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Organized large structure in the post-transition
mixing layer. Part 1. Experimental evidence
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New flow-visualization experiments on mixing layers of various velocity and density
ratios are reported. It is shown that, in mixing layers developing from laminar initial
conditions, the familiar mechanism of growth by vortex amalgamation is replaced
at the mixing transition by a previously unrecognized mechanism in which the
spanwise-coherent large structures individually undergo continuous linear growth. In
the organized post-transition flow it is this continuous linear growth of the individual
structures that produces the self-similar growth of the mixing-layer thickness, with the
occasional interactions between neighbouring structures occurring as a consequence
of their growth, not its cause. It is also observed that periods during which the
post-transition mixing layer comprises orderly processions of large structures alternate
with periods during which no large-scale organization is apparent downstream of the
transition location. These two fully turbulent flow states are characterized by different
growth rates, entrainment ratios and orientations of the mixing layer relative to the free
streams. The implications of these findings are discussed.
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1. Introduction
In its fully developed state the plane turbulent mixing layer is, according to

classical turbulence theory (Townsend 1976), a self-preserving turbulent flow which
is in a state of dynamic equilibrium and whose growth rate is a function only of
the velocity and density ratios between the free streams. As was discussed in this
journal by Brown & Roshko (1974), it was therefore an unsatisfactory situation that
careful measurements made for the same free-stream conditions in different wind
tunnels had yielded apparently self-similar mixing-layer growth rates which varied
very significantly. Wygnanski & Fiedler (1970), for example, had obtained a growth
rate for a single-stream mixing layer which was approximately 30 % greater than that
measured, for the same flow configuration, by Liepman & Laufer (1947). Batt (1975)
subsequently showed that this particular discrepancy had probably been caused by a
difference in the state of the boundary layer (laminar in the experiment of Liepman
& Laufer, turbulent in that of Wygnanski & Fiedler) from which the mixing layer had
developed. Tripping of the boundary layers in two-stream mixing-layer experiments,
on the other hand, has been found to produce a significant reduction in the self-
similar growth rate (Oster, Wygnanski & Fiedler 1977; Browand & Latigo 1979;
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Organized large structure in the post-transition mixing layer 1 467

Mungal, Hermanson & Dimotakis 1985; Bell & Mehta 1990; Karasso & Mungal 1996;
Slessor, Bond & Dimotakis 1998). Because the wind tunnels used were necessarily
limited in size it is not certain that all of these experimental mixing layers were truly
‘fully developed’ and it is possible that these differences in growth rate would have
disappeared eventually had longer flow lengths been available for study. These findings
do show, however, a remarkable persistence of the influence of the initial conditions, to
Reynolds numbers, based on the local thickness of the mixing layer and the velocity
difference across it, much higher than those commonly encountered in most practical
applications.

This sensitivity of the mixing-layer growth to upstream influences is not limited
to a sensitivity to the state of the boundary layers separating from the splitter plate.
Numerous experiments (e.g. those of Oster & Wygnanski (1982), Fiedler & Mensing
(1985) and Dziomba & Fiedler (1985)) have shown that periodic disturbances of
various types introduced near the origin of the mixing layer can produce regions
of nonlinear growth far downstream. These effects are observed even where the
introduced perturbations are very small in amplitude in comparison with the turbulent
fluctuations naturally present in the affected downstream region.

Although controversial at the time, the unexpected discovery by Brown & Roshko of
ordered quasi-two-dimensional vortex-like coherent structures in what appeared to be
the fully developed flow was immediately seen as very relevant to the understanding
of these sensitivities for two reasons. First, it showed that mixing layers can have a
turbulence structure very different from that envisaged by classical turbulence theory.
Second, it suggested that Kelvin–Helmholtz instability might provide the driving
mechanism for the self-similar growth of the fully developed flow. It was already
well known that, in mixing layers developing from laminar boundary layers, this
instability tends to cause the free shear flow to roll up on itself at a naturally preferred
frequency to form a regular procession of spanwise-oriented vortices (Michalke 1965).
Winant & Browand (1974) showed that natural excitation of subharmonics of the
fundamental Kelvin–Helmholtz instability can cause the vortices to precess around
each other and amalgamate successively in pairs and proposed this as the mechanism
which drives the observed self-similar growth of the fully developed flow. Cycle-to-
cycle variability in the locations of the amalgamations, it was suggested, would smooth
out the step increases in the thickness of the layer and give a mean velocity profile
which expanded linearly with distance from a virtual origin. In this context different
initial conditions and small-amplitude perturbations introduced near the origin of the
layer can be understood to affect the growth of the layer further downstream via
their influence on the excitation of the Kelvin–Helmholtz modes and the preferential
excitation of modes of particular frequencies (Ho & Huang 1982).

In the absence of any alternative explanation for the observed linear increase in
the average scale and spacing of the structures discovered by Brown & Roshko, this
idea that the self-similar growth of turbulent mixing layers is driven by sequential
excitation of the subharmonics of a fundamental Kelvin–Helmholtz instability has now
come to receive very widespread acceptance. Direct experimental evidence that the
instability-driven vortex amalgamation process continues to be operative where mixing
layers have attained full self-similarity appears to be lacking, however. At a more
fundamental level doubts persist as to whether mixing layers containing organized
coherent structures can ever be regarded as truly fully developed (Chandrsuda et al.
1978) or even whether a universal asymptotic flow state actually exists (George 1989).

The experiments of Brown & Roshko were quickly followed by others which
showed that, at a certain stage in its development from a laminar initial state, the
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468 A. D’Ovidio and C. M. Coats

mixing layer undergoes a definite transition from an unsteady laminar flow to one
which is, in a real sense, turbulent (Konrad 1976; Breidenthal 1981). This so-called
mixing transition was found to be preceded by the development, as a result of the
excitation of a secondary instability, of streamise-oriented vortices on the braids or
sheets of rotational fluid linking the already-existing spanwise vortices (Jimenez 1983;
Lin & Corcos 1984; Lasheras, Cho & Maxworthy 1986; Bell & Mehta 1992; Rogers
& Moser 1992). When these streamwise vortices have attained sufficient strength their
interaction with the spanwise vortices during amalgamations of the latter generates
smaller-scale turbulence and, if the local Reynolds number is high enough to sustain
a continuous energy cascade, the amalgamation triggers the transition (Huang & Ho
1990).

There are thus two requirements which must be satisfied for this transition to
occur: (i) a sufficient flow length for the streamwise vortices to develop; (ii) a
sufficiently high Reynolds number to support the fine scales. The flow length required
is typically that necessary to accommodate the initial roll-up and between two and
four subsequent pairing-type amalgamations: a distance equal to a few hundred times
the initial momentum thickness of the layer, θi. As was demonstrated by Dimotakis
& Brown (1976) and Huang & Ho (1990), this is not inconsistent with the distance
of ∼1000θi cited by Bradshaw (1966) as the distance necessary for attainment of full
self-similarity by the developing layer. Subject to (i), the transition is usually found to
occur at a Reynolds number of the order of 104 (Dimotakis 2000). From this point on
the spanwise vortices form the largest of an extended cascade of eddy scales.

The processes leading up to the mixing transition have been studied in considerable
detail by experiment (Lasheras et al. 1986; Lasheras & Choi 1988; Huang & Ho
1990; Nygaard & Glezer 1991) and also by numerical simulation (Moser & Rogers
1991, 1993). These studies have confirmed that, despite the presence of the developing
three-dimensional motions, the dynamics of the pre-transition layer usually remain
dominated by the subharmonics of the fundamental Kelvin–Helmholtz instability and
that the layer grows by essentially the mechanism proposed by Winant & Browand.

The situation in relation to the post-transition flow and to mixing layers that develop
from turbulent boundary layers is less clear. There is abundant flow-visualization
evidence that coherent structures superficially similar to the spanwise vortices present
in the pre-transition flow are often present in fully turbulent mixing layers and they
have been visualized clearly in compressible mixing-layer flows at local Reynolds
numbers of at least 4 × 105 (Clemens & Mungal 1995). Their presence has also
been educed from hot-wire measurements (Browand & Troutt 1985; Hussain &
Zaman 1985) and can be inferred from some of the numerous measurements of
scalar mixing that have been made in fully turbulent mixing layers by Konrad (1976),
Breidenthal (1981), Mungal & Dimotakis (1984), Mungal et al. (1985), Koochesfahani
& Dimotakis (1986), Karasso & Mungal (1996), Slessor et al. (1998) and Meyer,
Dutton & Lucht (2006) amongst others. It has been established that the average
spacing of the structures increases with their size (Brown & Roshko 1974; Dimotakis
& Brown 1976; Hernan & Jimenez 1982), implying that their numbers are reduced in
some way as the mixing layer grows in thickness. There is also some evidence that,
in mixing layers which have developed from laminar initial conditions, the streamwise
vortices survive in the post-transition flow with an average spacing which increases in
step with that of the spanwise structures (Jimenez, Cogollos & Bernal 1985; Bernal &
Roshko 1986; Bell & Mehta 1992). It seems that the structures are not always present
however and, even in situations where their presence has been detected (Koochesfahani
et al. 1979; Hussain & Zaman 1985), velocity correlation measurements show no
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Organized large structure in the post-transition mixing layer 1 469

evidence of the large-amplitude antisymmetric induced fluctuations characteristic of the
vortex amalgamations in the pre-transition flow (Browand & Weidman 1976).

The motivation for the present study has been provided by flow-visualization
evidence showing that some spanwise-coherent structures in mixing layers undergo
significant growth during the intervals between pairings or other types of large-
structure interaction. This was shown first by Hernan & Jimenez (1982) who
performed a very detailed statistical analysis of the coherent-structure evolution
visible on one of the cine-film visualizations that had been produced earlier by the
group at Caltech. Subsequent experiments carried out by Pedley (1990) (unpublished
but discussed in Coats (1996)) have suggested that this continuous growth of the
individual structures is to be found specifically in the post-transition part of the flow
where it accounts directly for the self-similar growth of the mixing layer’s thickness
without any contribution at all from pairings of the pre-transition amalgamative type.
Pedley also observed that, when these continuously growing coherent structures were
not obviously present, there was a significant reduction in the self-similar growth rate
of the mixing layer. We here present new data which corroborate and amplify Pedley’s
somewhat tentative findings, confirm that there is indeed a fundamental change in
the growth mechanism at the mixing transition and cast fresh light on the variability
of the growth rates measured with conventional traversing techniques in wind-tunnel
experiments.

Flow visualization experiments remain an effective way of studying the evolution
of coherent structures but flow visualization on its own has severe limitations and,
especially in flows that are turbulent and thus contain three-dimensionality, caution is
necessary in interpreting purely visual evidence. In a second part of this study, which
is to be reported in a companion paper, several of the experiments have been replicated
numerically by large-eddy simulation. These simulations have shown remarkable
consistency with the experimental findings and fully support the interpretations placed
here on the flow visualizations.

2. Experimental details
To visualize the convection, growth and interactions of extended sequences of

spanwise-coherent structures at repetition rates of several kilohertz, the same technique
of recording schlieren and shadow images on high-speed cine film as was used by
Brown & Roshko (1974) and Pedley (1990) was used again in the present experiments.
This required the use of dissimilar gases for the two free streams and a wind tunnel
with a small test section in which high Reynolds numbers were achieved through the
use of high velocities rather than large length scales. To economize as far as possible
in the consumption of bottled gases, one of the two streams was of air supplied from
a battery of rechargeable high-pressure tanks. In most of the experiments the second
stream was of helium, argon or a mixture of the two, this providing the difference of
refractive index needed to visualize the mixing layer and also allowing variation of the
density ratio between the free streams. The air from the tanks could be used for either
or both of the streams as required, providing long flow times for characterization of
the flow in the test section by hot-wire anemometry.

The flow of each of the gases was controlled by means of a choked orifice and
discharged via a perforated distributor into a settling chamber. Here it was smoothed
by passage through a series of finer screens and finally accelerated into a test section
of 100 mm span through a two-dimensional half-nozzle (figure 1). Where mixed
helium and argon were used for one of the streams the mixing of the two gases
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250(a)

(b) 300

16

34

43

31

Flexible section

FIGURE 1. Detail of test section: (a) build 1; (b) build 2. Dimensions are in millimetres.

was carried out upstream of the settling chamber, the metering by the choked orifices
allowing the mixture fraction to be set with an accuracy of better than 2 %. This was
confirmed by chromatographic analysis of samples of the resulting mixture collected at
the nozzle exit.

The velocity of each of the free streams was measured and recorded continuously
during experiments by means of a small Pitot-static probe introduced through the wall
of the test section and connected to a calibrated micromanometer. This measurement
was made at a distance of 85 mm from the nozzle exit with a typical uncertainty in
the dynamic head of ±10 Pa. Velocity-profile and turbulence measurements were made
with a calibrated Dantec 55P11 hot-wire probe introduced through the test-section
exit and traversed automatically in the cross-stream direction with a position accuracy
of ±50 µm. A fourth-order calibration function was applied to the bridge voltage,
allowing velocities to be measured with an accuracy of better than ±2 % over the
whole of the velocity range of interest. Spectral analyses of the anemometer output
were performed by a fast Fourier transform (FFT) technique using a Hewlett Packard
HP35670A dynamic signal analyser. The gas temperature in the settling chamber was
constant to within ±0.5 ◦C throughout the extended run periods needed to map the
flow within the test section.

The wind tunnel was of modular construction so that the half-nozzles and the
test-section walls could be changed as necessary to suit the requirements of particular
experiments. Two main configurations, designated builds 1 and 2, were used in this
work, as detailed in figure 1. In both builds the velocity in the exit plane of each
half-nozzle was essentially uniform (outside the wall boundary layers) in the spanwise
direction, with variations of up to 3–4 % in the cross-stream direction. Most of this
variation was in the region towards the outer (curved) wall of the nozzle in the part
of the free stream remote from the mixing layer. The measured turbulence intensity of
the flow entering the test section varied to some extent with the velocity and the area
ratio of the nozzle used but was generally of the order of 0.5 %. This inlet turbulence
had the character of ‘white’ noise with no obvious tones present in the fluctuation
spectrum.

The two streams came into contact with each other 8 mm beyond the nozzle exit
plane at the end of the horizontal splitter plate which separated the two settling
chambers. The end of this splitter plate was tapered on the low-speed side to a knife
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edge of negligible thickness which was both straight and flat to a high standard of
tolerance. The momentum thicknesses of the boundary layers formed on the two sides
of the splitter plate were measured as functions of the nozzle exit velocity with air
as the test fluid 1 mm downstream of this trailing edge. Because the boundary layers
were still laminar on separation, it was assumed that the corresponding thicknesses
for the other gases could be estimated with good accuracy on the basis of Reynolds-
number similarity.

The static-pressure distribution within the test section was measured by means of
a differential pressure transducer with a fixed reference, connected via a scanivalve
system to a total of 24 tapping points distributed along the upper and lower walls. To
create free streams that were as nearly as possible uniform the angle of the hinged
lower wall was adjusted once the flows were established to minimize the streamwise
pressure gradients. As shown in figure 1, the hinge was formed by a flexible length
of wall which ensured a smooth blend with the low-speed-side half-nozzle. With the
lower wall set at its optimal angle there were small streamwise pressure gradients at
the walls in the first 50 mm of the test section, associated with the adaptation of the
two entry flows to the geometry of the test section and the non-self-similar initial
development of the mixing layer, followed by a flow length of at least 200 mm in
which the streamwise gradients were near zero. There were often small gradients at
the downstream end of the test section associated with the adaptation of the flow to
the unconfined conditions further downstream or, in some cases, contact between the
mixing layer and either the upper or the lower wall. It is interesting to note that there
was also a small but measurable pressure difference between the two streams in the
part of the test section in which there was no streamwise variation of pressure. This
pressure difference between the streams was also found in the numerical simulations
of the same flows which are to be reported in Part 2. For experiments involving
only a single moving stream the lower half-nozzle and wall were removed altogether,
allowing air to be entrained directly from the laboratory. Ducting was rigged to shield
the inflow of entrained air from draughts but no attempt was made to smooth the
entrained flow itself.

To facilitate flow visualization the sidewalls of the test section were formed by
sheets of 8 mm thick aberration-free float glass. The visualization was effected by
means of a folded schlieren system with an offset angle of 5◦, based on a pair of
305 mm diameter front-silvered concave mirrors of focal length 2.44 m. The light
emitted by the source lamp was focused on a 1 mm diameter pinhole placed at the
focus of the first mirror and a matching pinhole was positioned at the focus of the
second mirror as the schlieren stop. The features of the flow shown most clearly
by this optical arrangement were the braids connecting the spanwise-oriented large
structures. For the production of shadowgraphs showing the fine-scale turbulence the
second pinhole was removed. With both arrangements neutral-density filters were used
to optimize the system sensitivity. In a number of the experiments simultaneous side-
and plan-view visualizations were produced by the introduction of a second pair of
plane front-silvered mirrors positioned above and below the test section. For these
experiments the instrumented upper and lower test-section walls were replaced with
otherwise identical components incorporating large areas of transparency in place of
the pressure tappings.

High-definition images of the fine-scale turbulence were recorded with a 35 mm
SLR camera fitted with a zoom lens, using a microsecond argon-jet spark as the light
source. For tracking the convection, growth and interaction of the large structures
in real time a 75 W xenon arc lamp was used as the light source and the images
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were recorded on 100-foot lengths of 16 mm cine film by a high-speed rotating-prism
camera operated at a rate of 4000 fps. The exposure time of the individual frames with
the camera operating at this speed was 100 µs. An accurate time base was marked on
the film to allow correction for variations in the camera speed. For detailed analysis
the recorded images were copied onto videotape and then digitized frame by frame.

More than 50 cine films of varying quality were produced in total, approximately
half of which were analysed in some detail. The largest number of these were of
mixing layers of uniform density formed between a high-speed stream composed of a
mixture of 70 % argon and 30 % helium and a low-speed stream of air. The velocities
of the two streams, denoted U1 and U2 respectively, were varied separately within the
ranges 9–32 and 2–13 m s−1 to cover a range of velocity ratios at different Reynolds
numbers. The velocity ratios were chosen to give values of the parameter

R= U1 − U2

U1 + U2
(2.1)

in the range 0.41–0.63. As is well known, the spatial growth rates of uniform-density
mixing layers vary approximately in proportion to R. The resulting value of the
Reynolds number

Re= (U1 − U2) δvis

ν
(2.2)

at a reference distance of 250 mm from the splitter plate ranged from ∼2 × 104 to
∼8× 104, depending on the particular velocities and velocity ratio chosen.

The length scale used here, δvis, is the same visual thickness obtained by drawing
straight-line mean tangents to the edges of the visualized mixing layer as was used by
Brown & Roshko (1974). This is not a precise method of measurement but, as those
authors showed, the thickness measured in this way corresponds closely in practice to
that defined by the edges of the mixing layer as determined from mean scalar and
velocity profiles. It also provides a convenient means of relating directly the mean
growth of the layer as a whole to the growth of the individual structures within it.
Most of the tests involving growth to only small values of δvis were performed with
test-section build 1 and those involving the higher rates of growth with build 2. Some
tests were replicated with both builds, however, to check that the development of the
mixing layer had not been influenced in any way by wall proximity effects.

The kinematic viscosity ν used here in the calculation of Re is that of the
homogeneous fluid formed within the mixing layer by mixing together the fluids
drawn from the two streams in the proportions predicted by the entrainment-ratio
formula of Dimotakis (1986). All mixture viscosities in this work have been calculated
from the semiempirical formula of Wilke (1950). For a number of the above uniform-
density test conditions, profiles of mean and fluctuating velocity were measured to
complement the flow visualizations in runs of longer duration in which air was
substituted for the argon–helium mixture in the faster stream. The kinematic viscosity
of the argon–helium mix was slightly greater than that of the air (sufficient to produce
a difference of ∼12 % in the momentum thickness of the separating boundary layer)
and so the main effect on the flow of this change of gas is expected to have been a
correspondingly small displacement in the average location of the mixing transition.

To study the effects of density differences between the free streams a number of
visualization runs were also conducted in which: (i) pure helium was used for the high-
speed stream and air for the low-speed stream, giving a free-stream density ratio ρ2/ρ1

of 7.2; (ii) these two gases were interchanged, giving a density ratio of 0.14. Finally,
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FIGURE 2. Non-dimensionalized profiles of (a–c) mean velocity and (d–f ) r.m.s. of velocity
fluctuations: (a,d) U1 = 32.0 m s−1, U2 = 12.9 m s−1; (b,e) U1 = 32.1 m s−1, U2 = 9.6 m s−1;
(c,f ) U1 = 31.9 m s−1, U2 = 7.2 m s−1; ρ2/ρ1 = 1.0. Measurements made at distances
of 72 mm (crosses), 97 mm (triangles), 122 mm (circles), 147 mm (squares), 172 mm
(diamonds) and 197 mm (diagonal crosses) from the splitter plate.

to access higher spatial growth rates and Reynolds numbers, the low-speed half-nozzle
and lower wall of the test section were removed, creating a half-jet configuration
(R= 1) in which a single moving stream was allowed to entrain quiescent air from the
laboratory. Visualization runs were conducted with (i) the 70 % argon/ 30 % helium
mix (ρ2/ρ1 = 1.0), (ii) a 30 % argon/ 70 % helium mix (ρ2/ρ1 = 2.0) and (iii) pure
helium (ρ2/ρ1 = 7.2) as the moving stream. Runs with pure argon as the moving
stream were also attempted but did not produce visualizations of usable quality.
Free-stream velocities of up to 60 m s−1 were used in these variable-density and
single-stream tests and, in one uniform-density single-stream case, a Reynolds number
approaching 2× 105 was attained at a distance of 250 mm from the splitter plate.

3. Results
3.1. Similarity characteristics

That the developed experimental flows were self-similar and had the characteristics
expected of fully turbulent mixing layers is shown by the representative mean- and
fluctuating-velocity profiles for conditions of uniform density and three different values
of R presented in figure 2. The local mean velocity ū(x, y) and the root-mean-square
(r.m.s.) of the local velocity fluctuation u′(x, y, t) are plotted as the non-dimensional
variables

ū∗ = ū− UC

U1 − U2
, u′∗ =

√
u′2

U1 − U2
(3.1)
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FIGURE 3. Vorticity-thickness growth rate versus non-dimensionalized velocity difference
between free streams; datum points computed from data presented in figure 2(a–c).

where

UC = U1 + U2

2
. (3.2)

The abscissa is the non-dimensionalized cross-stream coordinate

y∗ = y− y0

x− x0
(3.3)

where x and y are, respectively, the streamwise and cross-stream coordinates of
position and (x0, y0) is the virtual origin of the mixing layer. As expected at these
free-stream velocities, the profiles of both variables approach self-similarity fairly
rapidly beyond the first traverse plane and the peak turbulence intensities are in the
expected range. Similar profiles were obtained at lower free-stream velocities but with
longer flow lengths required to attain full self-similarity.

The rate of growth with x of the vorticity thickness of the mixing layer,

δω = U1 − U2

(∂ ū/∂y)max

, (3.4)

has been determined from the mean velocity profiles in figure 2 and is plotted as a
function of R in figure 3 where the three datum points are seen to be well fitted by
a straight line of gradient 0.16 passing through the origin of the coordinates. This
gradient also is within the range of scatter of previously published measurements
(Brown & Roshko 1974).

3.2. The mixing transition
That the experimental mixing layers underwent the mixing transition described and
discussed in § 1 was shown by the evolution of the velocity-fluctuation spectrum at the
centre of the layer. Jimenez (1983) and Huang & Ho (1990) have both demonstrated
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FIGURE 4. Power spectrum of velocity fluctuations at centre of mixing layer at distances of
(a) 5 mm, (b) 15 mm, (c) 75 mm and (d) 110 mm from the splitter plate; U1 = 20.7 m s−1,
U2 = 5.4 m s−1, ρ2/ρ1 = 1.0. The reference line indicates roll-off rate of fully developed
inertial cascade.

that the transition is accompanied by the establishment of a cascade of eddy scales
in which the spectrum level E(f ) of the fluctuation energy varies with frequency f
as E ∝ f n and the roll-off exponent n attains the limiting value −5/3. This is the
value implied for the inertial subrange of isotropic turbulence by Kolmogorov’s (1941)
universal equilibrium theory. Figure 4 shows some representative spectra sampled
at different values of x and plotted on logarithmic axes for one particular set of
experimental conditions. Also shown extending over the relevant range of frequencies
for each spectrum is a reference line of gradient −5/3, indicating the roll-off rate of
the fully developed inertial cascade. As in the experiments of Jimenez and Huang &
Ho, the relevant part of the spectrum was initially dominated by a few large peaks,
corresponding to the fundamental Kelvin–Helmholtz instability and its subharmonics
(figure 4a). Further downstream a cascade of smaller scales appeared but with a
steeper roll-off than in fully turbulent flow, indicating that the smaller scales were still
far from isotropic (figure 4(b,c)). Further downstream again the roll-off rate relaxed
to that characteristic of fully turbulent flow (figure 4d) and remained unchanged
thereafter.

Hot-wire measurements of the type presented in figure 4 could not be made
in flows involving the mixing of different gases and so it was necessary also to
be able to identify the location of the mixing transition directly from the flow
visualizations. Real-time visualizations in fact provide more useful information than
spectral measurements because, as was discussed in § 1, although the lead-up to
the transition is a gradual process, the transition itself is associated with a highly
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FIGURE 5. Simultaneous side- and plan-view spark shadowgraph showing mixing transition;
U1 = 13.1 m s−1 (helium), U2 = 3.0 m s−1 (air).

localized vortex amalgamation ‘event’. In mixing layers which develop naturally from
a laminar initial state against a background of low-level fluctuations covering a broad
band of frequencies there is a large degree of randomness in the locations of the
initial roll-up and the subsequent vortex amalgamations. Spectral measurements are
long-time averages and so do not locate the triggering amalgamation on the required
time-resolved basis.

Figure 5 shows a simultaneous side- and plan-view visualization in which the optical
set-up has been adjusted to highlight the small-scale turbulence in the flow. It will
be noted in the side view that the angle at which the lower wall of the test section
has been set to eliminate the streamwise pressure gradient at these particular flow
conditions produces a diverging channel. This is because the displacement thickness
of a mixing layer is a function of the free-stream density ratio as well as R and has
a growth rate which becomes positive at intermediate values of R for ρ2 � ρ1. The
same can be seen in the corresponding side-view visualizations reproduced in Brown
& Roshko (1974).

The plan view in figure 5 shows very clearly how the unsteady laminar flow in
the initial part of the layer, in which the secondary streamwise vortices are the most
prominent features, is abruptly replaced at a particular streamwise location by a flow
which is suffused with small three-dimensional eddies. Reference to the side view
shows that this is the location at which two spanwise vortices are in the process
of amalgamation. Tracking of the instantaneous transition location as a function of
time produces an irregular sawtooth-type waveform, the transition point in the flow
convecting downstream with the amalgamating vortices and then jumping upstream
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FIGURE 6. Mean transition location versus transition Reynolds number: ρ2/ρ1 = 1.0 (circles
and squares), 7.2 (diamonds) and 0.14 (triangles). Circles indicate measurements made with
nozzle/test-section build 1; all other measurements made with nozzle/test-section build 2.

as the amalgamation of the following pair of vortices becomes the next transition
event. The individual amalgamations could be observed clearly in the side-view cine
sequences and there were recognizable differences in the appearance of the spanwise-
coherent structures and their linking braids pre- and post-transition as visualized in
side view by either shadow or schlieren. There was therefore no difficulty in practice
in tracking the instantaneous transition location from the cine side views alone.

To demonstrate that the transition location xt determined in this way was consistent
with the two transition criteria discussed in § 1, the average values of xt determined
from analyses of 16 of the cine films are plotted against the Reynolds number of the
mixing layer at the average transition location in figure 6. The data shown embrace
different free-stream velocities and velocity ratios, different density ratios and both
builds of the test section. To relate these average xt values, at least notionally, to
the expected locations of the successive vortex amalgamations they have been plotted
here in normalized form as a variant of the ‘pairing parameter’ first proposed by
Huang & Ho (1990). This parameter is based on the assumption that the initial roll-up
is followed by a sequence of pairing amalgamations produced by excitation of the
subharmonics of the fundamental Kelvin–Helmholtz mode and that the fundamental
instability wave and its subharmonics all convect downstream at the same velocity. The
distances from the separation point to the locations of the successive amalgamations, xi

(i = 1, 2, 3, . . .), must then be expected to scale on the wavelength of the fundamental
mode, L0, and to vary in inverse proportion to the averaged spatial growth rate. For
mixing layers of uniform density this leads to the parameter

xi
∗ = Rxi

L0
(3.5)

as an appropriate normalization for xi. In their own experiments on mixing layers
developing naturally from laminar initial conditions Huang & Ho found that the first
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three amalgamations occurred at values of xi
∗ close to 4, 8 and 16 and that the

transition was usually triggered by the second of them.
To apply the same reference values of xi

∗ to mixing layers formed between streams
of different densities it is necessary to consider the effects of the density ratio on both
L0 and the spatial growth rate. In evaluating their uniform-density pairing parameter
Huang & Ho assumed that

L0 = UC/f0 (3.6)

with the frequency of the initial roll-up, f0, given by

f0θ1

UC
≈ 0.034 (3.7)

where θ1 is the momentum thickness of the boundary layer formed on the high-
speed side of the splitter plate. Their choice of θ1, as the normalizing length scale
in (3.7) was based on their earlier experimental finding (Ho & Huang 1982) that,
in a two-stream mixing layer, it was the inflection formed transiently on the high-
speed side during the merging of the two boundary layers that was most receptive
to high-frequency disturbances and determined the frequency of the fundamental
Kelvin–Helmholtz mode. The value 0.034 in (3.7) was that given by linear stability
theory for a mixing layer with a tanh profile of momentum thickness equal to θ1

(Monkewitz & Huerre 1982) and applied, to a good approximation, for all values of
R. Now analysis of the temporal instability of variable-density mixing layers (Michalke
1971) suggests that, if it continues to be the inflection formed transiently in the
separated high-speed-side boundary layer that remains dominant, f0 will not be greatly
affected by the density of the fluid on the low-speed side of the splitter plate. It then
follows that, because the wave velocity (represented by UC) is self-cancelling in the
calculation, combination of (3.6) and (3.7) gives the same fundamental wavelength
L0 ≈ θ1/0.034 for all density ratios as well as for all values of R.

By the same argument, Michalke’s analysis suggests that the effect of the density
variation on the temporal growth rates of the excited modes is also likely to be fairly
small, at least during their early linear stages. If this is in fact the case, the effect
of the density difference between the free streams on the spatial growth rate can be
estimated to a first approximation by applying a simple Galilean transformation to the
same temporal growth rate. The more general form of (3.2) which must be used in the
case of a mixing layer formed between streams of different densities is

UC = U1 + U2

2

(
1+
√
ρ1 −√ρ2√
ρ1 +√ρ2

R

)
(3.8)

(Coles 1981) and so the pairing parameter becomes

xi
∗ = 0.017 (U1 − U2) xi

UCθ1
. (3.9)

This reduces to (3.5) in the uniform-density case and places the amalgamations at
approximately the same values of xi

∗ for all density ratios.
The average values of xt plotted with this normalization in figure 6 show the

transition as having occurred in the expected range of Reynolds numbers and
been triggered typically by the second or third amalgamation. It should be noted,
however, that the vortices did not always amalgamate sequentially in pairs. The
cine films showed that, not infrequently, three or even four small vortices would
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amalgamate simultaneously under the influence of a lower subharmonic of the initial
roll-up frequency or a smaller-than-average vortex would become caught up in an
amalgamation of two larger vortices. The trend to larger xt

∗ values in build 1 of the
wind tunnel presumably reflects the influence of the larger nozzle contraction ratio
on the low-level background turbulence. The apparent trend to smaller xt

∗ values in
the runs for which ρ2 > ρ1, on the other hand, reflects the approximate nature of the
assumptions made in the derivation of (3.9). The cine-film evidence indicated that the
actual f0 values for these runs were somewhat higher than predicted by (3.7), possibly
because the greater inertia of the fluid on the low-speed side of the splitter plate
had affected to some extent the evolution of the inflected velocity profile during the
merging of the two boundary layers.

The data presented in figure 6 give a high level of confidence that the vortex
amalgamations which triggered the transition had been identified correctly from the
side-view visualizations. With the instantaneous transition location clearly identified
in this way it was then possible to examine the pre- and post-transition parts of the
mixing layer separately on a time-resolved basis.

3.3. Large-structure growth and interaction

The first main objective of this study was to characterize the growth and interactions
undergone by the organized large structures visible in the fully turbulent part of the
mixing layer downstream of the mixing transition for comparison with the vortex
evolution in the pre-transition flow. For this purpose the spanwise-integrated picture
of the flow provided by the visualization techniques used here was more useful than
a planar view because: (i) the presence of a visible large-scale structure in the side
views was itself positive evidence of a high degree of local spanwise coherence in the
flow; (ii) the visualizations showed directly the relationship between the large-structure
evolution and the spanwise-averaged growth of the mixing layer as a whole.

The techniques employed to track the evolution of the individual structures were
the same as those used by Pedley (1990). Extended sequences of digitized images,
enhanced where necessary by a limited amount of filtering and contrast adjustment,
were examined systematically and all of the coherent structures which were clearly
visible in each image were identified individually. In the shadowgraphs of the post-
transition flow these showed themselves as more or less regular symmetrical bulges
in the band of turbulent fluid which formed the bulk of the mixing layer, often
with tongues of entrained irrotational fluid clearly visible in the spaces between
(figure 7a). That these symmetrical bulges did in fact mark the presence of vortex-
like coherent structures was very evident when the images were viewed in rapid
sequence, the convection of each bulge being accompanied by the visible rotation
of the smaller eddies contained within it around a common centre in what appeared
to approximate to a solid-body motion. In the schlieren images it was the inclined
interfacial braids linking the large structures that stood out most clearly (figure 7b). In
the post-transition flow these were diffuse in appearance and showed clear evidence of
being suffused with smaller-scale turbulence.

Once the structures had been identified, the coordinates of the two polar points of
the circle which best fitted the visible traces of the outline of each structure (figure 8a)
were logged and tracked from frame to frame. The centre of this circle was taken
as the centre of the rotation. Some subjectivity was involved in the fitting procedure
but, because it was carried out in a consistent way throughout the analysis of each
image sequence, the reliability of the general findings is not in any doubt. The patterns
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(a)

(b)

FIGURE 7. Representative instantaneous side views of predominantly post-transition mixing
layers: (a) shadowgraph for U1 = 32.6 m s−1, U2 = 7.8 m s−1, ρ2/ρ1 = 7.2; (b) schlieren
image for U1 = 20.2 m s−1, U2 = 7.1 m s−1, ρ2/ρ1 = 1.0.

(a) (b)

FIGURE 8. (a) Polar points used to track convection and growth of individual large structures.
(b) Elliptical mapping of large structures employed by Hernan & Jimenez (1982).

of evolution shown by the detailed tracking could be readily confirmed by direct
slow-motion viewing of the original cine films.

As a reference against which the evolution of the post-transition structures can be
compared figure 9 presents some representative time traces illustrating the familiar
pattern of growth by amalgamation in the pre-transition mixing layer. The particular
traces shown were produced from the analysis of two short image sequences chosen
more or less at random for different flow conditions. In both cases the image
sequences used had been produced by the schlieren technique which, in the pre-
transition flow, visualized the interface between the two fluids very sharply. The two
polar points logged in the tracking (figure 8a) lay unambiguously on the outermost
turn of the spiralling interface with extended the linking braids into the individual
vortices.
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FIGURE 9. Pre-transition vortex evolution: (a–c) U1 = 9.6 m s−1, U2 = 2.2 m s−1, ρ2/ρ1 =
1.0; (d–f ) U1 = 18.1 m s−1, U2 = 4.3 m s−1, ρ2/ρ1 = 7.2. Within each set of plots the same
symbols are used to identify the individual vortices. The reference lines in (c,f ) are least-
squares fits to the filled symbols only.
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Figure 9(a) shows that the vortices all convected downstream at velocities close
to that given by (3.8) and that, at particular times, a pair of vortex tracks was
replaced by a single new track as the two vortices amalgamated. Figure 9(b) shows,
for the same sequence, how the diameters of the individual vortices (defined as in
figure 8a) remained almost constant throughout most of their lifetimes but increased in
a stepwise manner with each amalgamation. In figure 9(c) the same data are replotted
to show the relationship between the spatial growth of the individual vortices and that
of the mixing layer as a whole. The reference line in this plot is a least-squares fit
to just the datum points corresponding to the conditions immediately following the
amalgamations (identified by the filled symbols) and can be taken to represent the
average spatial growth rate of the pre-transition part of the mixing layer. (Note that the
fit is not a particularly close one because the mixing layer attains full self-similarity
only downstream of the mixing transition and because the randomness with which
the fundamental Kelvin–Helmholtz mode and its subharmonics are excited has the
effect of introducing jitter into the location of the virtual origin.) It can be seen
very clearly from this third plot that the growth of the layer as a whole was also
associated with the amalgamations. As the participating vortices began to interact
they underwent progressive displacement in the cross-stream direction and precessed
around each other in pairs with a consequent large entrainment of irrotational fluid
from the free streams. These cross-stream displacements, corresponding to the growing
subharmonics of the fundamental Kelvin–Helmholtz instability, increased in magnitude
until the two vortices had precessed through an angle of 90◦ at which point they
amalgamated to form a single new vortex. Figure 9(d–f ) shows exactly the same
pattern of evolution in a pre-transition mixing layer of non-uniform density.

Figure 10 presents the corresponding time traces produced from two representative
image sequences illustrating the pattern of evolution in the post-transition mixing
layer. Here the spanwise-coherent large structures revealed by the visualization
were not two-dimensional spiral vortices but turbulent vortex cores and the polar
points logged in the tracking (figure 8a) marked the extremities of these turbulent
cores. Figure 10(a)–(c) were produced from the analysis of schlieren images and
figure 10(d)–(f ) from the analysis of shadowgraphs but the two visualization
techniques led to essentially identical results. Once again the first image sequence
was of a uniform-density mixing layer and the second of a mixing layer formed
between streams of different densities.

Figure 10(a,d) show that, as in the pre-transition mixing layer, the large structures
all convected downstream at a near-constant velocity and that, at particular times, pairs
of tracks were replaced by single new tracks as neighbouring structures interacted with
each other. When Brown & Roshko (1974) produced similar tracks from their own
cine-film visualizations of high-Reynolds-number mixing layers 40 years ago they took
them as evidence that the fully turbulent mixing layer grows by the same instability-
driven mechanism as seen in figure 9, an interpretation that has received widespread
uncritical acceptance ever since. However, simultaneous direct tracking of the growth
of the individual large structures shows this interpretation to be incorrect. It is seen
in figure 10(b,e) that, in contrast with the situation in the pre-transition layer, the
diameters of the individual structures all grew continuously at a constant rate between
interactions. It is seen further in figure 10(c,f ) that this continuous linear growth of the
individual structures matched and defined the self-similar growth of the mixing layer
as a whole. The growth of the layer thus occurred as a continuous inflow from the free
streams to feed the growth of the rotating turbulent structures within it without those
structures undergoing any displacements at all in the cross-stream direction.
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FIGURE 10. Post-transition large-structure evolution: (a–c) U1 = 20.9 m s−1, U2 = 0,
ρ2/ρ1 = 1.0; (d–f ) U1 = 32.6 m s−1, U2 = 7.8 m s−1, ρ2/ρ1 = 7.2. Within each set of plots
the same symbols are used to identify the individual structures.
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What is remarkable about the data in this figure is not that the turbulent cores
of these vortex-like structures grow continuously but that the growth continues at
the same constant rate in all of them throughout their lifetimes. If each structure
had been formed as a result of the excitation of a subharmonic of the fundamental
Kelvin–Helmholtz instability one might expect the subsequent outward turbulent
diffusion of the concentrated vorticity to cause a continuous increase in the size of
the core. On dimensional grounds, however, its diameter should then increase as the
square root of time, not linearly (Moore & Saffman 1975). Alternatively, if each
growing structure was a fresh roll-up in progress, driven by the excitation of the
Kelvin–Helmholtz instability of the local mean velocity profile, one would expect
to see its growth rate first increase to a maximum and then fall away again as
the surrounding fluid became denuded of vorticity and the instability saturated. The
continuous linear growth seen in this figure indicates that something more complicated
than two-dimensional diffusion and induction is occurring here.

Detailed study of the cine films confirmed that the large-structure interactions which
occurred in the post-transition mixing layer were all quite different in character from
those which occurred in the pre-transition flow. The most common type, represented
by the merging tracks marked with the broken lines in figure 10(a,d), occurred when
two neighbouring structures had grown to the point at which their rotations were
interfering with each other. Both structures then appeared to break down and, in most
cases, were replaced a short time later by a single new structure which resumed
the continuous linear growth of its parents. In contrast with their pre-transition
counterparts, these post-transition pairing interactions involved no visible displacement
of the participating structures in the cross-stream direction and contributed nothing
to the growth of either the individual structures or the mixing layer as a whole.
The diameters of the visible structures plotted in figure 10(b,e) indicate that the
new rotational structures which emerged from the pairing interactions tracked in
figure 10(a,d) (identified in the figure by the inverted triangles) contained little more
than half the fluid that had been contained within their parents. The remainder of
this fluid had been returned to the regions of induced flow between the continuously
growing rotational structures. These interactions were thus very clearly a consequence
of the growth of the individual structures, not its cause.

Not all of the interactions in the post-transition mixing layer were of this pairing
type, however. Not infrequently a structure which found itself closely confined by both
of its immediate neighbours would cease growing, become elliptical in shape and then
flatten to form a new inclined braid directly linking the two structures that remained.
This sacrificial type of interaction was the same as that described by Damms &
Küchemann (1974) and reported by Hernan & Jimenez (1982) and could be identified
in the tracking as the simple termination of a single track between two others which
continued unaffected. The ‘tearing’ type of interaction seen also by Hernan & Jimenez
and by Pedley (1990) can be regarded as a variant of this sacrificial type. The common
feature shared by all of the interactions in the post-transition layer was that they
functioned to relieve at intervals the crowding resulting from the continuous growth of
the individual structures, thus allowing the growth of those that remained to continue
unimpeded. In this way a constant average large-structure spacing:diameter ratio was
maintained in the post-transition flow as the mixing layer increased in thickness.

The patterns seen in figure 10 and described above were entirely typical of the
post-transition flow and could have been illustrated by any number of sequences
taken from any of twenty or more cine films covering different free-stream density
ratios and different values of R. It should also be noted that the change in the
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pattern of large-structure growth and interaction from that of figure 9 to that of
figure 10 always coincided with the mixing transition and was definitely not an effect
of wall proximity. This was verified experimentally by performing duplicate runs
for selected free-stream conditions in both the larger and smaller builds of the test
section. That the walls of the test section were far enough away from the mixing
layer not to have interfered with the excitation of the subharmonics of the fundamental
Kelvin–Helmholtz instability was also indicated by theory. Moore & Saffman (1975)
have shown mathematically that the induced cross-stream displacements associated
with vortex amalgamations of the pre-transition type are not affected significantly by
wall reflection effects until the distance between the centreline of the mixing layer and
the reflecting wall becomes much less than the distance separating the vortex centres.
In most of the experiments performed here the mean transition location lay well within
the first half of the available length of free flow and this criterion was satisfied very
comfortably.

In some of the experiments the growth of the mixing layer and/or the angle of the
lower wall of the test section were such that the layer made direct contact with one of
the walls far downstream of the mixing transition and long after the growth pattern of
figure 9 had been replaced by that of figure 10. Hot-wire measurements showed that,
where this occurred, the increasing proximity of the wall caused some modification of
the velocity fluctuations induced in the free stream, as in the experiments of Wood &
Bradshaw (1982). However, the flow visualizations showed that this had little effect
on the flow internal to the mixing layer, the continuous linear growth of the large
structures continuing almost to the point of impingement.

It should be noted that the post-transition pairing-type interactions described above
did not always give rise to a new structure to fill the gap in the procession left by its
two predecessors. The breakdown of the interacting pair of structures was sometimes
followed instead by a more general breakdown of the visible large-scale organization
in the post-transition flow. This persisted until a stronger-than-average vortex was
generated in the pre-transition part of the layer and, somewhat in the manner of
the leading vortex in an impulsively started flow, established a new procession of
post-transition structures in its wake. The periods of organized flow downstream of
the transition location thus alternated with periods of variable length during which no
coherent structures were visible in the turbulent part of the layer.

The proportion of the total flow time during which the turbulence was in its
organized state was measured systematically for various free-stream conditions and
is presented in figure 11 as a function of the density ratio and two different measures
of the extent to which the mixing layer might be considered to have become fully
developed within the available flow length. These were the local Reynolds number of
the mixing layer and the pairing parameter xi

∗, both evaluated at a distance of 250 mm
from the splitter plate. The important difference between these two measures is that
xi
∗ incorporates an influence of the initial conditions whilst the Reynolds number does

not.
The results presented in figure 11 were all obtained in the build 2 test section. They

show a heavy predominance of organized over disorganized flow in uniform-density
mixing layers but with more and/or longer periods of disorganized flow when the free
streams were of different densities. More detailed consideration of just the experiments
in which R was held constant (the datum points distinguished by the filled symbols)
suggests that, in the case of non-uniform density, the periods of disorganized flow also
increased with the spatial growth rate of the mixing layer (which itself increased with
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FIGURE 11. Extent of large-scale organization in the post-transition mixing layer (build 2
test section) versus (a) Reynolds number and (b) pairing parameter at a distance of 250 mm
from the splitter plate: ρ2/ρ1 = 1.0 (circles), 7.2 (squares) and 0.14 (diamond). Filled symbols
indicate test conditions for which R∼ 0.6.

ρ2/ρ1). With both uniform and non-uniform densities the periods of disorganization
tended to increase as the flow became more fully developed.

The cine-film visualizations obtained with the build 1 test section showed the same
trend to reduced levels of organization with increasing flow development but, at
comparable Reynolds numbers, these levels were noticeably lower than in the build
2 test section. The xi

∗ values in the build 1 test section were roughly twice as
great as those presented in figure 11(b), however, suggesting that it is the pairing
parameter that provides the more relevant measure of the flow development. This
could imply that the initial conditions have a continuing influence on the post-
transition mixing layer (discussed in § 1) through their effect on the rate of decay
of the flow organization with increasing streamwise distance.

Similar breakdowns of the organized flow downstream of the transition location
were observed by Pedley (1990) who also reported that the periods of disorganized
flow tended to increase with the spatial growth rate of the layer. It is not clear from
his data to what extent this apparent trend was separate from any dependence on
the Reynolds number or xi

∗. It may be noted that intermittent disappearance of the
large-scale organization was also observed in the aqueous mixing-layer experiments
of Karasso & Mungal (1996) and that these authors also found that the periods of
disorganized flow tended to increase with the Reynolds number.

3.4. Influence of large-scale organization on mixing-layer growth and entrainment
The second main focus of interest in this study was the effect of the presence or
absence of the large-scale organization on the similarity characteristics of the post-
transition mixing layer. The filled symbols in figure 12 show, for a range of different
density ratios and values of R, the measured average rate of growth of the visual
thickness of the post-transition layer during the periods in which the processions of
coherent structures were clearly visible. The least-squares fits to these measurements
show the same trends as those in the comparable plot presented by Brown & Roshko
(1974), i.e. increasing growth rate with both ρ2/ρ1 and R. The actual growth-rate
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FIGURE 12. Visual-thickness growth rate versus non-dimensionalized velocity difference
between free streams: ρ2/ρ1 = 1.0 (circles), 2.0 (square), 7.2 (diamonds) and 0.14 (triangles).
Filled and unfilled symbols indicate organized and disorganized flow respectively. The
reference lines are least-squares fits to the datum points for organized flow.

FIGURE 13. Orientations of self-similar mixing layer in its organized (continuous lines) and
disorganized (broken lines) states for U1 = 31.8 m s−1, U2 = 7.3 m s−1 and ρ2/ρ1 = 1.0 with
walls of test section (bold lines) for reference. Also shown are four velocity profiles, the
vector drawn on each profile indicating the transverse location at which the mean velocity was
equal to the average of the free-stream values.

values measured here were slightly smaller than those measured by Brown & Roshko
but these differences are not necessarily significant, given the imprecision of this type
of measurement. The unfilled symbols in this figure show for comparison the visual
growth rate of the wedge of turbulent fluid which formed the post-transition layer
during the periods in which no procession of spanwise-coherent structures was present.
In every case in which direct comparisons could be made this second growth rate was
at least 10 % smaller than the first.

It was also observed that, during the periods in which the spanwise-coherent
structures were absent, the whole of the mixing layer was shifted towards the faster
stream. This is illustrated for one particular uniform-density case in figure 13 where
the visual edges and centreline of the layer during the periods of organized and
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disorganized flow are plotted to scale as straight lines extrapolated back towards the
virtual origin with the walls of the test section for reference. This was the highest-
growth-rate test run performed in the narrower build 1 test section and it can be
seen that, with the lower wall angled upwards at the angle necessary to eliminate
the average streamwise pressure gradient, the layer made contact with the lower wall
when the structures were present but impinged instead on the upper wall when the
structures were absent. Also plotted on this diagram are the measured mean velocity
profiles at four different stations in the self-similar part of the flow, the arrowed
vector drawn on each profile marking the location of the point at which the measured
velocity was equal to the average of the free-stream values. These profiles will have
included contributions from both flow states, weighted in proportion to their relative
probabilities, and so it is not surprising to see that this mean vector lies between the
two visual centrelines.

This change in the orientation of the mixing layer relative to the free streams
implies that, in its two states (organized and disorganized), the layer entrained different
relative proportions of the two free-stream fluids. An approximate measure of the two
entrainment ratios can be obtained from the various flow angles using a variant of
the method employed previously by Hermanson & Dimotakis (1989). This exploits
the fact that, where the growth of the mixing layer is self-similar, the volumetric
entrainment from each free stream can be evaluated directly from the magnitude of the
free-stream vector and its angle to the edge of the layer.

To evaluate and compare these entrainment ratios in a consistent and non-arbitrary
way, the free-stream velocities for each flow state must be projected onto a coordinate
system which is based on the centreline of the mixing layer and thus rotated through
the angle αC relative to the fixed upper wall of the test section (figure 14a). With all
rotations taken as positive in the anticlockwise direction, the angles of the free streams
relative to the X axis are then

α1 =−αC (3.10a)
α2 =−αC + αW (3.10b)

where αW is the angle of elevation of the hinged lower wall. The volumetric fluxes
of the two fluids into unit span and unit length of the post-transition mixing layer are
then given by

V̇1 = U1

(
dδvis/dX

2
cosα1 − sinα1

)
(3.11a)

V̇2 = U2

(
dδvis/dX

2
cosα2 + sinα2

)
(3.11b)

and the relative volumetric proportions of the two fluids entrained into the layer by the
entrainment ratio

EV = V̇1

V̇2
. (3.12)

In the case shown in figure 13, the resultant values of EV for the layer in its
organized and disorganized states are calculated to have been approximately 1.0 and
2.4, respectively.

These determinations are of limited accuracy because: (i) the experimental mixing
layer did not actually grow in the assumed self-similar manner over the whole of its
length; (ii) the values of V̇1 and V̇2 are very sensitive to even small errors in the
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FIGURE 14. (a) Coordinate system for analysis of entrainment by experimental mixing layer.
(b) Coordinate system for mixing-layer analysis of Abramovich.

angles α1 and α2. Small errors in these angles, as evaluated from (3.10), arise from
neglect of the finite displacement thicknesses of the boundary layers growing on the
walls of the test section. A more serious problem is that the adjustable lower wall
was set at the angle which eliminated the time-averaged streamwise pressure gradient.
It must be expected that the growth rate of the displacement thickness of the mixing
layer (= tanα1 − tanα2) will have been different for the layer in its organized and
disorganized states and that, because the layer was continually switching between
these states, the wall angle set will have been incorrect to a greater or lesser extent for
both of them.

A first test of the accuracy of these measured values of EV is provided by the
requirement for flow continuity. If an isothermal gaseous mixing layer grows in a
steady self-similar manner over the whole of its length under conditions of uniform
pressure, continuity requires that the integral volume flow within the layer through
any plane normal to the X axis be equal to the total volumetric inflow from the free
streams upstream of that plane. Thus, if the velocity fluctuations within the layer are
completely random so that Reynolds averaging can be applied to the outflow from the
control volume in figure 14(a),(

V̇1 + V̇2

)
X =

∫ δvis/2

−δvis/2
ū dY (3.13)

where ū (X,Y) represents the local mean velocity associated with the convection of the
mixing-layer fluid parallel to the X axis. In the case of a uniform-density mixing layer
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it is convenient to follow Abramovich (1963) and take Schlichting’s formula

U1 − ū

U1 − U2
= (1− η3/2

)2
(3.14)

as an approximation to the mean velocity profile ū (η), where η is a dimensionless
ordinate which increases linearly from 0 to 1 as Y increases from −δvis/2 to +δvis/2.
In the particular case presented in figure 13 use of this profile to evaluate the right-
hand side of (3.13) results in a continuity imbalance of just 6 %. This is reduced
to ∼4 % when a realistic correction is made to α1 and α2 for the displacement
thicknesses of the wall boundary layers. This result suggests that the wall angle set in
this experiment was close to that required to provide conditions of uniform shear for
the self-similar part of the mixing layer in its disorganized state.

In the case of the organized post-transition mixing layer the continuity balance
must in general be expressed in a form different form that of (3.13). As was
shown in § 3.3, the flow within the layer is here organized into a procession of
self-preserving coherent parcels of fluid (the vortex-like structures and the tongues of
entrained fluid trapped between them) each of which occupies the whole of the layer’s
visual thickness and convects bodily along the X axis at the velocity UC. The large-
scale velocity fluctuations within the layer are therefore non-random and, measured
in the Eulerian frame, the local mean velocity ū includes non-zero contributions from
the fluctuations associated with the rotations of the structures and the corresponding
induced motions in the entrained fluid trapped between the rotating structures. But
these fluctuations are functionally the largest scales in the turbulence spectrum and
contribute nothing to the net transport of fluid in the X direction. To evaluate the net
convection it is necessary to consider the Galilean transformation required to bring the
coherent parcels of fluid to rest and replace (3.13) by the balance

V̇1 + V̇2 = UC
dδvis

dX
(3.15)

with UC given by (3.8). It is only where the density is uniform and the two halves
of the measured mean velocity profile are near-antisymmetric that (3.13) and (3.15)
become approximately equivalent.

In the particular case presented in figure 13 the right-hand side of (3.15) was greater
than the left-hand side by some 37 % (reduced to ∼34 % with corrections for the wall
boundary layers), implying that a significantly larger wall angle than that actually set
would have been needed to provide uniform shear for the self-similar part of this
mixing layer in its organized state. As it was, there will have been an adverse pressure
gradient within the relevant part of the test section during the periods of organized
flow, causing both R and dδvis/dX to increase progressively with X.

Reference values of EV for comparison with the two measured values given above
can themselves be estimated only approximately at the present time. Brown (1974) has
hypothesized, from theoretical consideration of the temporally evolving mixing layer
formed between two counterflowing streams, that EV for a mixing layer containing a
row of spanwise-oriented vortices is approximately equal to (ρ2/ρ1)

1/2. This suggests
a value very close to the measured value of ∼1.0 for the uniform-density mixing
layer of figure 13 in its organized state. However, numerous measurements of the
composition of the mixed fluid formed within real spatially evolving mixing layers
have shown that there is a definite bias, separate from any associated with the density
ratio, towards entrainment from the faster stream. From consideration of the average
streamwise increase in the size and spacing of the vortices, Dimotakis (1986) has
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argued that the spatial bias factor can be written as

Φ ≈ 1+ 0.68R (3.16)

and that a general expression for the entrainment ratio is therefore

EV =Φ
√
ρ2/ρ1 ≈ (1+ 0.68R)

√
ρ2/ρ1. (3.17)

This suggests an EV value of 1.43 for the conditions of figure 13. This is still
reasonably close to the measured value, given that there was an adverse pressure
gradient in the relevant part of the test section when the mixing layer was in its
organized state.

A theoretical estimate of EV for the mixing layer in its disorganized state is provided
by the analytical solution of the governing continuity and momentum equations
developed by Abramovich (1963) for the classical problem of a turbulent mixing
layer between two infinite streams. Abramovich casts his analysis in x–y coordinates
aligned with the splitter plate (figure 14b) and makes the usual assumption that there
is no significant variation of static pressure within the flow. With this assumption the
free streams must take up angles β1 and β2 to the x axis that are negative and positive,
respectively. Rotations are again taken as positive in the anticlockwise direction and U1

and U2 again represent the free-stream vectors.
Continuity requires that the integral mass flow within the mixing layer through any

plane normal to the x axis be equal to the total inflow from the free streams. Thus, in
the case of uniform density,

U1 (y1 cosβ1 − x sinβ1)+ U2 (y2 cosβ2 + x sinβ2)=
∫ y1

−y2

ū dy (3.18)

where ū(x, y) is now the mean velocity parallel to the x axis. Once again ū is
approximated by Schlichting’s formula which can here be written as

U1 − ū

U1 cosβ1 − U2 cosβ2
=
[

1−
(

y− y2

δ

)3/2
]2

(3.19)

where δ(x) is the finite thickness of the mixing layer defined by this velocity
profile and taken to be the same as the visual thickness δvis. In the absence of
pressure gradients and neglecting the second-order fluctuation correlation term, the
corresponding balance of momentum in the x direction requires that

U2
1 cosβ1 (y1 cosβ1 − x sinβ1)+ U2

2 cosβ2 (y2 cosβ2 + x sinβ2)=
∫ y1

−y2

ūū dy. (3.20)

With δ/x supplied empirically, the balance of momentum in the y direction

U2
1 sinβ1 (y1 cosβ1 − x sinβ1)+ U2

2 sinβ2 (y2 cosβ2 + x sinβ2)= 0 (3.21)

then produces a closed system of equations which can be solved for β1 and
β2. Projection of this solution onto the mixing-layer-centred X–Y coordinates used
previously and use of (3.11) and (3.12) yielded an EV value of 2.0 for the conditions
of figure 13, to be compared with the measured value of ∼2.4.

Despite the errors, assumptions and approximations in these various determinations,
there is a good level of consistency between the measured and predicted values of EV .
Both confirm the direct evidence of the flow visualizations that, when the organization
within the mixing layer breaks down, there is a significant change in the entrainment

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

55
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.553


492 A. D’Ovidio and C. M. Coats

ratio in favour of fluid from the faster stream. This in turn causes a significant change
in the orientation of the mixing layer relative to the free streams. Although analysed
in detail here for only a single set of flow conditions, similar effects of the flow state
(organized or disorganized) on the entrainment ratio were seen when (3.10), (3.11) and
(3.12) were applied to the flow visualizations produced for other velocity and density
ratios.

As has been discussed elsewhere (Coats 1996), these effects of the large-scale
organization on the entrainment ratio and orientation of the post-transition mixing
layer can both be rationalized dynamically from further consideration of the
streamwise momentum balance. Considering for simplicity the limiting single-stream
case (R = 1), (3.20), in coordinates aligned with the fixed upper wall of the test
section, reduces to

U2
1y1 =

∫ y1

−y2

ūū dy. (3.22)

If ū(x, y) is approximated by Schlichting’s formula, this yields y1 = 0.416δ for the
mixing layer in its disorganized state. If the mixing layer organizes itself into a
procession of rotating coherent structures, however, the fluctuations associated with the
rotations of the structures, whilst contributing to the measured mean velocity profile,
do not contribute directly to the net flux of momentum out of the control volume to
which (3.20) relates. By the same logic as was applied to the derivation of (3.15),
if the structures occupy the full thickness of the layer and convect bodily in the x
direction with velocity UC, the balance of x-direction momentum instead becomes

U2
1y1 = U2

Cδ (3.23)

and, if UC = U1/2, y1 becomes equal to 0.25δ. This represents a substantial
displacement of the layer away from the moving stream. The change in the
entrainment ratio then follows as a necessary consequence of the change of
orientation.

4. Discussion
The present more rigorous and extensive experiments confirm the earlier

unpublished findings of Pedley (1990) that, at the mixing transition, the mechanism
by which the mixing layer grows changes fundamentally. In the pre-transition flow the
spanwise-oriented vortices grow by the well-known process of vortex amalgamation,
driven by the sequential excitation of the subharmonics of the fundamental
Kelvin–Helmholtz instability. In the post-transition flow these subharmonics are no
longer the agency of growth and instead the individual large structures (which are now
turbulent vortex cores) undergo continuous linear growth between interactions. The
interactions between neighbouring structures that occur in the post-transition flow are
different in character from their pre-transition counterparts and occur as a consequence
of the growth of the individual structures, not its cause.

It is surprising, in view of the large amount of work that has been done on this
canonical flow, that this step change in the growth mechanism has escaped general
recognition for so long and that it was not spotted in the years immediately following
the publication of the seminal papers of Brown & Roshko (1974) and Winant &
Browand (1974). The explanation can only be that, at the time when the growth
mechanism of the mixing layer was the subject of intense debate, the existence of
the mixing transition was itself unknown and the development of the mixing layer
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towards a universal fully turbulent state was assumed to be continuous and a function
simply of the local Reynolds number. There was therefore no reason to look for a step
change in the growth mechanism at any particular point in the flow development. By
the time that Breidenthal’s (1981) paper had established the existence of this transition
(Konrad’s earlier thesis had remained unpublished) the growth mechanism was no
longer being actively debated and interest was focused on the processes leading up to
the transition and on the effects of the transition on the molecular-scale mixing within
the flow.

Thus, in an early review paper, Roshko (1976) was able to present a sequence
of images showing what were very clearly instability-driven vortex amalgamations
occurring at very high Reynolds number as evidence supporting the idea that such
amalgamations did in fact contribute to the self-similar growth of the fully developed
flow. In the light of what is now known about the development of mixing layers from
a laminar initial state it can be seen that the amalgamations in this image sequence
(figure 3 of Roshko’s paper) were actually occurring in the pre-transition part of the
flow. Although the Reynolds numbers at which these amalgamations were occurring
were as high as 7 × 104 (evaluated on the basis of the velocity difference across the
mixing layer and the local visual thickness, as in the present work), the velocity of
the faster stream in this experiment was quite modest, the boundary layer separating
from the high-speed side of the splitter plate is unlikely to have been especially thin
and it is not surprising to see the pre-transition part of the flow occupying a significant
part of the available flow length. Indeed, the initial roll-up can be seen quite clearly
in the image sequence and it appears that, as is entirely normal, it was the second
amalgamation following the initial roll-up that triggered the transition.

Because it was assumed that the extent to which the flow was fully developed
was simply a matter of the Reynolds number, there was also confusion at that time
about the possible effect of density differences on the growth mechanism. In the same
review paper, observing that the only progressive large-structure interactions evident in
visualizations of mixing layers in which there was a large density difference between
the two streams were of the sacrificial type described above in § 3.3, Roshko drew
the tentative conclusion that it was the density difference that was responsible for
this difference in the interaction pattern. But it is now obvious that these particular
visualizations showed interactions of a different type because they were of the
flow downstream of the mixing transition. As is shown clearly by our figures 9
and 10, there is, at the mixing transition, the same switch from growth by vortex
amalgamation to continuous linear growth of the individual large structures (with
occasional sacrificial interactions) irrespective of the density ratio between the free
streams.

As was mentioned in § 1, the fact that many but not all of the vortex-like structures
in mixing layers undergo continuous growth between interactions was first established
by Hernan & Jimenez (1982) who subjected the large-structure evolution seen on one
of the Caltech cine-film visualizations to a very detailed and fully software-driven
statistical analysis. They did not distinguish in this analysis between the pre- and
post-transition flows and it may reasonably be supposed that the structures that did and
did not undergo the continuous growth were located downstream and upstream of the
mixing transition, respectively. But the methodology they employed in their analysis
also led them to less radical conclusions about the nature of the continuous growth
than those reached by Pedley and ourselves. This requires more detailed consideration.

The analysis software used by Hernan & Jimenez fitted ellipses rather than circles
to the braids visible in each side view (figure 8b) and took the area of each ellipse as
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the measure of the size of the structure contained within it. Tracking of the structures
from frame to frame showed that the areas of many of the individual ellipses increased
in an approximately linear manner during the periods between the identifiable large-
structure interactions. Hernan & Jimenez attributed this continuous growth of the
individual ellipses to either the passive induction which continues after the saturation
of an excited Kelvin–Helmholtz mode (Jimenez 1980) or outward turbulent diffusion
from the vortex core (Moore & Saffman 1975). By this interpretation it is still the
subharmonics of the fundamental Kelvin–Helmholtz instability that drive and sustain
the self-similar growth of the mixing layer as a whole, by reconcentrating the vorticity
at intervals and so reinvigorating the continuous growth of the individual structures in
a cyclical manner.

Although superficially plausible, this interpretation of the cine-film evidence does
not stand up when the two diameters of each ellipse are considered separately. As
Hernan & Jimenez themselves reported, during the periods of continuous growth, the
major axes of the ellipses defined by the curvature of the braids were in approximate
alignment with the direction of flow and, with the structures all convecting at the
same velocity, they will have remained near-constant in length between interactions.
There can be little doubt, therefore, that the linear increase in the area of each ellipse
measured by Hernan & Jimenez was actually the same linear increase in the length
of its minor axis as was measured directly by ourselves and by Pedley. But as we
commented earlier in § 3.3, this is incompatible with both passive induction by a
vortex and radial turbulent diffusion because these processes would both require the
minor diameter of each ellipse to increase as the square root of time.

To rationalize the observed continuous linear growth in diameter of the circular
shapes tracked by ourselves and Pedley (or the equivalent continuous linear growth
of the minor diameters of the elliptical ones tracked by Hernan & Jimenez) it
is necessary to discard the widely made assumption that, in its organized state,
the post-transition mixing layer can be analysed dynamically as a two-dimensional
flow. As was discussed in § 1, the mixing transition does not occur until a system
of secondary streamwise-oriented vortices has developed which loop backwards and
forwards between the primary spanwise-oriented structures (Bernal & Roshko 1986).
Moreover, it seems that this three-dimensional secondary structure persists in the
post-transition flow, the spanwise spacing of the streamwise-oriented vortices adjusting
itself in some way to maintain an approximately constant ratio to the streamwise
spacing of the spanwise-oriented structures (Jimenez et al. 1985; Bernal & Roshko
1986; Bell & Mehta 1992). There thus exists in the post-transition layer a three-
dimensional matrix of vortex lines which can be stretched and bent in complex ways,
allowing the original spanwise-oriented vorticity to become intensified locally and
reoriented in the streamwise and cross-stream directions or even reversed in sign.
With these additional degrees of freedom in play we are no longer dealing with the
simple redistribution of spanwise vorticity of constant circulation and two-dimensional
analyses are inadequate. This will be demonstrated directly in Part 2 where it will
be shown that three-dimensional simulations are needed to replicate numerically the
continuous linear growth of the individual large structures seen in these experiments.

The other important findings from the present experiments concern the intermittent
character of the large-scale organization in the post-transition mixing layer and the
effect of the presence or absence of this organization on the similarity characteristics
of the flow. When the large-scale organization disappears the growth rate of the
mixing layer is reduced and there is a large change in its entrainment ratio with a
corresponding change in its orientation relative to the free streams. It thus appears
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that a turbulent mixing layer of any given velocity and density ratio can switch
between two different self-similar states (organized and disorganized) and that the
time-averaged similarity characteristics measured in different wind tunnels are likely to
be made up of differently weighted contributions of both flow states. On the basis of
the limited statistical evidence available it seems likely that all mixing layers relax to
the disorganized state eventually but that the flow lengths necessary for this are very
large. It may be conjectured that the well-documented persistence of the influence of
the initial conditions discussed in § 1 is linked to the influence of the initial conditions
on the rate at which the layer relaxes to a permanently disorganized state.

5. Conclusions
(i) Extensive new experiments have been carried out on single- and two-stream

mixing layers developing naturally from laminar initial conditions. The experiments
have covered wide ranges of free-stream velocity and density ratios and a wide range
of mixing-layer Reynolds numbers. They differ from earlier published experiments of
similar type in that the location of the mixing transition has been identified on a
time-resolved basis from flow-visualization records and the growth of the cores of the
vortex-like coherent structures has been measured directly.

(ii) It has been found that, at the instantaneous location of the mixing transition,
there is, for all density ratios, a step change in the pattern of growth and interaction
undergone by the large structures and consequently a change in the mechanism by
which the mixing layer grows in thickness. Upstream of this transition the mixing
layer grows by the well-known process of vortex amalgamation. Downstream of the
transition the turbulent cores of the vortex-like structures individually occupy the full
thickness of the mixing layer and grow continuously at a constant rate. When these
structures are present it is the entrainment associated with their continuous linear
growth that effects the self-similar growth of the mixing layer. The interactions which
occur between the continuously growing structures in the post-transition flow are
different in character from their pre-transition counterparts. They function simply to
reduce at intervals the number of structures present and thus maintain a constant ratio
between the average spacing of the structures and the local mixing-layer thickness.

(iii) The continuous linear growth displayed by the structures in the post-transition
flow is incompatible with any simple two-dimensional induction or diffusion process
and implies that there is a continuous three-dimensional redistribution of vorticity
within the post-transition mixing layer when it is in this organized state.

(iv) It has been observed that the periods during which the post-transition part of the
mixing layer comprises an organized procession of continuously growing structures are
interrupted by periods during which no large-scale organization is evident downstream
of the mixing transition. During these latter periods the self-similar growth rate of the
mixing layer is reduced significantly and the orientation of the mixing layer relative to
the fixed walls of the wind tunnel is changed, indicating a change in the ratio of the
entrainment from the two streams. This change in the orientation of the mixing layer
can be rationalized from consideration of the effect of the large-scale organization on
the momentum balance within the flow.
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