. The
second version of the counterfactual connection is of greater interest, but
it doesn’t support the conclusion that laws themselves have modal status.

3. The Possible Worlds Connection. Let the metaphysically necessary
statements be those that are true in all possible worlds, while the meta-
physically possible statements are those that are true in some possible
world. The standard way of treating variations of necessity and possibility
(following S. Kripke) is to characterize them using relativized (or re-
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stricted) quantifiers. By this we mean that the quantifier “all” in “all
possible worlds” is now a relativized universal quantifier with respect to
some property Q, as follows: The “absolute” quantifier version is given
by “(Gw)(“A” is true in w)” (“A” is true in all worlds w), and the “rela-
tivized” version is given by “(Gw)(Q(w) r “A” is true in w)” (“A” is true
in all Q-worlds). The relativized version of A’s metaphysical possibility
is that there is a world w such that Q(w) and “A” is true in w.

One very familiar view of physical necessity (and possibility) is that it
is just a special case of relativized necessity, for the special case when the
property Q is taken to be “is a physically possible world”. Then

A is physically necessary if and only if it is true in all physically
possible worlds.

It is assumed that this general scheme of relativising to some property Q
will always result in a modal operator. If that is so, then one might cap
this definition of the modal of physical necessity with a familiar definition
of scientific law:

A scientific law is any generalization that is physically necessary.

There’s no denying the neatness and compactness of this strategy for
connecting laws with necessity (and possibility). However it has several
serious problems worth considering: There is the problem of ensuring
modality. Some properties will yield a modal operator if you relativize
with respect to them, and others will not. Not any old property, even any
old plausible property, will work. To see why there’s a problem lurking
here, we should recall how the successful cases of relativization worked.
The usual strategy requires an accessibility relation Rwv (a binary relation
on possible worlds) such that the modal operator “�” satisfies the fol-
lowing condition, call it “(N)”: “�(A)” is true in world w if and only if
“A” is true in all worlds v that are accessible from w. That is,

(N) “�(A) is true in world w if and only if (Gv) [Rwv r “A” is true
in v].

The worry about which Qs will result in relativized modals, and which
will not, arises from the fact that not every binary relation can be used
as an accessibility relation. Some binary relations do not yield necessities
via (N). For example if Rwv is taken to be the identity relation ,w p v
then there is no modal which satisfies (N). [The argument: (Gv)[w p

(“A” is true in v)] if and only if “A” is true in w. So, by (N), “�(A)”v r
is true in world w if and only if “A” is true in world w (for all possible
worlds w). Therefore “�(A)” is equivalent to “A” for all statements A.]
This is the disaster that in modal logic is known as the collapse of the
modal—or, as I have described it elsewhere, the box just isn’t a modal

https://doi.org/10.1086/421413 Published online by Cambridge University Press

https://doi.org/10.1086/421413


724 ARNOLD KOSLOW

operator (Koslow 1992, 246). There’s a more general result. If any ac-
cessibility relation Rwv is a function (that is, if Rwv and Rwv*, then

), then (using (N)) it will follow that “�” will not be modal, andv p v*
conversely.1 The moral is very simple: One has to be careful when spec-
ifying accessibility relations for relative necessities, or the result may not
be a modal necessity.

Here is an example of the kind of thing that looks initially promising,
but is far off the mark. Assume some concept of being a law of a possible
world w, and some notion of closeness of possible worlds. We might try
to introduce a notion of physical necessity by using the following binary
relation as an accessibility relation:

Rwv (v is accessible from w) if and only if v is the closest world to
w (other than w itself) in which all the laws of w are true.

This would not yield a modal, because the relation R is a function (no
w can stand in the relation R to two different worlds). The moral of this
rather long story is that you cannot just assume, as some writers do, that
we can get a notion of physical necessity just by relativizing the quantifiers
over possible worlds.

Lastly, there is a problem with how physical necessity and metaphysical
necessity are supposed to be related. Suppose that there is a property P
such that a possible world has P if and only if it is a physically possible
world. Then “A” is metaphysically necessary, �(A), if and only if (Gw)(“A”
is true in w), and “A” is physically necessary, , if and only if� (A)p

(Gw)( “A” is true in w). It follows that . That is,P(w) r �(A) ⇒ � (A)p

anything that is metaphysically necessary must also be physically neces-
sary. For example, if it is metaphysically necessary that cats are animals,
then it must also be physically necessary that cats are animals. This looks
plainly incorrect. If we were also to agree that any generalization that is
physically necessary is a scientific law, it would follow that all generali-
zations that are metaphysically necessary are scientific laws. It looks as
if one grand dream of metaphysics has come to fruition. Every meta-
physical generality is a scientific law. Well that’s the dream part; sometimes
metaphysical inquiry will pay off in scientific laws. On the other hand,
any metaphysical necessity will be a physical necessity, and combined with
the claim that all physical necessities are consequences of scientific laws,
it follows that any metaphysical necessity is a consequence of scientific
laws. And that’s a metaphysical nightmare.

This use of possible worlds has nothing plausible to say about any
connection between laws and possibility. It seems reasonable then to look

1. In the more general case, the necessity and possibility operators become equivalent,
which is another kind of modal collapse.
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at some other way of thinking about physical necessity and possibility,
other than the views I have just canvassed.

4. Starting Over: A New Kind of Possibility. I think it is possible to show
that laws do narrow down, or reduce, possibilities. They do so if both
the possibilities and the specific way of narrowing them down are different
from what is usually understood.

4.1. Natural Possibilities. I begin with some indication of the broad
variety of types of cases, which I shall gather up into a minitheory of
natural possibilities. These include simple and complex cases of possibil-
ities which can be linguistic or not, concrete or abstract, simple or richly
structured, and mathematical or physical. Here are some familiar cases
that are customarily and naturally described as possibilities:

1. A die is thrown and there are, as we say, six possibilities.
2. In sample spaces generally, the members of the space are usually

described as possibilities.
3. For most physical theories there is an associated notion of the states

of that theory. The totality of these, the state space of the theory,
is commonly described as constituting the physical possibilities for
those systems under study by the theory.

4. Suppose that in a state space of some physical theory, two points
A and B are distinguished. Usually it’s said that there is a family
of paths connecting A and B (including the actual one) which are
described as the possible routes or paths from A to B. So, rather
than the theoretical states, sometimes it may be the trajectories or
paths which are the natural possibilities.

4.2. Serious Possibilities. Why are these various examples serious mo-
dal possibilities rather than just ways of merely speaking with the vulgar?
The short story is that all our examples are cases of a kind of structure
which I have elsewhere called a natural implication structure (Koslow 2003,
169–183). Such a structure of natural possibilities is a set N which satisfies
three conditions:

1. N has at least two members;
2. any two members of N don’t overlap, intersect, or have anything

in common, and are ‘mutually incompatible’ in some sense of that
term; and

3. being an N is in a sense the widest, most inclusive possibility under
consideration.

Given the wide variety of the examples I have in mind, there does not
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seem to be any particular interpretation of the terms ‘overlap’, ‘intersect’,
or ‘mutually incompatible’ which would show that all of them were ex-
amples of a set of natural possibilities. Nevertheless there is a simple theory
of these natural possibilities that provides a clear and uniform sense for
the conditions 1–3, and which will also allow for there to be negations,
conjunctions, conditionals, and quantifications of possibilities. In short,
it enables there to be a logic of these natural possibilities.

The idea is to take all the subsets of N, , as a structure of the N-℘ (N )
possibilities, where the unit sets {x} for each member of N are now taken
as the elementary or natural possibilities of the structure. These genuine
possibilities of the structure can be things like paths, orbits, or the states
of a theory. The field of sets of a probability space is a familiar example
of this kind of structure, where the unit sets of the members of the sample
space are the natural possibilities.

We assume that the modal operators on such a structure can be defined
as special kinds of functions which map the structure to itself. And we
can show that necessity (�) and possibility (�) operators can be defined
which represent the possibilities and the necessity elements of the structure.
These operators are very close to the necessity and possibility operators
of S5, and yet very different.2 That is, necessity is a normal modal sat-
isfying the necessitation condition as well as the conditions that are char-
acteristic axioms for the modal systems T, K4, and S5. The difference lies
with the relation between necessity and possibility. Our necessity implies
not-possibly-not (but not conversely), and our possibility implies not-
necessarily-not (but not conversely), and this reflects the fact that the
necessity modal is a T-modal, but the possibility modal is not.

5. Laws and the Narrowing down of Possibilities. Thus far, I have ex-
plained why I think of various natural possibilities as serious modals. I
can now consider the special way in which laws narrow down or rule out
possibilities. That is,

(LP) Laws narrow down possibilities.

Several things should be said immediately. I am not suggesting that this
is the only thing to be said about laws, nor is the narrowing down of
possibilities some feature that distinguishes laws from nonlaws (as the
planetary example below shows, laws can narrow down a set of possi-
bilities, but other conditions which enter into explanations with those laws
can narrow down that set even further).

There is also an ambiguity of scope. A wide scope version requires that

2. The details of the construction can be found in Koslow 2003.
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there is a set of possibilities such that if any A is a law, then A narrows
down that set. On the narrow scope version, if A is a law, then there is a
set of possibilities such that A narrows them down. The narrow scope
version allows that the set of possibilities could differ from law to law,
and will usually differ with the theoretical setting for that law. Wide scope
requires a super set of possibilities, which gets reduced by every law. The
narrow version yields a more refined and more accurate account of the
way things go scientifically, and this is the version I wish to defend.

The basic idea of the narrowing down of possibilities involves several
assumptions whose full support I must postpone for another occasion.

1. To each scientific law L, there is associated a certain non-empty set
of possibilities ℘ L that satisfies the following conditions. The assumption
is that there is at least one such set of possibilities; there may, however,
be several. I don’t insist on the uniqueness or even the maximality of each
of these sets.

2. The set of possibilities can be narrowed down in the sense that some
of the possibilities are ‘ruled out’ or excluded by the law L. Clearly, a
sense has to be provided for a law’s excluding or ruling out such possi-
bilities as orbits or states. Consequently, the suggestion that A rules out
or excludes B by implying the negation of B, will not work. What would
the negation of a trajectory or a state be, and how would it be implied
by laws?

3. Each law involves certain physical quantities or magnitudes. I shall
not say much at present about physical magnitudes. For the present pur-
pose it is enough to note that some physical quantities (e.g., mass, length,
velocity, density, kinetic energy, temperature, charge, etc.) are functions
that map physical entities or structures of physical entities to elements of
some mathematical structure (e.g., a real number, vector, matrix, tensor,
etc.) This, however, is not the whole story. An important group of physical
magnitudes are functionals. They figure prominently in laws of classical
mechanics, electromagnetism, thermodynamics, and a whole range of con-
temporary field theories (relativistic, as well as quantum theoretical) and
they are mappings from functions to mathematical structures, rather than
mappings from physical entities to those mathematical structures. The
point is that certain functionals are physical magnitudes. The final as-
sumption is:

4. To each scientific law there is not only some set of possibilities ℘
associated with that law, but there is also a special kind of property SF,
which depends on a functional magnitude F and which holds or fails to
hold of the possibilities in ℘ . We shall refer to the property SF as a
functional property. So here is the idea as to how it is that laws exclude
or narrow down possibilities:
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(LRP) (i). For each law L there is some property (expressed withSF

the aid of a functional F) that holds or fails to hold for the members
of a certain set of possibilities, and (ii) L implies that some possibilities
fail to have that property.

According to (ii), if L is a scientific law, then for some possibility a of a
set of possibilities ℘ , . It may also happen that some lawL ⇒ ¬S (a)F

excludes all but one of the possibilities which are associated with it, though
that is not generally so for all laws. Furthermore, a law L may actually
guarantee that some of the possibilities have the functional property ,SF

that is, for some possibility b, .L ⇒ S (b)F

There is little space to show in any detail how typical laws reduce
possibilities. Any law which can be expressed as a special case of Ham-
ilton’s Principle of Least Action easily falls under the concept expressed
by (LRP). The reason is that such applications proceed by specifying a
particular Lagrangean ( ) for some physical system, where T is theT � U
kinetic energy and U the potential energy of that system. A set of curves
f, g, . . . is specified between two points in a state space. Think of these
curves as the possibilities, and then there is a functional called the action
for the particular Lagrangean L, given by

t1

W[ f ] p L (q, dq/dt, t)dt� f
t0

(where the integral is taken along the curve f). With the help of the
functional W, we can define a functional property SW of the possibilities
(curves f, g, . . .) as follows:

holds of the curve f if and only if f is a curve for which W, theSW

action, is an extremal—that is, is either a maximum or aW( f )
minimum.

In all these ‘Hamiltonian’ cases, possibilities are ruled out or excluded if
and only if it is implied that they fail to satisfy the functional property

, that is, they fail to be extremals.SW

Here’s a simple example of this kind of case: Newton’s first law of
motion.3 For a free particle moving in Euclidean three space, the potential
U is 0, so that the Lagrangean for the free particle is L p T p

. If one uses generalized coordinates, then2m(dr/dt) /2

2 2 2L p m/2[(dq /dt) � (dq /dt) � (dq /dt) ].1 2 3

The Lagrange-Euler equations then yield that the generalized momentum

3. This example is indebted to Arnold 1978, 60.
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is constant ( ), since the Lagrangeanp p �L/�q dp/dt p d(�L/�q )/dt p 0i i

is not a function of the generalized coordinates qi. This simple result can
be expressed by saying that straight lines are the extremals of the action
of free particles. The law of inertia, in this formulation, rules out any
possible path that is not a straight line.

There are other familiar cases when laws narrow down sets of possi-
bilities. The Newtonian law of gravitation is one such. I omit the well-
known details and hope that a very truncated description will suffice. The
assumption that the gravitational force on a body is central, attractive,
and inverse square implies that the orbit (in polar coordinates) is given
by , the focal equation of a conicr(v) p l(1 � �)/[1 � � cos (v � v )]0

section, with eccentricity �, where the constant l is defined as
, L is the total angular momentum of the planetary body,2FLF /[ma(1 � �)]

and a is Gm1m2. If the possible orbits are taken to be at least differentiable
curves X(v), we have the functional , andF p l(1 � �)/[1 � � cos (v � v )]0

we define a functional property SF such that if and only ifS (X(v))F

. Since Newton’s Law of Gravitation implies that (thatX(v) p F r(v) p F

is, that r(v) is a conic),4 it follows that the law implies , for any¬S (X(v))F

curve X(v) that is not a conic.
The gravitational case shows in a clear way that although laws can

narrow down a set of possibilities, they needn’t narrow them to just one.
In the gravitational case, several possibilities (i.e., the various conics) are
left, and in the case of some laws, the so-called impossibility laws, all of
the possibilities may be ruled out. An explanation of the elliptical orbit
of Mars narrows down the possible orbits even further from the conics
to the ellipse. This further reduction beyond what the Law of Gravitation
yields, is obtained with the use of further information included in the
explanation—that and .l 1 0 0 ! � ! 1
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