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THE RIGHT ANGLE TO LOOK AT ORTHOGONAL SETS

FRANK O. WAGNER

Abstract. If X and Y are orthogonal hyperdefinable sets such that X is simple, then any group G
interpretable in X ∪ Y has a normal hyperdefinable X -internal subgroup N such that G/N is Y -internal;
N is unique up to commensurability. In order to make sense of this statement, local simplicity theory for
hyperdefinable sets is developed. Moreover, a version of Schlichting’s Theorem for hyperdefinable families
of commensurable subgroups is shown.

§1. Introduction. Two definable sets X and Y in some structure are said to be
orthogonal if every definable subset of X × Y is a finite union of rectangles, i.e., of
subsets of the form U × V with U ⊆ X and V ⊆ Y definable. It follows that if X
andY are orthogonal groups, every definable subgroupH ofX ×Y has a subgroup
of finite index of the form U × V with U ≤ X and V ≤ Y subgroups: As H is a
finite union of rectangles, one can find a maximal definable rectangle U × V ⊆ H
containing the identity 1 = (1X , 1Y ). As H also contains

(U × V )−1(U × V ) = (U−1 × V−1)(U × V ) = U−1U × V−1V ⊇ U × V,
we obtain U−1U = U and V−1V = V by maximality, so U ≤ X and V ≤ Y are
subgroups; moreover U × V is unique. Any other maximal rectangle contained in
H can be translated to contain 1, and must thus be a coset of U × V . So U × V
has finite index.
However, the situation is considerably more complicated for a groupG definable,
ormore generally interpretable, inX∪Y , as it need not be a direct product of a group
interpretable inX and a group interpretable inY . In fact, an example by Berarducci
and Mamino [2, Example 1.2] shows that G need not have any subgroup inter-
pretable in either X or Y . However, they prove [2, Theorem 7.1] that if X is super-
stable of finite and definable Lascar rank, then any group G interpretable in X ∪ Y
has a normal subgroup N interpretable in X , such that G/N is interpretable in Y .
In this paper we shall generalize their result to the case where X is merely simple.
In this context, definability has to be replaced by type-definability, as even for a
definable group the tools of simplicity theory in general only yield type-definable
subgroups. In fact, we even have to study hyperdefinable groups, since the quotient
G/N , for N type-definable, will be of that form. We therefore put ourselves in the
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hyperdefinable context and assume right from the start that our orthogonal sets X
and Y are merely hyperdefinable. To this end, we shall include a quick development
of hyperdefinability in Section 2, and of local simplicity theory for hyperdefinable
sets in Section 6. Moreover, the general theory only yields N unique up to com-
mensurability. Since there is a priori no simple hyperdefinable set containing all
conjugates of N , we cannot use the usual locally connected component from sim-
plicity theory [7, Definition 4.5.15]. We therefore show a completely general version
of Schlichting’s Theorem for a hyperdefinable family of commensurable subgroups
in Section 7. Note that we do recover the theorem by Berarducci andMamino even
for general supersimple (and definable) X (Corollary 8.2).
Another problem is that of parameters. The usual hypothesis would be that of
stable embedding, i.e., that every hyperdefinable subset of X is hyperdefinable with
parameters inX .We shall circumvent this issue by only ever considering parameters
from X ∪ Y , as orthogonality automatically yields stable embeddedness of X and
of Y in X ∪ Y .
We shall work in a big κ-saturated and strongly κ-homogeneous monster model

M, where κ is bigger than any cardinality we wish to consider. We shall not usually
distinguish between elements and tuples.
I should like to thank the anonymous referee whose comments have greatly
contributed to improve the presentation of the paper, and induced me to include
Section 6 on Schlichting’s Theorem (and to prove the results therein).

§2. Hyperimaginaries.
Definition 2.1. • A countable equivalence relation is an equivalence relation
given by the conjunction of countably many formulas (and hence only using
countably many parameters and variables); it is over a set A of parameters if
the formulas only use parameters from A.

• A hyperimaginary (element) of type E is the class aE of some tuple a (of the
right length) modulo a countable equivalence relation E over ∅.

• A hyperimaginary e is definable over some set B of hyperimaginaries if every
automorphisms of the monster model which fixes B pointwise fixes also e;
it is bounded over B if its orbit under the group of automorphisms fixing B
pointwise has bounded size (smaller than the saturation degree of the monster
model). The hyperimaginary definable closure dclheq(B) of B is the set of hyper-
imaginaries definable over B; the hyperimaginary bounded closure bdd(B) of B
is the set of all hyperimaginaries bounded over B. Clearly, both dclheq and bdd
are idempotent operators.1

• Two hyperimaginaries are equivalent if they are interdefinable.
• If e is hyperimaginary, a representative for e is any real (or imaginary) tuple a
with e ∈ dclheq(a).
Remark 2.2. (1) If E is an arbitrary type-definable equivalence relation over

∅ (given by an intersection of arbitrary size, on tuples of arbitrary length),
it is easy to see that E is equivalent to a conjunction of subintersections Ei ,

1By compactness, an imaginary element in bdd(B) is already in the algebraic closure acl(B). So there
is no need for a superscript bddheq .
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each one defining a countable equivalence relation on a countable sub-
tuple xi . So

a E b ⇔ ∀i ai Ei bi .
This means that an automorphism fixes aE if and only iff it fixes (ai)Ei for all
i , and we can replace aE by the sequence

(
(ai)Ei

)
i
of hyperimaginaries.

(2) If EA is a countable equivalence relation over A, we consider the countable
equivalence relation

xx′ F yy′ ⇔ (
x′ = y′ ∧ x′ |= tp(A) ∧ x Ex′ y

) ∨ xx′ = yy′,
where we only consider the countable subset of A actually occurring in the
definition ofEA, andEx′ is the result of substituting x′ forA in the definition
of EA. Then for any a the class aEA is fixed by an automorphism fixing A iff
and only iff (aA)F is fixed, and we can use the hyperimaginary (aA)F instead
of aEA .

(3) If E is a countable partial type over A which defines an equivalence
relation on some partial type � over A, then by compactness there is a
countable subtype �0 such that E defines an equivalence relation on �0.
Then

x F y ⇔ (
�0(x) ∧ �0(y) ∧ x E y

) ∨ x = y
is a countable equivalence relation over A extending E.

If E = (Ei : i ∈ I ) is a sequence of countable equivalence relations over ∅ and
a = (ai : i ∈ I ) is a sequence of tuples of the right length, we put aE = ((ai)Ei :
i ∈ I ), and we say that aE is a tuple of hyperimaginaries. Similarly, we write a E b
if ai Ei bi for all i ∈ I . Note that Remark 2.2 justifies that we restrict to countable
equivalence relations over ∅ in Definition 2.1: Indeed, any other equivalence class
one might wish to consider is just a tuple of hypermaginaries.

Definition 2.3. LetaE and bF be tuples of hyperimaginaries. The type tp(aE/bF )
is given by all partial types over b of the form

∃yz [x E y ∧ z F b ∧ ϕ(y, z)]
true of a, where ϕ is a parameter-free formula. It is easy to see that (in the monster
model) two tuples of hyperimaginaries of type E have the same type over bF if and
only if they are conjugate by an automorphism fixing bF .

Note that the type of a hyperimaginary over bF is just a maximal E-invariant
partial real type over b invariant under automorphisms fixing bF . For any two
representatives of bF , any two such types are equivalent. We shall say that a partial
type �(y) is a partial E-type if �(y) is E-invariant.

Definition 2.4. A set X is hyperdefinable over some parameters A if it is of the
form Y/E, where Y is a type-definable set in countably many variables and E a
countable equivalence relation onY , both overA. We denote byXheqA the collection
of all hyperimaginaries in the definable closure of A and some tuple from X . If
A = ∅ it is omitted.
For the rest of the paper, all tuples and parameter sets are hyperimaginary, unless
stated otherwise. We shall not distinguish between elements and tuples of elements
from a set.
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§3. Orthogonality.
Definition 3.1. Let X , Y be A-hyperdefinable sets in some structureM. We say
that X and Y are orthogonal over A, denoted X ⊥A Y , if for any tuples a from X
and b from Y , the partial type tp(a/A) ∪ tp(b/A) determines tp(ab/A). If A = ∅ it
will be omitted.

Remark 3.2. Note that we do not require X (or Y ) to be stably embedded, i.e.,
that every hyperdefinable subset of X be hyperdefinable with parameters in A ∪ X .
In a stable theory, every hyperdefinable subset is stably embedded, but this need
not hold in general. We shall compensate for the lack of stable embeddedness by
restricting our additional parameters to XheqA ∪YheqA .2

Example 3.3. If M1 and M2 are two structures and N = M1 × M2 with a
predicateX forM and a predicateY forN, thenX andY are orthogonal inN over
∅ (and in fact over any set of parameters).
Remark 3.4. If X and Y are orthogonal type-definable sets over A and Z ⊆
Xk × Y� is relatively A-definable, then Z is a finite union of rectangles Ai × Bi ,
where Ai ⊆ Xk and Bi ⊆ Y� are relatively A-definable.
Proof. For any z = (x, y) ∈ Z we have that

tp(x/A) ∪ tp(y/A) � (x, y) ∈ Z.
By compactness there are relatively A-definable subsets Az ⊆ Xk in tp(x/A) and
Bz ⊆ Y� in tp(y/A) with Az × Bz ⊆ Z. Again by compactness, finitely many of
these rectangles suffice to cover Z. �
Remark 3.5. X ⊥A X if and only if X ⊆ dclheq(A).
Proof. For any x, x′ ∈ X we have

tp(x/A) ∪ tp(x′/A) � tp(x, x′/A).
If x /∈ dclheq(A) choose x′ ≡A x with x′ �= x. Then xx′ ≡A xx, a contradiction. �
For the rest of this section, X andY will be orthogonal ∅-hyperdefinable sets. We
note first that orthogonality is preserved under adding parameters fromXheq∪Yheq ,
and interpretation:

Proposition 3.6. If X ′ ⊆ Xheq and Y ′ ⊆ Yheq are hyperdefinable over some
parameters A ⊆ Xheq ∪Yheq , then X ′ ⊥A Y ′.

Proof. Suppose A = (a, b) with a ∈ Xheq and b ∈ Yheq , and consider tuples
a′ ∈ X ′ and b′ ∈ Y ′. Choose representatives ā, ā′ ∈ X of a, a′ and b̄, b̄′ ∈ Y of
b, b′. Then tp(āā′) ∪ tp(b̄b̄′) � tp(āā′b̄b̄′).
Now if a′′ ≡A a′ and b′′ ≡A b′, we can find A-conjugates ãā′′ of āā′ and b̃b̄′′ of
b̄b̄′ such that a′′ãā′′ ≡A a′āā′ and b′′b̃b̄′′ ≡A b′b̄b̄′. By orthogonality of X and Y ,
we obtain ā′′ãb̄′′b̃ ≡ ā′āb̄′b̄, whence a′′ab′′b ≡ a′ab′b, and thus a′′b′′ ≡A a′b′. �
Proposition 3.7. X is stably embedded in X ∪ Y : For tuples a ∈ Xheq and
b ∈ Yheq , every ab-hyperdefinable subset X ′ of Xheq is hyperdefinable over a.

2See Proposition 3.6. In a stable theory,X ⊥A Y impliesX ⊥B Y for anyB ⊇ A (full orthogonality).
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Proof. If Φ(x, a, b) hyperdefines X ′ and Ψ(y) = tp(b), put

Φ′(x, a) = ∃y [Ψ(y) ∧Φ(x, a, y)].
Clearly Φ(x, a, b) � Φ′(x, a). Conversely, suppose a′ |= Φ′(x, a), and choose b′ |=
Ψ with a′ |= Φ(x, a, b′). By orthogonality a′ab ≡ a′ab′, whence a′ |= Φ(x, a, b),
and Φ′(x, a) hyperdefines X ′. �
We put dclheqX (A) = dcl

heq(A) ∩Xheq and bddX (A) = bdd(A) ∩Xheq .
Corollary 3.8. Suppose a ∈ Xheq and b ∈ Yheq . Then

dclheqX (a, b) = dcl
heq
X (a) and bddX (a, b) = bddX (a).

Proof. Immediate from Proposition 3.7: If X ′ is a singleton (resp. bounded)
subset of Xheq hyperdefinable over ab containing some element e ∈ dclheqX (ab)
(resp. e ∈ bddX (ab)), then X ′ is hyperdefinable already over a. �

§4. Weak elimination of hyperimaginaries. In this section, X and Y will be ∅-
hyperdefinable sets.

Definition 4.1. Let Z be ∅-hyperdefinable. We say that Z has weak elimination
of hyperimaginaries with respect to Xheq andYheq if for every z ∈ Zheq there is some
x ∈ bddX (z) and y ∈ bddY (z) with z ∈ dclheq(xy).
For the rest of this section, X and Y will be orthogonal over ∅.
Theorem 4.2. The setX∪Y hasweak elimination of hyperimaginarieswith respect
to Xheq and Yheq .

Proof. Consider z ∈ (X ∪Y )heq , say z = (x, y)E for some tuples x ∈ X , y ∈ Y
and countable equivalence relationE over ∅. For x′ ≡ x consider the hyperdefinable
equivalence relation Ex′ on tp(y) given by

y Ex′ y
′ ⇔ (x′, y) E (x′, y′).

Then Ex′ is ∅-hyperdefinable by Proposition 3.7, and does not depend on the choice
of x′ ≡ x. Similarly, for y′ ≡ y the equivalence relation

x Ey′ x
′ ⇔ (x, y′)E (x′, y′)

on tp(x) does not depend on y′ ≡ y. Clearly z ∈ dclheq(xEy′ , yEx′ ).
We claim that xEy′ is bounded over z. If not, there is an indiscernible sequence
(xi , yi : i < �) in tp(x, y/z) with ¬xi Ey′ xj for i �= j. By orthogonality, for i < j,

tp(xi , xj) ∪ tp(yi , yj ) � tp((xi , yi ), (xj, yj)).
But tp(xi , xj) = tp(xi , xk) for i < k < j, whence

tp((xi , yi ), (xj, yj)) = tp((xi , yi ), (xk, yj)).

Now (xi , yi )E (x, y) E (xj, yj) holds since z = (x, y)E . Hence

(xk, yj)E (xi , yi ) E (xj, yj).

Thus xk Ey′ xj , a contradiction.
Hence xEy′ ∈ bddX (z); similarly yEx′ ∈ bddY (z). �
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Corollary 4.3. For any setA of parameters, bddXY (A) and bddX (A)∪bddY (A)
are interdefinable. Moreover, for aA ⊂ (X ∪ Y )heq we have tp(a/bddXY (A)) �
tp(a/bdd(A)).
Proof. Clearly bddX (A) ∪ bddY (A) ⊆ bddXY (A).
For the converse inclusion, let z ∈ bddXY (A). By Theorem 4.2 there is x ∈
bddX (z) and y ∈ bddY (z) with z ∈ dcleq(xy). So

z ∈ dclheq(bddX (bdd(A)),bddY (bdd(A))) = dclheq(bddX (A),bddY (A)).
For the second assertion, let B be a set of representatives for bdd(A) and F
a type-definable equivalence relation such that BF is equivalent to bdd(A). Then
equality ofE-type over bdd(A) is a bounded equivalence relationEB type-definable
over B, given by

x EB y ⇔
∧

ϕ a B-formula

[(
ϕ(x,B)→ ∃y′z [y E y′ ∧ BFz ∧ ϕ(y′, z)])

∧ (
ϕ(y,B) → ∃x′z [x E x′ ∧ BFz ∧ ϕ(x′, z)])].

As EB is invariant under any A-automorphism, it is in fact type-definable over A.
By Remark 2.2 the class aEB is interdefinable with a tuple

((aAi )Ei : i ∈ I ) ∈ bddXY (A),
where the Ai ⊆ A are countable. Since the partial type (xAi) Ei (aAi) is in
tp(a/bddXY (A)) for all i ∈ I , we get the result. �
Corollary 4.4. If X ′ ⊂ bdd(X ) and Y ′ ⊂ bdd(Y ) are ∅-hyperdefinable, then
X ′ ⊥bddXY (∅) Y ′.
Proof. It is clearly sufficient to show X ⊥bddXY (∅) Y ′. Given x ∈ X and y ∈ Y ′,
consider y0 ∈ Y with y ∈ bdd(y0), and put ȳ = bddY (y0). Now if

x′ ≡bddXY (∅) x and y′ ≡bddXY (∅) y,
choose ȳ′ with ȳ′y′ ≡bddXY (∅) ȳy. As X ⊥bddXY (∅) Y by Lemma 3.6, we have
xȳ ≡bddXY (∅) x′ȳ′. Since

bddXY (ȳ) ∈ dclheq(bddX (ȳ),bddY (ȳ)) = dclheq(bddX (∅), ȳ)
by Corollary 3.8, we obtain

xbddXY (ȳ) ≡ x′bddXY (ȳ′) and bddXY (ȳ)y ≡ bddXY (ȳ′)y′.
(Note that bddXY (∅) is part of the tuples on either side, so we do not have to work
over it.) Choose x′′ with xbddXY (ȳ)y ≡ x′′bddXY (ȳ′)y′. Then

x′′bddXY (ȳ′) ≡ xbddXY (ȳ) ≡ x′bddXY (ȳ′),
so tp(x′′/bddXY (ȳ′)) = tp(x′/bddXY (ȳ′)). By Corollary 4.3 we obtain
tp(x′′/bdd(ȳ′)) = tp(x′/bdd(ȳ′)). As y ∈ bdd(ȳ), we get in particular

x′y′ ≡ x′′y′ ≡ xy.
The result follows. �
Example 4.5. We do need bddXY (∅) in Corollary 4.4, as we might take X ′ =
X × bddY (∅). Then X ′ �⊥ Y unless bddY (∅) = dclheqY (∅).
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§5. Internality and analysability.
Definition 5.1. Let X and Y be hyperdefinable sets over A. We say that X is
(almost)Y -internal if there is some parameter set B such that for every a ∈ X there
is a tuple b ∈ Y with a ∈ dclheq(Bb) (or a ∈ bdd(Bb), respectively).3
If the parameters B can be chosen in some set Z, we say that X is (almost)
Y -internal within Z.
We say that X is Y -analysable (within Z) if for all a ∈ X there is a sequence
(ai : i < α) such that tp(ai/A, aj : j < i) is Y -internal (within Z) for every i < α,
and a ∈ bdd(A, ai : i < α).
For the rest of the section,X andY will be hyperdefinable orthogonal sets over ∅.
Proposition 5.2. If an ∅-hyperdefinable setX ′ isX -analysable withinX ∪Y , then
X ′ is almost X -internal within bddY (∅); if X ′ is X -internal within X ∪Y , then X ′ is
X -internal within bddY (∅).
Proof. We first show that if X ′ is (almost) X -internal within X ∪ Y , then it is
(almost) X -internal within bddY (∅). So suppose ā ∈ X and b̄ ∈ Y are such that
for every cE ∈ X ′ there is a tuple a ∈ X with cE ∈ bdd(āb̄a). Let Φ(x, āb̄a) be the
E-type tp(cE/āb̄a). Then for every symmetric formula�(x, y) ∈ E there is n� < �
such that a maximal �-antichain in Φ has size n�, and a formula φ�(x, āb̄a) ∈ Φ
such that every �-antichain in φ� has size at most n�. Consider the type-definable
relation F on tp(āb̄a) given by

(ā′b̄′a′) F (ā′′b̄′′a′′)⇔
∧
�∈E

[∀x(φ�(x, ā′b̄′a′)→ ∃x′[Φ(x′, ā′′b̄′′b′′) ∧ x �2 x′])

∧ ∀x′(φ�(x′, ā′′b̄′′a′′)→ ∃x[Φ(x, ā′b̄′b′) ∧ x �2 x′])],
where x �2 x′ means ∃x′′ [�(x, x′′) ∧ �(x′′, x′)]. Then (ā′b̄′a′) F (ā′′b̄′′a′′) holds
if and only if Φ(x, ā′b̄′a′) and Φ(x, ā′′b̄′′a′′) contain the same points modulo E:
If they contain the same points modulo E, for every � in E let (xi : i < n�) be a
�-antichain in Φ(x, ā′b̄′a′), and choose (x′i : i < n�) in Φ(x, ā

′′b̄′′a′′) with xi E x′i
for all i < n�. Then whenever x satisfies φ�(x, ā′b̄′a′) there is i < n� with �(x, xi ),
whence x �2 x′i . By symmetry the converse also holds, so (ā

′b̄′a′) F (ā′′b̄′′a′′).
On the other hand, if there is x such that Φ(x, ā′b̄′a′) but ¬x E x′ for all x′ with
Φ(x′, ā′′b̄′′a′′), by compactness there is �′ ∈ E such that ¬�′(x, x′) for all x′ with
Φ(x′, ā′′b̄′′a′′). Then any � ∈ E with �2 � �′ witnesses ¬(ā′b̄′a′) F (ā′′b̄′′a′′).
It follows that F is an equivalence relation, and any automorphism fixes
(āb̄a)F if and only if it permutes the set C ⊂ X ′ of E-classes in Φ(x, āb̄a).
In particular (āb̄a)F ∈ dclheq(C ) and C ⊆ bdd((āb̄a)F ), whence in partic-
ular cE ∈ bdd((āb̄a)F ). Moreover, if X ′ is X -internal, then C = {cE} and
cE ∈ dclheq(āb̄a)F ).
By weak elimination of hyperimaginaries, there is ã ∈ bddX ((āb̄a)F ) and
b̃ ∈ bddY ((āb̄a)F ) with (āb̄a)F ∈ dclheq(ãb̃). Thus we are done if we can show
b̃ ∈ bddY (∅).
3In simplicity theory, this is called finite generation; for internality we would require for every a ∈ X

the existence of some B |
A a and tuple b ∈ Y with a ∈ dclheq(Bb).
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Suppose b̃ /∈ bddY (∅). Then there is an ∅-conjugate b̃′ of b̃ outside bdd(āb̄); if �
is an automorphismmapping b̃′ to b̃, put ā′b̄′ = �(āb̄). Then b̃ /∈ bdd(ā′b̄′). On the
other hand, since ā′b̄′ ≡ āb̄, for every e ∈ C there is ae ∈ X with e ∈ bdd(ā′b̄′ae).
Therefore

b̃ ∈ bddY ((āb̄a)F ) ⊆ bddY (C ) ⊆ bddY (ā′, b̄′, ae : e ∈ C ),
whence b̃ ∈ bddY (b̄′) by Corollary 3.8, a contradiction.
Now assume that x ∈ X ′ and (xi : i < α) is an X -analysis of x within X ∪ Y .
We show inductively on i ≤ α that tp(xj : j < i) is X -internal within bddY (∅). So
suppose tp(xj : j < k) is X -internal within bddY (∅) for all k < i . If i is limit, then
clearly tp(xj : j < i) is X -internal within bddY (∅). If i = k + 1, then by the result
for internality tp(xk/xj : j < k) is X -internal within bddY (xj : j < k) and there is
a ∈ X with

xk ∈ dclheq(a,bddY (xj : j < k), xj : j < k).
Or, by X -internality of tp(xj : j < k) within bddY (∅) there is a′ ∈ X with
(xj : j < k) ∈ dclheq(a′,bddY (∅)). Then by Corollary 3.8

bddY (xj : j < k) ⊆ bddY (a′,bddY (∅)) = bddY (∅),
and xk ∈ bdd(a, a′,bddY (∅)). So tp(xj : j < i) is X -internal within bddY (∅), and
tp(x) is almost X -internal within bddY (∅). �
Corollary 5.3. Let X ′ and Y ′ be ∅-hyperdefinable. If X ′ is almost X -internal
within X ∪ Y and Y ′ is almost Y -internal within X ∪Y , then X ′ ⊥bddXY (∅) Y ′.
Proof. Proposition 3.6 and Corollary 4.3 yield X ⊥bddXY (∅) Y . By Proposition
5.2 we have

X ′ ⊂ bdd(X,bddXY (∅)) and Y ′ ⊂ bdd(Y,bddXY (∅)).
Hence X ′ ⊥bddXY (∅) Y ′ by Corollary 4.4. �
Corollary 5.4. If an ∅-hyperdefinable set Z is almost X - and almost Y -internal
within X ∪ Y , then it is bounded.
Proof. We have Z ⊥bddXY (∅) Z by Corollary 5.3, so Z is bounded by
Remark 3.5. �
Corollary 5.5. If Z ⊆ (X ∪ Y )heq is ∅-hyperdefinable and almost X -internal
within X ∪ Y , then it is X -internal within bddY (∅).
Proof. Let z ∈ Z. By weak elimination of hyperimaginaries there is x ∈ bddX (z)
and y ∈ bddY (z) with z ∈ dclheq(xy). Then tp(y) is Y -internal since y ∈ Yheq ,
but also almost X -internal, as y ∈ bdd(z) and tp(z) is almost X -internal. So
y ∈ bddY (∅) by Corollary 5.4. �
Again Example 4.5 shows that we need bddY (∅) in Corollaries 5.3 and 5.5.

§6. Local simplicity.
Definition 6.1. Let A ⊆ B, and �(x,B) be a partial type over B. We say that
�(x,B) does not divide over A if for any indiscernible sequence (Bi : i < �) in
tp(B/A) the partial type ⋃

i<�

�(x,Bi)
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is consistent. Clearly, tp(a/B) divides over A if and only if tp(a0/B) does so for
some finite subtuple a0 ⊆ a.
Example 6.2. If tp(a) ⊥ tp(b), then tp(a/b) does not divide over ∅.
We now define the appropriate version of local rank. We follow Ben Yaacov’s
terminology [1, Definition 1.4], more general than [7, Definition 4.3.5].

Definition 6.3. Let �(x), Φ(x, y) andΨ(y1, . . . , yk) be partial types in (at most)
countably many variables.

(1) Ψ is a k-inconsistency witness for Φ if

|= ∀y1 . . . yk ¬∃x [Ψ(y1, . . . , yk) ∧
k∧
i=1

Φ(x, yi )].

(2) Let Ψ be a k-inconsistency witness for Φ. The local (Φ,Ψ)-rank D(.,Φ,Ψ)
is defined on partial types in x as follows:
• D(�(x),Φ,Ψ) ≥ 0 if �(x) is consistent.
• D(�(x),Φ,Ψ) ≥ n + 1 if there is a sequence (ai : i < �) such that |=
Ψ(ā) for any k-tuple ā ⊂ (ai : i < �), andD(�(x)∧Φ(x, ai),Φ,Ψ) ≥ n
for all i < �.

If D(�,Φ,Ψ) ≥ n for all n < �, we put D(�,Φ,Ψ) =∞.
An inconsistency witness is a k-inconsistency witness, for some k < �.

Remark 6.4. Note that D(�(x, a),Φ,Ψ) ≥ n is a closed condition on a,
and D(tp(x/a),Φ,Ψ) ≥ n is a closed condition on x over a. By compact-
ness and Ramsey’s theorem, we may require (ai : i < �) to be indiscernible in
Definition 6.3 (2).

Lemma 6.5. Let Ψ be an inconsistency witness for Φ, and � a partial type over A.
Then D(�,Φ,Ψ) is infinite if and only if for every linear order I there are elements
(bi , a

j
i : i ∈ I, j < �) such that |= Ψ(ā) for all ā ⊂ (aji : j < �) of the right length,

bi |= � ∧
∧
k≤i Φ(x, a

0
k), and (a

j
i : j < �) is indiscernible over A ∪ {bka0k : k < i},

for all i ∈ I . Moreover, we may require (bia0i : i ∈ I ) to be indiscernible.
Proof. If the condition is satisfied, we can take I = �. Then for all n ∈ � the
partial type � ∧∧

i≤n Φ(x, a
0
i ) is satisfied by bn and hence non-empty. So

D(�,Φ,Ψ) > D(� ∧Φ(x, a00 ),Φ,Ψ) > D(� ∧Φ(x, a00 ) ∧Φ(x, a01 ),Φ,Ψ)
> · · · > D(� ∧Φ(x, a00 ) ∧ · · · ∧Φ(x, a0n),Φ,Ψ) ≥ 0.

Hence D(�,Φ,Φ) > n for all n < �, and D(�,Φ,Ψ) =∞.
For the converse, by compactness it is sufficient to consider finite I . We show
by induction that if D(�,Φ,Ψ) ≥ n, then the condition is satisfied for I of size
n. For n = 0 there is nothing to show. Suppose D(�,Φ,Ψ) ≥ n + 1. Then by
definition there is a sequence (aj0 : j < �) whose subsequences satisfy Ψ, and
such that D(� ∧Φ(x, a0),Φ,Ψ) ≥ n for all j < �. By Remark 6.4 we may assume
that (aj0 : j < �) is indiscernible over A. Choose b0 |= � ∧ Φ(x, a00 ). By inductive
hypothesis for the partial type �∧Φ(x, a00 ) over A∪{b0, a00}, there are (bi , aji : 1 ≤
i ≤ n, j < �) such that |= Ψ(ā) for all ā ⊂ (aji : j < �) of the right length,
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bi |= � ∧Φ(x, a00 ) ∧
∧
1≤k≤i

Φ(x, a0k),

and (aji : j < �) is indiscernible over A ∪ {b0, a00} ∪ {bk, a0k : 1 ≤ k < i}, for all
1 ≤ i ≤ n, as required.
The final assertion follows by compactness and Ramsey’s theorem. �
Definition 6.6. Let I be an ordered set. A sequence I = (ai : i ∈ I ) is indepen-
dent over A, or A-independent, if tp(ai/A, aj : j < i) does not divide over A for all
i ∈ I . If A ⊆ B and p ∈ S(B), the sequence (ai : i ∈ I ) is aMorley sequence in p
over A if it is B-indiscernible, ai |= p and tp(ai/B, aj : j < i) does not divide over
A for all i ∈ I . If A = B, we simply call it aMorley sequence in p.
Fact 6.7 ([7, Corollary 3.2.5] or [5, Proposition 16.12]). If tp(b/cd ) does not
divide over d and tp(a/cbd ) does not divide over bd , then tp(ab/cd ) does not divide
over d .

For the rest of the section we fix a hyperdefinable set X over ∅. We call a type
p(x) an X -type if it implies x ∈ X .
The following theorem generalizes [7, Theorem 2.4.7] to the local hyperdefinable
context.Note that in the classical development the forkingproperties for hyperimag-
inaries are deduced from the corresponding properties for representatives. Here we
cannot do this, as the ambient theory may well not be simple. So we have to work
with hyperimaginaries in X throughout.

Theorem 6.8. The following are equivalent:

(1) Symmetry holds on X : For all a, b, c ∈ X , tp(a/bc) does not divide over b if
and only if tp(c/ab) does not divide over b.

(2) Transitivity holds on X : If a, b, c, d ∈ X , then tp(a/bcd ) does not divide over
b if and only if tp(a/bc) does not divide over b and tp(a/bcd ) does not divide
over bc.

(3) Local character holds on X : There is κ such that for all countable a ∈ X and
A ⊂ X there is A0 ⊆ A with |A0| ≤ κ such that tp(a/A) does not divide over
A0. In fact, we can take κ = 2|T |.

(4) D(.,Φ,Ψ) < ∞ for any partial X -type Φ(x, y) and inconsistency witness Ψ
for Φ.

(5) For any A ⊆ B ⊂ X , a partial X -type �(x,B) does not divide over A if and
only if there is a Morley sequence I in tp(B/A) such that {�(x,B ′) : B ′ ∈ I }
is consistent.

If any of these conditions is satisfied, then for all A ⊆ B ⊂ X and a ∈ X the type
tp(a/B) does not divide over A if and only if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)

for all (Φ,Ψ). Moreover, Extension holds on X : For any partialX -type �(x) over B,
if � does not divide over A then it has a completion which does not divide over A.

Proof. (1) ⇒ (2) Clearly, if tp(a/bcd ) does not divide over b, it does not
divide over bc and tp(a/bc) does not divide over b. Conversely, suppose that
tp(a/bcd ) does not divide over bc and tp(a/bc) does not divide over b. By sym-
metry, tp(d/abc) does not divide over bc and tp(c/ab) does not divide over b.
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By Fact 6.7 tp(cd/ab) does not divide over b, so again by symmetry tp(a/bcd ) does
not divide over b.
(2) ⇒ (4) Suppose there is a partial X -type Φ and an inconsistency witness Ψ
for Φ such that D(x = x,Φ,Ψ) =∞. Put I = {±1,±(1 + 1

n ) : n > 0} and choose
a sequence (bi , a

j
i : i ∈ I, j < �) as given by Lemma 6.5. Let A− = {bia0i : i <

−1} and A+ = {bia0i : i > 1}. Then tp(b1/A−A+) does not divide over A− and
tp(b1/A−A+a−1) does not divide over A−A+, since the former is finitely satisfiable
in A− and the latter in A+. However, (aj−1 : j < �) witnesses that Φ(x, a−1), and
hence tp(b1/A−A+a−1), divides over A−, contradicting transitivity.
(4)⇒ (3) Assume (4). First, we note that for A ⊆ B ⊂ X , if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)

for all (Φ,Ψ), then tp(a/B) does not divide over A. This is obvious, as if some
A-indiscernible sequence (Bi : i < �) in tp(B/A) witnesses dividing, we can take
Φ(x, y) = tp(a,B) and Ψ = tp(B1, B2, . . . , Bn) for n < � sufficiently large. Then Ψ
is an n-inconsistency witness (clearly, we may restrict to countable B), and

D(tp(a/B),Φ,Ψ) < D(tp(a/A),Φ,Ψ).

Given tp(a/A) it is hence enough to take A0 ⊆ A big enough such that
D(tp(a/A),Φ,Ψ) = D(tp(a/A0),Φ,Ψ)

for all (Φ,Ψ). There are only 2|T | such pairs, so we need at most that many
parameters.
(3) ⇒ (4) Suppose D(x = x,Φ,Ψ) = ∞. Then for any cardinal κ we can find
an indiscernible sequence (bi , a

j
i : i ≤ κ+, j < �) as in Lemma 6.5. Since Φ(x, a0i )

divides over {a0j : j < i} for all i ≤ κ+, the type tp(bκ+/a0i : i < κ+) divides over
any subset of its domain of cardinality ≤ κ.
(4)⇒ (5). Assume (4). Given aE ∈ X andA ⊆ B = bE ⊂ X , for any pair (Φ,Ψ)
and any formula ϕ(y, b) we can adjoin either

∃yz [x E y ∧ z E b ∧ ϕ(y, z)] or ∃yz [x E y ∧ z E b ∧ ¬ϕ(y, z)]
and preserve D(.,Φ,Ψ)-rank. By compactness we can thus complete tp(aE/A)
to an E-type p over B of the same D(.,Φ,Ψ)-rank. In particular, no Φ-instance
in p divides over A with Ψ as inconsistency witness. Coding finitely many pairs
(Φi ,Ψi : i < n) in a single one, one obtains an extension p such that no
Φi -instance Ψi -divides for any i < n; by compactness we can do this for all pairs
(Φ,Ψ) simultaneously and obtain an extension which does not divide over A.
Take B = XM ⊃ A for some sufficiently saturated model M. Then a sequence
(ai : i < �) ⊂ B such that ai |= p �(A,aj :j<i) is a Morley sequence in tp(a/A).
This shows in particular that if �(x,B) does not divide over A, then there is a
Morley sequence I in tp(B/A) such that {�(x,B ′) : B ′ ∈ I } is consistent.
Conversely, suppose that �(x,B) divides over A, as witnessed by an
A-indiscernible sequence (Bi : i < �) in tp(B/A) with

⋃
i<� �(x,Bi) inconsistent.

Take any Morley sequence I in tp(B/A). By [7, Corollary 2.2.8] (which is shown
there for real tuples, but transfers easily to hyperimaginaries) we may assume that
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Bi Î is A-conjugate to I for all i ∈ I and that (Bi : i < �) is indiscernible over AI .
If �̄(x) =

⋃
B′∈I �(x,B

′) were consistent, then (Bi : i < �) would witness that

D(�̄(x) ∧ �(x,B0), �(x, y),Ψ) < D(�̄(x), �(x, y),Ψ)
for some inconsistency witness Ψ. But byA-conjugacy the two ranks must be equal,
a contradiction.
(5) ⇒ (1) Let us first show Extension. If A ⊆ B ⊂ X and �(x,B) is a partial
X -type which does not divide over A, let (Bi : i < α) be a very long Morley
sequence in tp(B/A). Consider any realization a |= ∧

i<α �(x,Bi ). Since α is large,
there is an infinite subset J ⊂ α such that tp(Bi/aA) is constant for i ∈ J . Put
p(x) = tp(a/AB), a completion of �. Then (Bi : i ∈ J ) witnesses that p does not
divide over A.
Nowgivena, b, c ∈ X such that tp(a/bc) does not divide over b, letB = XM � bc
for some sufficiently saturated model M, and p an extension of tp(a/bc) to B
which does not divide over b. Choose a sequence (ai : i < �) ⊂ B such that
ai |= p �(bc,aj :j<i). This is a Morley sequence in tp(a/bc) over b. Then (ai : i < �)
is a Morley sequence in tp(a/b), and ai |= tp(a/bc) for all i < �. Hence tp(c/ba)
does not divide over b, and symmetry holds.
Finally we show that if (1)−(5) hold and tp(a/B) does not divide over A for
A ⊆ B ⊂ X and a ∈ X , thenD(tp(a/A),Φ,Ψ) ≥ n implies D(tp(a/B),Φ,Ψ) ≥ n
for all (Φ,Ψ). For n = 0 this is obvious. So suppose D(tp(a/A),Φ,Ψ) ≥ n + 1.
Then there is (di : i < �) indiscernible over A such that d̄ |= Ψ for all
d̄ ⊂ (di : i < �) of the right length, and D(tp(a/A) ∧ Φ(x, di),Φ,Ψ) ≥ n for
all i < �. Let q be a completion of tp(a/A) ∧ Φ(x, d0) with D(q,Φ,Ψ) ≥ n.
Clearly, we may assume a |= q, and that tp(d0/aB) does not divide over aA.
As tp(a/B) does not divide over A, by symmetry and transitivity tp(ad0/B)
does not divide over A, and tp(a/d0B) does not divide over d0A. By induction
hypothesis,

D(tp(a/d0A),Φ,Ψ) ≥ n implies D(tp(a/d0B),Φ,Ψ) ≥ n.
As tp(d0/B) does not divide over A and (di : i < �) is A-indiscernible, we may
assume that it remains indiscernible over B. But then it witnesses

D(tp(a/B),Φ,Ψ) ≥ D(tp(a/d0B),Φ,Ψ) + 1 ≥ n + 1. �
Definition 6.9. An A-hyperdefinable set X is simple (over A) if it satisfies any
of the conditions of Theorem 6.8 when we adjoin A to the language. If X is simple
over A and a, b, c ∈ X , we shall say that a and c are independent over Ab, written
a |
Ab

c, if tp(a/Abc) does not divide over Ab.

Note that we only allow tuples and parameters from A ∪ X . If X is stably
embedded, we can of course allow parameters from anywhere. It is immediate from
the definition that if X is simple over A and B ⊂ X , then X is simple over AB.
Remark 6.10. If X is merely hyperdefinable, it may be simple although no
definable or even type-definable imaginary set in the ambient structure is simple.

If X is simple, it is now standard to extend the notions of dividing and inde-
pendence to hyperimaginaries in XheqA . Moreover, we can develop basic simplicity
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theory (canonical bases, the independence theorem, stratified ranks, generic types,
stabilizers, see [5,7]) within XheqA , replacing modelsM by subsets X

heq
A ∩Mheq .

Proposition 6.11. Let X and Y be orthogonal ∅-hyperdefinable sets such that X
is simple over ∅. If A ⊂ Y is a set of parameters, then X is simple over A, and over
bddY (A). In particular, letZ be a set hyperdefinable over some parametersA ⊂ X∪Y .
IfZ is X -internal within X ∪Y , thenZ is simple overA; ifZ ⊆ (X ∪Y )heq is almost
X -internal, then Z is simple as well.

Proof. Simplicity overA is obvious fromorthogonality; simplicity over bddY (A)
follows. Now ifZ isX -internal withinX ∪Y , thenZ ⊂ XheqbddY (A) by Proposition 5.2,
and must be simple as well; if Z ⊆ (X ∪ Y )heq is almost X -internal within X ∪ Y ,
it is X -internal within bddY (A) by Corollary 5.5. �

§7. A hyperdefinable version of Schlichting’s Theorem. Recall that Schlichting’s
Theorem [6], generalized by Bergman and Lenstra [3], states that if H is a family
of uniformly commensurable subgroups of a group G , then there is a subgroup N
commensurable with all groups inH (in fact a finite extension of a finite intersections
of groups inH) which is invariant under all automorphisms ofG which fixH setwise.
Here two subgroups H and K are commensurable if their intersection has finite
index in both H and in K ; uniformly commensurable means that there is a finite
bound on these indices asH and K vary inside H.
We shall call two hyperdefinable subgroups G andH commensurable if the index
of their intersection in both G and in H is bounded, i.e., less than the cardinality
κ of the monster model. If G is a hyperdefinable group, a hyperdefinable family of
subgroups is a family H = {Ha : a |= �} for some partial types �(y) and Φ(x, y)
such that Ha = {x ∈ G :|= Φ(x, a)} is a subgroup of G for any a |= �. Note that
a hyperdefinable family of commensurable subgroups is automatically uniformly
commensurable by compactness, i.e., the index of the intersection H ∩ H ∗ in H
(and by symmetry in H ∗) is bounded independently of the choice ofH,H ∗ ∈ H.
For hyperdefinable families of commensurable groups in a simple theory a
version of Schlichting’s Theorem has been shown in [7, Theorem 4.5.13], gener-
alizing a result of Hrushovski for theories of finite and definable S1-rank. Here
we shall show it for hyperdefinable families of commensurable subgroups in any
theory.

Theorem 7.1. Let G be a hyperdefinable group,H a hyperdefinable family of com-
mensurable subgroups,andΓ a hyperdefinable groupof automorphismsofG stabilizing
H setwise. Then there is a Γ-invariant hyperdefinable subgroupN commensurable with
any group in H; moreover N is invariant under any model-theoretic automorphism
stabilising H.

Proof. Suppose H = {Φ(x, a) : a |= �}; clearly we may assume that Φ is closed
under finite conjunctions. We put Ha = {g ∈ G :|= Φ(g, a)}. As H is Γ-invariant,
we have �H ∈ H for anyH ∈ H.
Enumerate Φ = {φi : i < α} for some ordinal α; for i < α put

�i(x, x′, y, ) = ∃z [z ∈ −1(x−1x′) ∧ ¬φi(z, y)].
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(Here  is a variable for elements from Γ, acting on elements from G . Thus
−1(x−1x′) is an element of G depending on x, x′ and ; as it is hyperimagi-
nary, it corresponds to a class of real tuples, and we demand that z be one of them.)
Clearly �i is (equivalent to) a partial type. Consider a hyperdefinable subgroup K
ofG . A complete �i(x, x′, a, �)-graph of size n inK is a set of elements {hj : j < n}
of K such that for any j �= j′ one has |= �i(hj, h′j , a, �). The existence of such a
graph implies in particular that the index of K ∩ �Ha in K is at least n.
AsH is a hyperdefinable family of commensurable subgroups, by compactness for
every i < α there is an integer ni such that for anyH ∈ H and (�, a) |= Γ×� there is
no complete �i(x, x′, a, �)-graph in H of size ni . If K is a bounded intersection of
groups in H, we put i(K, a, �) = (ki : i < α), where ki ≤ ni is the size of a maximal
complete �i(x, x′, a, �)-graph in K , and call this the index of (a, �) in K . We order
the set of indices lexicographically.
Clearly, for K0 ≤ K1 we have i(K0, a, �) ≤ i(K1, a, �); by compactness equality
holds if and only if K0�Ha = K1�Ha : if i(K0, a, �) = i(K1, a, �), then for any i < α
let (gij : j < ki) be a maximal complete �i(x, x

′, a, �)-graph in K0. By equality of
the index, this is also a maximal complete graph in K1. Then for any g ∈ K1 and
i < α there is some gij ∈ K0 with |= φi(�−1(g−1gij), a). By compactness, as Φ is
closed under finite conjunctions, there is g′ ∈ K0 such that |= φi(�−1(g−1g ′), a) for
all i < α, that is g−1g ′ ∈ �Ha and g ∈ K0�Ha .
By compactness, for every bounded intersection K of groups in H there is some
maximal index i such that for some (�, a) |= Γ× � we have i = i(K, a, �); call this
the index i(K) of K . Since for � ′ ∈ Γ and (�, a) |= Γ× � we have

i(� ′K, a, � ′�) = i(K, a, �),

we obtain i(K) = i(�K). As the set of indices is bounded and i(K0) ≤ i(K1) for
K0 ≤ K1, there is some bounded intersection K of groups in H such that i(K) is
minimal possible, say i0. We shall call K strong if i(K) = i0.
If K is strong, we put

H(K) = {H ∈ H : ∃ (�, a) |= Γ× � [H = �Ha ∧ i(K, a, �) = i0]}.
Then � ′K is also strong for any � ′ ∈ Γ, and

H(� ′K) = {� ′�Ha : �Ha ∈ H(K)} = � ′(H(K)).
Now for H ∈ H(K) the set

⋂
g∈K (KH )

g is a subgroup of G containing K ; it is
hyperdefinable, as we only have to conjugate by a set of representatives of K/H ,
which is bounded. Then

N(K) =
⋂

H∈H(K)

⋂
g∈K
(KH )g

is a subgroup ofG containingK ; it is hyperdefinable as it containsK andmust have
bounded index in

⋂
g∈K (KH )

g for anyH ∈ H(K), so is a bounded intersection.
If K1 is strong and K0 ≤ K1, then K0 is again strong and H(K0) ⊆ H(K1).
Moreover K0H = K1H for anyH ∈ H(K0), whence⋂

g∈K0
(K0H )g =

⋂
g∈K1
(K1H )g ,
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and
K1 ≤ N(K1) ≤ N(K0) ≤ K0H = K1H.

It follows that there is an absolute bound on the index |N(K) : K1|, independent of
the choice of strongK . As for a bounded family (Ki : i ∈ I ) of strong subgroups the
intersection

⋂
i∈I Ki is again strong, there is some strong K such that N = N(K)

is maximal possible. Then N is hyperdefinable, commensurable with all groups
in H, and invariant under Γ and all model-theoretic automorphisms stabilizing H
setwise. �
Corollary 7.2. Let G be a hyperdefinable group, and H a subgroup commensu-
rable with all its G-conjugates. Then there is a normal hyperdefinable subgroup N
commensurable with H .

Proof. We apply Theorem 7.1 to the family H of G-conjugates of H , with the
action of Γ = G by conjugation. �

§8. Groups interpretable in orthogonal sets. Recall that two hyperdefinable sub-
groups H1 and H2 of some group G are commensurable if H1 ∩ H2 has bounded
index both in H1 and in H2.

Theorem 8.1. SupposeX andY are orthogonal∅-hyperdefinable sets in a structure
M, and G is an ∅-hyperdefinable group in (X ∪ Y )heq . If X is simple over ∅, there is
an ∅-hyperdefinable normal X -internal subgroupN of G such that the quotient G/N
is Y -internal.N is unique up to commensurability.

Proof. Let us first show uniqueness: If N ′ is a second such group, then
N/(N ∩N ′) and N ′/(N ∩N ′) are X -internal and Y -internal, and hence bounded
by orthogonality of X and Y . Thus N and N ′ are commensurable.
By Theorem 4.2 every element g ∈ G is of the form (gX , gY )E for some gX ∈ Xheq
and gY ∈ Yheq , both bounded over g, and some type-definable equivalence relation
E with bounded classes, depending on tp(g). Hence tp(g/gY ) is X -internal and
tp(g/gX ) is Y -internal. Now if h = (hX , hY )E and gh = ((gh)X , (gh)Y )E , then

(gh)X ∈ bddX (gX , gY , hX , hY ),
whence (gh)X ∈ bddX (gX , hX ) by Corollary 3.8. Similarly (gh)Y ∈ bddY (gY , hY ).
Now X is simple, as is tp(g, h/gY , hY ) for any g, h ∈ G by Proposition 6.11.
Hence we can consider g, h ∈ G such that g |
gY ,hY

h. Then for any stratified local
rank D

D(gh/(gh)Y ) ≥ D(gh/(gh)Y , gY , hY , g) = D(h/gY , hY , g)
= D(h/gY , hY ) = D(h/hY ),

(†)

where the first equality holds as (gh)Y ∈ bddY (gY , hY ), and the last equality follows
from h |
hY

gY by orthogonality (Example 6.2). Similarly

D(gh/(gh)Y ) ≥ D(g/gY ).
Now suppose G is a subset of (Xm × Yn)/E, where m, n are at most countable.
Then if g = (x̄g , ȳg)E ∈ G , we have g |
gY

ȳg by X -internality of tp(g/gY ) and

orthogonality, and gY ∈ bdd(ȳg ), whence D(g/gY ) = D(g/ȳg). By compactness,
there is a G-type p((x̄, ȳ)E) implying that D((x̄, ȳ)E/ȳ) is maximal for all local
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stratified ranks. But if g, h |= p with g |
gY ,hY
h, then we must have equality

in (†). Therefore g, h and gh are pairwise independent over gY , hY , (gh)Y . Put
A = (gY , hY , (gh)Y ). Then X ′ = tp(g/A) is X -internal and simple, as is X ′X ′−1.
We may therefore define

S0 = {g ∈ G : ∃x (x ≡lstpA gx ≡lstp a ∧ x |

A

g ∧ gx |

A

g} ⊆ X ′X ′−1

and the stabilizer S = stab(g/A) = S20 , an X -internal hyperdefinable subgroup
of G .
Now [4, Lemme 1.2] (see [4, Remarque 1.3] for the extension from the stable to
the simple context) states that whenever g, h and gh are pairwise independent over
A, then g is generic in the coset Sg, and this coset is hyperdefinable over bdd(A).
By orthogonality, g |
gY

hY , (gh)Y . This implies in particular

D(S) = D(Sg) = D(g/gY , hY , (gh)Y ) = D(g/gY ) = D(p).

Suppose that S is not commensurable with Sh for some h ∈ G . Then SSh is still
X -internal, with

D(SSh) ≥ D(S) = D(p)
for every stratified local rankD, and for at least one such rankD0wehaveD0(SSh ) >
D0(p). Choose g ′ ∈ SSh with D0(g ′/h) = D0(SSh). By pre-multiplying with
a generic element of S and post-multiplying with a generic element of Sh , the
inequality (†) implies that we may assumeD(g′/h) ≥ D(p) for every stratified local
rank D. However, tp(g′/h) is X -internal, so g ′Y ∈ bddY (g ′) implies g ′Y ∈ bddY (h)
by Lemma 3.8 and Proposition 5.2. Thus

D(g ′/g ′Y ) ≥ D(g ′/h) ≥ D(p) and D0(g ′/g ′Y ) ≥ D0(g ′/h) > D0(p),
contradicting our choice of p. Hence S is commensurable with all its conjugates.
By Corollary 7.2 there is a hyperdefinable normal subgroupN ofG commensurable
with S. SoN is X -internal, andD(N) = D(S) = D(p) for all stratified local ranks
D. Now the same proof, with NZ instead of SSh , shows that if Z is an X -internal
hyperdefinable subset of G , then Z is covered by boundedly many cosets of N . In
particular, for any g′ ∈ G the type tp(g ′/g ′Y ) is covered by boundedly many cosets
of N . But then g ′N ∈ bdd(g ′Y ), and G/N is almost Y -internal, whence Y -internal
by Corollary 5.5. �
Corollary 8.2. Suppose X and Y are orthogonal type-definable sets over ∅ in a
structureM, and G is a type-interpretable group over ∅ in (X ∪ Y )eq . If X is simple
over ∅, there is a normal X -internal subgroupN of G type-interpretable over ∅, such
that the quotient G/N is Y -internal. N is unique up to commensurability. If X is
definable and supersimple, then we can take N relatively interpretable.

Proof. The first part is obvious from Theorem 8.1, as a hyperdefinable subgroup
of a type-interpretable group is again type-interpretable.
If X is definable and supersimple, N must be contained in a definable X -internal
set X̄ by [7, Lemma 3.4.17]; note that X̄ will also be supersimple. So N is the
intersection of definable supergroups by [7, Theorem 5.5.4], one of which, say N0,
must be contained in X̄ by compactness. ThenN0 is X -internal. As above,N0 must
be commensurablewith all itsG-conjugates;moreover, commensurability is uniform
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by compactness (or [7, Lemma 4.2.6]). By [7, Theorem 4.2.4] there is a relatively
interpretable normal subgroup N̄ commensurable withN0. So N̄ isX -internal, and
G/N̄ is Y -internal. �
Question 8.3. If X and Y are orthogonal type-definable sets (or even definable
sets), X is simple and G is a relatively definable group in (X ∪ Y )eq , can we find a
relatively definable normal X -internal subgroupN such that G/N is Y -internal?

Question 8.4. What can we say if neither X nor Y is simple? Is it true that in
every hyperdefinable subgroupof ((X∪Y )heq there is amaximal normal hyperdefinable
X -internal subgroupNX , a maximal normal hyperdefinableY -internal subgroupNY ,
an X -internal hyperdefinable local groupGX , a Y -internal hyperdefinable local group
GY and a hyperdefinable locally bounded equivalence relation E on GX × GY such
that G/(NXNY ) is isogenous, or even isomorphic, to (GX ×GY )/E?
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