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Abstract This paper presents an approach, based on interpolation theory of operators, to the study
of interpolating sequences for interpolation Banach spaces between Hardy spaces. It is shown that the
famous Carleson result for H∞ can be lifted to a large class of abstract Hardy spaces. A description
is provided of the range of the Carleson operator defined on interpolation spaces between the classical
Hardy spaces in terms of uniformly separated sequences. A key role in this description is played by
some general interpolation results proved in the paper. As by-products, novel results are obtained which
extend the Shapiro–Shields result on the characterisation of interpolation sequences for the classical
Hardy spaces Hp . Applications to Hardy–Lorentz, Hardy–Marcinkiewicz and Hardy–Orlicz spaces are
presented.
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1. Introduction

Let H∞ denote the space of bounded analytic functions on the unit disc D of the complex

plane, and assume that λ= {λj}∞j=1 is a sequence of distinct points in D. A linear mapping
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Tλ given by

Tλf = {f (λj)}∞j=1 , f ∈H∞,

is a contraction from H∞ into �∞. If, in addition, Tλ is surjective, then the sequence λ is

called a (universal) interpolating sequence (for H∞). The term ‘interpolating’ is justified
by the following observation: if Tλ is surjective, then by the open mapping theorem there

is γ > 0 such that for a given sequence w = {wj}∞j=1 ∈ �∞, there exists f ∈ H∞ with

f(λj) = wj , j ∈ N and ‖f‖H∞ � γ‖w‖�∞ .
The characterisation of interpolating sequences for H∞ was given by Carleson in 1958

in his seminal paper [9]. He proved that λ is an interpolating sequence for H∞ if and only

if λ is uniformly separated – that is,

inf
k∈N

∞∏
j=1
j �=k

∣∣∣∣ λj −λk

1−λkλj

∣∣∣∣> 0.

Formulation of an analogous problem for Hardy spacesHp, p∈ [1,∞), requires weighting

the situation. A sequence λ is called an interpolating sequence for Hp if an operator Tλ

given by

Tλf =
{
(1−|λj |2)1/pf(λj)

}∞
j=1

, f ∈Hp,

is surjective from Hp onto �p. It was proved by Shapiro and Shields in [26] that λ is
an interpolating sequence for Hp if and only if λ is uniformly separated. We refer the

reader to Duren’s book [11] for more background information on the subject. The study of

interpolating sequences for various spaces (e.g., Bergman spaces) has also attracted much

attention in recent years (see, e.g., [25] and the references therein). The classical theorems
related to these topics for Hardy spaces Hp raise the question whether it is possible to

extend these results for abstract Hardy spaces. We mention here the paper in which

Hartmann [15] studied the associated notion of so-called free-interpolating sequences for
Hardy–Orlicz spaces (see also [14]).

Interpolating sequences play a remarkable role in function theory on the disc and related

operators – for example, within the theory of model spaces, multipliers and Toeplitz
and Hankel operators [10]. Moreover, through their connection with Carleson measures,

interpolating sequences are of importance far beyond the theory of analytic functions,

such as in harmonic analysis [1, 12] and linear systems [13]. We point out that uniformly

separated sequences have found an important application in the study of the existence
of invariant subspaces for polynomially bounded operators on a complex Banach space

with spectra containing the unit circle [3].

The aim of this paper is to analyse very general variants of the classical results
mentioned and prove a kind of interpolation formula for interpolating sequences (notice

here the double meaning of the term ‘interpolation’). We cast the problem of interpolating

sequences into the framework of Banach spaces of analytic functions on the unit disc
generated by Banach lattices and study the surjectivity of a suitable operator Tλ for

such abstract settings. To give a taste of the ideas that support our research, we sketch

one of the main results of this paper (see Theorem 7 for a precise formulation, and
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compare with Theorem 11). Let F be an exact interpolation functor satisfying some

Köthe duality condition and let H(X) be the Hardy space generated by some X, which

is an interpolation space between Lp0(T) and Lp1(T) given by X = F (Lp0(T),Lp1(T)),
with p0,p1 ∈ [1,∞], p0 < p1. Then the sequence {λj} is uniformly separated if and

only if {
{f (λj)}∞j=1 ; f ∈H(X)

}
= E,

where E is an interpolation Banach sequence space between �p0(ν) and �p1(ν) given
by E = F (�p0(ν),�p1(ν)) with measure ν on 2N defined by ν({j}) = (1− |λj |2) for each

j ∈ N.

We point out that such an approach allows us to give a new proof of the Shapiro–

Shields result. Moreover, we provide thorough studies of functors that can be used as
in the foregoing. In particular, we prove that any K- or J-method of interpolation is

a suitable functor that can be used in this interpolation formula. The key ingredient of

our considerations that allows us to use advanced interpolation methods is that Hardy
spaces behave well under interpolation – that, is for any interpolation functor F , we have

HF (Lp0,p1) = F (Hp0,Hp1), p0,p1 ∈ [1,∞] (see [29]).

As an outcome, we apply the obtained results for the particular functors and we
receive direct generalisations of the interpolating problem for Hardy–Lorentz, Hardy–

Marcinkiewicz and Hardy–Orlicz spaces, which play an important role in the theory of

rearrangement-invariant spaces. Note that we manage to derive the characterisation of

interpolating sequences for abstract Hardy spaces from the Carleson theorem solely. We
present a novel approach with some modern refinements based on interpolation methods

in the theory of operators and Banach spaces.

2. Preliminaries

In this section we collect the required notation and prove some auxiliary results. If X and

Y are topological linear spaces, then X ↪→ Y means that X ⊂ Y and the inclusion map

is continuous. In the case where X and Y are normed spaces, we write X = Y whenever
X ↪→ Y and Y ↪→X – that is, X = Y up to equivalence of norms. We also write X ∼= Y

if X = Y with equality of norms. Given two nonnegative functions f and g defined on

the same set A, we write f ∼ g if there exist positive constants γ1 and γ2 such that

γ1g(x)� f(x)� γ2g(x) for all x ∈A.
Throughout the paper, we consider only complete σ-finite measure spaces. For a given

measure space (Ω,Σ,μ), we let L0(Ω) := L0(Ω,Σ,μ) denote the space of all real-valued

measurable functions on Ω with the topology of convergence in measure on μ-finite sets.
If f , g ∈ L0(Ω), then f � g means that f(t)� g(t) for μ-almost all t ∈Ω. A Banach space

X ⊂ L0(μ) is said to be a Banach lattice on (Ω,Σ,μ) (on Ω for short) if for all f ∈ L0(Ω)

it holds that |f | � |g| with g ∈X implies f ∈X and ‖f‖X � ‖g‖X . We work only with
Banach lattices X such that suppX =Ω (up to a set of measure 0) – that is, there exists

h ∈ X with h > 0 μ-almost everywhere on Ω (for more details, we refer to [4, Chapter

10]). The weighted Banach space E(w), where w is a weight (that is a measurable positive

https://doi.org/10.1017/S1474748021000049 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000049


1918 M. Lindström et al.

function on Ω) consists of those f ∈ L0(Ω) for which fw ∈ E and is equipped with the

norm ‖f‖E(w) = ‖fw‖E .
A lattice modelled on natural numbers is called a sequence space. The set of all sequences

will be denoted by ω(N). As usual, for each j ∈ N, ej denotes the standard unit vector.

For simplicity of the presentation we will avoid writing indices when defining sequences

(unless it leads to ambiguity). The notation {aj} should be read as {aj}∞j=1. For simplicity
of presentation, we will often consider the sequence space �p(ν) as the Lp(ν)-space, where

for a given weight sequence {wj} modelled on the set J = N or J = Z, the measure ν

is given by ν({j}) := wj for each j ∈ J . Clearly, �p(ν) coincides isometrically with the

weighted space �p(
{
w

1/p
j

}
).

An important class of Banach lattices is rearrangement-invariant spaces. Given f ∈
L0(Ω), its distribution function is defined by μf (s) = μ({t ∈ Ω; |f(t)|> s}), s � 0.
A Banach lattice X is called rearrangement invariant (an r.i. space, for short) if for any

f ∈X and g ∈L0(Ω) such that μf = μg, we have g ∈X and ‖f‖X = ‖g‖X . It is well known

that if X is an r.i. space for some finite measure space Ω, then L∞(Ω) ↪→ X ↪→ L1(Ω)
(see [18]).

If X is an r.i. space, then for any measurable set A, the expression ‖χA‖ depends only

on μ(A). Thus, for every t ∈ {μ(A);A ∈ Σ}, we define a function φX by the formula
φX(t) = ‖χA‖, where A is any measurable set with μ(A) = t. This function is called the

fundamental function of X. If X is an r.i. space on a nonatomic measure space (Ω,Σ,μ),

then φX is quasi-concave on [0,τ) with τ = μ(Ω) – that is, φX(0) = 0 and both φX and

t �→ t
φX(t) are positive and nondecreasing on (0,τ) (see [5]). Note also that φX is continuous

at 0 if and only if X 	= L∞.

The Köthe dual space X× of a normed space X ⊂ L0(Ω) is defined as the space of all

f ∈ L0(Ω) such that fg ∈ L1(Ω) for every g ∈ X. Note that X× is a Banach lattice on
(Ω,Σ,μ) when equipped with the norm ‖f‖X× := sup

{∣∣∫
Ω
fgdμ

∣∣ ; ‖g‖X � 1
}
. A Banach

lattice X is said to be maximal if X×× ∼=X. Equivalently, X possesses the Fatou property

– that is, for any sequence {fn} in X and f ∈ L0(Ω) satisfying 0 � fn ↑ f μ-almost
everywhere as n→∞ and sup{‖fn‖X ; n ∈ N} <∞, it follows that f ∈X and ‖fn‖X →
‖f‖X as n→∞. We say that X has the weak Fatou property if for any sequence {fn} in

X and f ∈X such that 0 � fn ↑ f μ-almost everywhere, it follows that ‖fn‖X → ‖f‖X
as n→∞.
A point f ∈X is said to have an order-continuous norm if for any sequence {fn} ⊂X

such that 0 � fn � |f | and fn → 0 μ-almost everywhere on Ω, we have ‖fn‖X → 0. The

symbol Xa will denote the subspace of all order-continuous elements of X. A Banach
lattice X is called order-continuous if every element of X has an order-continuous

norm – that is, X = Xa. If X is an order-continuous Banach lattice on (Ω,μ), then

the dual space X∗ can be identified with X×. We note that X× always has the Fatou
property.

In what follows we will consider complex Banach lattices. The term complex space refers

to the complexification of a real Banach lattice space – that is, if X denotes the (real)

Banach lattice, the complexification Xc of X is the Banach space of all complex-valued
measurable functions f on Ω such that the element |f | defined by |f |(t) = |f(t)| for t ∈Ω

is in X and ‖f‖Xc = ‖|f |‖X . For simplicity of presentation, we will often write Banach

https://doi.org/10.1017/S1474748021000049 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000049


Carleson interpolating sequences for Banach spaces of analytic functions 1919

lattice or r.i. space instead of complex Banach lattice or complex r.i. space, and avoid
using the symbol Xc.

2.1. Hardy spaces

In this paper we study Hardy spaces generated by Banach lattices. The prototype for

them is the classical Hardy spaces Hp (see Duren’s monograph [11]). For the convenience

of the reader we start with the definitions of those standard objects.
The space of analytic functions on D will be denoted by H(D). As usual, we let T denote

the unit circle, T = {z ∈ C; |z| = 1}. Throughout the paper we let m be the probability

Lebesgue measure on T. Let Lp(T), p ∈ [1,∞), and L∞(T) denote the usual Lebesgue
spaces (of equivalence classes) of measurable functions f : T → C normed by ‖f‖pLp =∫
T
|f |pdm = 1

2π

∫ 2π

0

∣∣f (eiθ)∣∣p dθ and ‖f‖L∞ = esssup
{∣∣f (eiθ)∣∣ ; θ ∈ [0,2π)

}
. The Fourier

coefficients of a function f ∈ L1(T) are given by

f̂(n) =
1

2π

∫ 2π

0

f
(
eiθ
)
e−inθdθ, n ∈ Z.

If a function f ∈H(D) is such that

f̃
(
eiθ
)
:= lim

r→1−
f
(
reiθ
)
, θ ∈ [0,2π),

exists almost everywhere on T, then f̃ is called the radial limit function of f .

For p ∈ [1,∞), the Hardy space Hp consists of functions f ∈H(D) such that

‖f‖pHp := sup
r∈[0,1)

1

2π

∫ 2π

0

∣∣f (reiθ)∣∣p dθ <∞.

It is well known that for f ∈ Hp, the radial limit function f̃ exists almost every-
where on [0,2π). Moreover, if f ∈Hp, p ∈ [1,∞), then f̃ ∈ Lp(T) and ‖f‖Hp = ‖f̃‖Lp(T)

(see [11, Theorem 2.2]).

Let X ⊂L0(T) be a Banach lattice such that X ⊂L1(T). A Hardy space H(X) consists
of all f ∈H1 such that f̃ ∈X.

We will use the following lemma, which is surely well known to specialists:

Lemma 1. Let X be a Banach lattice on T such that X ⊂ L1(T).

(i) The Hardy space H(X) is a Banach space equipped with the norm

‖f‖H(X) := ‖f̃‖X, f ∈H(X).

(ii) The map f �→ f̃ , f ∈H(X), is an isometric isomorphism from H(X) onto H[X],
where H[X] denotes the space of all g ∈X for which the negative Fourier coefficients

vanish and which is equipped with the norm ‖g‖H[X] := ‖g‖X .

In the next sections, when considering Banach spaces of analytic functions, we will
need to know that the limit function of a sequence of elements from the space, uniformly

convergent on compact subsets, belongs to the space. It appears that this happens in

a wide class of spaces, as Lemma 2 indicates. Since this result seems to be of independent
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interest, we decided to introduce the following definition: we say that a Banach space X
of analytic functions on a domain Ω⊂C has the analytic (resp., weak) Fatou property if

for every bounded sequence {fk} in X that converges uniformly on compact subsets of

Ω to a function f (resp., f ∈ X), we have f ∈ X and ‖f‖X � liminfk→∞ ‖fk‖X (resp.,
‖f‖X � liminfk→∞ ‖fk‖X). It is well known that Hp has the analytic Fatou property for

any p ∈ [1,∞]. The following lemma shows that a wide class of Hardy spaces H(X) also

possesses this property:

Lemma 2. Let X be a Banach lattice on T with the (resp., weak Fatou) property.

(i) If X ↪→ L1(T) and supp(X×)a = T, then the Hardy space H(X) has the analytic

(resp., weak) Fatou property.

(ii) If X is an r.i. space on T, then the Hardy space H(X) has the analytic (resp.,

weak) Fatou property.

Proof. (i) From the well-known theorem due to Nakano [4], it follows that the set of order-
continuous functionals on a Banach lattice with the weak Fatou property is a norming

set – that is,

‖h‖X = sup

{∣∣∣∫
T

ghdm
∣∣∣; ‖g‖X× � 1

}
, h ∈X.

The assumption supp(X×)a = T implies that for any g ∈ X×, there exists a sequence

{gn} ⊂ (X×)a such that 0� gn ↑ |g| m-almost everywhere. Hence,

‖h‖X = sup

{∣∣∣∫
T

ghdm
∣∣∣; ‖g‖(X×)a

� 1

}
, h ∈X.

Since (X×)a is order-continuous, the set of simple functions of (X×)a is dense in (X×)a.
Then, by the results of Luzin and Weierstrass, the set P of trigonometric polynomials on
T is dense in (X×)a. Thus,

‖h‖X = sup

{∣∣∣∫
T

hpdm
∣∣∣; ‖p‖(X×)a

� 1, p ∈ P
}
, h ∈X. (1)

Take any bounded sequence {fk} inH(X) such that fk → f uniformly on compact subsets

of D. Note that from the Cauchy integral formula, it follows that

lim
k→∞

f̂k(n) = f̂(n), n� 0.

Since H(X) ↪→H1, f̂(n) =
̂̃
f(n) for all f ∈H(X) and n∈Z, with f̂(n) =

̂̃
f(n) = 0 for n< 0,

we get

lim
k→∞

∫ 2π

0

f̃k
(
eiθ
)
e−inθdθ =

∫ 2π

0

f̃
(
eiθ
)
e−inθdθ, n ∈ Z.

This implies that for any p ∈ P, we have

lim
k→∞

∫
T

f̃kpdm=

∫
T

f̃pdm.
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Therefore, for every p ∈ P on T,∣∣∣∫
T

f̃pdm
∣∣∣= liminf

k→∞

∣∣∣∫
T

f̃kpdm
∣∣∣� liminf

k→∞
‖f̃k‖X ‖p‖(X×)a

and so based on our hypothesis on X, we conclude from equation (1) the required
statement.

(ii) We consider two cases: φX×(0+) = 0 and φX×(0+)> 0. Clearly, φX×(0+) = 0 implies

(X×)a 	= {0}. Since (X×)a is an r.i. space, supp(X×)a = T by L∞(T) ↪→ (X×)a. Thus the
required statement follows from i.

If γ = φX×(0+)> 0, we have, by the well-known formula [5]

φX×(t) =
t

φX(t)
, t ∈ (0,1],

that φX(t) � γ−1t for all t ∈ (0,1]. This easily yields L1(T) ↪→X and so X = L1(T). In

consequence, H(X) =H1, and the proof is completed.

3. Interpolating sequences

In this section we introduce the notion of E-interpolating sequences and study them
for a wide class of Banach spaces of analytic functions on the unit disc D. This part

generalises results for the classical Hardy spaces Hp from [11, Chapter 9], [22] and [28].

Let λ= {λj}∞j=1 be a sequence of distinct points of the open unit disc D. If, in addition,∑∞
j=1 (1−|λj |)<∞, then λ will be called a Blaschke sequence. It is commonly known that

the infinite zero set of any not identically zero function f ∈Hp is a Blaschke sequence. If

E is a complex Banach sequence space, then λ is said to be an E-interpolating sequence
for a Banach space X ⊂H(D) if

E ⊂ {{f (λj)} ; f ∈ X} .

This notion extends the well-known concept of interpolation sequences. Indeed, it is
evident that the sequence {λj} is called an interpolating sequence if it is an �∞-

interpolating sequence for H∞.

We will need some preliminary results. Let X be a Banach space, Y a topological linear
space and T : X →Y a linear and continuous map. We denote the range {Tx; x ∈X} of

T by R(T ).

The following technical result is obvious, and so we omit the proof:

Proposition 1. Let X be a Banach space, Y a topological linear space and T : X →Y
be a continuous and linear map. Then R(T ) is a Banach space equipped with the norm

‖y‖R(T ) := inf {‖x‖X ; Tx= y}, y ∈R(T ).

In addition, R(T ) ↪→ Y , and moreover, if Y is a Banach space with Y ⊂R(T ) and Y ↪→Y,
then there exists γ > 0 such that ‖y‖R(T ) � γ ‖y‖Y for all y ∈ Y .

Furthermore, we will use the following corollary:
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Corollary 1. Assume that a Banach space X ⊂H(D) is such that for every z ∈ D, the

functional δz : X → C given by δzf = f(z), f ∈ X , is continuous. If λ = {λj} is an E-

interpolating sequence for X , then there exists a constant γ > 0 such that for all w =
{wj} ∈ E,

inf {‖f‖X ; f (λj) = wj, j ∈ N}� γ‖w‖E .

Proof. Let Tλ : X → ω(N) be the linear mapping defined by

Tλf = {f (λj)}∞n=1 , f ∈ X .

Then it easily follows from the closed graph theorem that Tλ is continuous. Applying

Proposition 1 and using the fact that E ↪→ ω(N) give the required statement.

Let X be a Banach space. For a closed subspace Y of X, the annihilator Y ⊥ of Y is
defined as

Y ⊥ = {x∗ ∈X∗; x∗(y) = 0 for all y ∈ Y } .

Recall that if Q : X →X/Y is the quotient map, then Q∗ : (X/Y )∗ →X∗ is an isometric

isomorphism onto Y ⊥. From this we obtain the following well-known fact:

Lemma 3. Let Y be a closed subspace of X, x ∈X. Then

inf {‖x−y‖X ; y ∈ Y }= sup
{
|y∗(x)| ; y∗ ∈ Y ⊥, ‖y∗‖X∗ � 1

}
.

This lemma easily yields the following statement:

Theorem 1. Let X be an order-continuous Banach lattice on T such that X ↪→ L1(T).

For every f ∈X, the following formula holds:

inf {‖f −g‖X ; g ∈H(X)}= sup

{∣∣∣∣∫
T

fgdm

∣∣∣∣ ; g ∈H0

[
X×],‖g‖H[X×] � 1

}
,

where H0 [X
×] :=

{
h ∈H [X×] ; ĥ(0) = 0

}
.

Our goal in this section is to characterise E-interpolating sequences in terms of an
appropriate inclusion. As in the classical case, the main role is played by Blaschke

products. Let {λj} be a sequence in D such that
∑∞

j=1 (1−|λj |)<∞. For each n ∈N, we

define a finite Blaschke product

Bn(z) =

n∏
j=1

z−λj

1−λjz
, z ∈ D,

and for each j ∈ {1, . . . ,n},

Bn,j(z) =

n∏
k=1
k �=j

z−λk

1−λkz
, z ∈ D.
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We also define

bn,j :=Bn,j (λj), ρn,j := |bn,j | and ρj := lim
n→∞

ρn,j .

In what follows, we will need a technical fact which states that if L∞(T) ↪→X ↪→L1(T),

then for any z ∈ D, δz : H(X)→ C given by δzf = f(z) is a bounded linear functional on
H(X). Indeed, when X ↪→ L1(T), then H(X) ↪→H1. Thus for any f ∈H(X), the radial

limit function f̃ of f exists and we have, by the well-known Poisson representation,

f(z) =

∫
T

Pz f̃dm, z ∈ D.

Since L∞(T) ↪→X×, it follows that∣∣f(z)∣∣� ‖Pz‖X×‖f̃‖X � c‖Pz‖L∞(T)‖f‖H(X) �
2c

1−|z| ‖f‖H(X), (2)

where c is the norm of the inclusion map L∞(T) ↪→X×.
The following theorem will play a key role in our investigations:

Theorem 2. Let λ= {λj} be a Blaschke sequence. Consider the following statements for

Banach lattices E ⊂ ω(N) and minimal X such that L∞(T) ↪→X ↪→ L1(T):

(i) E ⊂ {{f(λj)}; f ∈H(X)}.
(ii) There exists a constant γ > 0 such that for all w = {wj} ∈ E one has

sup
‖g‖H(X×)�1

∣∣∣∣ n∑
j=1

wj

bnj

(
1−|λj |2

)
g(λj)

∣∣∣∣� γ ‖w‖E, n ∈ N.

Then (i) implies (ii). If in addition H(X) has the analytic Fatou property, then (i) and

(ii) are equivalent.

Proof. (i)⇒(ii). For each n ∈ N and every w = {wj} ∈ E, we define

mE,n(w) := inf
f∈H(X)

{
‖f‖H(X); f (λj) = wj, 1� j � n

}
and

fn(z) :=

n∑
j=1

wj
Bn,j(z)

bn,j
=

n∑
j=1

wj
Bn,j(z)

Bn,j (λj)
, z ∈ D.

Clearly, fn ∈H∞ and fn (λj) = wj for each j ∈ {1,2, . . . ,n}. Since H∞ ↪→H(X),

mE,n(w) = inf
h∈H(X)

‖fn−Bnh‖H(X). (3)

Observe that since
∣∣∣B̃n

(
eiθ
)∣∣∣= 1,

mE,n(w) = inf
h∈H(X)

‖f̃n− B̃nh̃‖X = inf
h∈H(X)

‖ f̃n

B̃n

− h̃‖X .
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Applying Theorem 1, we obtain

mE,n(w) = sup
‖g‖H(X×)�1

∣∣∣∣∣ 12π
∫ 2π

0

f̃n
(
eiθ
)

B̃n (eiθ)
eiθ g̃

(
eiθ
)
dθ

∣∣∣∣∣ . (4)

Fix g ∈H (X×) and notice that

f̃n
(
eiθ
)

B̃n (eiθ)
=

n∑
j=1

wj

Bj (λj)

1−λje
iθ

eiθ−λj
, θ ∈ [0,2π),

whence it follows that

1

2π

∫ 2π

0

f̃n
(
eiθ
)

B̃n (eiθ)
eiθ g̃

(
eiθ
)
dθ =

n∑
j=1

wj

Bj (λj)

1

2π

∫ 2π

0

1−λje
iθ

eiθ−λj
eiθ g̃

(
eiθ
)
dθ.

Since H (X×) ↪→H1, the function G given by G(z) =
(
1−λjz

)
g(z) for all z ∈ D belongs

to H1, and consequently, for each j ∈ {1, . . . ,n},

1

2π

∫ 2π

0

1−λje
iθ

eiθ−λj
eiθ g̃

(
eiθ
)
dθ =

1

2π

∫ 2π

0

G̃
(
eiθ
)

1− e−iθλj
dθ

=G(λj) =
(
1−|λj |2

)
g (λj) .

Combining this with equation (4), we obtain another, crucial, representation:

mE,n(w) = sup
‖g‖H(X×)�1

∣∣∣ n∑
j=1

wj

bn,j

(
1−|λj |2

)
g (λj)

∣∣∣. (5)

(ii)⇒(i). Assume that E ⊂ {{f (λj)} ; f ∈H(X)}. Since δz is a continuous linear

functional onH(X) for every z ∈D, it follows from Corollary 1 that there exists a constant
γ > 0 such that

inf
{
‖f‖H(X); f (λj) = wj, j ∈ N

}
� γ ‖w‖E, w = {wj} ∈ E.

It is clear that for each n ∈ N, we have

mE,n(w)� inf
{
‖f‖H(X); f (λj) = wj, j ∈ N

}
,

and hence

mE,n(w)� γ‖w‖E, w ∈ E, (6)

which is the required statement.

Assume now that there exists γ > 0 such that for all w = {wj} ∈ E,

sup
n∈N

sup
‖g‖H(X×)�1

|
n∑

j=1

wj

bnj

(
1−|λj |2

)
g (λj) |� γ‖w‖E .
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This estimate combined with equations (3) and (5) yields, for every w ∈E and each n∈N,

inf
h∈H(X)

‖fn−Bnh‖H(X) � γ‖w‖E .

We can therefore find, for each n, a function hn ∈H(X) such that ‖gn‖H(X) �M , where
gn = fn−Bnhn ∈H(X) andM := γ‖w‖E+1. It follows from formula (2) that the sequence

{gn} is locally uniformly bounded in D. By Montel’s theorem we can extract a subsequence

{gkn
}∞n=1 of {gn} such that gkn

→ g ∈H(D) uniformly on compact subsets of D. Since X
is order-continuous, it has the weak Fatou property, and so Lemma 2 applies. Thus we

conclude that g ∈H(X). In particular, this yields, for each j ∈ N,

wj = lim
n→∞

gkn
(λj) = g (λj) .

This completes the proof.

In what follows, we will use Theorem 2 in the proof of the main result of this section.

One of the main tools we use is interpolation theory. Here we present some basic concepts;

for a more detailed study, we refer the reader to [5, 6, 7, 18].
Let X0 and X1 be Banach spaces. The pair �X = (X0,X1) is called a Banach couple

if there exists a Hausdorff topological vector space X such that Xk ↪→ X , k ∈ {0,1}.
A Banach space X is called an intermediate space with respect to �X if X0∩X1 ↪→X ↪→
X0+X1.

If �X = (X0,X1) and �Y = (Y0,Y1) are Banach couples and T : X0 +X1 → Y0 + Y1 is

a linear map such that T |Xk
: Xk → Yk for k ∈ {0,1}, then we write T : �X → �Y .

Banach spaces X and Y are said to be interpolation spaces with respect to �X and �Y if

X and Y are intermediate with respect to �X and �Y , respectively, and if T maps X into

Y for every T : �X → �Y . A mapping F from the category of all couples of Banach spaces

into the category of all Banach spaces is said to be a bounded interpolation functor if
there exists a constant γ > 0 such that for every Banach couple �X, F ( �X) is a Banach

space intermediate with respect to �X, and if, for any Banach couples �X = (X0,X1) and
�Y = (Y0,Y1), the condition T : �X → �Y implies T (F ( �X))⊂ F (�Y ) with

‖T‖X→Y � γmax
{
‖T |X0

‖X0→Y0
, ‖T |X1

‖X1→Y1

}
.

If γ = 1, then F is said to be an exact interpolation functor. Later we will need to
quantify an intermediate space with respect to a given Banach couple. For that we define

the characteristic function of a functor.

Let F be an exact interpolation functor. The characteristic function ψF of F is defined

by

ψF (s,t)R∼= F (sR,tR), s,t > 0,

where αR with α > 0 is equipped with the norm ‖x‖ = α|x| for all x ∈ R. It is easy to
see that ψF is homogeneous of degree 1 – that is, ψF (γs,γt) = γψF (s,t) for all γ,s,t > 0 –

and in addition, ψF is nondecreasing in each variable. For applications of characteristic

functions in interpolation of operators on Banach spaces, we refer the reader to [23].
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We are ready to prove the main result of this section. Let us recall (see just after

Theorem 1) that for a Blaschke sequence {λj} and finite Blaschke product Bn,

ρj = lim
n→∞

ρn,j,

where ρn,j = |Bn,j (λj)| and Bn,j(z) =
n∏

k=1
k �=j

z−λk

1−λkz
.

Theorem 3. Let E ⊂ ω(N) be a Banach sequence lattice and let X be minimal and
maximal Banach lattice such that L∞(T) ↪→ X ↪→ L1(T). If λ = {λj} is a Blaschke

sequence, then E ⊂ {{f (λj)} ; f ∈H(X)} if and only if there exists a constant γ > 0

such that for all g ∈H (X×),∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖H(X×).

Proof. Assume that there exists a constant γ > 0 such that

sup
‖g‖H(X×)�1

∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ.

Since
∑∞

j=1 (1−|λj |)<∞, ρn,j � ρj > 0 for each positive integer j � n. This yields

sup
‖g‖H(X×)�1

∣∣∣ n∑
j=1

wj

bn,j

(
1−|λj |2

)
g (λj)

∣∣∣
� sup

‖g‖H(X×)�1

n∑
j=1

|wj |ρ−1
n,j

(
1−|λj |2

)
|g (λj)|

� sup
‖g‖H(X×)�1

∥∥∥{ρ−1
j

(
1−|λj |2

)
|g (λj)|

}∥∥∥
E×

‖w‖E

� γ‖w‖E .

Thus Theorem 2 applies and the implication follows.

To prove the opposite implication, assume that E ⊂ {{f (λj)} ; f ∈H(X)}. From
Theorem 2 it follows that there exists γ > 0 such that

sup
‖w‖E�1

sup
n∈N

sup
‖g‖H(X×)�1

∣∣∣∣∣
n∑

j=1

wj

bn,j

(
1−|λj |2

)
g (λj)

∣∣∣∣∣� γ.

Clearly, for all g ∈H (X×), we have (by |bn,j |= ρn,j)∥∥∥{ρ−1
n,j

(
1−|λj |2

)
|g (λj)|

}∥∥∥
E×

� γ‖g‖H(X×).
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Now observe that ρn,j � ρn+1,j for each j,n ∈N, and ρn,j → ρj for each j ∈N as n→∞.
This means that the sequence {xn}∞n=1 given by

xn =
{
ρ−1
n,j

(
1−|λj |2

)
|g (λj)|

}∞

j=1

satisfies ‖xn‖E× � γ‖g‖H(X×) and 0� xn ↑ x in ω(N), where

x :=
{
ρ−1
j

(
1−|λj |2

)
|g (λj)|

}∞

j=1
.

Since E× has the Fatou property, x ∈ E× and ‖x‖E× � γ‖g‖H(X×) – that is,∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖H(X×).

This completes the proof.

Theorem 4. Let λ= {λj} be a Blaschke sequence and let E ⊂ω(N) be a Banach sequence

lattice. Then

E ⊂ {{f (λj)} ; f ∈H∞}

if and only if there exists a constant γ > 0 such that for all f ∈H1,∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖H1 .

Proof. Following the notation from the proof of Theorem 2, with E = �∞ for w= {wj} ∈
�∞, we define

m�∞,n(w) := inf {‖fn−Bng‖H∞ ; g ∈H∞}, n ∈ N,

where fn(z) =
∑n

j=1 b
−1
n,jwjBn,j(z) for all z ∈ D. Then by [16, pp. 197–198] we have

m�∞,n(w) = sup

{∣∣∣∣∣
n∑

j=1

wj

bn,j
f (λj)

(
1−|λj |2

)∣∣∣∣∣; ‖f‖H1 � 1

}
.

Since H∞ has the analytic Fatou property, we can now complete the proof of the theorem
by repeating the proof of Theorem 3.

We conclude this section with two corollaries. The first one follows from Theorems 2

and 3.

Corollary 2. Let λ= {λj} be a Blaschke sequence and let E ⊂ω(N) be a Banach sequence
lattice. Then for any p ∈ [1,∞], we have

E ⊂ {{f (λj)} ; f ∈Hp}

if and only if there exists γ > 0 such that for all g ∈Hq with 1
p +

1
q = 1,∥∥∥{ρ−1

j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖Hq .
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Corollary 3. The following statements about the Blaschke sequence λ = {λj} are

equivalent:

(i) �∞ ⊂ {{f (λj)} ; f ∈H∞}.
(ii) There exists γ > 0 such that for all g ∈H1,

∞∑
j=1

ρ−1
j

(
1−|λj |2

)
|g (λj)|� γ‖g‖H1 .

(iii) The sequence λ is uniformly separated.

Proof. For the equivalence of (i) and (ii) we apply Corollary 2 for p =∞ and E = �∞.

Since (i) and (iii) are equivalent by the Carleson theorem, the proof is complete.

Note here that we could equally use the outcome of [28] to get the equivalence of

Corollary 3(ii) and (iii). Similarly, we could refer to [22, Corollary 4] for the equivalence

of (i) and (ii).

4. The result of Shapiro and Shields revisited

In this section we give a new proof of the characterisation of interpolating sequences

for the classical Hardy spaces Hp, p ∈ [1,∞). We note that a necessary and sufficient

condition for the sequence to be interpolating for the Bergman space Ap, p ∈ (0,∞), was
discovered by Schuster and Seip in [24]. They also noticed that their argument yields

a constructive proof that the notation of uniformly separated sequence is a sufficient

condition for interpolation in Hp with p ∈ (1,∞). A constructive proof of this fact with

a different nature was given also by Amar in [2].
Our approach is heavily based on Banach space theory and interpolation of operators.

The result of this part serves as a motivation for considering more general and abstract

settings in the next sections.
To obtain a characterisation of interpolating sequences for Hp spaces, we will use the

complex method of interpolation introduced by Calderón in [8]. For a complex Banach

couple �X = (X0,X1), we define F( �X) to be the space of all continuous functions on the
closed strip {z ∈C; Re(z)∈ [0,1]} with values in X0+X1 that are analytic on the interior,

bounded and continuous into Xj on the complex line j+ iR, j ∈ {0,1}, equipped with the

norm

‖f‖F( �X) =max

{
sup
t∈R

‖f(it)‖X0
, sup
t∈R

‖f(1+ it)‖X1

}
.

For a given θ ∈ (0,1), the complex interpolation space [X0,X1]θ is defined as{
f(θ); f ∈ F( �X)

}
and equipped with the quotient norm

‖x‖[X0,X1]θ = inf
{
‖f‖F( �X); x= f(θ), f ∈ F

(
�X
)}

.

Further, a key role will be played by the well-known formula [6, Theorem 5.5.3] which

states that for any Banach couple (Lp0(w0),L
p1(w1)), p0 	= p1, of weighted Lp spaces on
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a measure space, [
Lp0(w0),L

p1(w1)
]
θ
∼= Lpθ

(
w1−θ

0 wθ
1

)
, θ ∈ (0,1),

where 1
pθ

= 1−θ
p0

+ θ
p1
.

We will now present the new proof of the characterisation of interpolating sequences

for Hardy spaces Hp, p ∈ [1,∞). To this aim, we will need some auxiliary facts.

From now on, X is a Banach lattice on T such that L∞(T) ↪→X ↪→L1(T). The following
lemma can be derived by using the closed graph theorem:

Lemma 4. Let E be a Banach sequence space such that E ↪→ ω(N) and Tλ(H(X))⊂E.

Then Tλ is a bounded operator from H(X) into E.

Let us recall that ej , j ∈ N, denotes the standard unit vector.

Theorem 5. Let λ = {λj} be a sequence of distinct points in D. Suppose that E is
a Banach sequence space such that E ↪→ ω(N) and there exists M > 0 such that for each

j ∈ N, ‖ej‖E �M
∥∥δλj

∥∥−1

H(X)∗
. If Tλ(H(X)) = E, then λ is uniformly separated.

Proof. If Tλ(H(X)) =E, then we can apply Lemma 4 to conclude that Tλ : H(X)→E is

a bounded linear surjection. By the open mapping theorem, there exists a constant γ > 0
such that

γ {f ∈ E; ‖f‖E � 1} ⊂ Tλ

(
{f ∈H(X); ‖f‖H(X) � 1}

)
.

In particular, for each positive integer k there exists a function fk ∈H(X) with Tλfk :=
{fk (λj)}=M−1ek ‖δλk

‖H(X)∗ and

‖fk‖H(X) � γ
∥∥∥{M−1ek ‖δλk

‖H(X)∗

}∥∥∥
E
� γ.

For n > k, set

gn,k(z) = fk(z)

n∏
j=1
j �=k

1−λjz

z−λj
, z ∈ D.

Clearly, gn,k ∈H(X) and ‖gn,k‖H(X) = ‖fk‖H(X) � γ. Note also that for every f ∈H(X),

we have

|f(z)|� ‖δz‖H(X)∗‖f‖H(X), z ∈ D.

Notice that fk (λk) =M−1 ‖δλk
‖H(X)∗ for each k ∈ N. Therefore, for all n > k, we have∏

j=1
j �=k

∣∣∣∣1−λjλk

λk−λj

∣∣∣∣= |gn,k(λk)|
M−1 ‖δλk

‖H(X)∗
�M‖gn,k‖H(X) � γM.

Consequently, λ is uniformly separated and the proof is completed.

Corollary 4. Let X be an r.i. space X with a fundamental function φX and suppose that

E is a Banach sequence space such that E ↪→ ω(N) and there exists M > 0 such that for
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each j ∈ N, ‖ej‖E �MφX (1−|λj |). If λ= {λj} ⊂ D is a sequence of distinct points and

Tλ(H(X)) = E, then λ is uniformly separated.

Proof. From [21, Lemma 1.2], it follows that for every z ∈ D,

1

4
φX (1−|z|)−1 � ‖δz‖H(X)∗ � 2φX (1−|z|)−1

.

Thus Theorem 5 applies.

Theorem 6. Let λ= {λj} be a sequence of distinct points in D and let p ∈ [1,∞). Then

{{f (λj)} ; f ∈Hp}= �p(ν) (7)

if and only if λ is uniformly separated, where ν is the measure defined on 2N by ν({j}) =
1−|λj |2 for each j ∈ N.

Proof. We claim that equation (7) implies that λ is uniformly separated. Indeed, it is

well known that ‖δz‖(Hp)∗ =
(
1−|z|2

)−1/p
for any z ∈D. This implies that for E := �p(ν),

we have

‖ej‖E =
(
1−|λj |2

)1/p

=
∥∥δλj

∥∥−1

(Hp)∗
, j ∈ N.

Thus, if we assume that the Carleson operator Tλ given by Tλf = {f (λj)} for all f ∈Hp

satisfies Tλ(H
p) = �p(ν), then it follows from Theorem 5 that λ is uniformly separated.

To prove the reverse statement we assume that λ= {λj} is uniformly separated. First
we handle the case where p ∈ (1,∞). Define a linear mapping Sλ : H

1 → ω(N) by

Sλg := {g (λj)}, g ∈H1.

From Corollary 3 (ii), we conclude that Sλ : H
1 → �1(u) with u :=

{
ρ−1
j

(
1−|λj |2

)}
is

a bounded operator. Clearly, Sλ : H
∞ → �∞ is also bounded. Thus

Sλ :
(
H1,H∞)→ (�1(u),�∞),

and in consequence, by the interpolation property,

Sλ :
[
H1,H∞]

θ
→
[
�1(u),�∞

]
θ

is bounded for any θ ∈ (0,1). Using the interpolation formula established in [17] – that is,[
H1,H∞]

θ
=Hpθ with 1

pθ
= 1−θ – we deduce by taking θ = 1

p that for 1
q := 1− 1

p ,

Sλ : H
q →

[
�1(u),�∞

]
θ
.

Since
[
�1(u),�∞

]
θ
= �q

(
u1−θ

)
= �q

(
u

1/q
)
, it follows that there exists a constant γ > 0 such

that for all g ∈Hq, we have

‖Sλg‖�q(u1/q) � γ‖g‖Hq .

Now observe that since E := �p(ν)∼= �p
(
u

1/p
)
, we have E× ∼= �q

(
u−1/p

)
. Hence∥∥∥{ρ−1

j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖Hq, g ∈Hq,
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implies by Corollary 2 that

E ⊂ {{f (λj)} ; f ∈Hp} .

To prove the reverse inclusion, we note that ρj � 1 for each j ∈N. Then by Corollary 3(ii),

the operator Tλ is bounded from H1 into �1(ν). In consequence,

Tλ :
(
H1,H∞)→ (�1(ν),�∞) .

Applying the interpolation formulas for the complex method generated by θ = 1− 1
p , we

obtain [
H1,H∞]

θ
=Hp

and [
�1(ν),�∞

]
θ
= �p((1−|λj |2)1−θ) = �p(w).

This implies by the interpolation property that Tλ : H
p → �p(ν) is bounded, and so the

required inclusion Tλ(H
p)⊂ �p(ν) follows.

In the case where p= 1, we apply Corollary 2 for E = �1(ν). Since E× = �∞
(
w−1

)
with

w =
{
1−|λj |2

}
, for Tλf := {f (λj)} we have �1(w)⊂ Tλ

(
H1
)
if and only if

sup
j�1

ρ−1
j |g (λj)|=

∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
�∞(w−1)

� γ‖g‖H∞

for all g ∈H∞ with some γ > 0. This is clearly equivalent to infj�1 ρj > 0, and hence the

sequence λ is uniformly separated.

If λ is uniformly separated, then we notice that it follows from Corollary 3(ii), by ρj � 1
for all j ∈ N, that Tλ

(
H1
)
⊂ �1(ν). This completes the proof.

5. Carleson operator

The new proof of the characterisation of interpolating sequences for Hp spaces (see Theo-

rem 6) is an inspiration for considering a more general and abstract approach. For a given
sequence λ= {λj} ⊂ D, we define a linear map Tλ : H(D)→ ω(N) by

Tλf = {f (λj)}, f ∈H(D).

In this section we address the question whether for a given Banach lattice X there exists
a sequence space E such that Tλ is surjective as an operator from H(X) onto E.

Let us remark, as we already have mentioned in the introduction, that this problem

was solved by Carleson for H∞ [9] and by Shapiro and Shields for Hp spaces, p ∈ [1,∞)
[26] (see also Theorem 6). Their results state that Tλ : H

p → �p(ν) is surjective if and

only if λ is uniformly separated – that is,

inf
k∈N

∞∏
j=1
j �=k

∣∣∣∣ λj −λk

1−λkλj

∣∣∣∣> 0.
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We extend those classical results for a wide class of abstract Hardy spaces H(X)

generated by r.i. spaces X on T. The main result of this section is contained in Theorem 7.

However, to prove this general result we need some additional observations.
Let F be an exact interpolation functor. We restrict F to the class of couples of Banach

function lattices on measure spaces. Let (X0,X1) be a couple of Banach function lattices

on a σ-finite measure space (Ω,Σ,μ). An exact interpolation functor G is said to be
the Köthe dual functor to F on a couple (X0,X1) if

G
(
X×

0 ,X
×
1

)
= F (X0,X1)

×.

We also recall the following easily verified estimate [23, p. 372], which holds for any

exact interpolation functor and any Banach couple �X = (X0,X1):

‖x‖F( �X) � ψF (‖x‖X0
,‖x‖X1

), x ∈X0∩X1, (8)

where ψF is the characteristic function of the functor F .
Now we are ready to prove the main result of the paper.

Theorem 7. Let λ= {λj} be a sequence of distinct points in D. Let X be minimal and
maximal r.i. space on T such that X = F (Lp0(T),Lp1(T)) for some p0,p1 ∈ [1,∞], p0 < p1,

where F is an exact interpolation functor for which the Köthe dual functor exists on all

couples of Lp-spaces. Then

{{f (λj)} ; f ∈H(X)}= F
(
�p0(ν),�p1(ν)

)
(9)

if and only if λ is uniformly separated.

Proof. First we prove that λ being a uniformly separated sequence is a necessary

condition.
With this aim, define E := F (�p0(ν),�p1(ν)) and observe that for each j ∈ N, ej ∈

�p0(ν)∩ �p1(ν). Applying the interpolation estimate (8), we get

‖ej‖E � ψF (‖ej‖�p0 (ν) , ‖ej‖�p1 (ν)) = ψF ((1−|λj |2)1/p0,(1−|λj |2)1/p1),

where ψF is the characteristic function of F . Since X = F (Lp0(T),Lp1(T)), it follows by

the interpolation property that

φX(t)∼ ψF (t
1/p0,t

1/p1), t ∈ (0,1).

Thus there exists M > 0 such that

‖ej‖E �MφX(1−|λj |2), j ∈ N.

If we assume that Tλf = {f (λj)} for f ∈H(D) satisfies the equality Tλ(H(X)) =E, then

by our estimate and Corollary 4, we see that λ is uniformly separated.

To prove the reverse statement, assume that λ= {λj} is uniformly separated. Then by
results of Carleson [9] and Shapiro and Shields [26], it follows that Tλ(H

pk) = �pk(ν) for

k ∈ {0,1}. Thus Tλ : (H
p0,Hp1)→ (�p0(ν),�p1(ν)), and so by interpolation,

Tλ : F (Hp0,Hp1)→ F
(
�p0(ν),�p1(ν)

)
= E
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is a bounded operator. Applying a result from [29], we obtain F (Hp0,Hp1) =

HF (Lp0,Lp1). In consequence, H(X) = F (Hp0,Hp1), and by the interpolation property,

we get that

Tλ : H(X)→ E

is bounded, and so Tλ(H(X))⊂ E.
We claim that E ⊂ Tλ(H(X)). To prove this, define a linear map Sλ : H(D)→ ω(N) by

the formula

Sλg =
{
ρ−1
j

(
1−|λj |2

)
g (λj)

}
, g ∈H(D).

From Corollary 1 it follows that �pk(wk) ⊂ Tλ(H
pk) for k ∈ {0,1} is equivalent to the

statement that the restriction of Sλ, which satisfies

Sλ :
(
H
(
(Lp0)×

)
,H
(
(Lp1)×

))
→
(
�p0(ν)×,�p1(ν)×

)
,

is a bounded operator. Then by interpolation, we conclude that if G is the Köthe dual

functor to F ,

Sλ : G
(
H
(
(Lp0)×

)
,H
(
(Lp1)×

))
→G

(
�p0(ν)×,�p1(ν)×

)
is a bounded operator. Applying again the result from [29], we obtain

G
(
H
(
(Lp0)×

)
,H
(
(Lp1)×

))
=H

(
G
(
(Lp0)×,(Lp1)×

))
.

Thus we get

G
(
H
(
(Lp0)×

)
,H
(
(Lp1)×

))
=H

(
F (Lp0,Lp1)×

)
=H

(
X×) .

Since G(�p0(ν)×,�p1(ν)×) = F (�p0(ν),�p1(ν))× = E×, we conclude that

Sλ : H
(
X×)→ E×

is bounded. This yields the existence of γ > 0 such that∥∥∥{ρ−1
j

(
1−|λj |2

)
g (λj)

}∥∥∥
E×

� γ‖g‖H(X×), g ∈H
(
X×) .

Hence by Lemma 2 and Theorem 2 we get E ⊂ Tλ(H(X)). This completes the proof.

We show that Theorem 7 can be directly applied to get the description of interpolating

sequences for Hardy–Lorentz spaces. Before we give the proof of this result, we recall the
definition of the Lorentz spaces Lp,q.

If (Ω,Σ,μ) is a σ-finite measure space, p ∈ [1,∞) and q ∈ [1,∞], then the Lorentz space

Lp,q(Ω) is the space of all f ∈ L0(Ω) such that

‖f‖p,q :=
(∫ ∞

0

[
t
1/pf∗∗(t)

]q dt
t

)1/q

<∞,

with a natural modification when q =∞. Here, for f ∈ L0(Ω), f∗∗ denotes the function

given by t �→ f∗∗(t) = 1
t

∫ t

0
f∗(s)ds, t > 0, and f∗ of f ∈ L0(Ω) is given by the formula
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f∗(t) = inf {s > 0; μf (s)� t}, t� 0. It is well known that Lp,q(Ω) is an r.i. space, for which

we have (see [5])

‖f‖p,q ∼
(∫ ∞

0

[
t
1/pf∗(t)

]q dt
t

)1/q

.

Moreover, Lp,q(Ω) is always maximal and order-continuous, provided that q ∈ [1,∞). If

this is the case, then we have (see [5])(
Lp,q(Ω)

)×
= Lp′,q′(Ω),

where 1
p +

1
p′ =

1
q +

1
q′ = 1. If (Ω,Σ,μ) =

(
N,2N,μ

)
, then Lp,q(N) is denoted by �p,q(μ) and

is called a Lorentz sequence space.
In the case where Ω = T and μ is the Lebesgue measure m, the Hardy space H(Lp,q) is

denoted by Hp,q and is denominated a Hardy–Lorentz space. The following result contains

the version of the Carleson result for Hardy–Lorentz spaces. In the proof, we will use the
classical real interpolation method (·)θ,q (see [5]; for a more abstract approach, refer to

the next section).

Theorem 8. Let λ = {λj} be a sequence of distinct points in D and let p ∈ (1,∞) and
q ∈ [1,∞). Then

{{f (λj)} ; f ∈Hp,q}= �p,q(ν)

if and only if {λk} is uniformly separated.

Proof. For a given p∈ (1,∞), let p0,p1 ∈ (1,∞) such that p0 < p< p1. Furthermore, there

exists θ ∈ (0,1) such that 1
p = 1−θ

p0
+ θ

p1
. Then it follows from [6, Theorem 5.3.1] that for

the following spaces on (Ω,Σ,μ),

(Lp0(μ),Lp1(μ))θ,q = Lp,q(μ).

Since, as noted before, Lp,q(μ)× = Lp′,q′(μ), where 1
p +

1
p′ =

1
q +

1
q′ = 1, we conclude that(

Lp0(μ)×,Lp1(μ)×
)
θ,q′

=
(
Lp′

0(μ),Lp′
1(μ)

)
θ,q′

= Lp′,q′(μ) =
((

Lp0(μ),Lp1(μ)
)
θ,q

)×
.

This shows that if we take F := (·)θ,q, then G := (·)θ,q′ is an exact interpolation functor

which is the Köthe dual to F with respect to a Banach couple (Lp0(μ),Lp1(μ)) for any
measure space. Applying this fact to (T,m) and

(
N,2N,ν

)
, we are in the position to apply

Theorem 7. This completes the proof.

6. Köthe dual functors

The aim of this section is to give general applications of Theorem 7, which deals with the
so-called Köthe dual functors. This motivates us to study this notion in more detail. In

particular, we prove that the abstract K-method and J-method are Köthe dual functors.

This allows us to obtain the characterisation of interpolating sequences for interpolation
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spaces between Lp0(T) and Lp1(T) for some p0, p1 ∈ [1,∞], p0 < p1 (see Theorem 11). We

apply this result for some particular spaces and obtain variants of the Carleson theorem

for Hardy spaces generated by selected classes of important Banach lattices.
The most important methods of interpolation are the so-called K-method and J-

method. For the convenience of the reader, we recall briefly the main definitions and facts

relating to these concepts. If Φ is a Banach sequence lattice modelled on Z such that
{min(1,2n)}∞n=−∞ ∈ Φ, then for every Banach couple �X = (X0,X1) the K-method space

KΦ( �X) is defined to be the Banach space of all x ∈X0+X1 such that
{
K(2n,x; �X)

}
∈Φ

equipped with the norm

‖x‖KΦ( �X) =
∥∥∥{K(2n,x; �X)

}∥∥∥
Φ
.

Here K is the famous Petree K-functional defined for every x ∈X0+X1 by

K(t,x; �X) = inf {‖x0‖X0
+ t‖x1‖X1

; x0+x1 = x}, t > 0.

We also recall the definition of the J-method. For a given Banach couple �X = (X0,X1)

and x ∈X0∩X1, define

J(t,x; �X) = max{‖x‖X0
,t‖x‖X1

}, t > 0.

Let
(
�1,�1(2−n)

)
be a couple of sequence spaces and let E be an intermediate space with

respect to
(
�1,�1(2−n)

)
. Denote by JE( �X) the space of all x ∈ X0 ∩X1, which can be

represented in the form

x=
∞∑

n=−∞
un (convergence in X0+X1),

equipped with the norm

‖x‖JE( �X) = inf

{∥∥∥{J(2n,un; �X)
}∥∥∥

E
; x=

∞∑
n=−∞

un

}
,

where
{
J(2n,un; �X)

}
∈ E. It is well known (see, e.g., [7]) that the K-space KΦ( �X) and

the J-space JE( �X) are Banach spaces and the mappings �X �→KΦ( �X) and �X �→ JE( �X)

are exact interpolation functors. The space Φ (resp., E) from the definition of aK-method

(resp., J-method) is called a parameter.
We note that in the case E = �p

(
2−nθ

)
, where p ∈ [1,∞] and θ ∈ (0,1), the K-space and

J-space generated by E coincide – that is,

K�p(2−nθ)( �X) = J�p(2−nθ)( �X).

We point out that the constants of equivalence of norms in this formula are independent
of �X (see [6]). In what follows, these spaces are denoted by �Xθ,p (or (X0,X1)θ,p).

We also need the notion of a dual Banach couple (in the interpolation sense). Let
�X = (X0,X1) be a Banach couple and let X be an intermediate space with respect to �X.
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We define

X ′ := (X0∩X1,‖ · ‖X)
∗
.

The Banach spaces X ′
0 and X ′

1 form a Banach couple, which is denoted by �X ′ = (X ′
0,X

′
1).

We recall that the following isometric duality formulas hold (see [6, Theorem 2.7.1] or [7,

Proposition 2.4.5]):

(X0∩X1)
′ ∼=X ′

0+X ′
1 and (X0+X1)

′ ∼=X ′
0∩X ′

1.

To formulate the Köthe duality result for the K-method, we recall that a Banach couple

(X0,X1) is relatively complete if the unit ball of the space X0∩X1 is a closed subset of

the space X0+X1.

If Φ is a parameter of the K-method, then by Φ+ we denote the Banach sequence lattice
modelled on Z and equipped with the norm

‖ξ‖Φ+ := sup

{∣∣∣∣∣
∞∑

n=−∞
ξnη−n

∣∣∣∣∣ ; ‖{ηn}‖Φ � 1

}
.

In the proof, we will need the following Köthe duality formulas (see, e.g., [19]). If (X0,X1)

is a Banach couple of Banach function lattices on a measure space (Ω,Σ,μ), then

(X0∩X1)
× ∼=X×

0 +X×
1 and (X0+X1)

× ∼=X×
0 ∩X×

1 .

We are ready to formulate and prove the Köthe duality result for K-method spaces. In
what follows, X◦

k denotes the closure of X0∩X1 in Xk, k ∈ {0,1}.

Theorem 9. Let Φ be a parameter of the K-method and let �X = (X0,X1) be a couple of

Banach function lattices on a measure space (Ω,Σ,μ). Suppose that one of the following
conditions is satisfied:

(i) KΦ(X0,X1) ↪→X◦
0 +X◦

1 or

(ii) both X0 and X1 have the Fatou property.

Then KΨ+ with Ψ :=KΦ

(
�1,�1(2−n)

)
is the Köthe dual functor of KΦ on �X – that is,

KΦ(X0,X1)
× =KΨ+

(
X×

0 ,X
×
1

)
.

Moreover, the constants of equivalence of norms in this formula are independent of �X.

Proof. We start with the formula

KΦ(Y0,Y1)
′ =KΨ+ (Y ′

0,Y
′
1), (10)

where the isomorphism constant does not exceed 18, provided that a Banach couple
(Y0,Y1) is relatively complete or the parameter Φ is such that KΦ(Y0,Y1) ↪→ Y ◦

0 + Y ◦
1 .

This fact follows directly from [7, Theorems 3.5.9 and 3.7.2 and Proposition 3.1.17].

Now observe that ii yields

(X0∩X1)
×× ∼=

(
X×

0 +X×
1

)× ∼=X××
0 ∩X××

1 =X0∩X1.
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Clearly, the Fatou property of both X0 and X1 implies that (X0,X1) is a relatively

complete couple. We claim that

KΨ+

(
X×

0 ,X
×
1

)
↪→KΦ(X0,X1)

×.

To show this, we apply the interpolation duality formula (10) for (X0,X1). We define

a linear map σ by

σx×(x) = 〈x,x×〉 :=
∫
Ω

xx×dμ, x× ∈X×
0 +X×

1 , x ∈X0∩X1.

Clearly, σ : X×
0 +X×

1 →X ′
0+X ′

1, and moreover, σ :
(
X×

0 ,X
×
1

)
→ (X ′

0,X
′
1), with

‖σ‖X×
k →X′

k
� 1, k ∈ {0,1}.

Since KΨ+ is an exact interpolation functor, we obtain

σ : KΨ+

(
X×

0 ,X
×
1

)
→KΨ+ (X ′

0,X
′
1)

with ∥∥σx×∥∥
KΨ+(X′

0,X
′
1)

�
∥∥x×∥∥

KΨ+(X×
0 ,X×

1 )
, x× ∈KΨ+

(
X×

0 ,X
×
1

)
.

From this and equation (10), it follows that

sup
{∣∣〈x,x×〉∣∣ ; x ∈X0∩X1,‖x‖KΦ( �X) � 1

}
� γ
∥∥x×∥∥

KΨ+(X×
0 ,X×

1 )
,

where γ � 18. Now, since X0∩X1 is a Banach lattice, the left-hand side of this inequality

equals ‖x×‖
KΦ( �X)

× (by order density of X0∩X1 in L0(μ)), and so the claim is proved.

To finish the proof, we need to show that

KΦ(X0,X1)
× ↪→KΨ+

(
X×

0 ,X
×
1

)
.

Applying [7, Corollary 3.5.16], we deduce that the following formula holds:

KΦ(X0,X1) = JΨ(X0,X1),

where the isomorphism constant does not depend on �X. Thus it is enough to prove that

Jψ(X0,X1)
× ↪→KΨ+

(
X×

0 ,X
×
1

)
. (11)

First, we observe that for every t > 0 and x× ∈X×
0 +X×

1 , we have

K
(
t,x×;

(
X×

0 ,X
×
1

))
=
∥∥x×∥∥

(X×
0 +tX×

1 )
=
∥∥x×∥∥

(X0∩t−1X1)
×

= sup

⎧⎨⎩ |〈x,x×〉|
J
(
t−1,x; �X

) ; x ∈X0∩X1, x 	= 0

⎫⎬⎭
Fix ε > 0. Given nonnegative x× ∈ JΨ(X0,X1)

× ↪→ X×
0 +X×

1 , we can find a sequence
{xn}∞n=−∞ with xn ∈X0∩X1 such that 〈xn,x

×〉� 0 and

K
(
2−n,x×; �X×

)
� (1+ ε)

〈xn,x
×〉

J
(
2n,xn; �X

), n ∈ Z. (12)
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Now fix η = {ηn} in the unit ball of Ψ and define a sequence {un}∞n=−∞ in X0 ∩
X1 by un := J(2n,xn; �X)−1|ηn|xn for each n ∈ Z. Since η ∈ Ψ ↪→ �1 + �1(2−n), it holds∑∞

n=−∞min{1,2−n}|ηn|<∞.

This implies that for some γ > 0,

∞∑
n=−∞

‖un‖X0+X1
=

0∑
n=−∞

‖un‖X0+X1
+

∞∑
n=1

‖un‖X0+X1

�
0∑

n=−∞

‖xn‖X0

J
(
2n,xn; �X

) |ηn|+ ∞∑
n=1

2n‖xn‖X1

J
(
2n,xn; �X

) |ηn|
2n

�
0∑

n=−∞
|ηn|+

∞∑
n=1

|ηn|
2n

= ‖η‖�1+�1(2−n) � γ‖η‖Ψ � γ,

and so the series
∑∞

n=−∞un converges in X0+X1. We define

xη :=

∞∑
n=−∞

un.

Since J
(
2n,un; �X

)
= |ηn| for each n ∈ Z, we have xη ∈ JΨ

(
�X
)
with

‖xη‖JΨ( �X) � ‖η‖Φ.

Combining our estimate with formula (12), we conclude that∣∣∣∣∣
∞∑

n=−∞
K
(
2−n,x×; �X×

)
ηn

∣∣∣∣∣� (1+ ε)

∞∑
n=−∞

〈
xn,x

×〉J(2n,xn; �X)−1|ηn|

= (1+ ε)

〈 ∞∑
n=−∞

J(2n,xn; �X)−1xn|ηn|,x×

〉

= (1+ ε)

〈 ∞∑
n=−∞

un,x
×

〉
� (1+ ε)‖xη‖JΨ( �X)

∥∥x×∥∥
JΨ( �X)

×

� (1+ ε)
∥∥x×∥∥

JΨ( �X)
× .

Since ε > 0 and η ∈Ψ with ‖η‖Ψ � 1 were arbitrary, it follows that x× ∈KΨ+

(
X×

0 ,X
×
1

)
and ∥∥x×∥∥

KΨ+(X×
0 ,X×

1 )
�
∥∥x×∥∥

JΨ( �X)
× .

This yields the required continuous inclusion (11), which completes the proof.

Theorem 9 implies the description of the Köthe dual functor of the functor JE .

Theorem 10. Let E be a parameter of the J-method and set Φ := JE(�
∞,�∞(2−n)). Then

KΨ+ with Ψ :=KΦ

(
�1,�1(2−n)

)
is the Köthe dual functor of JE on any couple (X0,X1)
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of maximal Banach lattices on a measure space – that is,

JE(X0,X1)
× =KΨ+

(
X×

0 ,X
×
1

)
,

where the constants of equivalence of norms are independent of (X0,X1).

Proof. From [7, Corollary 3.5.16], it follows for any relatively complete Banach couple

(Y0,Y1) that

JE(Y0,Y1) =KΦ(Y0,Y1),

where Φ := JE(�
∞,�∞(2−n)). Since any couple of maximal Banach lattices is relatively

complete, the required statement follows from Theorem 9.

Now we are ready to prove the main result of this section – namely, we characterise

interpolating sequences of interpolation spaces with respect to the couple of weighted

Lebesgue spaces. We note here that for some Banach couples all interpolation spaces are
K-spaces, and so they can be parameterised by the parameters of the K-method. An

important example of such couples was presented in [27], where it was proved that the

couple (Lp0(w0),L
p1(w1)) of weighted Lebesgue spaces on any measure space is a uniform

Calderón couple. Then by [7, Lemma 4.1.12], it follows that all interpolation spaces with

respect to (Lp0(w0),L
p1(w1)) are K-spaces. Recall that the Banach couple �X = (X0,X1)

is called a uniform Calderón couple if there exists γ = γ( �X)� 1 such that for any x,y ∈
X0+X1 satisfying the inequality

K(t,y; �X)�K(t,x; �X), t > 0,

it follows that there exists an operator T : �X → �X with ‖T‖ �X→ �X � γ such that y = Tx.

Theorem 11. Let {λj} be a sequence of distinct points in D and let X be minimal and

maximal r.i. space on T, such that X is an interpolation space with respect to the couple
(Lp0(T),Lp1(T)) for some p0,p1 ∈ [1,∞], p0 < p1. Then there exists a parameter Φ of the

K-method such that

{{f (λj)} ; f ∈H(X)}=KΦ

(
�p0(ν),�p1(ν)

)
if and only if {λj} is uniformly separated.

Proof. The couple �X = (Lp0(T),Lp1(T)) is the uniform Calderón couple of maximal

spaces. Thus by the results already mentioned, there exists a parameter Φ of the K-
method such that

X =KΦ (Lp0(T),Lp1(T)) .

Therefore, Theorems 7 and 9 apply and yield the desired conclusion.

We conclude this section with the following surprising result, which is – in a sense –

a reverse statement to Theorem 7.
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Theorem 12. Let λ = {λj} be a uniformly separated sequence in D. Then for every

separable maximal r.i. space E over a measure space
(
N,2N,νλ

)
, there exists a separable

maximal r.i. space X on T such that

{{f (λj)} ; f ∈H(X)}= E,

and so the Carleson operator Tλ : H(X)→ E is a bounded surjection.

Proof. As usual, we let ν := νλ. Since E is separable, it is an interpolation space between

�1(ν) and �∞. From [8] it follows that
(
�1(ν),�∞

)
is a uniform Calderón–Mityagin couple.

Thus by [7, Lemma 4.1.12], there exists a parameter Φ of the K-method such that

E =KΦ

(
�1(ν),�∞

)
.

We consider an exact interpolation functor F :=KΦ chosen in such a way that X given
by

X := F
(
L1(T),L∞(T)

)
is separable maximal r.i. space on T. For any couple of Banach lattices on a measure

space, we have

F (X0,X1)
× =KΦ(X0,X1)

×.

Therefore, it follows from Theorem 9 that G := KΨ+ with Ψ := KΦ

(
�1,�1(2−n)

)
is the

Köthe dual functor to F on couples of maximal Banach lattices. Now Theorem 7 yields

{{f (λj)} ; f ∈H(X)}= F
(
�1(ν),�∞

)
=KΦ

(
�1(ν),�∞

)
= E,

which completes the proof.

7. Application for special Hardy spaces

In this final part of the paper, we apply the results obtained to some important examples
of r.i. spaces and get a description of the interpolating sequences for Hardy–Lorentz and

Hardy–Orlicz spaces. At first, we start with a brief résumé of the Calderón–Lozanovskĭı

construction, since it will be used throughout this section.

We recall that if �X = (X0,X1) is a couple of Banach lattices on (Ω,Σ,μ) and ρ : [0,∞)×
[0,∞) → [0,∞) is a concave and positively homogeneous function, then the Calderón–

Lozanovskĭı space ρ( �X) = ρ(X0,X1) consists of all f ∈ L0(μ) such that |f |� κρ(|f0|,|f1|)
μ-almost everywhere on Ω for some κ > 0 and fk ∈Xk with ‖fk‖Xk

� 1, k ∈ {0,1}. The
space ρ( �X) is a Banach lattice equipped with the norm

‖f‖ρ( �X) = inf {κ > 0; |f |� κρ(|f0|,|f1|),‖f0‖X0
� 1,‖f1‖X1

� 1}

(see [19, 20]). In the case of the power function ρ(s,t) = s1−θtθ with θ ∈ (0,1), ρ
(
X
)
is

the well-known Calderón space denoted by X1−θ
0 Xθ

1 (see [8]).

We will use an easily verified formula that is true for any concave and positively

homogeneous functions ρ, p ∈ [1,∞], and all weighted sequences w0 =
{
w0

n

}
, w1 =

{
w1

n

}
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on Z:

ρ(�p(w0),�
p1) = �p(w), (13)

where w =
{
ρ∗
(
w0

n,w
1
n

)}
and ρ∗(s,t) := 1/ρ

(
s−1,t−1

)
for every s,t > 0.

We will also apply Lozanovskĭı’s duality formula from [20], which states that for any

couple (X0,X1) of Banach lattices on a measure space (Ω,Σ,μ),

ρ(X0,X1)
× = ρ̂

(
X×

0 ,X
×
1

)
,

up to equivalence of norms independent of ρ, where ρ̂(s,t) = infa,b>0
as+bt
ρ(a,b) for all s,t > 0.

Let φ : [0,∞) → [0,∞) be a concave function and (Ω,Σ,μ) be any measure space.

We define the Lorentz space Λφ = Λφ(μ) to be the space of all f ∈ L0(μ) such that∫∞
0

f∗(s)dφ(s)<∞. This is an r.i. space when equipped with the norm

‖f‖Λφ(μ) =

∫ ∞

0

f∗(s)dφ(s).

In the following theorem we present a description of interpolating sequences for Hardy–

Lorentz spaces H (Λφ) generated by separable Lorentz spaces Λφ(m) on (T,m).

Theorem 13. Let λ= {λj} be a sequence of distinct points in D and let φ : [0,∞)→ [0,∞)

be a concave function. Then the Carleson operator Tλ is a bounded surjection from the
Hardy–Lorentz space H (Λφ) onto the Lorentz space Λφ(ν) if and only if λ is uniformly

separated.

Proof. If φ(0+) > 0, then Λφ = L∞ and so H(Λφ) =H∞, from which the result follows

by the Carleson theorem. In the case where φ(0+) = 0, it follows that Λφ(m) is order-

continuous and so it is a minimal and maximal space. Thus, by Lemma 2, H (Λφ) has

the analytic Fatou property. We let ψ(s,t) = t
φ(t/s) for all s,t ∈ (0,∞) and take a concave

function ρ∼ ψ. Then by equation (13),

ρ
(
�1,�1(2−n)

)
= �1(w),

where w := {2−nφ(2n)}∞n=−∞. This shows that E := �1(w) is the parameter of the J-
method.

Using the standard properties of the Lorentz spaces (see [5]), it is not difficult to show

that for any measure space (Ω,Σ,μ),

Λφ(μ) = JE
(
L1(μ),L∞(μ)

)
,

where E is defined as before. In particular, we get that

Λφ(m) = JE
(
L1(m),L∞(m)

)
.

Now the characterisation of interpolating sequences for the Hardy–Lorentz spaces follows

from the description of the Köthe dual functor to JE (see Theorem 10) and Theorem 7.

Should be Next, we discuss an application for Hardy spaces generated by an order-

continuous part of the Marcinkiewicz space Mφ(m) on (T,m). If φ : [0,∞) → [0,∞) is

a concave function and (Ω,Σ,μ) is a measure space, then the Marcinkiewicz space Mφ(μ)

https://doi.org/10.1017/S1474748021000049 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000049


1942 M. Lindström et al.

consists of those f ∈ L0(μ) for which sup{φ(t)f∗∗(t); t > 0} < ∞. This is an r.i. space

equipped with the norm

‖f‖Mφ(μ) = sup
{
φ(t)f∗∗(t); t > 0

}
.

The symbol M◦
φ(μ) will denote the closure of simple functions in Mφ(μ).

Theorem 14. Let λ= {λj} be a uniformly separated sequence of distinct points in D and
assume that φ : [0,∞)→ (0,∞) is a concave function continuous at 0. Then the Carleson

operator Tλ is bounded from the Hardy–Marcinkiewicz space H(M◦
φ) into the space M◦

φ(ν).

Proof. We note that φ(0+) = 0 implies Mφ 	= L∞. Thus M◦
φ = (Mφ)a has an order-

continuous norm. This implies by Lemma 2 that H(M◦
φ) has the analytic Fatou property.

By the same argument as in the proof of Theorem 13, we have (with the same ρ and ψ)

ρ
(
�∞,�∞(2−n)

)
= �∞

(
ρ∗(1,2

−n)
)
= �∞(w),

where w = {2−nφ(2n)}∞n=−∞. Hence Φ = �∞(w) is the parameter of the K-method.

By applying the well-known formula for the K-functional for the couple
(
L1(μ),

L∞(μ)) on any measure space (Ω,Σ,μ) – see, for example, [6, Theorem 5.2.1] – we get
that for every f ∈ L1(μ)+L∞(μ),

K
(
t,f ;
(
L1(μ),L∞(μ)

))
=

∫ t

0

f∗(s)ds, t > 0.

In consequence

Mφ(μ) =KΦ

(
L1(μ),L∞(μ)

)
.

Now we consider an exact interpolation functor F :=K◦
Φ and apply the foregoing formula

to obtain

F
(
L1(μ),L∞(μ)

)
=M

◦
φ(μ)

and

F
(
�1(ν),�∞

)
=M

◦
φ(ν).

We finish in a similar fashion as at the end of the proof of Theorem 7 with p0 = 1 and

p1 =∞.

We conclude this paper with the description of interpolating sequences for Hardy–Orlicz

spaces (see [15]). Recall that if ϕ : [0,∞)→ [0,∞) is an Orlicz function – that is, ϕ(s) = 0

if and only if s = 0, ϕ is nondecreasing convex and left continuous – then the Orlicz
space Lϕ over a measure space (Ω,Σ,μ) is defined to be the space of all f ∈ L0(μ) with∫
Ω
ϕ(γ|f |)dμ <∞ for some γ > 0, and it is equipped with the Luxemburg norm

‖f‖Lϕ
= inf

{
ε > 0;

∫
Ω

ϕ

(
|f |
ε

)
dμ� 1

}
.

If Ω =N and Σ= 2Ω, the Orlicz space Lϕ(μ) is called an Orlicz sequence space, usually

denoted by �ϕ(μ). We note that the Orlicz space Lϕ(μ) over a finite measure space (Ω,Σ,μ)
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is order continuous whenever ϕ satisfies the so-called Δ2 condition at infinity (that is,

there exist γ > 0 and t0 > 0 such that ϕ(2t) � γϕ(t) for all t � t0). If X = Lϕ(T), the

space H(X) is denoted by Hϕ.
We are ready to state and prove the following characterisation of interpolating sequences

for Hardy–Orlicz spaces.

Theorem 15. Let λ = {λj} be a sequence of distinct points in D and Lϕ be a minimal

Orlicz space. Then the Carleson operator Tλ given by Tλf = {f (λj)}, f ∈ H(D), is

a bounded surjection from Hϕ onto �ϕ(ν) if and only if λ is uniformly separated.

Proof. Following [23], for any concave function ρ : (0,∞)× (0,∞)→ (0,∞), we let aρ =

{ρ(1,2n)}∞n=−∞ and we define the lower functor ρ� by

ρ�(X0,X1) :=
{
Taρ :

(
�∞,�∞(2−n)

)
→ (X0,X1); T : (�∞,�∞(2−n))→ (X0,X1)

}
equipped with the norm

‖x‖ρ�( �X) := inf
{
‖T‖(�∞,�∞(2−n))→ �X ; x= Taρ

}
.

The Ovchinnikov result from [23] states that for any couple �X = (X0,X1) of maximal

Banach lattices,

ρ�(X0,X1) = ρ(X0,X1),

and the constants of equivalence of norms are independent of �X.

We combine this result with the Lozanovskĭı formula on the Köthe duality to get

ρ�(X0,X1)
× = ρ̂

(
X×

0 ,X
×
1

)
= (ρ̂)�

(
X×

0 ,X
×
1

)
.

Thus (ρ̂)� is the Köthe dual functor of ρ� on �X.
Now we note that it is easy to verify that for any measure space (Ω,Σ,μ),

Lϕ(μ)∼= ρ
(
L1(μ),L∞(μ)

)
,

where

ρ(s,t) =

{
tϕ−1

(
s
t

)
, t > 0,

0, t= 0,

and ϕ−1 is the right continuous inverse of φ.
We consider the exact interpolation functor F := (ρ�)

◦. Then by the foregoing formula

we have

F
(
L1(T),L∞(T)

)
= Lϕ(T)

◦ ∼= Lϕ(T)

and

F
(
�1(ν),�∞

)
= �ϕ(ν)

◦ ∼= �ϕ(ν).

To finish the proof, we apply Theorem 7 with p0 = 1 and p1 = ∞ to get the required

equivalence.
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[20] G. Ya. Lozanovskĭı, Transformations of ideal Banach spaces by means of concave
functions, in Qualitative and Approximate Methods for the Investigation of Operator
Equations, pp. 122–147 (Yaroslavl 1978) (in Russian).
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