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Methods for generating coherent distortion risk measures
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Abstract
This paper presents methods for generating new distortion functions utilising distribution functions
and composite distribution functions. To ensure the coherency of the corresponding distortion risk
measures, the concavity of the proposed distortion functions is established by restricting the para-
meter space of the generating distribution. Closed-form expressions for risk measures are derived for
some cases. Numerical and graphical results are presented to demonstrate the effects of parameter
values on the risk measures for exponential, Pareto and log-normal losses. In addition, we apply the
proposed distortion functions to derive risk measures for a segregated fund guarantee.
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1. Introduction

Let X be a non-negative loss or risk random variable with a cumulative distribution function (cdf)
FX(x)=P(X≤x) and a survival or decumulative function SX(x)=1–FX(x). A risk measure is a
mapping from a loss random variable to a value in the real line. It can be used to determine an
appropriate premium or a required capital for a given risk portfolio based on its loss potential. Basic
risk measures include quantile-based risk measures such as value at risk (VaR) and conditional tail
expectation (CTE). VaR at level q summarises the loss distribution with its quantile defined to be
VaRqðXÞ= inffx j FX xð Þ≥qg= F�1

X ðqÞ for 0≤q≤1. Two loss random variables may have the
same VaR value as VaR involves the confidence level q ignoring the magnitude of potential losses.
The CTE=E[X|X≥VaRq(X)] is the average value of losses that incurred beyond a VaR cutoff value.
It is by definition greater than the VaR.

A risk measure ρ(X):X→ℝ is said to be coherent if it satisfies that following four coherency axioms;
see Artzner et al. (1999):

∙ Monotonicity: if Y≤X⇒ ρ(X)≥ ρ(Y)

∙ Subadditivity: ρ(X +Y)≤ ρ(X) + ρ(Y)

∙ Positive homogeneity: for any c>0, ρ(cX)= cρ(X)

∙ Translation invariance: for any c>0, ρ(X + c)= ρ(X) + c
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Subadditivity axiom reflects the notion that the premium for the sum of two risks is not greater than
the one for individual risk and that pooling risks helps to diversify a portfolio. It is well known that
VaR does not satisfy the subadditivity axiom, but CTE does.

A distortion function ψ: [0, 1] → [0, 1] is a non-decreasing function such that ψ(0)= 0 and ψ(1)=1.
Wang (2000) has examined classes of premium/distortion functionals that transform the survival
function SX(x) of the loss variable. The risk-adjusted or distortion risk measure denoted by ρ(X) is
then given by

ρðXÞ=
ð1
0
ψðSðxÞÞdx

Furthermore, by substitutions and integration by parts:

ρðXÞ=
ð1
0
xψ 0 SðxÞð Þf ðxÞdx=

ð1
0
xd 1�ψ SðxÞð Þ½ �

=�
ð1
0
S�1ðtÞψ 0ðtÞdt =

ð1
0
F�1ðtÞψ 0ð1�tÞdt ð1Þ

where f(x)=dF(x)/dx and ψ′(·) is the first derivative of ψ(·). Based on (1), the risk measure ρ(X) can be
interpreted as the mean of the utility function xψ′(S(x)) with respect to the loss distribution or as the
mean of a random variable Y with cdf 1 −ψ(S(x)) (see Pflug, 2009). Distortion risk measures form an
important class of risk measures. Both VaR and CTE can be rewritten as the integration of a
distortion function. See also Sereda et al. (2010) for more analyses of distortion risk measures.

Wang (1995) proposes the proportional hazard (PH) premium principle such that ψPH(u)=ua, where
0 < a < 1 and shows that if a distortion/transform function ψ(·) is concave then ρ(X) is coherent.
Wang (2000) introduces another class of distortion operators ψθ(u)=Φ[Φ − 1(u) + θ], where Φ is the
standard normal cumulative distribution. If ψ(·) is concave with ψ(0)= 0 and ψ(1)= 1, then u=uψ(1)
+ (1–u)ψ(0) ≤ ψ(u) for u ∈ [0, 1]. That is, S(x) ≤ ψ(S(x)) for 0 ≤ S(x) ≤ 1. Integrating both sides,
EðXÞ= Ð10 SðxÞdx≤ ρðXÞ A concave distortion operator ψ(·) therefore adjusts the premiums so that
the risk-adjusted premium is not less than the expected loss value.

Wirch and Hardy (1999) consider the beta distribution distortion given by

ψbðuÞ=
ðu
0

1
Bða; bÞ t

a�1ð1�tÞb�1dt (2)

where parameters a and b are non-negative and the beta function Bða; bÞ= Ð 10ta�1ð1�tÞb�1dt: It is
shown that when a≤1 and b≥1, the second derivative ψ

00
bðuÞ≤0 for all u ∈ [0, 1]. Hence ψb(u) is

concave and results in a coherent distorted risk measure for a≤ 1 and b≥ 1. Setting a=1, it yields the
dual-power transform ψb(u)= 1–(1–u)b. The PH transform ψPH(u) is a special case of the beta
distortion with b= 1. When calculating risk measures, unlike VaR and CTE, the beta distortion not
only takes the entire loss distribution into consideration but also can better accommodate the desired
degree of risk aversion by adjusting the values of parameters a and b.

In this paper, we study new classes of distortions and the corresponding distortion risk measures.
The methods are based on distribution transforms, e.g., the beta distribution as seen in (2). The
literatures that inspire the proposed methods are included in section 2. In section 3, we present new
distribution distortions by replacing the beta distribution in (2) with other distributions having a
support of [0, 1], such as truncated normal and Kumaraswamy distributions. In section 3, we
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develop composite distribution distortions in which the distribution distortion is applied to a function
of the survival function. Specifically, we replace the upper limit of the integral in (2) by − ln(1−u),
which allows us to use distributions with support [0,∞). The parameter spaces ensuring the coherency
of the resulting risk measures are derived for the proposed distortions. In section 4, closed-form
expressions for distortion risk measures are derived for exponential and Pareto loss distributions.
Numerical and graphical comparisons are presented. We apply the proposed distortion functions to
derive risk measures for segregated fund guarantees in section 5, followed by concluding remarks.

2. Motivation

We next describe key works that motivate the proposed new families of distortion transforms in this
paper. We report only a few pertinent studies. Nadarajah and Rocha (2016) have compiled an
extensive list of references and explained how to use an R statistical package for statistical
computations.

Eugene et al. (2002) launch a class of beta generalised distributions given by

HðyÞ=
ðRðyÞ
0

1
Bðα; βÞt

α�1ð1�tÞβ�1dt; y 2 ð�1;1Þ (3)

where R(⋅) is an arbitrary baseline cdf. Since then a myriad of multi-parameter distributions have
been generated from similar frameworks by distorting various R(⋅) utilising appropriate non-beta
generating distributions. For example, Cordeiro and de Castro (2011) employ the Kumaraswamy
distribution instead of the beta distribution as the generating distribution.

Alzaatreh et al. (2013, 2014) advance another new method for generating so-called T-X families of
distributions by replacing R(⋅) with a differentiable and monotonically non-decreasing function w°R:
ℝ→ [a,b] in (3):

HðyÞ=
ðw RðyÞð Þ

0
gðtÞdt =Gðw RðyÞð ÞÞ (4)

where g(⋅) is an appropriate probability density function (pdf) with support on [a, b] and G(⋅) denotes
the corresponding cdf. The introduction of the function w(R(⋅)) as the upper limit in the integral allows
one to employ a pdf g(⋅) with support other than [0, 1]. Alzaatreh et al. (2015) suggest several w(⋅)
functions, e.g., w(u)= − ln(u/(1−u)) and − ln(1−ua) where a>0, and focus on the case when w
(u)= − ln(1−u) and g(⋅) is the gamma pdf. The fact that H(y)=G(w(R(y))) provides a relationship for
simulations of random numbers and calculations of quantiles of the resulting distribution.

In the context of this paper, instead of a cdf R(⋅), the distortion is applied to a survival function. With
R(⋅) in (3) being standard uniform cdf, it gives the beta distortion in (2). Utilising the framework of
the T-X family, we obtain new distortions, specifically focussing on the case w(u)= − ln(1 − u) in (4),
and name it as composite distribution distortion.

3. Distribution Distortions

In this section, we introduce new families of distortion functions of the form

ψðuÞ=
ðu
0
gðtÞdt; u 2 ½0; 1� (5)
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where the generating pdf g 2 G½0;1� and G½p;q� = fg j g is a non�increasing pdf with support ½p; q�g:
From (1), we obtain the following relationships:

ρðXÞ=
ð1
0
xg SðxÞð Þf ðxÞdx=

ð1
0
S�1ðtÞgðtÞdt =�

ð1
0
F�1ðtÞgð1�tÞdt (6)

The risk measure in (6) is the weighted average of the losses with a weight function of g(S(x))f(x). The
function g(S(x)) can be seen as a weighting risk aversion function defined over the loss; see Cotter
and Dowd (2006). That the slope of the tangent line to the distortion curve, defined to be g(u)=dψ
(u)/du, is non-increasing means that the weights associated with lower survival values and hence with
higher losses should be no less than the weights associated with lower losses. If a uniform g(t)=1 for
t∈ [0, 1], i.e., the identity ψ(u)= u for u∈ [0, 1] is chosen, then ρ(X)=E(X) and the decision-maker is
said to be risk neutral.

There are several candidates for g(⋅) in G½0;1�; see Johnson et al. (1995) and Kotz and Van Dorp
(2004). For example, the reciprocal distribution with a pdf of (1 + t) − 1/ln(2) for t∈ [0,1]. However,
it is not flexible as it involves no parameters. The beta distribution has been investigated in Wirch
and Hardy(1999). We choose to study the case when g is the Kumaraswamy pdf. Technically, one
may also use any concave truncated distribution, and here the commonly used truncated normal
with support [0, 1] is explored for demonstration. Both the Kumaraswamy and truncated normal
distributions have two parameters.

The appropriate parameter spaces where the distortion functions satisfy the concavity condition
required for coherency will be derived by inspecting the second derivative of the proposed distortion
functions. Note that the first derivative dψ(u)/du= g(u) is non-negative. The concavity requires that
ψ''(u)= g'(u)≤ 0 for all u∈ (0,1). That is, g(⋅) is non-increasing and mainly has a reverse J shape for
the appropriate parameter spaces.

In the following subsections, we derive the parameter spaces in which the proposed distortion is
concave. While the selection of parameter values of the distortions may be political or depend on the
degree of risk aversion of the users, we construct plots of the distortion functions to see the effects of
parameters on the distortion functions and risk attitudes.

3.1. Kumaraswamy distortion

The pdf of the Kumaraswamy distribution with support [0, 1] is

gKðtÞ= abta�1ð1�taÞb�1; t2 ½0; 1�

where a and b are non-negative parameters. When a=1, the Kumaraswamy distribution gives the
beta distribution. The Kumaraswamy distribution distortion is given by

ψKðuÞ=
ðu
0
abta�1ð1�taÞb�1dt = 1�ð1�uaÞb =

X1
k= 1

b

k

 !
ð�1Þkuak (7)

since ð1�xÞr = P1
k=0

r
k

� �
ð�1Þkxk for |x| < 1. The series expression can give rise to a possible closed-

form expression for the Kumaraswamy distortion risk measure. The dual-power transform is a
special case with a=1. When b=1, it gives the PH transform.The corresponding risk measure is then
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given by

ρKðXÞ=
ð1
0
1�fð1�½SðxÞ�agbdx=

X1
k=1

ð1
0

b

k

 !
ð�1Þk½SðxÞ�ak (8)

It may have a closed form depending on the loss distribution, e.g., Pareto loss in section 5.2.

Lemma 1: The Kumaraswamy distortion ψK(u)= 1− (1 −ua)b in (7) is concave if a≤1 and b≥ 1.

Proof: The second derivative of ψk(u) is given by

ψ
00
KðuÞ= abua�2ð1�uaÞb�2 a�1 + ð1�abÞua½ �

For u∈ (0,1), a −1 < a− 1 + (1 − ab)ua < a(1 − b) when (1 − ab) < 0, and a(1 − b)< a− 1 + (1 − ab)
ua< a− 1 when (1 − ab)<0. Therefore, the concavity requirement of ψ

00
KðuÞ≤0 for u∈ (0,1) is

satisfied when a≤ 1 and b ≥ 1, which, notably, is the same requirement for the parameters in the
beta distortion.

Figure 1 displays the concave curves of the Kumaraswamy distortion for various parameter values.
Belles-Sampera et al. (2016) use the area under the distortion function as a measure of global risk
attitude. Note that the area under a concave curve on [0, 1] is always greater than half, and a larger
area indicates a higher level of global risk tolerant attitude. It appears that the choice of a larger b
value or a smaller a value reflects a higher level of global risk tolerant attitude.

Fixing a= 0.5, at a small extreme survival value u, the slopes of the tangent lines to the curves
increases as b increases. That is, a greater weight is assigned to a large extreme loss as b increases,
indicating a higher level of risk aversion. The parameter b controls the right tail risk aversion. The
graph on the right, fixing b=10, indicates that the parameter a controls the rate of convergence.

As one might expect, the parameters in the Kumaraswamy and beta distortions have similar effects
on the risk measures and risk attitudes. Bear in mind that the Kumaraswamy distortion has a closed
functional form that appears more attractive and can be readily applied. In section 5, we examine the
effects of parameters on the risk measure for some selected loss distributions.
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Figure 1. Kumaraswamy transform. Left panel: a=0.5. Right panel: b=10.
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3.2. Truncated normal distortion

The pdf of a truncated normal distribution that has a support of [0, 1] and an original normal
distribution with mean μ and standard deviation σ, is given by

gtnðtÞ=ϕ
t�μ

σ

� �
= ðcσÞwhere c=Φ

1�μ

σ

� �
�Φ

�μ

σ

� �

for t ∈ [0, 1]. The functions ϕ(·) and Φ(·) are the standard normal pdf and cdf, respectively. The
truncated normal transform is defined to be

ψ tnðu; μ; σÞ=
ðu
0
gtnðtÞdt= 1

c
Φ

u�μ

σ

� �
�Φ

�μ

σ

� �h i
(9)

The corresponding risk measure is then given by

ρtnðXÞ=
ð1
0

1
c

Φ
SðxÞ�μ

σ

� �
�Φ

�μ

σ

� �� �
dx

The following lemma specifies the parameter spaces for the truncated normal distortion to maintain
the coherency of the resulting risk measures.

Lemma 2: The truncated normal transform ψtn in (9) with parameters μ and σ>0 is concave if μ≤0.

Proof. The second derivative of truncated normal transform is

ψ ′′
tnðuÞ=�gtnðuÞ u�μ

cσ2

For all u ∈ [0, 1], ψ ′′
tnðuÞ≤0 when μ ≤ 0. That is, with the original mean μ ≤ 0 and truncated to

[0, 1], a segment of the right half of the normal pdf curve is used to generate a concave distortion
function.

In Figure 2, the effects of varying μ< 0 and σ are shown. When μ= − 0.5, a lower level of global risk
tolerant attitude and risk aversion is associated with the distortion function resulting from a higher
value of σ. Setting σ=1, a smaller μ value corresponds to a higher level of global risk tolerant
attitude. From the spreadness in the plotted curves, it appears that the calibration of the parameter σ
would allow one to make a larger extent of risk attitude adjustments.
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Figure 2. Truncated normal transform. Left panel: μ= −0.5. Right panel: σ=0.1.
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4. Composite Distribution Distortions

In section 3, we introduce two concave distortions using distribution functions with finite support
[0, 1]. In this section, we present new distortion functions by adopting the proposal in Alzaatreh
et al. (2015). In particular, the composite distribution distortions of the form:

ψðuÞ=GðwðuÞÞ=
ðwðuÞ

0
gðtÞdt (10)

where w(u)= − ln(1–u) and g(·) is a pdf with a support of [0,∞) and with a corresponding cdf G(·).
Note that for u ∈ [0, 1], 0≤w(u)≤∞, ψ(0)=0 and limu→1ψ(u)=1. The resulting risk measure is
given by

ρðXÞ=
ð1
0
xg �lnð1�SðxÞÞð Þ½1�SðxÞ��1f ðxÞdx

=
ð1
0
xd 1�ψ wðSðxÞð Þ½ �Þ=

ð1
0
t�1S�1ð1�tÞgð�lnðtÞÞdt ð11Þ

This integration is relatively easy to program using a computer software. To see the proposed
distortion function and the corresponding risk measure from a different angle, let V be a random
variable with pdf g(·) and define Y= S −1 (1–e −V). The cdf of Y is then 1−ψ(S(·)). The mean of Y is
equal to the risk measure based on the distortion function defined in (10).

The first derivative ψ′(u)= g(w(u))/(1–u) is non-negative for u ∈ [0, 1]. The second derivative ψ″ is
given by

ψ ′′ðuÞ= 1
ð1�u2Þ g′ðwðuÞÞ + gðwðuÞÞ½ � (12)

Since 1/(1 −u)2>0 for u ∈ (0, 1), to induce a coherent risk measure, a proper candidate g(⋅) in (10)
must satisfy the condition that g'(w(u)) + g(w(u)) ≤ 0 for u ∈ (0, 1). The condition also implies that
g(⋅) is strictly decreasing since g(⋅) is positive.

Note that not all continuous, strictly decreasing pdf’s can meet the concavity requirement in (12). For
example, the Pareto pdf given by g(t)=bab/(t + a)b+1, where a > 0 and b > 0. In this case, g'(w
(u))= −b(b+ 1)ab[w(u) + a]− (b +2) < 0 for all a > 0 and b > 0, but there does not exist any (a, b)
value such that g′(w(u)) + g(w(u))= ba[w(u) + a − (b +2)[w(u) + a− b− 1] < 0 for all u ∈ (0, 1).

There is a long list of potentially suitable distribution choices for g(⋅) with support [0,∞). In the
following subsections, we examine only the two parameters cases when g(⋅) are the exponentiated
exponential (EE) and gamma pdf’s. Both distributions are a generalisation of exponential distribu-
tion but in different ways. One major advantage of the EE distribution is that its cdf has a closed-
form expression.

4.1. Composite EE distortion

Let gee(t) be the EE pdf, for t > 0:

geeðtÞ= abe�bt 1�e�bt
� �a�1
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where the shape parameter a > 0 and the scale parameter b > 0. Applying the series expansion

ð1�xbÞa = P1
k=0

a
k

� �
ð�1Þktbk for |x|b < 1, the composite EE distortion is given by

ψ eeðuÞ=
ð�lnð1�uÞ

0
abe�bt 1�e�bt

� �a�1
dt

= 1�ð1�uÞb
h ia

=
X1
k=0

a

k

 !
ð�1Þk

X1
i=0

bk

i

 !
ð�1Þiui ð13Þ

One can see from the closed functional form that ϕee(u)=u when a=1 and b= 1. Just as in the beta
and Kumaraswamy distortions, the PH is its special case with b=1. When a=1, it gives the dual-
power transform.

The distortion risk measure is given by

ρeeðXÞ=
ð1
0
f1�½1�SðxÞ�bgadx

This integral, seemingly similar to the one in the Kumaraswamy risk measure, can also be easily
obtained by a built-in R integration function.

Lemma 3: The EE distortion ψee(u)= [1− (1 −u)b]a in (13) is concave if b ≥ 1 and a ≤ b.

Proof: Since ebln(1 −u)= (1 − u)b, the first derivative ψ ′
eeðuÞ= abð1�uÞb�1 1�ð1�uÞb

h ia�1
. The

second derivative ψ ′′
eeðuÞ of ψ(u) with respect to u is given by

ψ ′′
eeðuÞ= ab 1�ð1�uÞb

h ia�2
ð1�uÞb�2 ða�1Þbð1�uÞb�ðb�1Þ 1�ð1�uÞb

h in o

= ab 1�ð1�uÞb
h ia�2

ð1�uÞb�2 ða�1Þð1�uÞb�ðb�1Þ
n o

If b ≥ 1 (a − 1)(1 − u)b ≤ (b − 1) for all u ∈ [0, 1] when a ≤ b. When b < 1, there does not exist
a positive a value such that ψ ′′

eeðuÞ≤ 0 for u ∈ (0, 1).

Note that the figures below are very similar to Figure 1. Therefore, the conclusions about the effects
of the parameters a and b on the distortion functions, risk measures and risk attitudes based on
Figure 1 also hold and are not repeated here (Figure 3).
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Figure 3. Exponentiated exponential transform. Left panel: a= 0.5. Right panel: b=10.
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4.2. Composite gamma distortion

Let g(t) be the gamma probability density function with parameters a > 0 and b > 0, then

ψGðuÞ=
ð�lnð1�uÞ

0

ba

ΓðaÞ t
a�1e�btdt =

1
ΓðaÞ γ a;�blnð1�uÞð Þ (14)

where γðs; xÞ= Ð x0ts�1e�tdt is the lower incomplete gamma. The composite gamma distortion is the
cdf of a gamma random variable with parameters a and b= 1 evaluated at − bln(1 − u). When a= 1
and b= 1, ψG(u)=1. When a=1, g(t) is exponential and leads to the dual-power transform 1 − (1 −
u)b, which is concave for b ≥ 1. Applying the series expansion e�bt =

P1
i=1

ðbtÞi = i ! an alternative
form of the proposed composite gamma distortion function is given by

ψGðuÞ=
ba

ΓðaÞ
X1
i=0

bi½�lnð1�uÞ�a + i
i ! ða + iÞ

The distortion risk measure is, using (11):

ρGðXÞ= ba

ΓðaÞ
ð1
0
x �lnð1�SðxÞÞ½ �a�1eb lnð1�SðxÞÞ 1�SðxÞ½ ��1f ðxÞdx

=
ba

ΓðaÞ
ð1
0
S�1ð1�tÞtb�1½�lnðtÞ�a�1dt ð15Þ

Lemma 4: The composite gamma distortion ψG(u) in (14) is concave if 0 < a ≤ 1 and b ≥ 1.

Proof: The second derivative of ψG(u) is given by

ψ ′′
GðuÞ=

ba � lnð1�uÞð Þ½ �a�2ð1�uÞb�2

ΓðaÞ ða�1Þ + lnð1�uÞðb�1Þ½ �

Consequently, when 0 < a ≤ 1 and b ≥ 1, ψ ′′
GðuÞ≤ 0 for all u ∈ (0, 1).

Figure 4 shows the same patterns as in Figure 1 for various a and b values.

5. Examples

In this section, we apply the distortions defined in section 3 and 4 to exponential, Pareto and log-
normal losses. Closed-form expressions of distortion risk measures for the exponential and Pareto
losses, including the ones resulting from the beta distortion, are derived. Numerical and graphical
comparisons are then performed in the last subsection.
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Figure 4. Gamma transform. Left panel: a=0.5. Right panel: b=10.

Ranadeera GM Samanthi and Jungsywan Sepanski

408

https://doi.org/10.1017/S1748499518000258 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000258


5.1. Exponential loss

An exponential loss random variable has a pdf f(x)= θe − αx, θ > 0. It has a mean of 1/θ, a variance of
1/θ2, a survival function S(x)= e − θx for x ≥ 0 and S −1(t)= − ln(t)/θ, t ∈ [0, 1].

Using (6) and using the fact that dut/dt=utln(t), beta distortion risk measure is

ρbðXÞ=� 1
θBða; bÞ

ð1
0
lnðtÞta�1ð1�tÞb�1dt =

1
θ
Ψða + bÞ�ΨðaÞ½ � (16)

where the digamma function Ψ(a)=dΓ(a)/da is the digamma function. When b= 1, ρb(X)= (aθ)− 1

since Ψ(a + 1)=Ψ(a) + 1/a.

Similar to the derivation of (16), Kumaraswamy distortion risk measure is

ρKðXÞ=
ð1
0
abt½e�θt�a�1½1�e�aθt�b�1θe�θtdt

=
b
aθ

ð1
0
lnðuÞð1�uÞb�1du=

1
aθ

Ψðb + 1Þ�Ψð1Þ½ �:

For a fixed b value, the risk measure is inversely proportional to a, 0 ≤ a ≤ 1. A very small a value
can greatly inflate the risk measure, which is consistent with the observation based on Figure 1.
Alternatively, based on the infinite sum expression in (7):

ρKðXÞ= 1
aθ

X1
k=1

b

k

 !
ð�1Þk
k

another closed form can be derived, via integration by parts similar to the derivation of (16) and the
fact that dut/dt= utln(t), The EE distortion risk measure, based on (13), is given by

ρeeðXÞ=
X1
k=0

a

k

 !
ð�1Þk 1 +

X1
i= 1

bk

i

 !
ð�1Þi
iθ

" #

Using series expansion lnð1�tÞ=� P1
k=1

tk =k for |t| < 1 and S− 1(1 − t)= − ln(1 − t)/θ, the gamma
distortion risk measure in (15) is

ρgaðXÞ=
ð1
0

ba

θΓðaÞ lnð1�tÞ �lnðtÞ½ �a�1tb�1dt

=
ð1
0

ba

θΓðaÞ �lnðtÞ½ �a�1
X1
k=1

tk +b�1

k
dt

=
ð1
0

ba

θΓðaÞ s
a�1
X1
k= 1

e�sðk+ bÞ

k
ds=

ba

θ

X1
k=1

k
ðk + bÞa

for 0 ≤ a ≤ 1 and b ≥ 1.

5.2. Pareto loss

Consider a Pareto loss random variable with pdf f(x)= βαβ/(x + α)β +1, x > 0. It has mean α/(β − 1)
for β > 1, variance α2β/[(β − 1)2(β − 2)] for β > 2, survival function S(x)= [α/(x + α)]β, and
S− 1(t)= α(1 − t1/β)t −1/β, t ∈ [0, 1].
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The beta distortion risk measure is

ρbtðXÞ= α

Bða; bÞ
ð1
0
ðt�1 = β�1Þta�1ð1�tÞb�1dt

=
α

Bða; bÞ Bða�1 = β; bÞ�Bða; bÞ½ �

When a − 1/β ≤ 0, the B(a − 1/β, b) is not well defined.

The Kumaraswamy distortion risk measure defined in (8), with a substitution of s= [α/(x + α)]aβ, is
given by

ρKðXÞ=
ð1
0
abx

α

x + α

� �β� �a�1

1� α

x + α

� �aβ� �b�1 βαβ

ðx + αÞβ +1 dx

= αb
ð1
0
ðs�1 = ðaβÞ�1Þð1�sÞb�1ds

= αb Bð1�1 = ðaβÞ; bÞ�Bð1; bÞ½ �

Similar to the beta distortion risk measure, when aβ ≤ 1 or equivalently a − 1/β ≤ 0, the beta
function and consequently the risk measure are not well defined. When a=1 and b=1, the risk
measure is α/(β − 1) for β > 1, which is the mean of the Pareto loss random variable. Alternatively,
the distortion risk measure is

ρKðXÞ= α
X1
k=1

b

k

 !
ð�1Þk
aβk�1

Note that
Ð1
0 SðxÞkdx is not well defined if aβk ≤ 1. That is, again, aβ > 1 is required for a finite risk

measure.

The EE distortion risk measure is

ρeeðXÞ=
X1
k=0

a

k

 !
ð�1Þk 1 +

X1
i=1

bk

i

 !
ð�1Þiα
iβ�1

" #

Notice that, for u ∈ [0, 1] and b ≥ 1,(1 − u) > (1 − u)b and [1 − (1 − u)b]a ≥ ua. Therefore,

ð1
0

1� 1� α

x + α

� �β� �b( )a

dx≥
ð1
0

α

x + α

� �aβ
dx

The integral on the right hand side is not finite when aβ ≤ 1. This places a constraint on the choice of
a value at which the EE distortion risk measure on the left-hand side is finite.

The composite gamma distortion risk measure is

ρgaðXÞ=
ð1
0

α

baΓðaÞ ð1�tÞ�1 = β�1
h i

�lnðtÞ½ �a�1t1 = b�1dt

for 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

Ranadeera GM Samanthi and Jungsywan Sepanski

410

https://doi.org/10.1017/S1748499518000258 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000258


5.3. Numerical results

We consider three loss distributions. They are the exponential loss distribution with θ=1, the Pareto
distribution with (α, β)= (2, 3) and the log-normal distribution with mean of −0.5 and s.d. of 1. For the
purpose of easier comparisons, the parameter values are chosen such that all have a mean loss of 1. They
have a variance of 1, 3 and 1, respectively. The proposed distortion risk measures for a log-normal loss
random variable are computed numerically using the software R in our numerical results below.

In addition to the distortion risk measures proposed in this paper, VaR and CTE were also com-
puted. Figure 5, we plotted the pdf’s of the three widely used loss random variables. Exponential
distribution is a special case of gamma and has a light tail. Pareto has the heaviest tail and therefore
one would expect the highest risk measure when the same distortion function is applied. The tail of
the log-normal distribution is heavier than exponential and used in financial application such as
stock return modelling.

Note that CTE=
Ð 1
qF

�1ðtÞdt = ð1�qÞ. The formulas for the VaR and CTE risk measures at level q for
the three loss random variables are shown below.

∙ Exponential loss with a cdf of 1 − e − θx for x ≥ 0

VaR=�lnð1�qÞ = θ andCTE=�½lnð1�qÞ�1� = θ
∙ Pareto loss with a cdf of 1 − [α/(x + α)]β for x ≥ 0

VaR= α½1�ð1�qÞ1 = β�ð1�qÞ�1 = β andCTE=
αβð1�qÞ�1 = β

ðβ�1Þ �α

∙ Log-normal loss random variable with a cdf of Φ lnðxÞ�μx
σx

� �
for x ≥ 0

VaR= expfΦ�1ðqÞσx + μxg andCTE=
eμx + σ

2
x = 2

1�q
1�Φ

lnðVaR�μx�σ2xÞ
σx

� �� �

In Table 1, distortion risk measures are calculated for various combinations of parameter values to
investigate the magnitudes of their effects.

For the truncated normal distortion with a support of [0, 1], the risk measure increases as the mean
of the original normal distribution decreases and as the standard deviation decreases. While they are
all expectedly larger than the mean loss of 1, most of the results reported here are not greater than
CTE. As shown in the previous section, setting b= 1, the beta, Kumaraswamy and EE distortions all
yield the PH transform with parameter a, and hence output the same risk measure. For all distortion
functions, the risk measure increases as a decreases and as b increases. The parameter a appears to

43210

1.5

1.0

0.5

0.0

Pareto
exponential
lognormal

Figure 5. Density functions of exponential, Pareto and log-normal losses.
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have a more dramatic effect on the risk measure than b for the Pareto loss, which has the highest
variance and skewness among the three loss distributions.

Belles-Sampera et al. (2016) also suggest graphing the quotient between the distortion function ψ(u)
and the identity function u for analysis of the risk attitude locally at each u value, with quotients
greater than 1, equal to 1 and less than 1 representing risk tolerant, neutral and intolerant,
respectively. Figure 6 exhibits the distortion curves and the corresponding quotient curves with
parameter values (a, b)= (0.35, 5) and (μ, σ)= (−0.5, 0.5) for the truncated normal distortion.

Note that although the same parameter values are employed, the global and local risk behaviours
reflected by the beta, Kumaraswamy, EE and gamma distortions are not the same. The curve of the
truncated normal transform with parameters μ= −0.5 and σ= 0.5 lies below all other transforms
with parameters a=0.35 and b= 5. Hence, among the plotted distortions, it produces the smallest
risk measure, consistent with the conclusion by inspecting the areas under the curve. At a=0.35 and
b=5, the Kumaraswamy distortion represents more risk tolerant attitude than other distortions, and
its quotient reflects a local risk attitude near the maximum possible quotient value of 1/u. Fur-
thermore, the beta and gamma distortions behave in a similar manner. The EE distortion appears to

Table 1. Risk measures.

Distortion functions Exponential loss Pareto loss Log-normal loss

α= 0.95 α=0.90 α=0.95 α= 0.90 α=0.95 α= 0.90

VaR 3.00 2.30 3.43 2.31 3.14 2.18
CTE 4.00 3.30 6.14 4.46 5.19 3.89

σ=0.25 σ=0.5 σ=1 σ=0.25 σ= 0.5 σ= 1 σ=0.25 σ= 0.5 σ=1

Truncated normal
μ= − 0.50 2.89 1.84 1.24 3.82 2.01 1.28 3.35 1.91 1.24
μ= − 1.00 3.43 2.20 1.36 4.99 2.63 1.45 4.26 2.38 1.39
μ= − 2.00 4.37 2.74 1.62 8.06 3.55 1.78 5.14 3.13 1.67

b= 1 b=2 b=5 b=1 b= 2 b=5 b=1 b= 2 b=5

Beta
a=0.35 2.86 3.60 4.55 40.00 53.77 76.16 5.65 7.38 9.97
a=0.50 2.00 2.67 3.57 4.00 5.71 8.63 2.79 3.86 5.58
a=1.00 1.00 1.50 2.28 1.00 1.60 2.73 1.00 1.52 2.47

Kumaraswamy
a=0.35 2.86 4.29 6.52 40.00 78.18 188.47 5.65 9.68 18.64
a=0.50 2.00 3.00 4.57 4.00 7.00 14.02 2.79 4.57 8.26
a=1.00 1.00 1.50 2.28 1.00 1.60 2.74 1.00 1.52 2.47

EE
a=0.35 2.86 3.46 4.31 40.00 50.82 58.43 5.65 7.02 9.25
a=0.50 2.00 2.57 3.40 4.00 5.44 7.99 2.79 3.69 5.22
a=1.00 1.00 1.50 2.28 1.00 1.60 2.73 1.00 1.52 2.47

Gamma
a=0.35 3.12 3.74 4.61 44.82 56.91 77.88 6.26 7.76 10.16
a=0.50 2.18 2.77 3.62 4.45 6.02 8.80 3.07 4.05 5.68
a=1.00 1.00 1.50 2.28 1.00 1.60 2.74 1.00 1.52 2.47

Note: VaR, value at risk; CTE, conditional tail expectation.
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be relatively less risk tolerant locally at u ≤ 0.5. The truncated normal transform with μ= −0.5 and
σ= 0.5 reflects a risk attitude closer to the risk neutral behaviour than all other transforms con-
sidered in Figure 6.

6. Application

In this section, we discuss a practical application of the proposed distortion risk measures. Investi-
gations of the reserve requirements for variable annuities and segregated fund guarantee have
received a fair share of attention from actuaries. Here, we revisit the segregated fund guarantees
example in Wirch and Hardy (1999), and study the reserve requirement using the proposed risk
measures and compare them to some existing coherent risk measure approaches such as VaR, CTE
and beta distortion risk measures.

As in Wirch and Hardy (1999), we consider a 10-year single premium segregated fund contract with
a guarantee, v, of $75, $85 or $100 at maturity for a $100 premium paid upfront. It is assumed that
the company invests the premium in stocks offering log-normal returns with annual parameters
μ= 0.07 and σ=0.18. The distribution of the losses, L, depends on the guarantee v and the stock
return, S10, at maturity. In other words, L=max (0, v − S10), where S10 follows log-
norm 0:7; 0:18 ´

ffiffiffiffiffiffi
10

p	 

.

We are interested in comparing the risk measures using existing and proposed approaches so the results
in Wirch and Hardy (1999) were reproduced and reported in Table 2. The parameters of the distortion
functions were selected such that they give the same risk measure of 0.95 for a uniform loss distribution
on [0, 1]. When there are two parameters in the distortion function, one parameter is set to be the
reciprocal of the other. Figure 7 is a plot of the distortion functions chosen based on the above criteria.

When the initial gradients of the distortion functions are large, that corresponds to loading more
weight towards the far right tail of the loss distribution. In addition, the distortion functions that
converge faster than others assign more weight to moderate as well as extremely large losses.
Therefore, focussing on the shape of distortion functions based on the changes in the parameters of
the distortion function is crucial in risk management.
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Figure 6. The distortion and quotient functions of truncated normal transform with μ= − 0.5 and
σ= 0.5 and other transforms with parameters a=0.35 and b=5. EE, exponentiated exponential.
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Based on Table 2, a larger guarantee level carries more risk to the insurer, hence the risk measure
increases as the guarantee level increases. The coherent risk measures such as beta, Kumaraswamy,
EE and gamma have only slight differences for each guarantee level. They are relatively moderate
compared to PH distortion risk measure. For the selected parameters, the truncated normal and dual-
power transforms generate smaller risk measures than other distortions.

7. Concluding Remarks

This paper uses the framework in (4) that has been employed to generate various distributions to
develop new families of distortion functionals. Instead of a beta generating pdf as in (2), we first
propose to use a Kumaraswamy or a truncated normal pdf. We then study the case when w (u)= − ln
(1 − u) with an EE or a gamma pdf as the generating pdf. Both Kumaraswamy and composite EE
distortions have closed forms that can be readily employed, and include PH and dual-power
transforms as their special cases. To ensure coherent risk measures, we derive the domains of
parameter spaces in which the distortion functions are concave. The effects of parameter values on
distortion risk measures and risk attitudes are examined through graphs and closed-form expressions
for the risk measures or numerical calculations via computer programming.

Note again that the proposed distortion risk measures can be interpreted as the mean of a random
variable Y= S −1(V), where V has a beta or Kumaraswamy distribution, or the mean of Y= S − 1

(1 − e −V), where V has an EE distribution or a gamma distribution. Though not reported, simu-
lations of random numbers for Y were run to check if the formulas and numerical integrations for
computing risk measures are correctly derived. The inverse transformation method was used to
generate Y. It is also possible to follow the tedious methods in Castellares et al. (2013), involving
multiple sums of infinite series, to work out closed-form expressions for the mean of Y.

If the loss distribution is unknown, the risk measure can be estimated via L-statistics. In particular,

the empirical estimator of the risk measure is given by ρ̂X =
Pn
m=1

cmnXm :n where Xm:n is themth order

statistics of a random sample of size n and cmn =
Ðm = n
ðm�1Þ = nψ ′ð1�tÞdt=ψð1�ðm�1Þ =nÞ�ψð1�m =nÞ;

see Tsukahara (2014) for more details. Kaiser and Brazauskas (2006) also investigate methodologies
for the constructions of confidence intervals for various risk measures. They consider risk measures
with one parameter: VaR, CTE, PH and Wang. The estimation of the proposed distortion risk
measures with two parameters in this paper needs to be further studied.
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Figure 7. The distortion functions of uniform loss distributions with a risk measure of 0.95. EE,
exponentiated exponential; PH, proportional hazard.
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A natural question that arises is the choice of an adequate distortion or a risk measure. The answer to
this question is not obvious since there is no clear way to compare the proposed distortions partly
due to the flexibility induced by the parameters, although it is possible to calibrate the parameter
values in a distortion function to reflect a decision-maker’s risk attitude. Goovaerts et al. (2004)
suggest that insurance premium principles or risk measures should be selected so that they satisfy
certain properties or axioms such as monotonicity, subadditivity, positive homogeneity and trans-
lation invariance to reflect the realities of practices. Belles-Sampera et al. (2016) use the area under
the distortion function to quantify the global risk attitude, with decision-makers classifies as risk
tolerant, risk neutral or risk intolerant if the corresponding areas are more than half, half and less
than half, respectively. The proposed coherent distortions lead to risk measures satisfying the four
coherency axioms. They are concave on [0, 1] and therefore, reflect a risk tolerant attitude.

In addition to the choice of g(⋅), one may also use different w(⋅) functions. For example, let g(t) be the
density function of a normal distribution with a mean of θ and a s.d. of 1 and w(u)=Φ−1(u), then (4) is

Φ Φ�1ðuÞ�θ
	 


=
ðΦ�1ðuÞ

�1
gðtÞdt

which gives Wang’s transform. To generalise this idea, w(⋅) can be well-defined quantile functions. We
will further investigate this, in a way, a different kind of quantile-based class of distortion functions, in a
future paper.

Finally, we would like to mention that the multi-parameter classes of distributions generated by the
framework (4) are of great flexibility. One may employ them to fit loss data. Commonly used loss
distributions such as Pareto and Gumbel distributions are special cases of the rich classes of dis-
tributions. They can be applied to fit unimodal, multi-modal or heavy-tailed data with the help of
extra parameters. While there are often no simple or attractive closed-form expressions for means,
standard deviations and maximum likelihood estimates, Nadarajah and Rocha (2016) explain how
one can use an R Package for estimations of the parameters for these rich families of distributions.

Table 2. Risk measures for segregated fund guarantees.

Risk measure Parameter 75% guarantee 85% guarantee 100% guarantee

Expected loss – $0.59 $1.12 $2.41
VaR 95% $00 $6.04 $21.05
CTE 90% $5.92 $11.18 $23.99
Dual power 19 $9.18 $15.57 $27.78
PH 19 $48.63 $57.19 $70.37
Beta 1 =

ffiffiffiffiffiffi
19

p
;
ffiffiffiffiffiffi
19

p	 

$25.30 $32.71 $44.91

Kumaraswamy (1/3, 3) $23.94 $31.48 $43.85
Truncated normal (−0.113, 0.1) $8.39 $14.59 $26.80
EE (1/5, 5) $27.13 $34.61 $46.83
Gamma (6/25, 25/6) $24.60 $31.97 $44.13

Note: VaR, value at risk; CTE, conditional tail expectation; PH, proportional hazard; EE, exponentiated expo-
nential.
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