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We develop a dynamic model for suspensions of negatively buoyant particles on an
incline. Our model includes settling due to gravity and resuspension of particles by
shear-induced migration. We consider the case where the particles settle onto the solid
substrate and two distinct fronts form: a faster liquid and a slower particle front. The
resulting transport equations for the liquid and the particles are of hyperbolic type
and we study the dilute limit for which we compute exact solutions. We also carry
out systematic laboratory experiments, focusing on the motion of the two fronts. We
show that the dynamic model predictions for small to moderate values of the particle
volume fraction and the inclination angle of the solid substrate agree well with the
experimental data.
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1. Introduction and background
Despite their relevance in industrial and environmental applications, the systems

involving settling and resuspension of particles in viscous liquids are still not fully
understood. The seminal works on this subject, e.g. Kynch (1952), Richardson & Zaki
(1954), Leighton & Acrivos (1987b), Schaflinger, Acrivos & Zhang (1990), Acrivos
et al. (1992) and Nott & Brady (1994), have primarily focused on sedimentation
in quiescent liquid medium, Couette or channel flows. A review of developments in
sedimentation of monodisperse and polydisperse suspensions, and in inclined channels
was given by Davis & Acrivos (1985). Our focus in this paper is on particle-laden
thin-film flows on an incline, involving a free surface and contact lines. Owing to the
complexities resulting from a perplexing interplay of relevant mechanisms, including
settling/resuspension and viscous fingering at the contact line, only recent studies
have begun to address this class of problems, e.g. Zhou et al. (2005) and Cook
(2008). While particle-laden thin-film flows represent a formidable problem from the
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theoretical standpoint, these flows are captured through relatively simple experiments,
see e.g. Ward et al. (2009) and Murisic et al. (2011).

When a rigid spherical particle settles under the influence of gravity through an
unbounded quiescent liquid, the well-known Stokes’ law applies. Namely, the settling
velocity of the particle is USt = d2(ρp − ρl)g/(18µ`), where d is the particle diameter,
ρp and ρ` are particle and liquid mass densities respectively, g is the magnitude of
the gravitational acceleration, and µ` is the liquid viscosity. When many such particles
settle, the Stokes’ law is modified and the average settling velocity of a particle is
UStΦ(φ). The hindrance function Φ(φ) accounts for particle–particle interaction where
φ is the particle volume fraction, such that Φ(0) = 1. This type of hindrance was
first studied by Richardson & Zaki (1954), where Φ(φ) = (1− φ)m with m ≈ 5.1 was
constructed empirically. Alternate forms of Φ(φ) have since been proposed, e.g. for
dilute dispersions in Batchelor (1972), or Φ(φ)= (1− φ) in the presence of shear, see
Schaflinger et al. (1990).

A review by Stickel & Powell (2005) focused on the rheology of dense suspensions.
They concluded that in highly concentrated suspensions, multi-body interactions and
two-body lubrication are relevant, and non-Newtonian rheology should be considered.
Their dimensional analysis indicated that, given the values of d, ρ` and µ`, the
suspension is expected to behave like a Newtonian fluid for a relatively narrow range
of shear rates. This range was found to widen as d and µ` were increased. They also
discussed the related issue of the effective suspension viscosity and reviewed several
commonly used models.

Experiments with concentrated suspensions in Couette flows showed that heavy
particles need not settle when shear is present. This and other interesting phenomena
occurring in a suspension flow in a Couette viscometer were first studied by Leighton
& Acrivos (1987a). Their observations were attributed to a novel mechanism they
called shear-induced migration. Shear-induced migration has since been studied in
various flow geometries. There have been two distinct approaches to modelling
shear-induced migration and both have been successful in capturing experimental
observations.

The first approach, which is used here, relies on a diffusive flux phenomenology.
It was first formulated by Leighton & Acrivos (1987b) in order to model the
experimental observations from Leighton & Acrivos (1987a). It was based on
irreversible interactions between pairs of particles, whereby the particles migrate via
a diffusive flux induced by gradients in both φ and the effective suspension viscosity,
µ(φ). A similar but somewhat simplified approach was later used for modelling
suspensions of heavy particles in pressure-driven channel flows by Schaflinger et al.
(1990). The model from Leighton & Acrivos (1987b) was further refined by Phillips
et al. (1992) who applied it to a flow of a neutrally buoyant suspension in a
Couette device. This approach was also used for laminar pipe flows by Zhang &
Acrivos (1994) and for rotating parallel-plate flows by Merhi et al. (2005). More
recently, the diffusive flux phenomenology was utilized in modelling thin-film flows of
negatively buoyant suspensions by Cook (2008) and Murisic et al. (2011), successfully
capturing experimental observations. In particular, the model predictions of Murisic
et al. (2011) were in excellent agreement with the phase separation diagrams resulting
from experiments where both d and µ` were varied.

The second approach was developed by Nott & Brady (1994) and it is known as
the suspension balance approach. It was originally derived to model pressure-driven
rectilinear suspension flows. The two approaches differ in two significant aspects. The
first has to do with the rheological model that is used; the second is related to
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the manner in which particle migration is included. In the diffusive flux approach,
a Newtonian viscosity depends only on the particle volume fraction, φ, while the
particle flux expression is empirical. The suspension balance approach relies on a
non-Newtonian bulk stress with normal stresses induced by shear; particle migration is
caused by gradients in the normal stress. Hence, viscously generated normal stresses
are present in the suspension balance approach and have a very important role. In
contrast, they are omitted in the diffusive flux approach. Numerical simulations of
models based on the suspension balance approach were carried out using the Stokesian
dynamics framework, e.g. see Nott & Brady (1994). Subsequent works employed
this approach to particle-laden channel flows and curvilinear flows, see Brady &
Morris (1997), Morris & Brady (1998), Morris & Boulay (1999) and Timberlake &
Morris (2005). For example, a pressure-driven flow of a dense suspension was studied
by Morris & Brady (1998). Their numerical simulations revealed an equilibrium
distribution with the heavier material on top of the lighter, providing a mechanical
basis for maintaining the normal stresses in their migration model.

The suspension studies so far have mainly focused on Couette or channel flows.
Only more recent works have concentrated on the problem of particle-laden thin-film
flows on an incline. Zhou et al. (2005) carried out experiments with suspensions of
glass beads, d ∼ O(100 µm). The bulk particle volume fraction, φ0, and the inclination
angle, α, were varied and, depending on the values of these parameters, three different
regimes were observed. When φ0 and α were small, the settled regime resulted, where
the particles settled out of the flow and the clear liquid flowed over the particulate
bed. Two distinct fronts formed in this regime, a particle front and a clear liquid front.
The latter was faster and it was susceptible to the well-known fingering instability,
typical for clear liquid films. For large values of φ0 and α, the ridged regime was
observed, where the particles flowed faster than the liquid phase, accumulating at
the front of the flow and eventually forming a ridge at the contact line. Finally, for
intermediate values of φ0 and α, the suspension remained well-mixed throughout the
experiment. Their theoretical model was based on the Navier–Stokes equations for the
liquid and a continuum diffusive model for the particles, including hindered settling. It
was simplified by neglecting the capillary terms, and studied using a shock-dynamics
approach, a direction further pursued by Cook, Bertozzi & Hosoi (2007). The model
was successful at describing the details of the ridged regime. Shear-induced migration
was first included in modelling particle-laden thin-film flows by Cook (2008). In this
work, an equilibrium model was derived, based on the balance of hindered settling and
shear-induced migration. Its predictions agreed well with the experimental data from
Zhou et al. (2005), capturing transitions from the well-mixed state. Ward et al. (2009)
studied particle-laden thin-film flows on an incline experimentally, concentrating on
the front propagation in the well-mixed and ridged regimes for both heavy and
light particles. The front position was found to obey a power law in time t with
an exponent close to the well-known value 1/3 from Huppert (1982). Grunewald
et al. (2010) explored the self-similarity in a lubrication-based model for the case
of constant volume flows, with the main focus on the ridged regime. Murisic et al.
(2011) carried out extensive experiments and the influence of the particle size and
the viscosity of the suspending liquid were examined. The experiments confirmed the
transient nature of the well-mixed regime. An extension of the equilibrium model from
Cook (2008) was employed, and a time scales argument was introduced, explaining
the dynamics of the transition between the well-mixed and settled regimes. A dynamic
model for particle-laden thin-film flows was also introduced, based on a coupled set of
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hyperbolic conservation laws. Mata & Bertozzi (2011) solved a model similar to Zhou
et al. (2005) but including capillarity using a novel numerical approach.

In this paper, we systematically derive a dynamic model for particle and liquid
transport in order to better understand the less-studied settled regime. For this purpose,
we carry out both theoretical and experimental work. We study a suspension flow on
an incline, having a constant volume and consisting of negatively buoyant particles
with uniform size in a viscous suspending liquid. In this regime, gravity drives the
flow down the incline and leads to a stratification of the suspension. We consider
a continuum model, including the effects of hindered settling and shear-induced
migration. The model is based on the Stokes’ equations for an incompressible variable
viscosity suspension and the conservation of total mass of particles. The effect of
shear-induced migration is included via the diffusive flux phenomenology. A dynamic
model for the transport of liquid and particles is developed using an asymptotic
approach. Owing to the disparity in the relevant time scales, a fast one for the settling
and a slow one for the suspension flow, we are able to assume that the particle
distribution is in equilibrium along the direction normal to the solid substrate (the
settling direction) while the particles are transported along the solid substrate (the flow
direction). Hence, we formally connect the equilibrium model with the dynamic one
in a single framework. We explicitly confirm the hyperbolicity of the dynamic model
and consider the dilute limit for which we derive the analytic solution. We also study
the settled regime experimentally by carrying out extensive experiments where the bulk
particle volume fraction and the inclination angle are varied over a wide range of
values. In these experiments, we focus on the evolution of the two fronts, the particle
and the liquid one. Finally, we solve the hyperbolic conservation laws numerically and
compare the model predictions with the experiments.

This paper is organized as follows. In § 2, we introduce the model and show
how the lubrication approximation may be employed to find advection equations for
suspension volume and particle volume fraction. We also explain how the details of
the model depend on the bulk particle volume fraction and the inclination angle. In § 3,
we describe the experimental observations. Next, in § 4, we solve the dynamic model
numerically and compare its predictions with the experiments. We conclude with a
brief discussion.

2. Theory
We consider a thin-film flow of a finite volume suspension consisting of a viscous

liquid and spherical monodisperse non-colloidal negatively buoyant particles. The
particles are assumed to be rigid and the liquid is incompressible. The modelling
is carried out within the continuum limit. The flows are assumed to obey the
transverse (y-direction) symmetry, see figure 1(a); therefore, the cross-section of the
flow is considered throughout the paper. Henceforth, we use the subscripts p and `

to differentiate between quantities corresponding to the particles and the suspending
liquid respectively. Since the particles are heavy, the mass densities satisfy ρp > ρ`.

Figure 1 shows the setup. The x- and z-coordinates are in the directions along
and normal to the solid substrate, respectively. The solid substrate is located at
z = 0 and the inclination angle of the solid is α. The total suspension thickness is
denoted by h(x, t). Our focus is on the settled regime for which a dense sedimentation
layer of particles forms close to the solid substrate, the region 0 6 z 6 T where
T < h, with a clear liquid layer (φ = 0) on top of it, T < z 6 h. At each time
t and point (x, z), the particle volume fraction, 0 6 φ(t, x, z) < 1, and the volume-
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FIGURE 1. Sketches of the setup: (a) the flow of a suspension film on an incline showing the
sediment layer and the two fronts; (b) a cross-section detail.

averaged velocity, u(t, x, z) = (u(t, x, z),w(t, x, z))>, are defined. The incompressibility
assumption translates to ∇ ·u= 0.

For monodisperse spheres, the upper bound for φ is less than unity. This bound
corresponds to the maximum packing fraction, φm. A priori prediction of its value
is still an open question since φm depends on all of the parameters that affect
the microstructure of the suspension (see e.g. Stickel & Powell 2005). A range
of values [0.524, 0.740] for φm may be obtained depending on the details of the
geometric arrangement of the spheres (see Torquato, Truskett & DeBenedetti 2000).
A well-mixed suspension forms the so-called random close-packed arrangement; an
approximation φm ≈ 0.63 for this case was obtained experimentally by McGeary
(1961). Here, we use φm = 0.61, obtained as follows: known volumes of liquid and
particles are mixed and placed in a graduated cylindrical container; the φm value
is estimated from the excess liquid volume fraction. This value is larger than 0.55
from Onoda & Liniger (1990), corresponding to random loose packing.

We consider suspensions that satisfy the following conditions: (i) the particle
Reynolds number is negligibly small, Re= ρ`d2γ̇ /(4µ`)∼ O(10−5); and (ii) the Péclet
number is very large, Pe = γ̇ d2/D ∼ O(1010). The shear rate γ̇ ∼ O(10−1) s−1 is
defined below; here, ρ` ∼ O(103) kg m−3, d2 ∼ O(10−7) m2 and µl ∼ O(1) kg m−1 s−1;
also, D = kT/(3πµ`d) ∼ O(10−18) m2 s−1 is the diffusivity and kT is the thermal
energy of the suspending liquid. Under these conditions, the effective suspension
viscosity may be assumed to depend on the particle volume fraction only, µ = µ(φ),
i.e. the suspension behaves like a Newtonian fluid. Also, since Pe/Re � 1, this
behaviour is expected to persist for a wide range of shear rates, see Stickel &
Powell (2005). Different forms of µ(φ) have appeared in the literature. Typically,
µ(φ)/µ`→∞ as φ→ φm is required. The definition of µ(φ) usually includes φm as
a direct measure of the suspension microstructure, see Stickel & Powell (2005). The
functional form for µ(φ) that we use is given below.

We derive a reduced model where the local state can be uniquely characterized
by average quantities. As a starting point, we consider the Stokes’ equations for
the suspension and a conservation law for particle volume. Our modelling approach
relies on the standard lubrication approximation used for thin-film flows (see e.g.
Oron, Davis & Bankoff 1997). The key ingredient here is the careful scaling of the
particle transport terms that allows the particle flux in the z-direction to vanish at the
leading order. Asymptotically higher order terms in the particle volume conservation
law together with the lubrication style balances for suspension volume and momentum
provide a set of coupled partial differential equations for the suspension height and
the depth-averaged particle concentration. This amounts to assuming that the fastest
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dynamics is the rapid establishment of the φ profile in the z-direction. As a result,
the overall dynamics of the system is determined by a combination of two processes
with very different time scales: the fast process of developing the φ profile in the
z-direction and the slow suspension flow down the incline. The fast process results
in a stationarity of the particle fluxes in the z-direction, allowing us to reconstruct
the φ and u dependence on z. In the slow process, h and u vary slowly in x, and
the dynamics is driven by the conservation laws for the average quantities, e.g. the
suspension volume and the number of particles. The free surface curvature terms, i.e.
capillary effects, are neglected, making the resulting dynamic equations hyperbolic.

Our model relies on the assumption that the suspension is locally Newtonian. Hence,
the particle flux is described via the diffusive flux phenomenology. The main basis
for this approach is provided by its successful implementations in previous studies
of particle-laden thin-film flows, see Cook (2008) and Murisic et al. (2011). The
suspension balance approach is yet to be applied to the thin-film setup; however, the
similarity in the resulting particle flux for the two approaches was noted in Morris
& Boulay (1999). At this point, it is unclear whether the additional complexity
resulting from its implementation would yield the corresponding improvement in
model predictions compared with the diffusive flux phenomenology. The successful
use of the suspension-balance-based models for other setups warrants the comparison
between the two approaches for the thin-film flow configuration, but this is beyond the
scope of present work.

The particle flux resulting from the diffusive flux approach is empirical. Therefore,
different particle flux formulations have appeared in literature. The variety is due
to different functional forms of µ(φ), and the values of φm and the flux-related
non-dimensional coefficients that were used. The mathematical expression for the flux
remained largely unchanged between different studies. In the model derivation, we
shall maintain generality by postponing the precise definition of the particle flux. Once
we define the flux, a general mathematical form will be given, thereby preserving the
generality with respect to µ(φ) formulation and the relevant parameter values. This
will allow us to compare model predictions for several different viscosity/parameter
combinations used in literature and examine the sensitivity to these factors.

2.1. Two-phase model and lubrication equations
For 0 < z < h(t, x), we consider the following system of partial differential equations
(PDEs) for the particle volume fraction φ, 0 6 φ 6 φm, and the suspension velocity u

−∇ · (−PI+ µ(φ)(∇u+∇u>))= (ρpφ + ρ`(1− φ))g (2.1a)

∂tφ + u ·∇φ +∇ · J = 0, (2.1b)

where the left-hand side of (2.1a) is divergence of the stress tensor, and the right-
hand side takes into account buoyancy with the acceleration of gravity given by
g = g (sinα,− cosα)>. Henceforth, we utilize the notation for partial differentiation:
∂t[·] = (∂/∂t)[·], etc. As written, (2.1) are simply statements of the balance of
linear momentum for the suspension (Stokes’ equations) and the conservation of
particle volume. Here, J = (Jx, Jz)

> denotes the particle flux, and it may include
shear-induced migration and buoyancy. The importance of shear-induced migration
was shown previously in Cook (2008) and Murisic et al. (2011). We utilize the
diffusive flux approach, but postpone giving the precise definition for J in order
to maintain generality in our model. Similarly, the effective suspension viscosity,
µ(φ), is kept explicitly in the derivation. Equations (2.1) are accompanied by the
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incompressibility condition, ∂xu + ∂zw = 0, and the following boundary conditions:
no-slip and impermeability at the solid substrate, u = w = 0 at z = 0; the zero-stress
condition at the free surface, (−PI + µ(φ)(∇u + ∇u>))n = 0 at z = h; and the zero-
particle-flux conditions at both interfaces, J · n = 0 at z = 0 and z = h; here, n is the
outward-pointing normal unit vector at the two interfaces. The free surface evolves
according to the kinematic condition, ∂th= w− u∂xh at z= h.

Next, we scale (2.1) in the spirit of the lubrication approximation (see e.g. Oron
et al. 1997) using the following scales

[x] = H

ε
, [z] = H, [φ] = 1, [µ] = µ`, [u] = H2ρ`g sinα

µ`
= U (2.2a)

[w] = ε[u], [t] = [x][u] , [Jz] = d2[u]
[z]2 , [Jx] = ε[Jz], [P] = [u][µ][z] , (2.2b)

where ε is the small lubrication-style parameter to be defined shortly. The motivation
for using these particular scales for the particle flux components is provided by the
fact that the diffusive flux approach yields Jx, Jz ∝ d2, see below; the ε factor in [Jx] is
connected to the equilibrium requirement we discuss next.

Assuming that the settling and the suspension velocities are not modified by the
hindrance, the typical distance a particle travels in the x-direction as it settles to the
solid substrate is given as a product of the relevant time and velocity scales

H/ cosα
USt

U = H

(
d

H

)−2 18ρ`
ρp − ρ` tanα� H

ε
. (2.3)

Here, we want to derive a continuum model where the particle flux in the z-direction
is in equilibrium. The equilibrium assumption is appropriate if the typical distance
a particle travels in the x-direction as it settles is asymptotically smaller than the
lubrication length scale, [x]; hence, the inequality in (2.3). Whether it holds is not
trivial to answer, revealing some interesting features of these flows. In particular, we
focus on the constant suspension volume case. In our experiments the volume is
82.5 ml and the width of the track is 14 cm; the particles and the suspending liquid
are such that d ≈ 360 µm and (ρp − ρ`)/ρ` ≈ 1.5, see § 3. The suspension volume
may be approximated as a product of the track width, and length scales H and [x].
If [x] ≈ 20 cm, then H ≈ 3 mm and ε ≈ 0.015; the equilibrium condition in (2.3)
holds only for extremely small inclination angles. If [x] ≈ 1 m, i.e. the total length of
the inclined track in our experiments, then H ≈ 0.6 mm and ε ≈ 6 × 10−4, and the
equilibrium assumption is appropriate as long as α is not too close to 90◦. Therefore,
the inclination angle is an important parameter in the problem since, for a given setup,
there exists a range in α for which the equilibrium assumption is expected to hold.
The width of this range increases with the increase in the lubrication length scale [x].
In essence, α dictates how early the equilibrium assumption may be appropriate, while
[x] is the typical displacement of the suspension front in the x-direction measured from
the top of the incline and relevant to the flow in equilibrium.

In § 3, we shall discuss an early-time transient observed in our experiments where
the suspension is well-mixed, the flow is unsteady and the equilibrium assumption is
not applicable. The experiments will confirm that the duration of the transient stage
is proportional to α. One may estimate the distance travelled by the suspension front
during this transient stage by using (2.3) and the above approximation for the total
suspension volume, e.g. for α = 10◦ it is ≈25 cm and for α = 25◦ it is ≈30 cm, both
<1 m and in agreement with our experimental observations, see § 3. At long times,
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the films in finite-volume flows become very thin, (d/H)→ 1, and the continuum
hypothesis breaks down. For (d/H)→ 0, the transport of the particles is purely
convective, the settling time scale goes to infinity and the suspension behaves like
a colloid. In order to enforce the continuum assumption we require that (d/H)2 � 1.
In our flows, (d/H)2 ∼ O(10−2) at the end of the early-time transient. We also note
that (2.3) effectively estimates buoyancy strength since it considers a ratio of velocity
scales relevant to shearing and settling, similar to Morris & Brady (1998). Namely,
the strength of buoyancy relative to the shearing force is (d/H)2(ρp − ρ`)/(18ρ` tanα),
typically an O(10−2) quantity when the equilibrium assumption holds.

The conditions for continuum and equilibrium are combined into a single
requirement

ε�
(

d

H

)2

� 1. (2.4)

The equilibrium part is an approximate version of (2.3): to simplify the formal
asymptotics that we present next, the prefactor 18ρ` tanα/(ρp − ρ`) is neglected. We
note here that the usefulness of (2.4) becomes questionable when α is large. The
equilibrium condition may also be obtained by requiring that the z-component of the
particle flux J dominates in the scaled version of (2.1b). This leads to equilibrium
in the z-direction at the leading order. As the evolution proceeds the equilibrium
assumption is expected to be increasingly appropriate. At late times when the film
is very thin, the continuum condition is eventually violated; this will limit us in
describing the long time dynamics. Mathematically, a way to satisfy (2.4) is to set
(d/H)2 = εβ where 0 < β < 1. Applying the scales to (2.1b), while keeping in mind
the definition of β, gives

∂tφ + u∂xφ + w∂zφ =−εβ+1∂xJx − εβ−1∂zJz. (2.5)

Henceforth, all dependent and independent variables are listed in their non-
dimensional form unless otherwise noted. We proceed by defining the asymptotic
expansions of the solution: φ(t, x, z) = φ0(t, x, z) + o(1), u(t, x, z) = u0(t, x, z) + o(1),
w(t, x, z) = w0(t, x, z) + o(1), h(t, x) = h0(t, x) + o(1), Jx(t, x, z) = J0

x (t, x, z) + o(1)
and Jz(t, x, z) = J0

z (t, x, z) + o(1). Here, φ0, u0,w0, h0, J0
x , J0

z ∼ O(1). After using these
expansions in (2.5), the leading-order term is O(εβ−1), describing the effect of the
most dominant particle flux, J0

z . Integrating the resulting leading-order equation with
respect to z and employing either of the zero-flux boundary conditions yields

J0
z (t, x, z)= 0. (2.6)

This is complemented by the zero-flux boundary conditions, J0
z |z=0, J0

z |z=h0 = 0. By
employing a similar approach on (2.1a) we obtain

∂z(µ(φ
0)∂zu

0)=−
(

1+ ρp − ρ`
ρ`

φ0

)
, (2.7)

accompanied by the no-slip and zero-stress boundary conditions, u0 = 0 at z = 0 and
µ(φ0)∂zu0 = 0 at z = h0, respectively. We note that Cook (2008) used an alternate but
equivalent approach to deriving (2.6): a steady state in the z-direction was assumed
from the beginning so that the z-component of the particle flux could be set to zero;
equation (2.6) was then obtained by using the zero-flux boundary conditions.
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2.2. Particle transport model
Equations (2.6) and (2.7) are similar to those derived previously by Cook
(2008) and Murisic et al. (2011): they constitute the equilibrium model for the
particle settling. This model has a one-parameter family of solutions that may be
parameterized by the integrated volume fraction of particles

n(t, x)=
∫ h0

0
φ0(t, x, z) dz. (2.8)

Once n is fixed and the form of flux J0
z is known, the z-dependence of φ0 and u0

may be determined uniquely from (2.6) and (2.7), and the accompanying boundary
conditions. To indicate that the dependence of the solution on z at the leading order is
only parametrical through n, we write φ0 = φ0(t, x; z) and u0 = u0(t, x; z). We note that
the initial value n(0, x) may be obtained using the initial data, but the time dependence
of n is still unknown at this point. In order to determine it, we consider higher-order
terms in (2.5) including the correction for the z-direction particle flux

∂tφ
0 + u0∂xφ

0 + w0∂zφ
0 = εβ−1∂z(Jz − J0

z ). (2.9)

This may be integrated in the z-direction from z = 0 to z = h0 to obtain a closed
form and cast the dynamic and equilibrium models into a single framework. The
flux correction term drops out due to the zero-flux boundary conditions. Using the

kinematic condition, ∂th0 = w0 − u0∂xh0 at z = h0, and ∂t

∫ h0

0 φ0 dz = φ0∂th0|z=h0 +∫ h0

0 ∂tφ
0 dz gives

∂t

∫ h0

0
φ0 dz= φ0(w0 − u0∂xh

0)|z=h0 −
∫ h0

0
u0∂xφ

0 dz−
∫ h0

0
w0∂zφ

0 dz. (2.10)

After using the chain rule, the property ∂x

∫ h0

0 φ0u0 dz= φ0u0∂xh0|z=h0 + ∫ h0

0 ∂x(φ
0u0) dz

and integration by parts, and applying the impermeability and incompressibility
conditions, w0|z=0 = 0 and ∂xu0 + ∂zw0 = 0, respectively, we get

∂t

∫ h0

0
φ0 dz+ ∂x

∫ h0

0
φ0u0 dz= 0. (2.11)

Finally, recalling the definition of n gives an advection equation for the particle
number, i.e. a conservation law for the particles

∂tn+ ∂x

∫ h0

0
φ0(t, x; z)u0(t, x; z) dz= 0. (2.12a)

A similar standard lubrication theory argument gives the conservation law for the
suspension volume

∂th
0 + ∂x

∫ h0

0
u0(t, x; z) dz= 0. (2.12b)

The conservation laws similar to (2.12) were given by Murisic et al. (2011)
without formal derivation. That these laws are hyperbolic is shown below. Equations
(2.6), (2.7) and (2.12) together with the boundary conditions, u0 = 0 at z = 0,
J0

z |z=0, J0
z |z=h0 = 0 and µ(φ0)∂zu0 = 0 at z= h0, provide the full theoretical framework.
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Next, we give the functional form for the particle flux J . We follow Leighton &
Acrivos (1987b), Phillips et al. (1992), Cook (2008) and Murisic et al. (2011), and
consider a general particle flux expression (dimensional form) based on the diffusive
flux phenomenology

J =−d2

4

[
Kcφ

(
∂x(γ̇ φ)

∂z(γ̇ φ)

)
+ Kvφ

2γ̇

µ(φ)

dµ(φ)

dφ

(
∂xφ

∂zφ

)]
+ d2(ρp − ρ`)Φ(φ)

18µ(φ)
φg. (2.13)

Shear-induced migration is included via the terms in the first brackets and the hindered
settling of particles due to gravity via the remaining term; the effective suspension
viscosity µ(φ) and the hindrance function Φ(φ) are kept explicitly. Empirical
constants Kc and Kv multiply the contributions to the shear-induced particle flux
due to gradients in the particle volume fraction and the effective suspension viscosity,
respectively. Their values are estimated by choosing an appropriate expression for
µ(φ) and comparing the model predictions and experiments (see e.g. Leighton &
Acrivos 1987b). We will later consider different combinations of Kc, Kv values and
µ(φ) expressions, and examine their influence on the model predictions. The hindrance
to settling due to the wall effect (see Murisic et al. 2011) is neglected here. The shear
rate is given as usual, γ̇ = ‖∇u+∇u>‖/4≈ |∂zu0|. We also neglect the contribution to
the particle flux due to Brownian motion since the relevant Péclet number is large, as
shown above. After using previously defined scales and asymptotic expansions, we get

J0
z =−

Kc

4
φ0∂z

(
φ0∂zu

0
)− Kv

4
(φ0)

2
∂zu0∂zφ

0

µ(φ0)

dµ(φ0)

dφ0
−
(
ρp − ρ`

)
Φ(φ0)φ0 cotα

18ρ`µ(φ0)
.

(2.14)

This is substituted into (2.6), rewriting the equilibrium model in terms of the stress
σ 0 = µ(φ0)∂zu0

φ0∂zσ
0 +

(
1+ φ0

µ(φ0)

dµ(φ0)

dφ0

Kv − Kc

Kc

)
σ 0∂zφ

0 + 2
(
ρp − ρ`

)
Φ(φ0) cotα

9ρ`Kc
= 0 (2.15a)

∂zσ
0 =−

(
1+ ρp − ρ`

ρ`
φ0

)
. (2.15b)

Here, the magnitudes of both shear-induced migration parameters are relevant. In
contrast, in the case of neutrally buoyant particles, only their ratio, Kv/Kc, plays
a role. This feature of our model may be useful for determining the appropriate
magnitudes of Kc and Kv via comparison with experiments, focusing on the early-
time transient regime, see § 3. Equations (2.12) may be simplified by removing
the explicit dependence on h from (2.15). This is achieved by a change of
variables from z to s = z/h0. Henceforth, we omit the ‘0’ superscripts for simplicity.
Equations (2.12) are then rewritten using φ(t, x; z) = φ(t, x; h(t, x)s) = φ̃(t, x; s),
u(t, x; z) = u(t, x; h(t, x)s) = h (t, x)2 ũ(t, x; s) and σ̃ (t, x; s) = σ(t, x; h(t, x)s)/h(t, x) =
µ(φ̃(t, x; s))ũ′(t, x; s). The prime from here on denotes the differentiation with respect
to s. The result is

∂th+ ∂xF(h, n)= 0, (2.16a)

∂tn+ ∂xG(h, n)= 0, (2.16b)
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where the suspension and particle fluxes, F and G, are written in terms of φ̃ and ũ

F(h, n)=
∫ h

0
u(t, x; z) dz= h3

∫ 1

0
ũ(t, x; s) ds= h3f (φ0), (2.16c)

G(h, n)=
∫ h

0
φ(t, x; z)u(t, x; z) dz= h3

∫ 1

0
φ̃(t, x; s)ũ(t, x; s) ds= h3g(φ0), (2.16d)

and the vertically averaged particle volume fraction is

φ0(t, x)=
∫ 1

0
φ̃(t, x; s) ds= n(t, x)

h(t, x)
∈ [0, φm]. (2.16e)

The hindrance function we use here is Φ(φ̃) = (1 − φ̃), appropriate in the presence of
shear (see Schaflinger et al. 1990). The equilibrium equations are then rewritten as(

1+ φ̃

µ(φ̃)

dµ(φ̃)

dφ̃

Kv − Kc

Kc

)
σ̃ φ̃′ + B− (B+ 1)φ̃ − ρp − ρ`

ρ`
φ̃2 = 0, (2.16f )

σ̃ ′ =−
(

1+ ρp − ρ`
ρ`

φ̃

)
, (2.16g)

for 0 6 s 6 1, with the boundary condition σ̃ (1) = 0. Here, B = 2(ρp −
ρ`) cotα/(9ρ`Kc) is a non-dimensional buoyancy parameter measuring the strength
of settling due to gravity in the z-direction relative to the strength of shear-induced
migration. We note that B ∼ O(1) for relevant α values; the coefficient (ρp − ρ`)/ρ`
and the combined terms multiplying σ̃ φ̃′ are also ∼O(1). The equilibrium model,
(2.16f,g), is solved for the intermediate variables σ̃ and φ̃; ũ is recovered from
σ̃ = µ(φ̃)ũ′ using the no-slip boundary condition at s = 0. These profiles are then
supplied to the transport equations (2.16a–e) to close the system: the suspension and
the particle fluxes are determined by the functions f and g of a single real argument,
that are found by solving (2.16f,g) for s ∈ [0, 1] and a given value of φ0. We note that
the cubic dependence of the fluxes F and G on h, reminiscent of the factors appearing
in the thin film equation (see e.g. Oron et al. 1997), results from the exact scaling
invariance of the leading-order ordinary differential equations (ODEs).

For a given value of φ0, the physically meaningful non-negative solution to the
system (2.16f,g) is unique. Within this one-parameter family, two distinct types of
solutions exist. The first type occurs for smaller φ0 values and it is characterized by
monotonically decreasing φ̃ profiles. In particular, with 0< T̃ = T/h< 1, the resulting
φ̃(s) is strictly decreasing for 0 6 s 6 T̃ , leading to φ̃(T̃) = 0. Since Jz ≡ 0 for φ̃ = 0
and any σ̃ and φ̃′, the solution is then continued with φ̃(s)= 0 for T̃ < s< 1 to obtain
physically meaningful non-negative profile; once φ0 is given, this solution is unique.
The second type of solutions occurs for larger values of φ0 and it is characterized
by strictly increasing φ̃(s) profiles, where φ̃(s)→ φm as s→ 1. Here, the focus is
solely on the first type of solutions, since it corresponds to the settled regime, expected
for small values of α and φ0. The second type corresponds to the ridged regime;
see figures 3 and 5 below for more detail regarding the two solution types. The
critical volume fraction, φ̃crit, separating the two extreme regimes, is determined by
the constant-concentration solution, i.e. setting φ̃′ = 0 in (2.16f ), and solving for the
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average particle volume fraction

φ̃crit =min

φm,
−ρ`(B+ 1)
2(ρp − ρ`) +

√(
ρ`(B+ 1)
2(ρp − ρ`)

)2

+ ρ`B

ρp − ρ`

 . (2.17)

This expression defines the transient well-mixed state. A different type of well-mixed
transient, due to initial data, will be discussed below.

2.3. Effective suspension viscosity and particle flux

Next, we discuss several choices for the effective suspension viscosity µ(φ̃) and the
values of the parameters φm, Kc and Kv that result in different particle fluxes J . Our
goal is to use different but realistic combinations in order to examine the sensitivity of
model predictions on this choice. The five different combinations we consider are as
follows.

(a) ‘Einstein’: based on

µ(φ̃)= 1+ 5
2 φ̃, (2.18)

derived analytically in Einstein (1906, 1911) for dilute suspensions, i.e. φ0, φ̃→ 0.
We pair this µ(φ̃) with Kc = 0.41 and Kv = 0.62 from Murisic et al. (2011). This
combination is employed to investigate the impact of a very coarse suspension
viscosity approximation on the model predictions.

(b) ‘Acrivos and Leighton’: this uses the empirical Eilers formula from Eilers (1941)
and Ferrini et al. (1979)

µ(φ̃)=

1+ 1
2

ηφ̃

1− φ̃

φm


2

. (2.19)

Leighton & Acrivos (1987b) utilized this for particle-laden flows in a Couette
device with η = 3.0, φm = 0.58, Kc = 0.41 and Kv = 0.61.

(c) ‘Phillips et al.’: this relies on a simplified version of Eilers formula, known as the
Krieger–Dougherty relation, see Krieger & Dougherty (1959)

µ(φ̃)=
(

1− φ̃

φm

)−ψ
. (2.20)

This empirical relation was used in Phillips et al. (1992) to model particle-laden
flows in a Couette device with φm = 0.68, ψ = 1.82, Kc = 0.41 and Kv = 0.62.

(d) ‘Merhi et al.’: also utilizes the Krieger–Dougherty relation. Merhi et al. (2005)
employed this to study suspensions in a Couette flow with φm = 0.68, ψ = 1.82,
Kc = 0.105 and Kv = 0.525.

(e) ‘Murisic et al.’: the main combination here. It is based on the so-called
Maron–Pierce relation: the Krieger–Dougherty relation with ψ = 2 (see Maron
& Pierce 1956). It was used with φm = 0.61, Kc = 0.41 and Kv = 0.62 by Murisic
et al. (2011) to successfully model particle-laden thin-film flows on an incline.
After the comparison, we shall focus solely on this combination.
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Phillips et al., Mehri et al.
Murisic et al.

FIGURE 2. Comparison of different suspension viscosity models used in literature. Our main
focus in this work is on the Maron–Pierce relation from Murisic et al. (2011).

First, we compare the µ(φ̃) profiles for the Einstein expression, the Eilers
formulation as in Leighton & Acrivos (1987b), the Krieger–Dougherty relation as
in Phillips et al. (1992) and Merhi et al. (2005) and the Maron–Pierce relation as
in Murisic et al. (2011). The results are given in figure 2. The Einstein expression, as
expected, is useful only for very small particle volume fractions. Namely, it already
deviates from other viscosity models by a factor of two for concentrations as small as
φ̃ = 0.1. The three remaining relations give similar profiles. The agreement between
the Eilers and Maron–Pierce relations is somewhat surprising. While the two relations
clearly differ mathematically, the parameter values used give very similar viscosity
profiles in the considered φ̃ range.

Next, we substitute the listed combinations into the governing system, (2.16), in
order to study their influence on the model predictions. The solutions are obtained
numerically using a shooting method, see Murisic et al. (2011). The results of this
comparison are shown in figures 3 and 4. Figure 3(a,b) focus on φ̃(s) and ũ(s) profiles,
respectively, for φ0 = 0.2 and α = 20◦. All combinations give qualitatively similar
profiles. With the exception of the ‘Einstein’ combination, which is not expected to be
very appropriate at φ0 = 0.2, all other combinations are also quantitatively close to one
another. The crude suspension viscosity approximation in the ‘Einstein’ combination
has only a mild effect on the φ̃(s) profile; unsurprisingly, it has a rather substantial
effect on the ũ(s) profile. Figure 3(a,b) indicate that once, e.g., the viscosity model
is chosen, Kc and Kv values may be tuned to obtain desired φ̃(s) and ũ(s) profiles.
Such an approach was previously used, e.g., by Leighton & Acrivos (1987b). We
note that the profiles for ‘Acrivos and Leighton’ and ‘Murisic et al.’ almost coincide,
as one may have anticipated based on the results from figure 2. In figure 3(c,d)
we compare the resulting suspension and particle fluxes for α = 20◦ and different
values of φ0. Clearly, the ‘Einstein’ combination ceases to be appropriate for all but
very small φ0 values. The other combinations give qualitatively similar behaviour,
with ‘Acrivos and Leighton’ and ‘Murisic et al.’ again very close to one another.
A more detailed discussion of f (φ0) and g(φ0) profiles is given below. Finally, in
figure 4, we compare the model predictions for clear liquid film and particle front
positions in the settled regime for φ0 = 0.2 and α = 20◦. The initial data used for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.567


216 N. Murisic, B. Pausader, D. Peschka and A. L. Bertozzi
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FIGURE 3. Particle volume fraction in (a) and suspension velocity profiles in (b) at φ0 = 0.2
and α = 20◦ for different viscosity/parameters combinations. Suspension and particle fluxes
are compared in (c,d), respectively, for α = 20◦. Our model will rely on the ‘Murisic et al.’
combination in subsequent analysis.

x l
 (

cm
)

(a)

200

400

600

800

20 40 60 80

t (min)
0 100

x p
 (

cm
)

(b)

200

400

600

800

20 40 60 80

t (min)
0 100

Einstein
Acrivos and Leighton 
Phillips et al.
Mehri et al.
Murisic et al.

FIGURE 4. The evolution of the clear liquid and particle front positions x` and xp for different
viscosity/parameters combinations: φ0 = 0.2 and α = 20◦; the legend in (b) also applies to (a).

all simulations corresponds to a well-mixed suspension in the reservoir at t = 0. The
‘Einstein’ combination deviates from the others significantly. This is not surprising due
to the results in figures 2 and 3: it underestimates µ and hence overestimates ũ and the
fluxes. All other combinations give results that are close to one another. Of the three,
the ‘Phillips et al.’ combination predicts the fastest fronts. ‘Acrivos and Leighton’ and
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FIGURE 5. Particle volume fraction profiles in (a,b) and the corresponding suspension
velocity profiles in (c,d) for different values of α and φ0. In (a,c), α = 20◦ is fixed and φ0

is increased from 0 to φm via φ̃crit = 0.554 (dashed line). The φ̃ magnitudes in (a) increase,
while ũ magnitudes in (c) decrease with φ0. In (b,d), φ0 = 0.2 is fixed and α is varied.

‘Murisic et al.’ give essentially identical predictions. For long times, all combinations
yield front positions that exhibit the Huppert-like t1/3 behaviour.

Based on figures 3 and 4, any combination may be applicable excluding ‘Einstein’,
which is clearly not adequate here due to its poor prediction of suspension velocity.
We choose ‘Murisic et al.’ owing to its success when used for particle-laden thin-film
flows. Murisic et al. (2011) presented an equilibrium model similar to (2.16f,g) that
gave predictions that were in excellent agreement with the experimental data for a
wide range of φ0 and α values. We note that this particular combination may not be
applicable for some other physical setups or flow geometries: tuning of parameters,
e.g. Kc and Kv, may be required as suggested by Merhi et al. (2005). Henceforth, we
only consider this combination and discuss various predictions of our model based
on it. The full governing system consists of (2.16a–e) together with the equilibrium
equations (2.16f,g), which may be rewritten using the ‘Murisic et al.’ combination as(

1+ 2 (Kv − Kc)

Kc

φ̃

φm − φ̃

)
σ̃ φ̃′ + B− (B+ 1)φ̃ − ρp − ρ`

ρ`
φ̃2 = 0, (2.21a)

σ̃ ′ =−
(

1+ ρp − ρ`
ρ`

φ̃

)
, (2.21b)

for 0 6 s 6 1, with the boundary condition σ̃ (1)= 0.
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We proceed by examining the φ̃(s) and ũ(s) profiles in more detail. Figure 5(a,b)
show two families of solutions for φ̃ depending on the φ0 and α value, including the
well-mixed state occurring for φ̃crit in figure 5(a); corresponding suspension velocity
ũ(s) profiles are given in figure 5(c,d). For small values of φ0, the φ̃(s) profiles are
monotonically decreasing while ũ(s) profiles are increasing in s. This corresponds to
the settled regime with the velocity ũ largest in the particle-free layer T̃ < s 6 1.
Hence, the equilibrium theory essentially predicts the faster flow of the clear liquid
front compared with the particles for small values of φ0. To see this more clearly,
note that the suspension and particle fluxes in the transport equations (2.16a,b) are
computed directly from the equilibrium profiles φ̃(s) and ũ(s). As a result, when
φ0 < φ̃crit, the faster clear liquid layer leaves the particulate bed behind, yielding two
distinct fronts. For φ0 > φ̃crit, the φ̃(s) profiles are monotonically increasing with s,
i.e. the particles gather at the free surface; the corresponding ũ(s) profiles, while
small in magnitude, are still monotonically increasing. Since the fluxes f and g are
calculated directly from φ̃(s) and ũ(s) profiles, φ0 > φ̃crit results in the ridged regime:
the particles in this case flow faster than the liquid leading to their accumulation at the
suspension front. We proceed by studying the dilute approximation of the governing
system, relevant for the settled regime.

2.4. Dilute approximation
For small particle concentrations, we may compute the fluxes analytically. Assuming
φ0, φ̃(s)� φm, we linearize (2.21) with respect to φ̃ and to the leading order obtain

σ̃ φ̃′ =−B 0 6 s 6 T̃ (2.22)

σ̃ ′ =−1 0 6 s 6 1, (2.23)

with σ̃ (1)= 0. To the leading order in φ̃, the solution to this system is

σ̃ (s)= 1− s (2.24)

φ̃(s)=
{

B(T̃ − s) 0< s 6 T̃
0 T̃ < s 6 1,

(2.25)

resulting in the average particle volume fraction

φ0 =
∫ 1

0
φ̃(s) ds= BT̃2

2
. (2.26)

By using σ̃ = µ(φ̃)ũ′ ≈ µ(0)ũ′, the velocity ũ(s) to the leading order is

ũ(s)=
∫ s

0

σ̃ (r)

µ(φ̃(r))
dr =

∫ s

0

(1− r)

µ(0)

(
1+ O(φ̃)

)
dr =

(
s− s2

2

)
+ O(φ0). (2.27)

Employing (2.26) yields the particle flux to the leading order

g(φ0)=
∫ 1

0
φ̃(s)ũ(s) ds=

∫ T̃

0
B(T̃ − s)

(
s− s2

2

)
ds

= B

(
T̃3

6
− T̃4

24

)
=
√

2
9B
φ

3/2
0 + O(φ2

0). (2.28)
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Also, the suspension volume flux to the leading order is

f (φ0)=
∫ 1

0
ũ(s) ds= 1

3
. (2.29)

Finally, to the leading order, the hyperbolic transport laws in the dilute limit are

∂th+ ∂x

(
h3

3

)
= 0, (2.30a)

∂tn+ ∂x

(√
2

9B
(nh)3/2

)
= 0. (2.30b)

The regime where two distinct fronts occur, with the clear liquid front being faster,
has already been predicted by our equilibrium model for φ0 < φ̃crit, see figure 5. The
two-fronts scenario with a faster liquid front is inevitable in the dilute limit since
the relevant fluxes are computed directly from the equilibrium profiles φ̃(s) and ũ(s).
The average particle and volume velocities are effectively encoded into these flux
expressions. As long as ũ(s) is monotonically increasing and φ̃(s) decreasing, the
particles on average move slower than the liquid and a clear liquid front travelling
ahead of a particles front emerges from the conservation laws: this is an intrinsic
property of the settled regime. This could also be seen by comparing the fluxes: the
liquid front will be faster than the particle front provided f (φ0) > g(φ0)/φ0, a condition
satisfied in the dilute limit.

We proceed by solving (2.30) exactly for the fixed suspension volume case, with
the initial data h(0, x)= 1 for 0 6 x 6 1, h(0, x)= 0 otherwise, n(0, x)= f0h(0, x), and
some given value of f0� 1. Since φ0 is small in the dilute limit, we solve (2.30a) for
h independently to get

h(t, x)=


1 t 6 x 6 x`(t)√

x/t 0< x<min(t, x`(t))
0 otherwise,

(2.31)

for t > 0, where the liquid front position is

x`(t)=


1+ t/3 0 6 t 6 3/2(
9t

4

)1/3

3/2< t.
(2.32)

This is the well-known solution from Huppert (1982). Next, we use it to find the
solution for n. First note that for early times, the solution for n also consists
of a rarefaction fan for 0 < x < t, connected to a constant with value f0 in
t 6 x 6 1 + (f 1/2

0 t)/
√

2B. For larger values of x, the integrated particle volume fraction
n vanishes. The evolution equation for n may be written as

∂tn+ 2

3
√

2B
∂x (h(t, x)n(t, x))3/2 = 0. (2.33)

Note that by the assumption of the dilute regime, we always have xp < x`. Clearly,
the problem amounts to determining the shape of the rarefaction fan for n. To resolve
it, we assume that n(t, x) = N(x/t) is a rarefaction fan starting at zero, i.e. x/t > 0.
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Substituting this ansatz into (2.33) gives the following ODE for N

− 2
(x

t

)5/4
N ′(x/t)+

√
N(x/t)

2B

[
N(x/t)+ 2

x

t
N ′(x/t)

]
= 0, (2.34)

solved by

N(x/t)= C√
x

t

√2B
x

t
− 2

√
C2 + C

√
2B

x

t
+ 2C

 , (2.35)

where C is an undetermined constant of integration. This solution satisfies N(x/t)→ 0
as x/t→ 0. For our purposes we may fix C by requiring that the continuity is obeyed,
i.e. n(t, t) = N(1) = f0, resulting in C = f0/(

√
2B − 2

√
f0). Hence, the value for C in

general depends on the initial data. Our solution is given by

n(t, x)=


f0 t 6 x 6 xp(t)
N(x/t) 0< x<min(t, xp(t))
0 otherwise,

(2.36)

and the particle front position is xp(t) = min(1 + 2t
√

f0/(3
√

2B), x̄p(t)), where x̄p

satisfies ∫ x̄p

0
N(x/t) dx= f0. (2.37)

Using x̄p/t → 0 as t → ∞ and N(x/t) = (B√x/t + O(x/t))/2 we get x̄p(t) =
(9f 2

0 t/B2)
1/3. Therefore,

lim
t→∞

xp(t)

x`(t)
=
(

4f 2
0

B2

)1/3

. (2.38)

We note that the value of this limit is independent of the choice for C. Here, N(x/t) is
the generic candidate for describing the long-time evolution of the particle distribution.
Namely, while N(x/t) is determined by the mechanisms responsible for fixing the
value of C at early times, its expansion as x/t→ 0, i.e. as t→∞, is independent of C.
Figure 6(a) shows the exact solution of (2.30), indicating that the clear liquid front is
indeed faster than the particle front in the dilute limit.

Another type of transient is uncovered here: due to the shape of the initial
data. This transient is different from the experimentally observed transient that
is connected to the equilibrium assumption in our model, see § 3. The presence
of the initial data transient conceals the xp ∼ t1/3 behaviour for early times. To
examine this further, we expand N to next order in x/t and derive the correction:
x̄p ∼ (9f 2

0 t/B2)
1/3+(3/2 − 3

√
f0/(2B)) + O(t−1/3). The duration of the transient is

therefore t ∼ f−2
0 , a very long time for f0 � 1 relevant here. Hence, the long-time

comparison between the exact solution in the dilute limit and the numerical solution
of the full model in figure 6b): it takes a while for the exact solution to reach the
calculated t→∞ limit when f0 = 10−2. This transient is likely to affect the model
predictions even outside of the dilute limit. Both transients, due to the initial data
and the early-time unsteady nature of the flow in the experiments, will affect the
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FIGURE 6. Exact solution in the dilute limit in (a) shows the clear liquid and particle fronts at
t = 0.5 and t = 50 (direction of flow is left to right); here, B = 2.307 (α = 20◦) and f0 = 0.1.
Exact solution for dilute approximation versus numerical solution of the full model in (b):
xp(t)/x`(t) for B= 2.307 and different values of f0; dotted lines are the corresponding t→∞
limits.

comparison between model predictions and experiments discussed in § 4. Next, we
study the hyperbolicity of (2.16a,b).

2.5. Hyperbolicity of transport equations
After switching to f and g, and using (2.16c,d), the transport problem reads

∂th+ ∂x

(
h3f
(n

h

))
= 0 (2.39a)

∂tn+ ∂x

(
h3g
(n

h

))
= 0. (2.39b)

The Jacobian matrix associated with the above system of conservations laws is

h2

(
3f − φ0f ′ f ′

3g− φ0g′ g′

)
, (2.40)

and the discriminant of the corresponding characteristic polynomial is D =
h4f 2[(3− φ0f ′/f + g′/f )2−12 (g/f )′]. Here, the primes denote differentiation with
respect to φ0. The hyperbolicity of the transport problem is ensured when D > 0.
Both the Jacobian matrix and D are obtained using the intermediate variable n = φ0h,
where the Jacobian matrix is derived in terms of (h, n) and then rewritten in terms of
(h, φ0). This is rather convenient because h may be scaled out of D , and what remains
is a condition for hyperbolicity on f (φ0), g(φ0) and their derivatives with respect to
φ0. Figure 7 shows that the discriminant remains strictly positive for all φ0 values
within range φ0 ∈ [0, φm] and all tested values of the inclination angle. We conclude
that the system of conservation laws (2.16a) and (2.16b) is a well-posed hyperbolic
problem for the variables h and n. Next, we examine the parameter dependence of the
suspension and particle volume fluxes.

2.6. Suspension and particle volume fluxes
The suspension and particle volume fluxes, f and g, are studied next by solving (2.21)
numerically for φ̃(s) and σ̃ (s), and substituting into (2.16c,d). Fluxes f and g for
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FIGURE 7. Discriminant D versus φ0 for different inclination angles α.
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FIGURE 8. Fluxes f in (a) and g in (b) for different inclination angles α.

various values of the inclination angle α are shown in figure 8. For small values of α,
the suspension volume flux f decreases as φ0 increases due to a corresponding increase
in the effective suspension viscosity. Only for large α, f at first increases with φ0 due
to the increase in the corresponding suspension mass and gravitational shear force. For
φ0→ 0, one recovers the standard lubrication flux, F = h3/3, while for φ0→ φm, the
suspension flux tends to zero, F→ 0, since µ→∞. The particle volume flux g at first
increases with φ0 for all α values, due to the increase in the particle content. However,
the increase is sublinear since increasing φ0 causes a decrease in the flow velocity ũ,
same as for f . Therefore, g must be zero at both φ0 = 0 and φ0 = φm, see figure 8(b).
The transition from the settled regime to the ridged regime occurs when the average
particle velocity exceeds the average suspension velocity, i.e. g/φ0 > f , or equivalently
when ∫ 1

0
φ̃ũ ds∫ 1

0
φ̃ ds

>
∫ 1

0
ũ ds. (2.41)
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Since ũ is an increasing positive function and φ̃ > 0, this transition occurs when φ̃

changes monotonicity: at φ0 = φ̃crit given by (2.17).

3. Experiments
We carry out experiments with constant volume particle-laden thin-film flows on an

inclined plane. The apparatus we use is identical to that from Murisic et al. (2011).
It consists of an acrylic track, 90 cm long, 14 cm wide, with 1.5 cm tall sidewalls.
A gated reservoir with acrylic walls is at the top of the track. Its interior is 14 cm
wide and 10 cm long; the release gate is manually operated. The collecting tank is at
the bottom of the track. The typical thickness of the particle-laden thin films in our
experiments is H ∼ O(1) mm. The inclination angle of the track, α, may be manually
adjusted in the range 5–80◦ with precision within a few per cent. The suspending
liquid we use is polydimethylsiloxane; AlfaAesar (PDMS) with the kinematic viscosity
ν` = 1000 cSt and density ρ` = 971 kg m−3. This PDMS is not cross-linked, and has
a relatively low kinematic viscosity and molecular weight. Hence, it is reasonable
to assume it behaves as a Newtonian fluid (see e.g. Currie & Smith 1950). The
particles are smooth spherical glass beads (Ceroglass) with ρp = 2475 kg m−3 and
mean diameter d ≈ 360 µm (range 300–425 µm; standard deviation <10 %). This
particular particle size is used in order to fulfil the requirement ε � (d/H)2 � 1
from § 2. Smaller particles may fail to satisfy the equilibrium condition, while larger
ones may make the continuum assumption questionable. The equilibrium part of this
condition is unlikely to hold for very early times when the film is thick and the
suspension is well-mixed, see the discussion below. The continuum portion is violated
for late times when the suspension becomes very thin.

Each experimental run is carried out using 82.5 ml of suspension released at once
from the reservoir. This volume accounts for losses occurring in the suspension
preparation: a small amount of suspension remains in the mixing container after
pouring and on the reservoir walls after gate release. We assume that the losses do
not affect the suspension composition: it remains well-mixed on the time scale of
the losses. The particles are dyed using water-based food colouring to enhance their
visibility. The suspensions are prepared by first weighing the two phases separately
(φ0 fraction of particles and 1 − φ0 fraction of liquid) and mixing them slowly to
prevent entrapment of air bubbles. A uniformly mixed suspension is then poured into
the reservoir, the gate is raised and the suspension is allowed to flow down the incline.
The suspension remains well-mixed during the short time-interval between pouring
into the reservoir and raising the gate. In fact, in all of our experiments, the separation
of phases occurs only after the suspension front has travelled some distance down the
incline. We carry out a large number (>60) of experimental runs. Each run is repeated
to confirm the reproducibility of the results. The solid substrate is cleaned before each
run to ensure identical wetting properties and minimize the occurrence of the fingering
instability that complicates front tracking.

In this study we focus on the settled regime. We record the appearance of the two
distinct fronts and monitor their subsequent motion, with the clear liquid front moving
faster than the particle front. For this purpose we choose the parameter values based
on the experimental data from Murisic et al. (2011). In particular, we concentrate on
small to moderate values of the bulk particle volume fraction and inclination angle:
φ0 = 0.2, 0.3, 0.4 and α = 5◦ · · · 40◦ in 5◦ increments. The experimental data consists
of videos captured in a 1920 × 1080 pixel resolution at 25 fps by a camera equipped
with a wide-angle lens. The camera is mounted on a tall tripod ≈1 m above the
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flow and pointing to ≈50 cm below the release gate. The lens surface is roughly
parallel to the track surface, allowing us to capture the whole length of the track
with minimal distortion. Each flow is recorded starting with the gate release until the
clear liquid front reaches the lower end of the track. In our analysis, we focus on the
time interval starting with the first occurrence of the two distinct fronts and ending
before the film becomes very thin. Typically, this amounts to 12–25 min of evolution
depending on φ0 and α values. The videos are dissected, extracting individual images
at a rate of 0.2 fps. The image processing is carried out using a specialized code in
MATLAB (MathWorks). It identifies the particle and the liquid front in each image,
their visibility enhanced by the particle colouring and the brightness variations near
the clear liquid contact line. The preparation of the solid substrate also helps as it
leads to fairly straight fronts with reduced fingering of the clear liquid front. In each
image, the code detects the two curves in the (x, y) plane corresponding to the two
fronts. The values xp and x` for each image are obtained by averaging along the curves
corresponding to particle and liquid fronts, respectively; processing a series of images
in this manner yields the time evolution of the front positions xp(t) and x`(t). This
procedure gives reproducible results within ±5 %. While some fingering of the clear
liquid front is inevitable, the averaging approach is sufficient to provide reliable x`
data for the purpose of comparison with the model predictions. We note that the same
approach was successfully used for a simpler case of clear liquid films by Huppert
(1982). The averaging of the front position was also utilized in the particle-laden case
by Ward et al. (2009). Numerical simulations by Mata & Bertozzi (2011) provided
further evidence that the averaging technique produces extremely reliable results. The
analysis of the fingering phenomena requires inclusion of surface tension in the model
and is beyond the scope of present work.

A typical evolution is shown in figure 9. Initially, a well-mixed suspension moves
down the incline, where the equilibrium condition in (2.4) is unlikely to be satisfied.
Toward the end of this initial transient, denoted by t ∈ [0, ttrans], a transition occurs
where two distinct fronts form and the clear liquid front moves ahead of the particle
front. We find that the duration of the transient regime increases with φ0; it also
increases with α. The separation of phases is detectible once the suspension front
has moved 15–40 cm down the incline, depending on the α and φ0 values. We
have estimated similar distances in § 2, using (2.3). The observation regarding the
dependence of ttrans on α is also in line with condition (2.3): the validity of the
equilibrium assumption in our model relies on a similar type of dependence on α, via
the 18ρ` tanα/(ρp− ρ`) coefficient. We also observe that for small angles, α < 10◦, the
particle front practically comes to a halt, at least on the time scale of our experiments.
The increase in the value of α leads to an increase in the ratio of the front positions
toward unity: xp(t)/x`(t)→ 1. Naturally, above a critical value of α, defined by (2.17),
the flow undergoes a transition toward the ridged regime where the particles move to
the contact line of the flow. In our experiments, we stay well away from this transition.
While some fingering occurs at the liquid front, no such instability is observed for the
particle front. Figure 10 shows the evolution of x` and xp for different α and φ0 values.

Two different transients have been identified so far: the first is due to the shape
of the initial data discussed in connection with the dilute limit and the other is
observed in the experiments for early times when the flow is unsteady. In our model,
ttrans determines the time instant when the equilibrium assumption in the z-direction
becomes valid. The unsteadiness of the flow in experiments may persist beyond
the first occurrence of two distinct fronts. Hence, our observations provide a lower
bound for ttrans. We note that experiments with other particle sizes and suspension
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FIGURE 9. (Colour online) Suspension flow for φ0 = 0.3 and α = 25◦; time increases from
left to right. The white full and dashed lines correspond to the average clear liquid and
particle front positions respectively; the black tick-marks on the side of the track are 5 cm
apart; darker regions in the particulate bed indicate higher particle numbers.
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FIGURE 10. Time dependence of the liquid front position, x`, and the particle front
position, xp, in the experiments with (a) φ0 = (0.2, 0.3) and α = 25◦ and (b) φ0 = 0.2 and
α = (10, 20, 30, 40)◦. In (b), full and dashed lines denote xp and x`, respectively; larger α
values result in steeper curves.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.567


226 N. Murisic, B. Pausader, D. Peschka and A. L. Bertozzi

volumes may further improve the applicability of the equilibrium assumption. Based
on condition (2.3), one may decrease both d and the volume while keeping their
ratio fixed. This would shorten the distance travelled by the suspension front during
t ∈ [0, ttrans] without affecting the ratio (d/H)2. However, accurate volume control
would be difficult to implement and the fingering instability may also play a more
prominent role. The presence of the early-time transient in experiments is actually
convenient from the modelling perspective. It provides an opportunity to examine the
influence of the shear-induced migration parameters Kc and Kv on the flow, and a way
to precisely determine their magnitudes. This would require a comparison between
numerical simulations and experiments for 0 < t 6 ttrans. A more careful study of the
transient regime is left for future work. Next, we carry out numerical simulations of
(2.16a–e) and (2.21), and compare the model predictions with the experimental data
for t > ttrans and different α and φ0 values.

4. Comparison: model predictions versus experimental data
Equations (2.16a–e) and (2.21) are solved numerically in order to carry out

a comparison with the experiments. The equilibrium part (2.21) is solved for
intermediate quantities φ̃ and ũ using a shooting method with Runge–Kutta; the
dynamic transport equations (2.16a–d) are solved for the main variables h and n
using an upwind scheme. In this analysis, we only consider the time interval when
our main modelling assumptions hold. Namely, we focus on t > ttrans when two distinct
fronts are observable but t is not too large to avoid the film becoming very thin. From
the model perspective, this comparison necessitates a non-trivial task of connecting the
initial data for the problem, i.e. a well-mixed suspension in the reservoir, with the
flow at equilibrium some ∼10 minutes into the evolution. The benefits of the transient
regime for estimation of Kc and Kv values have already been noted in § 3.

The initial data for the simulations is obtained as follows. The suspension remains
well-mixed during the early-time transient in the experiments, hence we may assume
it is of uniform viscosity. The profiles representing a well-mixed suspension at t = 0,
e.g. h(0, x) = h0 for −dx < x < 0, h(0, x) = 0 otherwise, and n(0, x) = φ0h(0, x) are
evolved until t = ttrans using the well-known approach from Huppert (1982). Namely,
the suspension front moves according to

xfront(t)=
((
ρ` +

(
ρp − ρ`

)
φ0

) 9h2
0d2

x g sinα
µ(φ0)

)1/3

t1/3. (4.1)

Here, the average concentration in the simulations 0 < φ0 < φm is adjusted to
correspond to each particular experiment and the quantity h0 is such that the total
volume is h0 dx dy = 82.5 ml. The length of the reservoir is dx = 10 cm and the width
of the track is dy = 14 cm. In our simulations, we use xfront(ttrans) as the initial
front position (both liquid and particle). Equations (2.16a–e) and (2.21) govern the
subsequent t > ttrans front motion that is compared with the experiments. We note that
ttrans is estimated experimentally, see § 3; our estimate is a lower bound for the true
ttrans value.

Figure 11 shows a comparison between the model predictions and the experimental
data for a fixed average concentration φ0 = 0.2 and a few different values of
the inclination angle, α = (10, 15, 20, 25)◦. The comparison is carried out for
ttrans < t < 20 min, a time-interval sufficiently long to illustrate the main points
while ensuring the validity of the main modelling assumptions. Qualitatively, the
model fully captures the experimental observations. The quantitative agreement is also
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FIGURE 11. Experiment versus simulation for t > ttrans, φ0 = 0.2 and: (a) α = 10◦;
(b) α = 15◦; (c) α = 20◦; (d) α = 25◦. Model predictions are denoted by lines: full for
x`(t) and dashed for xp(t). Experimental data is denoted by symbols: circles for x`(t) and stars
for xp(t).

excellent, despite the fact that the initial condition in the simulations overestimates
the suspension front position compared with the experiments. The longer the transient,
i.e. the larger the inclination angle, the more evident this issue becomes. Nevertheless,
the deviation between model predictions and experiments is relatively small for all α
values we consider. Figure 12 shows equivalent results for φ0 = 0.3. The agreement
is remarkable, keeping in mind that Kc and Kv have not been fitted to improve
on these predictions. The overestimation in the initial conditions for the simulations
contributes to a slight quantitative mismatch between model and experiments. Finally,
figure 13 compares the results for φ0 = 0.4. The agreement is still fairly good, but the
overestimation in the initial conditions is now quite pronounced. This may be related
to the fact that here ttrans is larger than at φ0 = 0.2 or 0.3; the connection between φ0

and ttrans has already been noted in § 3.
The overestimation of the front positions used as the initial data for the simulations

may result due to several factors. The first is connected to the presence of the transient
in the experiments, and the fact that its duration and the associated length scale in
(2.3) are estimated roughly. The second is due to our use of the Huppert solution,
possibly a rather crude approach, to evolve the well-mixed initial data from t = 0
until t = ttrans. Finally, there is also the transient due to the shape of the initial data,
identified in our discussion of the dilute approximation. Imprecise knowledge of the
initial data fed into the Huppert solution affects the outcome even outside the dilute
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FIGURE 12. Experiment versus simulation for t > ttrans, φ0 = 0.3 and: (a) α = 10◦;
(b) α = 15◦; (c) α = 20◦; (d) α = 25◦. Simulations: full line for x`(t), dashed line for xp(t);
experiments: circles for x`(t), stars for xp(t).
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FIGURE 13. Experiment versus simulation for t > ttrans and φ0 = 0.4: (a) α = 15◦;
(b) α = 20◦. Lines are simulations: full for x`(t), dashed for xp(t); experiments: circles for
x`(t), stars for xp(t).

limit. Despite the combined effect of these factors on the outcome of the comparison,
the agreement between model predictions and experiments in figures 11, 12 and 13
is still quite remarkable. Further analysis of the transient stage including experiments
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and numerical simulations would further improve these results. We note that for denser
suspensions other factors, e.g. the validity of the employed viscosity law, may also be
relevant.

5. Conclusions

In this paper, we have focused on the settled regime observed in particle-laden
thin-film flows on an incline. In this regime, particles settle to the solid substrate and
the clear liquid film flows over the sediment. The slower particle and the faster clear
liquid front form.

We first derive a continuum model, starting with the Stokes’ equations for the
suspension and a transport equation for the particles. We assume that the suspension
behaves like a Newtonian fluid. The particle model relies on the diffusive flux
phenomenology, and it includes the effects of shear-induced migration and hindered
settling due to gravity. We apply the lubrication-style scales and carry out an
asymptotic analysis of the resulting equations. Our main assumption is that the particle
distribution in the z-direction is in equilibrium, i.e. the corresponding dynamics occur
on a rapid time scale so that the steady state is quickly established and the total
particle flux in the z-direction is zero. Hence, we are able to reconstruct the z-profiles
for the particle volume fraction and the suspension velocity. Our asymptotics approach
allows us to connect the leading-order equilibrium model to the slow dynamics
of particle and suspension transport down the incline. We focus on the averaged
quantities, the film thickness and the particle number, which obey a coupled system
of advection equations, a pair of hyperbolic conservation laws, thereby closing the
approximation and completing the theoretical framework.

The derived model is general as it allows the use of different effective suspension
viscosity relations and different parameter values related to the particle flux. We
compare different viscosity/parameter combinations from literature and study the
sensitivity of model predictions. We find that all considered combinations predict
similar particle volume fraction profiles. On the other hand, the velocity and fluxes
predictions are substantially affected by the details of the viscosity law that is used.
With the exception of Einstein’s linear viscosity law that is not applicable for dense
suspensions by definition, all others give comparable predictions. The combination
from Murisic et al. (2011) that was already successful in modelling particle-laden
thin-film flows is chosen for further analysis. We first consider the dilute limit for
which we derive an analytic solution and discuss the early-time transient due to the
shape of the initial data. The exact solution for the dilute approximation also reveals
the two front configuration, where the clear liquid front is faster than the particle
one, typical for the settled regime. The hyperbolicity of the transport equations is also
confirmed.

Next, we carry out experiments using fixed volume suspensions, consisting of glass
beads and PDMS. We vary the bulk particle volume fraction and the inclination
angle of the solid substrate within the permitted range for the settled regime. Our
experimental setup allows us to detect the particle and the clear liquid fronts, and
precisely monitor their motion down the incline. We also detect another transient for
0< t 6 ttrans where the mixture remains well-mixed, and estimate ttrans. We proceed by
computing numerical solutions for our model, and comparing the model predictions for
the particle and the clear liquid front motion with the experiments. This is carried out
for t > ttrans, when the equilibrium assumption in the vertical direction is valid. We
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find excellent agreement between model and experiments, in both a qualitative and a
quantitative sense, especially for lower values of the average particle volume fraction.

In order to improve the model, a detailed investigation of the transient phase is
required, including experiments and a theoretical approach. An important question
is how early the equilibrium in the z-direction may be assumed. We hope that our
results will motivate future experiments where the steadiness of the flow will be
examined and accurate measurements of the transient time ttrans will be carried out.
The inclusion of surface tension may also be needed in order to model the transient
phase. We anticipate that numerical simulations will eventually provide full access
to the well-mixed transient. The presence of the transient in experiments may also
be useful for studying the influence of the shear-induced migration parameters on
the flow and precise determination of their magnitudes. For this purpose one may
consider either an asymptotic reduction of our model appropriate for the transient
regime or direct numerical simulations. Another interesting question is the validity of
the employed hindrance model and µ(φ̃) formulation for denser suspensions. Future
work should also include higher-order terms in the dynamic equations, corresponding
to the capillary and normal gravitational forces. This would allow for a comprehensive
study of the different settling regimes, the evolution of the contact line region, and the
details of the fingering instability.
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