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We develop a method to compute the generating function of the number of vertices inside certain
regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly com-
binatorial in flavour and the main tool is the decomposition of the UIPT into layers, called the
skeleton decomposition, introduced by Krikun [20]. In particular, we get explicit formulas for the
generating functions of the number of vertices inside hulls (or completed metric balls) centred
around the root, and the number of vertices inside geodesic slices of these hulls. We also recover
known results about the scaling limit of the volume of hulls previously obtained by Curien and Le
Gall by studying the peeling process of the UIPT in [17].
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1. Introduction and main results

The probabilistic study of large random planar maps takes its roots in theoretical physics, where
planar maps are considered as approximations of universal two-dimensional random geometries
in Liouville quantum gravity theory (see for instance the book [3]). In the past decade, a lot of
work has been devoted to make rigorous sense of this idea with the construction and study of the
so-called Brownian map. The surveys [23, 26] will give the interested reader a nice overview of
the field as well as an up-to-date list of references.

Since they are instrumental in every proof of convergence to the Brownian map, the most
successful tools for studying random planar maps are undoubtedly the various bijections between
certain classes of maps and decorated trees. The search for such bijections was initiated by Cori
and Vauquelin [14] and perfected by Schaeffer [29]. Since then, many bijections in the same
spirit have been discovered (see in particular the one by Bouttier, Di Francesco and Guitter [11]).
These bijections are particularly well suited to studying metric properties of large random maps
(see the seminal work of Chassaing and Schaeffer [13]), and they have led independently to the
remarkable proofs of convergence by Le Gall [22] and Miermont [25] in the Gromov–Hausdorff
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topology of wide families of random maps to the Brownian map, paving the way to other results
of convergence [1, 2, 10].

Another very powerful tool for the study of random maps is the so-called peeling process –
informally a Markovian exploration procedure – introduced by Watabiki [30] and used imme-
diately by Watabiki and Ambjørn to derive heuristics for the Hausdorff dimension of random
maps in [4]. Probabilists started to show interest in this procedure a bit later, starting with Angel
[5], who formalized it in the setting of the Uniform Infinite Planar Triangulation (UIPT). Since
then, this process has received growing attention and proved valuable for studying not only the
geometry of random maps [5, 9, 12, 17], but also random walks [8], percolation [5, 6, 24, 28],
and even, to some extent, conformal aspects [15].

In this work we will use another tool, introduced by Krikun [20], to study the UIPT, called
the skeleton decomposition. Before we present this tool, let us recall that a planar map is a
proper embedding of a connected multigraph in the two-dimensional sphere, considered up to
orientation-preserving homeomorphisms. The maps we consider will always be rooted (they
have a distinguished oriented edge), and we will focus on rooted triangulations of type I in the
terminology of Angel and Schramm [7], meaning that loops and multiple edges are allowed and
that every face of the map is a triangle. The UIPT is the infinite random lattice defined as the
local limit of uniformly distributed rooted planar triangulations with n faces as n → ∞ (see Angel
and Schramm [7]). We will denote the UIPT by T∞ and, if M is a (finite) planar map, we will
denote its number of vertices by |M|.

For every integer r � 1, the ball Br(T∞) is the submap of T∞ composed of all its faces having
at least one vertex at distance strictly less than r from the origin of the root edge. Since the
UIPT is almost surely one-ended, of all the connected component of T∞ \Br(T∞), only one is
infinite and the hull B•

r (T∞) is the complement in T∞ of this unique infinite connected component
(see Figure 1 for an illustration). The layers of the UIPT are the sets B•

r (T∞) \ B•
r−1(T∞) for

r � 1. The skeleton decomposition of the UIPT roughly states that the geometry of the layers of
the UIPT is in one-to-one correspondence with a critical branching process and a collection of
independent Boltzmann (or free) triangulations with a boundary (see Figure 2). We will give a
detailed presentation of this decomposition in Section 2.

This decomposition was used by Krikun in [20] to study the length of the boundary of the hulls
B•

r (T∞) of the UIPT and in [21] for similar considerations on the Uniform Infinite Planar Quad-
rangulation. Since then, this decomposition has not received much attention, with the notable
exception of the recent work by Curien and Le Gall [16], where it is used to study local modific-
ations of the graph distance in the UIPT.

We will use the skeleton decomposition of the UIPT to get exact expressions for the gener-
ating functions of the number of vertices inside certain regions of hulls, starting with the hulls
themselves.

Theorem 1.1. For any s ∈ [0,1] and any non-negative integer r, we have

E[s|B
•
r (T∞)|] = 33/2 cosh(sinh−1(

√
3(1− t)/t)+ r cosh−1(

√
(3−2t)/t))

(cosh2(sinh−1(
√

3(1− t)/t)+ r cosh−1(
√

(3−2t)/t))+2)3/2
,

where t is the unique solution in [0,1] of the equation s2 = t2(3−2t).
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∂B•
r (T∞)

Figure 1. Illustration of the ball of radius r in the UIPT and the corresponding hull.

An easy consequence of this theorem is the scaling limit

lim
R→∞

E[e−λ |B•
�xR�(T∞)|/R4

]

already obtained in [17] via the peeling process. Indeed, put s = e−λ/R4
and r = �xR� for some

λ ,x > 0 and some integer R. Then

t = 1−
√

2λ/3
R2

+o(R−2)

and

cosh−1

(√
3−2t

t

)
∼

√
3−2t

t
−1 ∼ (6λ )1/4

R
,

giving

lim
R→∞

E[e−λ |B•
�xR�(T∞)|/R4

] = 33/2 cosh((6λ )1/4x)
(cosh2((6λ )1/4x)+2)3/2

in accordance with [17, 18] for type I triangulations.
We also get an explicit expression for the generating function of the volume of hulls condi-

tionally on their perimeter (see Proposition 4.1 for a precise statement). This allows us to recover
the following scaling limit, already appearing in [18, Theorem 1.4] as the Laplace transform of
the volume of hulls of the Brownian plane conditionally on the perimeter.

Corollary 1.2. Fix x, � > 0. Then, for any λ > 0, we have

lim
R→∞

E
[
e−λ |B•

�xR�(T∞)|/R4 | |∂B•
�xR�(T∞)| = ��R2�

]
= x3(6λ )3/4 cosh((6λ )1/4x)

sinh3((6λ )1/4x)
exp

(
−�

(
(6λ )1/4

(
coth2((6λ )1/4x)− 2

3

)
− 1

x2

))
.
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Our approach also allows us to compute the exact generating function of the difference of
volume between hulls of the UIPT (see Proposition 4.1), and then recover one of the main results
of [17], namely the scaling limit of the volumes of hulls to a stochastic process. This convergence
holds jointly with the scaling limit of the perimeter of the hulls, and we need to introduce some
notation taken from [17] to state it.

Let (Xt)t�0 be the Feller Markov process with values in R+ whose semigroup is characterized
by

E[e−λXt | X0 = x] = exp(−x(λ−1/2 + t/2)−2)

for every x, t � 0 and λ > 0. The process X is a continuous-time branching process with branching
mechanism given by u 	→ u3/2. As explained in [18], one can construct a stochastic process
(Lt)t�0 with càdlàg paths such that the time-reversed process (L(−t)−)t�0 is distributed as X
‘started from +∞ at time −∞’ and conditioned to hit 0 at time 0. We also let (ξi)i�1 be a sequence
of independent real-valued random variables with density

1√
2πx5

e−1/(2x)1{x>0}

and assume that this sequence is independent of the process L. Finally, we set

Mt = ∑
si�t

ξi(ΔLsi
)2,

where (si)i�1 is a measurable enumeration of the jumps of L. We recover the following result,
first proved in [17] by studying the peeling process of the UIPT.

Theorem 1.3 ([17], scaling limit of the hull process). We have the following convergence in
distribution in the sense of Skorokhod:

(R−2|∂B•
�xR�(T∞)|,R−4|B•

�xR�(T∞)|)x�0
(d)−−−→

R→∞
(32 ·Lx,4 ·33 ·Mx)x�0.

As for Theorem 1.1, our proof is based on the skeleton decomposition of random triangulations
and explicit computations of generating functions. The convergence of perimeters towards the
process L was already established by Krikun [20] using this decomposition, and we prove the
joint convergence of the second component.

Finally, we study the volume of geodesic slices of the UIPT, defined by analogy with geodesic
slices of the Brownian map (see Miller and Sheffield [27]). Fix r > 0, and orient ∂B•

r (T∞) in such
a way that the root edge of T∞ lies on its right-hand side. Now pick two vertices v,v′ ∈ ∂B•

r (T∞),
the geodesic slice S(r,v,v′) is the submap of B•

r (T∞) bounded by the two leftmost geodesics
(see Section 5 for a precise definition) started respectively at v and v′ to the root, and by the
oriented arc from v to v′ along ∂B•

r (T∞) (see Figure 4 for an illustration). Notice that B•
r (T∞) =

S(r,v,v′)∪S(r,v′,v). We will also let v∧ v′ denote the vertex where the two leftmost geodesics
started at v and v′ coalesce.

For technical reasons, it will be easier to study the volume of geodesic slices minus the
number of vertices on one of the two geodesics bounding it (for S(r,v,v′), we are talking about
excluding a number of vertices between 2 and r + 1). It is still possible to study the full volume
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of slices, but the formulas we provide will be much simpler and the number of vertices excluded
is insignificant for large r anyway.

Theorem 1.4. Fix n,r,q and q1, . . . ,qn some non-negative integers such that q1 + · · ·+ qn = q.
Conditionally on the event {|∂B•

r (T∞)| = q}, let v1 be a vertex of ∂B•
r (T∞) chosen uniformly at

random and let v2, . . . ,vn be placed in that order on the oriented cycle ∂B•
r (T∞) such that the

oriented arc from vj to v j+1 along ∂B•
r (T∞) has length q j for every j (we set vn+1 = v1). Then,

for s1, . . . ,sn ∈ [0,1], we have

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

∣∣∣∣ |∂B•
r (T∞)| = q

]

=
( n

∏
j=1

(
t j

ϕ{r}
t j

(0)

ϕ{r}(0)

)q j
)
×

n

∑
k=1

qk

q
1
tk

ϕ{r}′
tk

(0)

ϕ{r}′(0)
ϕ{r}(0)
ϕ{r}

tk
(0)

where, for every j ∈ {1, . . . ,n}, t j is the unique solution in [0,1] of the equation s2
j = t2

j (3−2t j)
and the functions ϕ{r}

t and ϕ{r} are computed explicitly in Lemma 3.3.

Equivalently, Theorem 1.4 states that, for each k, the root vertex of T∞ belongs to the slice
S(r,vk,vk+1) with probability qk/q and that its volume has generating function

(
tk

ϕ{r}
tk

(0)

ϕ{r}(0)

)qk−1

·
ϕ{r}′

tk
(0)

ϕ{r}′(0)
,

and that conditionally on this event, the volumes of the other slices are independent and have
generating functions given by

(
t j

ϕ{r}
t j

(0)

ϕ{r}(0)

)q j

for every j �= k. It is also worth noticing that the generating function of the volume of the
slice containing the root vertex is exactly the same as the hull of T∞ conditionally on the event
{|∂B•

r (T∞)| = qk}, suggesting that this slice has the same law as a hull once the two geodesic
boundaries are glued.

Since geodesic slices do not form a growing family as the radius of the hulls grows, it is less
natural to look for a scaling limit of their volume as a stochastic process as in Theorem 1.3.
However, it is still quite straightforward to derive asymptotics from Theorem 1.4 and obtain the
following result.

Corollary 1.5. Fix n > 0 an integer and �,x > 0 some real numbers. Fix also �1, . . . , �n, some
non-negative reals such that �1 + · · ·+�n = �. For every integer R > 0, conditionally on the event
{|∂B•

�xR�(T∞)| = ��R2�}, let v1 be a vertex of ∂B•
�xR�(T∞) chosen uniformly at random and let

v2, . . . ,vn be placed in that order on the oriented cycle ∂B•
�xR�(T∞) such that the oriented arc
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from vj to v j+1 along ∂B•
�xR�(T∞) has length ∼ � jR

2 as R → ∞. Then, for λ1, . . . ,λn > 0, we have

lim
R→∞

E

[
n

∏
j=1

e−λ j |S(r,v j ,v j+1)|/R4

∣∣∣∣ |∂B•
�xR�(T∞)| = ��R2�

]

=
( n

∑
i=1

�i

�
x3(6λi)

3/4 cosh((6λi)
1/4x)

sinh3((6λi)1/4x)

)
× exp

(
−

n

∑
i=1

�i

(
(6λ )1/4

(
coth2((6λ )1/4x)− 2

3

)
− 1

x2

))
.

As for Corollary 1.2, this can be interpreted in terms of the Brownian plane: each slice has
probability �i/� of containing the root, in which case its volume has the same law as the volume of
the hull of the Brownian plane conditionally on the perimeter being �i. In addition, conditionally
on this event, the volumes of the other slices are independent and their Laplace transform is
given by

exp

(
−� j

(
(6λ )1/4

(
coth2((6λ )1/4x)− 2

3

)
− 1

x2

))
for every j �= i.

The paper is organized as follows. In Section 2 we recall some results about the generating
functions of triangulations counted by boundary length and inner vertices and we describe the
decomposition of the UIPT into layers. In Section 3 we present our method and use it to prove
Theorem 1.1 and Corollary 1.2. Section 4 studies the difference of volume between hulls and
contains the proof of Theorem 1.3. Finally, Section 5 studies geodesic slices and contains the
proofs of Theorem 1.4 and Corollary 1.5.

2. Preliminaries

2.1. Generating series
As already mentioned in the Introduction, the triangulations we consider in this work are type I
triangulations in the terminology of Angel and Schramm [7] – loops and multiple edges are
allowed – and will always be rooted even when not mentioned explicitly. More precisely, we
deal with triangulations with simple boundary, i.e. rooted planar maps (the root of a map is a
distinguished oriented edge and the root vertex of a rooted map is the origin of its root edge)
such that every face is a triangle except for the face incident to the right-hand side of the root
edge, which can be any simple polygon. If the length of the boundary face is p, we will speak of
triangulations of the p-gon.

One of the advantages of dealing with type I triangulations for our purpose is that triangula-
tions of the sphere can be thought of as triangulations of the 1-gon as already mentioned in [16].
To see that, split the root edge of any triangulation into a double edge and then add a loop inside
the region bounded by the new double edge and re-root the triangulation at this loop oriented
clockwise (so that the interior of the loop lies on its right-hand side). Note that this construction
also works if the root is itself a loop. This transformation is a bijection between triangulations of
the sphere and triangulations of the 1-gon.
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The enumeration of triangulations of the p-gon is now well known and can be found for
example in [16, 20]. Let Tn,p be the set of triangulations of the p-gon with n inner vertices (i.e.
vertices that do not belong to the boundary face) and define the bivariate generating series

T (x,y) = ∑
p�1

∑
n�0

|Tn,p|xnyp−1. (2.1)

Tutte’s equation reads, for y > 0,

T (x,y) = y+ x · T (x,y)−T (x,0)
y

+T (x,y)2. (2.2)

This equation can be solved using the quadratic method and the solution is explicit in terms of
the unique solution of the equation

x2 = h(x)2(1−8h(x)) (2.3)

such that h(0) = 0. This function h seen as a Taylor series has non-negative coefficients and its
radius of convergence is

ρ :=
1

12
√

3
. (2.4)

In addition, it is finite at its radius of convergence and

α := h(ρ) =
1
12

. (2.5)

The solution of equation (2.2) is then well defined on [0,ρ]× [0,α] and given by

T (x,0) =
6h2 + x−h

2x
(2.6)

for x ∈ [0,ρ], and

T (x,y) =
y− x

2y
+

√
(y− x)2 −4y3 +4xyT (x,0)

2y

=
y− x

2y
+

√
x2 + y2 −4y3 +12yh2 −2yh

2y
(2.7)

for (x,y) ∈ [0,ρ]× [0,α]. These expressions are compatible when taking the limit x → 0 and/or
y → 0. Notice also that T (ρ,α) is finite:

T (ρ,α) =
3−

√
3

6
.

The formulas (2.6) and (2.7) allow explicit computation of the number of triangulations of the
p-gon with a given number of inner vertices. However, we will not need the exact formulas, only
the following asymptotic expression:

|Tn,p| ∼
n→∞

C(p)ρ−nn−5/2

for every p � 1 with

C(p) =
3p−2 p(2p)!
4
√

2π(p!)2
.
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In the following we will always let Tp(x) = [yp−1]T (x,y) denote the generating series of triangu-
lations with boundary length p counted by inner vertices.

2.2. Skeleton decomposition of finite triangulations
We present here the skeleton decomposition of triangulations as first defined by Krikun [20] for
type II triangulations and later by Curien and Le Gall [16] for type I triangulations. First, we
need to define balls and hulls for finite triangulations.

Let T be a triangulation of the sphere seen as a triangulation of the 1-gon. For every integer
r > 0, the ball Br(T ) of radius r centred at the root vertex of T is the planar map obtained by
taking the union of the faces of T that have at least one vertex at distance less than or equal to
r−1 from the root vertex of T . Now let v be a distinguished vertex of T and fix r > 0 such that
the distance between v and the root vertex of T is strictly larger than r. In that case, the vertex
v belongs to the complement of the ball Br(T ) and we define the r-hull B•

r (T,v) of the pointed
map (T,v) as the union of Br(T ) and all the connected components of the complement in T of
Br(T ) except the one that contains v.

Define the boundary ∂B•
r (T,v) of B•

r (T,v) as the set of vertices of B•
r (T,v) having at least

one neighbour in the complement of B•
r (T,v), with the edges joining any pair of such vertices.

An important observation is that ∂B•
r (T,v) is a simple cycle of T and that its vertices are all

at distance exactly r from the root vertex of T . The planar map B•
r (T,v) is therefore almost a

triangulation with a simple boundary, the difference being that it is rooted at the original root
edge of T instead of an edge of the boundary face. It is a special case of a triangulation of the
cylinder defined in [16].

Definition. Let r � 1 be an integer. A triangulation of the cylinder of height r is a rooted planar
map such that all faces are triangles except for two distinguished faces satisfying the following.

(1) The boundaries of the two distinguished faces form two disjoint simple cycles.
(2) The boundary of one of the two distinguished faces contains the root edge, and this face is on

the right-hand side of the root edge. We call this face the root face and the other distinguished
face the exterior face.

(3) Every vertex of the exterior face is at graph distance exactly r from the boundary of the root
face, and edges of the boundary of the exterior face also belong to a triangle whose third
vertex is at distance r−1 from the root face.

For every integers r, p,q � 1, a triangulation of the (r, p,q)-cylinder is a triangulation of the
cylinder of height r such that its root face has degree p and its exterior face has degree q.

With that terminology, the planar maps Δ such that Δ = B•
r (T,v) for some integer r and some

pointed triangulation of the sphere (T,v) are the triangulations of the (r,1,q)-cylinder for some
integer q � 1. Triangulations of the cylinder will also allow us to describe the geometry of
triangulations between hulls. More precisely, if (T,v) is a pointed triangulation of the sphere
and r2 > r1 > 0 are two integers such that v is at distance strictly larger than r2 from the root
vertex of T , we define the layer between heights r1 and r2 of (T,v) by

L•
r1,r2

(T,v) = (B•
r2
(T,v)\B•

r1
(T,v))∪∂B•

r1
(T,v).
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The planar maps Δ such that Δ = L•
r1,r2

(T,v) for some integers r2 > r1 > 0 and some pointed
triangulation of the sphere (T,v) are the triangulations of the (r, p,q)-cylinder for some integers
p,q � 1 (we will see in a moment how to canonically root the layers of a triangulation).

Fix r, p,q > 0 and Δ a triangulation of the (r, p,q)-cylinder. The skeleton decomposition of Δ
consists of an ordered forest of q rooted plane trees with maximal height r and a collection of
triangulations with a boundary indexed by the vertices of the forest of height strictly less than r.

Borrowing from Krikun [20] and Curien and Le Gall [16], we define the growing sequence of
hulls of Δ as follows: for 1 � j � r−1, the ball Bj(Δ) is the union of all faces of Δ having a vertex
at distance strictly smaller than j from the root face, and the hull B•

j(Δ) consists of Bj(Δ) and all
the connected components of its complement in Δ except the one containing the exterior face. By
convention B•

r (Δ) = Δ. For every j, the hull B•
j(Δ) is a triangulation of the ( j, p,q′)-cylinder for

some non-negative integer q′, and we denote its exterior boundary by ∂ jΔ. By convention ∂0Δ is
the boundary of the root face of Δ. In addition, every cycle ∂ jΔ is oriented so that B•

j(Δ) is always
on the right-hand side of ∂ jΔ.

Now let N (Δ) be the collection of all edges of Δ that belong to one of the cycles ∂iΔ for some
0 � i � r. This set is a discrete version of the metric net of the Brownian map introduced by
Miller and Sheffield [27]. In order to define a genealogy on N (Δ), notice that, for 1 � i � r,
every edge of ∂iΔ belongs to exactly one face of Δ whose third vertex belongs to ∂i−1Δ (it is
the face on its right-hand side). Such faces are usually called down-triangles of height i. Now,
for any 1 � i � r, we say that an edge e ∈ ∂iΔ is the parent of an edge e′ ∈ ∂i−1Δ if the first
vertex belonging to a down-triangle of height i encountered when turning around the oriented
cycle ∂i−1Δ and starting at the end-vertex of the oriented edge e′ belongs to the down-triangle
associated with e. See Figure 2 for an illustration.

These relations define a forest F of q rooted trees, its vertices being in one-to-one correspond-
ence with the edges of N (Δ), that inherit the planar structure of Δ, making them planar rooted
trees. In addition we can order the trees canonically, starting from the one containing the root
edge of Δ and following the orientation of ∂rΔ. Notice also that every tree of the forest has height
smaller than or equal to r and that the whole forest has exactly p vertices at height r.

To completely describe Δ, in addition to the forest F that gives the full structure of N (Δ) and
the associated down-triangles, we need to specify the structure of the submaps of Δ lying in the
interstices, or slots, bounded by its down-triangles. More precisely, to each edge e ∈ ∂iΔ where
1 � i � r, we associate a slot bounded by its children and the two edges joining the starting vertex
of e to ∂i−1Δ (if e has no child, these two edges may or may not be glued into a single edge).
This slot is rooted at its unique boundary edge belonging to the down-triangle associated with
e, the orientation chosen so that the interior of the slot is on the left-hand side of the root. See
Figure 2 for an illustration. With these conventions, the slot associated with an edge e is filled
with a well-defined triangulation of the (ce + 2)-gon, where ce is the number of children of e in
the forest F . The triangulation of the (r, p,q)-cylinder Δ is then fully characterized by the forest
F and the collection of triangulations with a boundary associated with the vertices of F of height
strictly less than r.

To summarize, let us say that a pointed forest is (r, p,q)-admissible if:

(1) it is composed of an ordered sequence of q rooted plane trees of height less than or equal
to r,
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τ1 τ2 τ3 τ4τq

v

Mv

)b()a(

Figure 2. Skeleton decomposition of a triangulation of the cylinder. The distinguished vertex corresponding to the root
edge of the triangulation is the red one on the bottom left. (a) Construction of the forest. (b) Triangulation with a boundary
filling a slot.

(2) it has exactly p vertices at height r,
(3) the distinguished vertex has height r and belongs to the first tree.

We let F(r, p,q) denote the set of all (r, p,q)-admissible forests, and for any F ∈ F(r, p,q) we
let F� denote the set of vertices of F at height strictly smaller than r.

The skeleton decomposition above is a bijection between triangulations of the (r, p,q)-
cylinders and pairs consisting of an (r, p,q)-admissible forest F and a collection (Mv)v∈F� , where,
for each v ∈ F� and denoting by cv the number of children of v in F , Mv is a triangulation of the
(cv +2)-gon. We say that the forest associated with a triangulation of a cylinder Δ is its skeleton,
and denote it by Skel(Δ).

As mentioned earlier, this decomposition allows us to canonically root the layers of a triangu-
lation by rooting each layer at the ancestor of the root edge of the triangulation in its skeleton.

2.3. The UIPT and its skeleton decomposition
Thanks to the spatial Markov property (see [7, Theorem 5.1]), the skeleton decomposition is
particularly well suited to studying the UIPT. Indeed, for any integers r,q � 1 and any (r,1,q)-
admissible forest F , this property states that conditionally on the event {Skel(B•

r (T∞)) = F},
the triangulations filling the slots associated with the down-triangles constitute a family of in-
dependent Boltzmann triangulations (T(cv+2))v∈F� where, for any integer p � 1, the law of the
Boltzmann triangulation of the p-gon is given by

P(T(p) = T ) =
ρn

Tp(ρ)

for any triangulation of the p-gon T with n inner vertices.
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From this, a lot of information on the skeleton decomposition of the UIPT can be obtained,
such as the following lemma which will be instrumental for our purpose.

Lemma 2.1 ([16, 20]). Fix r, p,q > 0 and let Δ be a triangulation of the (r, p,q)-cylinder. The
skeleton of Δ is an (r, p,q)-admissible forest F ∈ F(r, p,q). For each v ∈ F�, we denote the
triangulation filling the slot associated with v by Mv and the number of its inner vertices by nv.
Then, for any r′ � 0,

P(L•
r′,r′+r(T∞) = Δ | |∂B•

r′(T∞)| = p) =
αqC(q)
α pC(p) ∏

v∈F�

αc(v)−1ρnv+1

=
αqC(q)
α pC(p) ∏

v∈F�

θ(cv) ∏
v∈F�

ρnv

Tcv+2(ρ)
,

where θ is the critical offspring distribution whose generating function ϕ is given by

ϕ(u) =
∞

∑
i=0

θ(i)ui =
ρ

α2u
(T (ρ,αu)−T (ρ,0)) = 1−

(
1+

1√
1−u

)−2

, u ∈ [0,1].

Lemma 2.1 is not hard to establish (see [16, 20] for the proof), and its main interest is that it
allows exact computations by interpreting the product over vertices of the forest as the probability
of some events for a branching process associated with ϕ . As we will do similar computations in
various situations, let us give an example taken from [20] for the sake of clarity, and because it
will be needed later. Say we want to compute P(|∂B•

r (T∞)| = q) for some q > 0. Since ∂B•
0(T∞)

is the root edge of T∞, which we recall is a loop, it has length 1 and the formula of Lemma 2.1
directly gives

P(|∂B•
r (T∞)| = q) =

αqC(q)
αC(1) ∑

F∈F(r,1,q)
∏

v∈F�

θ(cv) =
αqC(q)
αC(1)

1
q ∑

F∈F ′(r,1,q)
∏

v∈F�

θ(cv),

where F′(r,1,q) is the set of all ordered forests of rooted plane trees with height less than or
equal to r, the whole forest having a single vertex at height r. Thus F′(r,1,q) is just the set of
forests in F(r,1,q) up to a circular permutation, explaining the factor 1/q. But now the quantity

∑
F∈F ′(r,1,q)

∏
v∈F�

θ(cv)

is exactly the probability that a Galton–Watson branching process with offspring distribution
given by ϕ started with q particles has a single particle at generation r. Therefore, we have

P(|∂B•
r (T∞)| = q) =

αqC(q)
αC(1)

1
q

[u](ϕ{r}(u))q,

where

ϕ{r}(u) = ϕ ◦ · · · ◦ϕ︸ ︷︷ ︸
r times

(u)

and [u] f (u) is the coefficient in u of the Taylor series at 0 of the function f . The iterates ϕ{r} can
be computed explicitly (see Lemma 3.3 with t = 1), giving the following exact formula which
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will be used later in the paper:

P(|∂B•
r (T∞)| = q) =

αqC(q)
αC(1)

(
1− 1

(r +1)2

)q−1 1
(r +1)3

. (2.8)

3. Hull volume

3.1. A branching process
In this section, we will focus on the generating function of the number of vertices in the hulls of
the UIPT. To that end, we start with the following result.

Lemma 3.1. For any integer r > 0, s ∈ [0,1] and t ∈ [0,1], we have

E[s|B
•
r (T∞)|] = s ∑

q�1

(αt)qC(q)
αtC(1) ∑

F∈F(r,1,q)
∏

v∈F�

ρs · (αt)c(v)−1 ·Tc(v)+2(ρs).

Remark. This lemma and Proposition 3.2 are in fact consequences of Proposition 4.1, but we
still provide independent proofs because they provide a nice framework to introduce the functions
ϕt in (3.1) that are central to this work.

Proof of Lemma 3.1. Fix r,q > 0 and Δ a triangulation of the (r,1,q)-cylinder having F ∈
F(r,1,q) as skeleton. Recall that for every v ∈ F� we let cv denote the number of children of v
in F and let nv be the number of inner vertices of the triangulation of the (cv +2)-gon filling the
slot associated with v. With these notations we have

|Δ|−1 = ∑
v∈F�

(nv +1),

the −1 taking into account that the right-hand side of the previous equality does not count the
unique vertex of height r in F . Lemma 2.1 then gives

s|Δ|P(B•
R(T∞) = Δ) = s

αqC(q)
αC(1) ∏

v∈F�

αc(v)−1(sρ)nv+1,

and summing over every triangulation of the (r,1,q)-cylinder having F as skeleton we obtain

∑
Δ:Skel(Δ)=F

s|Δ|P(B•
r (T∞) = Δ) = s

αqC(q)
αC(1) ∏

v∈F�

αc(v)−1 ∑
nv�0

|Tnv,cv+2| · (sρ)nv+1

= s
αqC(q)
αC(1) ∏

v∈F�

ρs ·αc(v)−1 ·Tc(v)+2(ρs).

Since for any t ∈ [0,1] and any forest F ∈ F(r,1,q) we have

∏
v∈F�

tc(v)−1 = t1−q,

we can write

∑
Δ:Skel(Δ)=F

s|Δ|P(B•
R(T∞) = Δ) = s

(αt)qC(q)
αtC(1) ∏

v∈F�

ρs · (αt)c(v)−1 ·Tc(v)+2(ρs),
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and the result follows by summing over q � 1 and over every (r,1,q)-admissible forest.

As was done for Lemma 2.1, we want to interpret the numbers (ρs · (αt)i−1 · Ti+2(ρs))i�0

appearing in Lemma 3.1 as an offspring probability distribution. For (s, t)∈ [0,1]2, the generating
function of these numbers is defined, for every u ∈ [0,1], by

Φs,t(u) = ∑
i�0

ρs · (αt)i−1 ·Ti+2(ρs)ui =
ρs

(αt)2u
(T (ρs,αtu)−T (ρs,0)).

The functions Φs,t are clearly non-negative and increasing, thus we just have to pick (s, t) such
that Φs,t(1) = 1. Using formulas (2.6) and (2.7), simple computations yield

Φs,t(1)

=
6t ·α−1h(ρs)−3t ·α−2h2(ρs)−2s2 +2s

√
s2 +3t2 − t3 +3t ·α−2h2(ρs)−6t ·α−1h(ρs)
t3

.

To solve this equation, we first notice that, from equation (2.3) satisfied by h, we have

s2 = α−2h2(ρs)(3−2α−1h(ρs)).

This suggests considering t(s) ∈ [0,1] such that

h(ρs) = αt(s),

or equivalently with equation (2.3),

s = t(s)2(3−2t(s)).

This parametrization yields

Φs,t(s)(1) =
6t2 −3t3 −2s2 +2s

√
s2 −3t2 +2t3

t3
= 1.

From now on, we will only consider pairs (s, t) ∈ [0,1]2 such that s = t
√

3−2t. For such pairs
we define, for every u ∈ [0,1],

ϕt(u) := Φs,t(s)(u)

=
6ut2 −3ut3 −2s2 +2s

√
s2 +3t2u2 − t3u3 +3t3u−6t2u
t3u2

,

which is the generating function of a probability distribution. Simple computations give the
following alternative expression:

ϕt(u) = 1−
(

1√
1−u

√
3−2t

t
+

√
1+

3
1−u

(
1− t

t

))−2

. (3.1)

This expression is not unlike the expression of ϕ given in Lemma 2.1, and ϕ1 = ϕ which is no
surprise.

The next result gives an expression of the generating function of the volume of hulls of the
UIPT in terms of iterates of the functions ϕt . We will see in its proof that it takes advantage of
the branching process associated with ϕt .
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Proposition 3.2. Fix r > 0 and a pair (s, t) ∈ [0,1]2 such that s = t
√

3−2t. Then

E[s|B
•
r (T∞)|] = s(1− tϕ{r}

t (0))−3/2ϕ{r}′
t (0)

where

ϕ{r}
t (u) = ϕt ◦ · · · ◦ϕt︸ ︷︷ ︸

r times

(u).

Proof. First, we interpret the sum over forests in F(r,1,q) appearing in Lemma 2.1 as the
probability of an event for a branching process with offspring distribution given by ϕt . To do that
we first write

∑
F∈F(r,1,q)

∏
v∈F�

ρs · (αt)c(v)−1 ·Tc(v)+2(ρs) = ∑
F∈F(r,1,q)

∏
v∈F�

[ucv ]ϕt(u)

=
1
q ∑

F∈F ′(r,1,q)
∏

v∈F�

[ucv ]ϕt(u), (3.2)

where F′(r,1,q) is the set of all ordered forests of q rooted plane trees of height less than or
equal to r and having exactly one vertex at height r. The forests in F′(r,1,q) are obtained from
the forests in F(r,1,q) by a circular permutation of the order of their trees, so the vertex at height
r does not necessarily belong to the first tree, explaining the factor 1/q. But now, the right-hand
side of (3.2) without this factor 1/q is exactly the probability that a Galton–Watson branching
process with offspring distribution given by ϕt started with q particles has exactly one particle at
generation r. This probability is [u](ϕ{r}

t (u))q and thus

E[s|B
•
r (T∞)|] = s ∑

q�1

(αt)qC(q)
αtC(1)

1
q

[u](ϕ{r}
t (u))q

= s [u]
1

6αt ∑
q�1

(
2q
q

)
(3αtϕ{r}

t (u))q

= s [u]
(1−4 ·3αtϕ{r}

t (u))−1/2 −1

6αt

= s [u]
2
t
((1− tϕ{r}

t (u))−1/2 −1)

= s(1− tϕ{r}
t (0))−3/2[u]ϕ{r}

t (u),

giving the result.

3.2. Explicit computations and proof of Theorem 1.1
Before proving Theorem 1.1, let us first compute explicitly the iterates ϕ{r}

t appearing in Propos-
ition 3.2.

Lemma 3.3. Fix t ∈ [0,1[ and r ∈ N. Then, for every u ∈ [0,1],

ϕ{r}
t (u) = 1−3

1− t

t (sinh(sinh−1(
√

3(1− t)/(t(1−u)))+ r cosh−1(
√

(3−2t)/t)))2
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and

ϕ{r}
1 (u) = 1− 1

((1−u)−1/2 + r)2
.

Proof. Fix t,u ∈ [0,1] and, for every n ∈ N, let

vn =
1√

1−ϕ{n}
t (u)

.

From the expression of ϕt given in equation (3.1), we deduce that the sequence (vn)n�0 satisfies⎧⎨⎩v0 =
1√

1−u
,

vn+1 = avn +
√

1+(a2 −1)v2
n,

(3.3)

with

a =

√
3−2t

t
� 1.

If a = 1, the sequence (vn) has arithmetic progression and the result is trivial. Therefore we
suppose t < 1, and thus a > 1. Define wn > 0 such that

sinh(wn) =
√

a2 −1vn.

Then the recursion relation (3.3) satisfied by (vn)n�0 becomes

sinh(wn+1) = asinh(wn)+
√

a2 −1cosh(wn)

= sinh(wn + cosh−1(a)).

This shows that the sequence (wn) has arithmetic progression and we have, for every n � 0,

wn = sinh−1(
√

a2 −1v0)+ncosh−1(a),

and the result follows easily.

Remark. The sequence (vn) defined by (3.3) satisfies the second-order linear recursion

vn+1 = 2avn − vn−1,

which can be derived directly from (3.3) by noticing that

v2
n+1 −2avnvn+1 + v2

n = 1,

yielding

0 = v2
n+1 −2avn(vn+1 − vn−1)− v2

n−1 = (vn+1 − vn−1)(vn+1 −2avn + vn−1).

This gives an alternative derivation of vn where hyperbolic functions do not appear directly.
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Proof of Theorem 1.1. Theorem 1.1 is now a direct consequence of Proposition 3.2 and
Lemma 3.3. Indeed, we have from Lemma 3.3

ϕ{r}
t (0) = 1−3

1− t

t (sinh(sinh−1(
√

3((1− t)/t))+ r cosh−1(
√

(3−2t)/t)))2

and

[u]ϕ{r}
t (u)

=
(

3
1− t

t

)3/2(3−2t
t

)−1/2(
sinh

(
sinh−1

(√
3

1− t
t

)
+ r cosh−1

(√
3−2t

t

)))−3

× cosh

(
sinh−1

(√
3

1− t
t

)
+ r cosh−1

(√
3−2t

t

))
.

The result then follows from Proposition 3.2.

The proof of Corollary 1.2 relies on Proposition 4.1 proved in the next section, but we give it
here since it is more in the spirit of this section.

Proof of Corollary 1.2. Proposition 4.1 gives with r′ = 0 and p = 1:

E
[
s|B

•
r (T∞)| | |∂B•

r (T∞)| = q
]
= stq−1 (ϕ{r}

t (0))q−1ϕ{r}′
t (0)

(ϕ{r}
1

(0))q−1ϕ{r}′
1

(0)
.

Putting s = e−λ/R4
, r = �xR� and q = ��R2�, we have the following asymptotics:

tq = 1−
√

2λ/3
R2

+O

(
1

R4

)
,

ϕ�xR�
t (0) = 1−

√
6λ

R2
(sinh((6λ )1/4x))−2 +O

(
1

R4

)
,

ϕ�xR�
1 (0) = 1− 1

(�xR�)2
,

ϕ�xR�′
t (0) ∼

(√
6λ

R2

)3/2 cosh((6λ )1/4x)
(sinh((6λ )1/4x))3

,

ϕ�xR�′
1 (0) ∼ 1

(xR)3
,

and the result follows easily.

4. Hull volume process

In order to prove Theorem 1.3, we first compute the generating function of the volume of layers
of the UIPT.
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Proposition 4.1. Let r,r′, p,q be non-negative integers and (s, t)∈ [0,1] such that s = t
√

3−2t.
Then

E
[
s|L

•
r′ ,r′+r

(T∞)| | |∂B•
r′+r(T∞)| = q, |∂B•

r′(T∞)| = p
]
= sptq−p [up](ϕ{r}

t (u))q

[up](ϕ{r}
1

(u))q
.

Proof. The proof of this proposition is very much in the spirit of the proofs of Lemma 3.1 and
Proposition 3.2. Indeed, let Δ be a triangulation of the (r, p,q)-cylinder having F ∈ F(r, p,q) as
skeleton. We have

|Δ|− p = ∑
v∈F�

(nv +1),

giving, with Lemma 2.1 and summing over every triangulation having F as skeleton,

∑
Δ:Skel(Δ)=F

s|Δ|P(L•
r′,r′+r(T∞) = Δ | |∂B•

r′(T∞)| = p)

= sp αqC(q)
α pC(p) ∏

v∈F�

αc(v)−1 ∑
nv�0

|Tnv,cv+2|(sρ)nv+1

= sp αqC(q)
α pC(p) ∏

v∈F�

ρs ·αc(v)−1 ·Tc(v)+2(ρs)

= sp (αt)qC(q)
(αt)pC(p) ∏

v∈F�

[ucv ]ϕt(u).

Summing over every (r, p,q)-admissible forest then gives

E
[
s|L

•
r′ ,r′+r

(T∞)|1{|∂B•
r′+r

(T∞)|=q} | |∂B•
r′(T∞)| = p

]
= sp (αt)qC(q)

(αt)pC(p) ∑
F∈F(r,p,q)

∏
v∈F�

[ucv ]ϕt(u).

Now, if F′(r, p,q) denotes the set of all (r, p,q)-admissible forests up to a cyclic permutation
of the order of the trees, each tree in F(r, p,q) corresponds to exactly q trees of F′(r, p,q), and
therefore

E
[
s|L

•
r′ ,r′+r

(T∞)|1{|∂B•
r′+r

(T∞)|=q} | |∂B•
r′(T∞)| = p

]
= sp (αt)qC(q)

(αt)pC(p)
1
q ∑

F∈F ′(r,p,q)
∏

v∈F�

[ucv ]ϕt(u).

The trees in F′(r, p,q) have a distinguished vertex at height r, and if F′′(r, p,q) denotes the set
of all rooted forests of height less than or equal to r, with q trees, and having a total number p of
vertices at height r, each forest of F′′(r, p,q) corresponds to exactly p forests in F′(r, p,q), and
thus

E
[
s|L

•
r′ ,r′+r

(T∞)|1{|∂B•
r′+r

(T∞)|=q} | |∂B•
r′(T∞)| = p

]
= sp (αt)qC(q)

(αt)pC(p)
p
q ∑

F∈F ′′(r,p,q)
∏

v∈F�

[ucv ]ϕt(u).

But now the sum

∑
F∈F ′′(r,p,q)

∏
v∈F�

[ucv ]ϕt(u)
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is the probability that a Galton–Watson process with offspring distribution given by ϕt started
with q particles has p particles at generation r. This yields

E
[
s|L

•
r′ ,r′+r

(T∞)|1{|∂B•
r′+r

(T∞)|=q} | |∂B•
r′(T∞)| = p

]
= sp (αt)qC(q)

(αt)pC(p)
p
q

[up](ϕ{r}
t (u))q.

Using the same reasoning, we can easily get

P
({

|∂B•
r′+r(T∞)| = q

}
| |∂B•

r′(T∞)| = p
)

=
αqC(q)
α pC(p)

p
q

[up](ϕ{r}
1 (u))q,

and the result follows.

As we will see in the proof of Theorem 1.3, the jumps of the process of hull perimeters will
induce jumps for the process of hull volumes. This motivates the following technical result,
which is a consequence of Proposition 4.1, and will be used in the proof of Theorem 1.3.

Corollary 4.2. Fix an integer r > 0 and � > δ > 0. Let (pn,qn)n�0 be non-negative integers
such that n−2 pn → � and n−2qn → �−δ as n → ∞. Then, conditionally on the events{

|∂B•
r+1(T∞)| = qn

}
∩

{
|∂B•

r (T∞)| = pn
}
,

the following convergence in distribution holds:

n−4|B•
r+1(T∞)\B•

r (T∞)| (d)−−→
n→∞

4
3

δ 2 ·ξ ,

where ξ is a random variable with density

1√
2πx5

e−1/(2x)1{x>0}.

Proof. For any (s, t) ∈ [0,1]2 with s = t
√

3−2t, Proposition 4.1 gives

E
[
s|B

•
r+1(T∞)\B•

r (T∞)| | |∂B•
r+1(T∞)| = qn, |∂B•

r (T∞)| = pn
]
= tqn−pn

[upn ](ϕ{r}
t (u))qn

[upn ](ϕ{r}
1

(u))qn
.

We can study the asymptotic behaviour of the quantity [upn ](ϕt(u))qn with standard analytic
techniques:

[upn ](ϕt(u))qn =
1

2iπ

∮
γ

ϕt(z)qn

zpn+1
dz,

where γ is a sufficiently small contour enclosing the origin. Since the function ϕt is analytic in
C\ [1,+∞[, it is possible to deform the contour γ into a Hankel-type contour γn without changing
the value of the integral (the modulus of the integrand decreases exponentially fast for |z| large).
For n � 1, we can take γn to be the union of the semi-infinite line −i/n + [1,+∞[, oriented
from right to left, the semi-circle 1+n−1ei]π/2,3π/2[ oriented clockwise, and the semi-infinite line
+i/n+[1,+∞[ oriented from left to right (see Figure 3 for an illustration). The change of variable
z → 1+ z/pn then gives

[upn ](ϕt(u))qn =
1

2iπ

∮
γpn

ϕt(z)qn

zpn+1
dz =

1
2iπ pn

∮
H

ϕt(1+ z/pn)qn

(1+ z/pn)pn+1
dz,

https://doi.org/10.1017/S0963548318000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000093


964 L. Ménard

1
1/n

1/n

1/n γn

0
1
1

1
H

Figure 3. The contours H and γn.

where H is the Hankel contour, i.e. the union of the semi-infinite line −i+[0,+∞[, oriented from
right to left, the semi-circle ei]π/2,3π/2[ oriented clockwise, and the semi-infinite line i +[0,+∞[
oriented from left to right (see Figure 3 for an illustration).

From equation (3.1) we have for z ∈ C\ [1,+∞[:

ϕt(z) = 1− t
3−2t

(1− z)
(

1+
√

1− z
t

3−2t

)−2

.

If sn = e−λ/n4
, then

tn = 1−
√

2λ/3
n2

+O(n−4),

so for z ∈H:

ϕtn(1+ z/pn) = 1+
z
pn

(
1−

√
6λ

n2
+O(n−4)

)
·
(

1+

√
− z

pn
+

√
6λ

n2
+O(n−4)

)−2

= 1+
z
pn

+
2z(�

√
6λ − z)1/2

p3/2
n

+O(p−2
n ).

Then, for z ∈H, we have

ϕtn(1+ z/pn)qn = ez(1−δ/�)(1+2(1−δ/�)z(�
√

6λ − z)1/2 p−1/2
n +O(p−1

n )
)
,

giving

ϕtn(1+ z/pn)qn

(1+ z/pn)pn+1
= e−zδ/�

(
1+2(1−δ/�)z(�

√
6λ − z)1/2 p−1/2

n +O(p−1
n )

)
.

Since for any α ∈ R

1
2iπ

∮
H

(−z)αe−zdz =
1

Γ(−α)
,

we get, at least on a formal level,

[upn ](ϕt(u))qn =
2(1−δ/�)

2iπ p3/2
n

∮
H

e−zδ/�z(�
√

6λ − z)1/2dz+O(pn
−2),

=
2(1−δ/�)
2iπ p3/2

n δ/�
e−δ

√
6λ

(
�

δ

)3/2 ∮
H

e−z(δ
√

6λ + z)(−z)1/2dz+O(p−2
n )
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=
2(1−δ/�)

p3/2
n

(
�

δ

)5/2

e−δ
√

6λ
(

δ
√

6λ
Γ(−1/2)

+
−1

Γ(−3/2)

)
+O(p−2

n )

=
2(1−δ/�)

p3/2
n

(
�

δ

)5/2

e−δ
√

6λ
(

−δ
√

6λ
(3/2)Γ(−3/2)

+
−1

Γ(−3/2)

)
+O(p−2

n ). (4.1)

The justification of the formal argument used to derive (4.1) is quite standard in analytic com-
binatorics. For example, it is identical to those done in the proof of Theorem VI.1 of [19].

This asymptotic expansion yields

[upn ](ϕtn(u))qn

[upn ](ϕ1(u))qn
−−→
n→∞

e−δ
√

6λ
(

2
3

δ
√

6λ +1

)
,

and

E

[
exp

(
− λ

n4
|B•

r+1(T∞)\B•
r (T∞)|

) ∣∣∣∣ |∂B•
r+1(T∞)| = qn, |∂B•

r (T∞)| = pn

]
= tqn−pn

n
[upn ](ϕtn(u))qn

[upn ](ϕ1(u))qn
−−→
n→∞

e−
2
3 δ

√
6λ

(
2
3

δ
√

6λ +1

)
,

finally giving the result since the Laplace transform of ξ is given by

E[e−λξ ] = (1+
√

2λ )e−
√

2λ

for every λ > 0.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. With the help of Corollary 4.2, the proof of this result is similar to the
proof of Theorem 1 in [17]. First, we can restrict the time interval to [0,1] and verify that

(R−2|∂B•
�xR�(T∞)|,R−4|B•

�xR�(T∞)|)x∈[0,1]
(d)−−−→

R→∞
(32 ·Lx,4 ·33 ·Mx)x∈[0,1].

The convergence of the first component

(R−2|∂B•
�xR�(T∞)|)x∈[0,1]

(d)−−−→
R→∞

(32 ·Lx)x∈[0,1] (4.2)

is already proved in [20] via the skeleton decomposition and in [17] via the peeling process.
Therefore, we will study the second component given the first one.

For every r � 1 we can write

Vr := |B•
r (T∞)| = 1+

r

∑
i=1

Ui

where, for every i � 1,

Ui = |B•
i (T∞)\B•

i−1(T∞)|.

Fix ε > 0 and R > 0. Corollary 4.2 suggests introducing, for r ∈ {1, . . . ,R},

V >ε
r =

r

∑
i=1

Ui1{Pi<Pi−1−εR2}, V �ε
r =

r

∑
i=1

Ui1{Pi�Pi−1−εR2},

where Pi = |∂B•
i (T∞)| for every i � 1.
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Let us first show that R−4V �ε
R is small uniformly in R when ε is small. We will proceed

with a first moment argument, and a first step is to give a bound on the expectation of Ui

conditionally on the event {Pi−1 = p}, for i � 1. Fix p,q � 1 and let F be a (1, p,q)-admissible
forest. Recall that the spatial Markov property of the UIPT states that, conditionally on the event
{Skel(L•

i−1,i(T∞)) = F}, the layer L•
i−1,i(T∞) is composed of its down-triangles and a collection

of independent Boltzmann triangulations (T(cv+2))v∈F� . There exists a universal constant C > 0
such that, for any integer p � 1, we have

E[|T(p)|] � C p2

(see e.g. [17, Proposition 8]) and therefore

E[Ui | Skel(L•
i−1,i(T∞)) = F ] � C ∑

v∈F�

(cv +2)2 = C ∑
v∈F�

c2
v +4C q+2C p.

When taking the expectation, the terms proportional in q and p will just give E(Pi) and E(Pi−1),
which are both of order R2 and have a vanishing contribution in E(R−4V �ε

R ). We drop them and
focus on bounding ∑v∈F� c2

v . In fact, another term proportional to p will appear in this sum, and
it will be more convenient to bound

Ũi := ∑
v∈F�

c2
v −Pi−1.

Using Lemma 2.1, we get, for every i � 2 and p � 1,

E[Ũi 1{Pi=q} | Pi−1 = p] =
αqC(q)
α pC(p)

p
q

E[(N2
1 + · · ·+N2

q )1{N1+···+Nq=p}]− pP(Pi = q | Pi−1 = p)

where N1, . . . ,Nq are independent random variables distributed according to ϕ . A simple compu-
tation gives

E[N2
1 1{N1+···+Nq=p}] = [up](u2ϕ ′′ϕq−1 +uϕ ′ϕq−1) = [up−2](ϕ ′′ϕq−1)+

p
q
[up]ϕq

for every p � 2, yielding

E[Ũi 1{Pi=q} | Pi−1 = p] =
αqC(q)
α pC(p)

p
q
(p[up]ϕq +q[up−2](ϕ ′′ϕq−1))− pP(Pi = q | Pi−1 = q).

Since (see for example the proof of Proposition 4.1), for every p,q, we have

P(Pi = q | Pi−1 = p) =
αqC(q)
α pC(p)

p
q
[up]ϕq,

the previous expression simplifies into

E[Ũi 1{Pi=q} | Pi−1 = p] =
αqC(q)
α pC(p)

p
q

q[up−2](ϕ ′′ϕq−1). (4.3)

We will use (4.3) to bound V �ε
r by separating three cases: p small (i.e. smaller than 2εR2),

p large (i.e. larger than KR2 for some large K depending on ε), and p intermediate between the
two, which will require us to be more precise.

Small p. Since

∑
q�1

1
q

αqC(q)uq = C · ((1−u)−1/2 −1)
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for some constant C > 0, we can sum (4.3) for q � 1 and obtain

E[Ũi | Pi−1 = p] � C
p

α pC(p)
[up−2]

(
ϕ ′′

(1−ϕ)3/2

)
.

Using the fact that 1−ϕ ∼ 1−u and ϕ ′′ ∼ 3
2 (1−u)−1/2 as u → 1, it is easy to see that

E[Ũi | Pi−1 = p] � C
p

α pC(p)
p (4.4)

for some constant C > 0. Therefore, if p � 2εR2 and ε is small enough, since p/(α pC(p)) =
O(p1/2), we have

E[Ũi | Pi−1 = p] � 2C p3/2 � C1 R3 ε, (4.5)

where C1 > 0 is some fixed constant.

Large p. For K > 1, equations (4.4) and (2.8) give

E[Ũi 1{Pi−1�K R2}] � C ∑
p�K R2

p2

(
1− 1

i2

)p−1 1
i3

� C i ∑
p�K R2

p2

i4
e−p/i2 .

Since the function u 	→ u2e−u is decreasing for u > 2, the last inequality transforms to

E[Ũi 1{Pi−1�K R2}] � C i
∫

u�K R2

u2

i4
e−u/i2 du

� C i3
∫

u�K R2/i2
u2e−u du.

Since we only consider i ∈ {1, . . . ,R}, we have

E[Ũi 1{Pi−1�K R2}] � C i3
∫

u�K
u2e−u du

� C R3 K2e−K � C2 R3 ε, (4.6)

choosing K = ε−1/4 and ε small enough.

Intermediate p. Finally, if p = ��R2� for some � ∈ [2ε,K], we have using (4.3):

E[Ũi 1{Pi�p−εR2} | Pi−1 = p]

� C
√

p
p− εR2

[up−2]
(

ϕ ′′ ∑
q�p−εR2

qϕq−1

)

� C
√

2[up−2]
(

ϕ ′′ ·
(

(��R2�−�εR2�)ϕ��R2�−�εR2�−1

1−ϕ
+

ϕ��R2�−�εR2�

(1−ϕ)2

))
, (4.7)

where we also used the fact that

1
p

α pC(p) ∼p→∞
C

p1/2
.
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The same methods of singularity analysis as those used in the proof of Corollary 1.5 give, as
R → ∞,

[u��R2−2�]
ϕ ′′ ϕ��R2�−�εR2�−1

1−ϕ
∼ 3/2

2iπ�R2

∮
H

e−z(ε/�)
(
−z
�R2

)−3/2

dz

� C3(�R2)1/2(�/ε)−1/2 = C3Rε1/2,

[u��R2�−2]
ϕ ′′ ϕ��R2�−�εR2�

(1−ϕ)2
∼ 3/2

2iπ�R2

∮
H

e−z(ε/�)
(
−z
�R2

)−5/2

dz

� C4(�R2)3/2(�/ε)−3/2 = C4R3ε3/2,

where the constants C3 and C4 do not depend on ε . These last three asymptotic behaviours and
(4.7) finally give, for any p ∈ [2εR2,K R2],

E[Ũi 1{Pi�p−εR2} | Pi−1 = p] � C3KR3ε1/2 +C4R3ε3/2

� C3KR3ε1/2 +C4R3ε3/2. (4.8)

Bound on V �ε
r . Summing over i between 1 and R, the bounds (4.5), (4.6) and (4.8) give, for

R � 1,

R−4
E[V �ε

r ] � C ε1/4,

for some constant C independent of ε , and thus, for every δ > 0, we have

sup
R�1

P

(
sup

x∈[0,1]
|R−4V�xR� −R−4V >ε

�xR�| > δ
)
−−→
ε→0

0. (4.9)

Convergence of V >ε
r . We use the reasoning of the proof of Theorem 1 of [17] (we give the full

reasoning for the sake of completeness). Let x1,x2, . . . denote the jump times of L before time
1. For every r � 1, let �(r)

1
, . . . , �(r)

r be the integers i ∈ {1, . . . ,r} listed in increasing order of the
quantities Pi −Pi−1 (and the usual order of N for indices such that Pi −Pi−1 is equal to a given
value). It follows from the convergence (4.2) that, for every integer N � 1,

(R−1�(R)
1 , . . . ,R−1�(R)

N ,R−2(P
�(R)

1

−P
�(R)

1
−1

), . . . ,R−2(P
�(R)

N

−P
�(R)

N
−1

))

(d)−−−→
R→∞

(x1, . . . ,xN ,32 ·ΔLx1
, . . . ,32 ·ΔLxN

), (4.10)

and this convergence holds jointly with the convergence (4.2). In addition, using Corollary 4.2,
we also get ( U

�(R)
1

(P
�(R)

1

−P
�(R)

1
−1

)2
, . . . ,

U
�(R)

N

(P
�(R)

N

−P
�(R)

N
−1

)2

)
(d)−−−→

R→∞

(
4
3
·ξ1, . . . ,

4
3
·ξN

)
, (4.11)

jointly with the convergences (4.2) and (4.10), where the random variables ξi are independent
copies of the random variable ξ of Corollary 4.2, and independent of the process L.
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Choosing N sufficiently large such that the probability of ΔLxN
> −ε/(2 ·32) is close to 1, we

can combine (4.10) and (4.11) to obtain the joint convergence

(R−2P�Rx�,R
−4V >ε

�Rx�)x∈[0,1]
(d)−−−→

R→∞

(
32 ·Lx,

4
3
· (32)2 ·Mε

x

)
x∈[0,1]

,

where the process (Mε
x)x∈[0,1] is defined by

Mε
x = ∑

i�1

1{xi�x,ΔLxi
�−ε/(2·32)}ξi(ΔLxi

)2.

It is easy to verify that, for every δ > 0,

P

(
sup

x∈[0,1]
|Mx −Mε

x | > δ
)
−−→
ε→0

0,

and the final result follows from (4.9).

5. Geodesic slices

5.1. Leftmost geodesics, slices and skeletons
Fix r > 0 and v∈ ∂B•

r (T∞). There are several geodesic paths from v to the root vertex and we will
distinguish a canonical one, called the leftmost geodesic. Informally, it is constructed from the
following local rule: at each step, take the leftmost available neighbour that takes you closer to the
root. More precisely, the vertex v ∈ ∂B•

r (T∞) is connected to several vertices of ∂B•
r−1(T∞) and

we can enumerate them in clockwise order, starting from the first one after the edge of ∂B•
r (T∞)

whose initial vertex is v. The first step of the leftmost geodesic from v to the root vertex is the
last edge appearing in this enumeration and the path is constructed by induction. Notice that the
first step of the leftmost geodesic is an edge of the down-triangle associated with the edge of
∂B•

r (T∞) on the left-hand side of v (see Figure 4 for an illustration).
Now pick v,v′ ∈ ∂B•

r (T∞). Then the two leftmost geodesics started respectively at v and v′

will coalesce at a vertex denoted by v∧ v′. The geodesic slice S(r,v,v′) is the submap of B•
r (T∞)

bounded by these two paths and the part of ∂B•
r (T∞) going from v to v′ (recall that ∂B•

r (T∞)
is oriented so that B•

r (T∞) lies on its right-hand side). As a consequence of the definition of
leftmost geodesics, the slice S(r,v,v′) is completely described by the trees of the skeleton of
B•

r (T∞) whose root lies, following the orientation of ∂B•
r (T∞), between v and v′. Indeed, it is

composed of the down-triangles and the slots associated with the vertices of these trees. Figure 4
contains an illustration of this fact.

5.2. Volume of slices
Proof of Theorem 1.4. Since, for any v,v′ ∈ ∂B•

r (T∞), the slice S(r,v,v′) corresponds to the
trees of Skel(B•

r (T∞)) whose roots lie between v and v′, we need to identify these trees. Indeed,
the first tree of Skel(B•

r (T∞)) plays a special role (it is the only one of height r) and the geometry
of the slice is not the same, whether or not this tree is rooted between v and v′. Equivalently, this
means that the slice containing the root vertex of T∞ will play a special role.

We let F = (τ1, . . . ,τq) denote the skeleton of B•
r (T∞). Recall that it is an ordered forest, and

more precisely an (r,1,q)-admissible forest. The vertex v1 is the vertex on the left-hand side
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v v′

v ∧ v′

Figure 4. In red, the two leftmost geodesic paths to the root started respectively at v and v′, up to their coalescence
point v∧ v′. The geodesic slice S(r,v,v′) is lying inside the two red paths.

of the root of τi for some i between 1 and q, and the part of the skeleton describing the slice
S(r,v j,v j+1) is the ordered forest

Fi, j = (τi+q1+···+q j−1
, . . . ,τi+q1+···+q j−1),

where τq+k = τk for every k ∈ {1, . . . ,q} (we also always set vn+1 = v1). Since the vertex v1 is
chosen uniformly, this happens with probability 1/q for every i ∈ {1, . . .q}.

Now, fix Δ a triangulation of the (r,1,q)-cylinder with skeleton F = (τ1, . . . ,τq). For v,v′ ∈ ∂Δ,
we let Δ(v,v′) denote the geodesic slice defined by the arc from v to v′ and the two leftmost
geodesics started respectively at v and v′. If v1 is chosen uniformly and then (v2, . . . ,vn) are such
that the length of the arc for v j to v j+1 along ∂Δ has length q j, then, for any s1, . . . ,sn ∈ [0,1],

E

[
n

∏
j=1

s|Δ(v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

]
=

1
q

q

∑
i=1

n

∏
j=1

∏
v∈F�

i, j

snv+1
j ,

where the expectation takes into account only the randomness of v1 (the map Δ is deterministic
here). This is where it is easier to consider |Δ(v j,v j+1)|− d(v j,v j ∧ v j+1)− 1 instead of simply
|Δ(v j,v j+1)|. Indeed, in the previous formula, the terms snv+1 count the number of inner vertices
in blocs as well as the top vertex of each block. This means that every vertex of the leftmost
geodesic on the right-hand side of the slice is not counted, explaining the deduction of d(v j,v j ∧
v j+1)+1 vertices in the size of the slice. In order to count these vertices we would have to keep
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track of the the height of each slice (namely d(v j,v j ∧ v j+1)). This is not much harder to do, but
it leads to a much more complicated formula and does not have many benefits.

Lemma 2.1 gives

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

1{B•
r (T∞)=Δ}

]

=
αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

∏
v∈F�

i, j

αc(v)−1(ρs j)
nv+1

=
αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

t
q j−1{τ1∈Fi, j}

j ∏
v∈F�

i, j

(αt j)
cv−1(ρs j)

nv+1.

Summing over every triangulation Δ having F as skeleton then gives

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

1{Skel(B•
r (T∞))=F}

]

=
αqC(q)
αC(1)

1
q

q

∑
i=1

n

∏
j=1

t
q j−1{τ1∈Fi, j}

j ∏
v∈F�

i, j

[ucv ]ϕt j
(u).

Finally, summing over every admissible forest yields

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

1{|∂B•
r (T∞)|=q}

]

=
αqC(q)
αC(1)

1
q ∑

F∈F(r,1,q)

q

∑
i=1

n

∏
j=1

t
q j−1{τ1∈Fi, j}

j ∏
v∈F�

i, j

[ucv ]ϕt j
(u)

=
αqC(q)
αC(1)

1
q ∑

F∈F ′(r,1,q)

n

∏
j=1

t
q j−1{h(F1, j )=r}

j ∏
v∈F�

1, j

[ucv ]ϕt j
(u),

where h(·) denotes the maximal height of a forest. If, for k � 1, we let F r
k denote the set of all

ordered forests of k trees with maximal height strictly less than r, we get

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

1{|∂B•
r (T∞)|=q}

]

=
αqC(q)
αC(1)

1
q

n

∑
k=1

(
tqk−1
k ∑

F1,k∈F ′(r,1,qk)
∏

v∈F�
1,k

[ucv ]ϕtk
(u)

)
×∏

j �=k

(
tq j

j ∑
F1, j∈F r

q j

∏
v∈F1, j

[ucv ]ϕt j
(u)

)

=
αqC(q)
αC(1)

1
q

( n

∏
j=1

(t j ϕ{r}
t j

(0))q j

)
×

n

∑
k=1

1
tk

[u](ϕ{r}
tk

(u))qk

(ϕ{r}
tk

(0))qk

=
αqC(q)
αC(1)

1
q

( n

∏
j=1

(t j ϕ{r}
t j

(0))q j

)
×

n

∑
k=1

qk

tk

ϕ{r}′
tk

(0)

ϕ{r}
tk

(0)
.
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Finally, we have

E

[
n

∏
j=1

s|S(r,v j ,v j+1)|−d(v j ,v j∧v j+1)−1
j

∣∣∣∣ |∂B•
r (T∞)| = q

]

=
( n

∏
j=1

(
t j

ϕ{r}
t j

(0)

ϕ{r}(0)

)q j
)
×

n

∑
k=1

qk

q
1
tk

ϕ{r}′
tk

(0)

ϕ{r}′(0)
ϕ{r}(0)
ϕ{r}

tk
(0)

,

giving the result.

Proof of Corollary 1.5. This is a direct consequence of Theorem 1.4 using the same asymp-
totics as in the proof of Corollary 1.2.
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