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ABSTRACT

We discuss the role of integrated chance constraints (ICC) as quantitative risk
constraints in asset and liability management (ALM) for pension funds. We de-
fine two types of ICC: the one period integrated chance constraint (OICC) and
the multiperiod integrated chance constraint (MICC). As their names suggest,
theOICC covers only one period, whereas several periods are taken into account
with the MICC. A multistage stochastic linear programming model is therefore
developed for this purpose and a special mention is paid to the modeling of
the MICC. Based on a numerical example, we first analyze the effects of the
OICC and the MICC on the optimal decisions (asset allocation and contribu-
tion rate) of a pension fund. By definition, the MICC is more restrictive and
safer compared to the OICC. Second, we quantify this MICC safety increase.
The results show that although the optimal decisions from the OICC and the
MICC differ, the total costs are very close, showing that the MICC is definitely
a better approach since it is more prudent.
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1. INTRODUCTION

A pension fund is any plan, fund or scheme, established by a company, govern-
mental institution or labor union, which provides retirement incomes. The actu-
arial present value of current and future payments constitutes the total liability
of the fund. The pension fund receives contributions from its active members
and/or the employer. This money (considered as the total wealth or total asset)
is invested in a wide range of assets. The asset allocation is made in such a way
that it guarantees, to a certain extent, the payments of future obligations. That
is not so trivial: assets yield random returns and future benefits are not known
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with certainty. An asset liability management study (ALM) provides a rich the-
oretical background to address that issue. Its goal is to determine the adequate
asset allocations and contribution rates in order to guarantee the payment of
current and future pensions.

The use of ALM methods has a long tradition in pension funds. At the be-
ginning, it has started with deterministic methods, whose goal is to determine the
adequate allocation that protects the fund from any unexpected movements in
cash flows and/or interest rate. The future cash flows are estimated and assumed
to be certain; the wealth is mainly allocated to bonds considered as risk free and
the assets are deterministic. Bonds are chosen in such a way that their related in-
comes correspond to yearly pension payments. The models are essentially based
on immunization and cash-flow matching; see, for example, Koopmans (1942)
and Redington (1952). The drawbacks of different deterministic methods are
examined in Hiller and Schaack (1990). Two key points should be emphasized
here. First, it is difficult (if not impossible) to find bonds that enables a perfect
match for a realistic pension fund problem. Second, these approaches could be
costly since the yields on bonds are low.

A possible way to reduce the cost of the pension fund is to invest in riskier
assets. The mean-variance portfolio of Markowitz (1952) provides a good com-
promise between the high yield and the pension funds level of risk. In this re-
spect, the liability is evaluated deterministically and the decision maker has to
determine the lowest risk portfolios in order to meet the estimated liability. This
approach is known as the asset only method. The integration of the liability in
the traditional mean-variance problem has led to the surplus optimization the-
ory. The surplus is generally defined as the total asset minus the total liability.
As interest rate and future payments are random, the total liability is a random
variable influenced by many factors. The factors can be actuarial or economic.
The economic risks are often related to inflation, salary growth and discount
rates. As these risks also have an effect on the total amount of asset, it is impor-
tant to include the random liability as part of the ALM model and not only as
the target wealth for the pension fund portfolio optimization. More specifically,
the correlations between asset and liability are thus considered in the determi-
nation of the optimal portfolio. For example, the assets, with higher covariance
to liability, tend to reduce the risk exposition of the pension fund, see Sharpe
and Tint (1990) and Keel and Müller (1995). Leibowitz and Henriksson (1988)
showed that an asset such as cash, which should typically reduce the riskiness
of an all-asset portfolio, may actually increase the riskiness of a portfolio that
includes liability. Including liability in the optimal asset allocation decision has
a long story in finance theory. We refer the readers to Sharpe and Tint (1990),
Elton andGruber (1992), Leibowitz et al. (1992) among others. Themultiperiod
ALM case has been discussed in Fama (1970), Hakansson (1970), Hakansson
(1974) and Merton (1969).

The pension fund problem is a long-term problem with a horizon span of
approximately 30 years. Hence, its model should be dynamic. Furthermore, reg-
ulations often imposemany types of constraints. Thosematters are hardly taken
into account by the surplus optimization methods. In practice, Monte-Carlo
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methods are commonly used due to their ability to incorporate the above issues.
Initially, they consisted on defining a set of feasible allocations and contribu-
tion rates, and choosing the best one in some sense. The choice is based on the
simulation of the future paths. Due to the technical innovations, these methods
have significantly evolved with the work of Wilkie (1995) and Ahlgrim et al.
(2005) concerning economic scenario generation. Møller and Steffensen (2007)
provide different tools for valuing the pension fund liabilities. Recent years have
also seen the emergence of methods known as stochastic programming (SP).

Based on a scenario approach, SP gives a flexible and powerful tool for
ALMs. Its importance lies in its ability to easily incorporate various types of
constraints (Zenios 2006). Moreover, assets and liabilities are all influenced by
many sources of risk and the risk aversion is accommodated; the framework
has a long time horizon split into subperiods (multistage); the portfolio can
be rebalanced dynamically at the beginning of each subperiod; all these are
incorporated in a single and consistent structure while satisfying operational
or regulatory restrictions and policy requirements. SP for ALM is rooted with
the work of Kusy and Ziemba (1986) who showed, based on a five-year period
application to the Vancouver City Saving Credit Union, that SLP is theoret-
ically and operationally superior to a corresponding deterministic linear pro-
gramming (LP) model. The authors have proved that the effort required for the
implementation of ALM and its computational requirements are comparable
to those of the deterministic model. For a Japanese insurance company, Carino
et al. (1994) developed a model that enables the decision makers to include risk
management tools as well as including the complex regulations imposed by the
Japanese insurance laws and practices. Over the two years of experiment, the
resulting investment strategy has been fruitful as it has yielded extra income of
42 basis points (US$79 million). More recently, Geyer and Ziemba (2008)—for
the Austrian pension fund of the electronics firm Siemens—has implemented
a model that allows specific features such as state-dependent correlation ma-
trices and fat-tailed asset return distributions. Considering a Finnish pension
company, Hilli et al. (2007) focus on the modeling of the stochastic factors and
analyzes the obtained numerical solution. Dert (1995) pioneered the inclusion
of chance constraints (CC) in multistage recourse models for pension funds.
Chance constrained programs often lead to integer programming for which, it
may be difficult to determine a tractable solution. As an alternative to CC, Han-
eveld et al. (2010) proposed the integrated chance constraints (ICC), whose fea-
sibility set is more handleable as it does not require integer programming. The
literature of SP in ALM also includes Consigli and Dempster (1998), Bogentoft
et al. (2001), Drijver (2005), Faleh (2011), Aro and Pennanen (2013) among
others.

The ALM model in this paper is a MSP, for which, we minimize the total
funding cost under risk, legal, budget, regulatory and operating constraints.
The total funding cost is composed of regular and remedial contributions.
Regular contribution constitutes a certain proportion (contribution rate) of the
total salary whereas remedial contribution is an additional financial support
provided by the employer (or a sponsor) whenever the solvency target is in
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question. More specifically, we focus on the risk constraints, which are of ICC
type in this work. The ICC is computationally of great interest; in particular
when a quantitative risk measure is preferable. We define the funding ratio as
the ratio of total asset over total liability. Our goal is to meet a certain funding
ratio, called here target funding ratio, at the end of each subperiod. For a
predefined target funding ratio, the ICC put an upper bound on the expected
shortfall, i.e. the expected amount by which the goal is not attained. Haneveld
et al. (2010) and Drijver (2005) pioneered the application of ICC in ALM
for pension fund. However, the risk parameter considered in their models is
neither scale free, nor time dependent. Our model is close to Haneveld et al.
(2010) with the particularity that the risk parameter is a linear function of
total liability. Then, it becomes invariant with respect to the size of the fund as
well as time dependent. We define two types of ICC: the one period integrated
chance constraint (OICC) and the multiperiod integrated chance constraint
(MICC). As their names suggest, the OICC covers only one period whereas
several periods are taken into account with the MICC. A multistage stochastic
linear program (SLP) is therefore developed for this purpose and a special
mention is paid to the modeling of the MICC.

The rest of the paper is organized as follows. In Section 2, the theoretical
background, the dynamics and the ALM optimization problem are extensively
detailed. In Section 3, OICC and MICC are introduced and their SLP refor-
mulations are derived as well. In Section 4, a numerical example is examined
from the perspective of a defined benefit fund that invests in stocks, real estate,
bonds, deposits and cash. All numerical results are implemented using the solver
CPLEX in the mathematical programming language AMPL. We first analyze
the effect of the risk parameter on the optimal decisions. This section finishes
by a brief comparison of the two ICCs.

2. SETTINGS

2.1. Multistage recourse models

In this section, we describe the classical architecture of the multiperiod decision
framework. The model’s setup presented here resembles mostly to Haneveld
et al. (2010).

Since we aim for strategic decisions, we model the ALM process over a num-
ber of years and one set of decisions is taken each year. We discretize time
accordingly so that the model has a (finite) number of one-year time periods.
Consequently, we assume that the ALM model has a horizon of T years from
now, split in T subperiods of one year each. The resulting years are denoted by
an index t, where time t = 0 is the current time. By year t (t = 1, . . . ,T), we
mean the span of time [t − 1, t). We define

Tt := {t, t + 1, . . . ,T} .
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We assume that uncertain parameters (e.g. asset returns) can be modeled as ran-
dom variables with known distributions. At each time t ∈ T0, the pension fund
is allowed to make decisions (corresponding to yearly corrections), based on
the actual knowledge of parameters. During each one-year period, a realization
of the corresponding random parameters becomes known (e.g. assets return
during that year). That is, the concept underlying our model is the following
sequence of decisions and observations:

decide observe decide observe decide observe

X0 � ω1 � X1 � · · · � ωT−1 � XT−1 � ωT

where Xt is the vector of decision variables at time t ∈ T0, and vector ωt, t ∈ T1
models all economic events which are the source of uncertainty and risk for
the pension fund management, which, in our case, are asset returns as well as
random contributions and liability streams. Time t is assumed to be the end of
the financial year t. We assume that a financial year coincides with a calendar
year. At time t ∈ T0, decisions Xt are taken with full knowledge of the past [0, t]
but with only probabilistic information about the future (t,T].

Uncertainty in the model is expressed through a finite number S of sample
paths spanning from t = 0 until t = T called scenarios. That is, we assume
the random variable follows a discrete distribution with S possible outcomes.
Each scenario represents a sequence of possible realizations of all uncertain pa-
rameters in the model. As explained above, ωt is the stochastic vector process
whose values are revealed in year t. Then, the set of all scenarios is the set of
all realizations ωs := (

ωs
1, . . . , ω

s
T

)
, s ∈ S := {1, . . . , S} of ω := (ω1, . . . , ωT).

Scenario s has a probability ps , where ps > 0 and
∑S

s=1 p
s = 1. It represents a

description of possible future, starting just after t = 0. If we assume that we can
observe the “state of the world” at time t, (0 < t < T), then there is a unique
history of realizations of (ω1, . . . , ωt−1) leading to that state, but the future as
seen from time t may unfold in several ways. That is, there are several distinct
scenarios which share a common history up to time t. A suitable representation
of the set of scenarios is given by a scenario tree (see Figure 1). In respect to
Figure 1, we define the node as the possible outcome of the stochastic vector
ωt at a given time t ∈ T0. Each path of ωt from t = 0 to t = 3 represents
one scenario; each node of the scenario tree has multiple successors, in order
to model the process of information being revealed progressively through time.
By convention, the scenarios are numbered top-down by their end node. The
arcs in the tree denote realizations in one time period. We assume here that, for
a specific decision time t ∈ T0, the numbers of realizations in one time period
descending from the current nodes are identical.

For example in Figure 1, we have a 3-year horizon scenario tree with 40 sce-
narios. Over the first period starting from time 0 to time 1, there are five possible
realizations. From each of these realizations, we have four possible outcomes
over the second year; each of them is a conditional realization as it depends on
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FIGURE 1: A scenario tree with 40 scenarios and 66 nodes. (Color online)

the preceding node. Over the third period, each of the second period observa-
tions can lead to two possible outcomes. All this gives a branching structure of
1 − 5 − 4 − 2 and leading to a total of S= 5 × 4 × 2 = 40 possible scenarios.

A multistage recourse model is an optimization problem defined on such
a scenario tree. Considering the remaining future represented by the subtree
rooted at (t, s), optimal decisions are taken for each node (t, s) of the event tree,
given the information available at that point. Optimality is defined in terms of
current costs plus expected future costs, which are computed with respect to the
appropriate conditional distributions, van der Vlerk et al. (2003).

Ideally, one would like to make different decisions for every path at every t ∈
T0, but this would lead to undesirable anticipativity in the model. The simplest
way to avoid this is to make one single decision at each time t for all paths by
adding explicit constraints. That is, for any two different scenarios s1 and s2
(s1, s2 ∈ S and s1 �= s2) having the same history up to time t ∈ T0, we enforce
Xs1
t = Xs2

t , where Xs
t is the decision Xt under scenario s. For example, at the

empty circle of Figure 1, X1
1 = X2

1 = · · · = X8
1.

2.2. Dynamics

2.2.1. Assets. In this paper, we are considering a buy and hold model applied
to a DB plan in which one seeks to minimize the expected cost of funding. In
this respect, dynamics for both assets and liabilities should clearly be specified.

At initial time t = 0, the exact levels of wealth and liability are available to the
decision maker who has to decide, each period, how to rearrange his portfolio
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in order to cover liabilities and, at the same time, to achieve high returns on
the financial market. The higher the returns are, the lower the contribution rate
could be. Let denote At the total amount of wealth at time t ∈ T0. The total
wealth is allocated into d classes of assets and in cash. Let k ∈ K := {1, ..., d}
denote the asset class index. At each decision time t ∈ T0, a specified amount of
Hk,t is allocated to asset k and Ct is the cash amount. We can write

At =
d∑
k=1

Hk,t + Ct.

Through buying and selling, the investor restructures his portfolio at each time
t. Once the tth stage decision is made, the holdings Hk,t can be calculated. The
shares in the portfolio are then kept constant till the next decision time. The
value of Hk,t is affected by the returns on the market. Let define ξk,t := 1 + rk,t
where rk,t is the random rate of return on asset class k over year t.

Over year t, the pension fund pays benefits to its non-active members and
receives contributions from its active members or/and the employer (also called
the sponsor). Benefits regroup pensions which are paid to retirees, disability and
death annuities or lump sum, whereas contributions are composed of yearly
payments from all the active members and/or sponsor to the plan. When it
appears that the plan is unfunded according to its solvency target, the sponsor
may finance the deficit. As in van der Vlerk et al. (2003), we name this funding
here as remedial contribution. We then assume that whenever the solvency
target is not fulfilled, a remedial contribution in cash can be obtained from the
sponsor. In practice, it does not really work that way. For example in van der
Vlerk et al. (2003), the remedial is only provided after two consecutive periods
of underfunding. We will see in the model description that the parameters are
set such that the remedial contribution variable is non-zero only under some
conditions. In general for DB plans, future benefits and liabilities depend on
company policy regulation and can be estimated whereas yearly contribution
is defined as a certain proportion of the yearly salary. Asset allocation and
contribution rate are defined with respect to the level of future benefits and
liabilities (e.g. Switzerland). Gottlieb andWhiston (2005) provides a rich source
of information concerning different types of pension plans and features. During
year t, let Bent and Wt denote, respectively, the total amount of benefits paid
and the level of salary. The variable crt is the decided contribution rate for year
t + 1. For returns and cash-flow variables, index t means that payments occur
over year t but cash-flows are accounted at the end of year. Accordingly, the
total asset dynamic is modeled as

At =
d∑
k=1

Hk,t−1ξk,t +Ct−1
(
1 + r f

)+ crt−1Wt −Bent + Zt =
d∑
k=1

Hk,t +Ct, (1)

for t ∈ T1, where r f is the risk free interest rate and Zt is the remedial
contribution at time t. Before receiving the remedial contribution at time t, the
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total wealth is defined as A∗
t and one can write

A∗
t =

d∑
k=1

Hk,t−1ξk,t + Ct−1
(
1 + r f

) + crt−1Wt − Bent = At − Zt. (2)

Asset returns (ξt)
T
t=1 := (

ξ1,t · · · ξk,t · · · ξd,t
)T
t=1, pension payments Bent and

salary Wt are modeled as stochastic processes on a filtered probability space(
�,F, (F)Tt=1,P

)
. Obviously, at each decision time, At is a random variable

whose distribution depends, on a first hand, on ξt, Wt and Bent, and on the
second hand, on asset allocations before t. At a specific date t, the variable At is
known as it can be observed. The initial wealth is defined by Ā0 and known at
initial time t = 0. According to (1), total wealth At−1 at time t − 1 is allocated
into the d classes of assets and cash. Each asset k generates a return ξk,t over
period [t − 1, t]. The initial wealth plus accumulated interest at the end of
period will be augmented by the balance of external flows: contributions minus
pension payments. This latter can be either positive or negative depending on
the difference between contributions and benefits paid. A negative balance
could be due to the fact that a company is no more hiring new employees. This
may happen for various reasons: runoff, economic difficulties, etc. Obviously,
the total contributions crt−1Wt will decrease considerably as the total salaries
decrease whereas Bent will tend to increase as people leave the fund. When
at time t the total asset cannot fulfill the pension fund solvency target, it may
obtain a remedial contribution Zt.

In order to be as close as possible to realities on the financial market, one has
to consider costs of trading activities. Therefore, we include proportional trans-
action costs c̄B := (

c̄B1 . . . c̄Bk . . . c̄Bd
)
and c̄S := (

c̄S1 . . . c̄Sk . . . c̄Sd
)
for purchases

and sales, respectively. Inclusion of transaction costs will lead to some changes
in asset dynamics. Thus, (1) is then replaced by

AT =
d∑
k=1

HT−1,kξT,k + CT−1
(
1 + r f

) + crT−1WT − BenT = A∗
T (3)

over period [T − 1,T] and when t ∈ T1 \ {T},

At =
d∑
k=1

Hk,t−1ξk,t + Ct−1
(
1 + r f

) + crt−1Wt − Bent + Zt

−
d∑
k=1

(
c̄Bk Bk,t + c̄Sk Sk,t

)
= ξtHt−1 + Ct−1

(
1 + r f

) + crt−1Wt − Bent + Zt − (
c̄BBt + c̄SSt

)
= A∗

t + Zt − (
c̄BBt + c̄SSt

)
= e · Ht + Ct (4)
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where e := 1 1 · · · 1 is a (1× d) vector. Vectors Ht :=
(
H1,t · · · Hk,t · · · Hd,t

)�
,

Bt :=
(
B1,t · · · Bk,t · · · Bd,t

)�
and St :=

(
S1,t · · · Sk,t · · · Sd,t

)�
of dimension

(d × 1) each, are, respectively, amount of asset hold, bought and sold at each
decision time t ∈ T0. In fact, (4) is obtained by subtracting transaction costs
in the first equality of (1). At time T, no more asset is bought or sold: BT =
ST = 0; the value of the portfolio is determined by adding all values of assets
including the last period returns and external flows. This justifies why there is
no transaction cost in (3). The reader should notice that variables crt, Zt, Bt, St
and Ht are all decision variables. We denote by H̄k, the initial holding in asset
k, k ∈ K and H̄ := (

H̄1 · · · H̄k · · · H̄d
)�

is a d × 1 vector. C̄0 is the initial cash
amount. The first stage asset allocation is determined by

H0 = H̄+ B0 − S0

with total asset

A0 = e · H̄+ C̄0 +Z0 − (
c̄BB0 + c̄SS0

) = Ā0 +Z0 − (
c̄BB0 + c̄SS0

) = e ·H0 +C0.

For t ≥ 1,
Ht = ξtHt−1 + Bt − St

defines the dynamic of holding assets between two consecutive decision times.
For any given (k, t), whenever Sk,t > 0, Bk,t = 0 and vice-versa. Transaction
costs also influence the cash dynamics. Buying an amount xk of asset k requires
xk

(
1 + c̄Bk

)
of cash and selling the same amount of asset k results in xk

(
1 − c̄Sk

)
of cash. Initially,

C0 = C̄0 + Z0 − (
e + c̄B

)
B0 + (

e − c̄S
)
S0

and for t ≥ 1,

Ct = Ct−1
(
1 + r f

) + crt−1Wt − Bent + Zt − (
e + c̄Bk

)
Bt + (

e − c̄Sk
)
St

where we assume that crt−1Wt, Bent and Zt come in cash.

2.2.2. Liability and external flows. Aswe consider aDB plan, total liabilities is
the discounted expected value of future pre-defined payments. At a given time t,
it represents the amount the fund has to reimburse if it has to close at that time.
Its value has to be estimatedwith appropriate rules taking into account actuarial
risks, pension fund provisions, and other relevant factors for the employer’s line
of business. Let Lt denote the total amount of liabilities at time t.

All quantitative models considered in this paper will be applied to the plan-
ning problem of a large and stable pension fund. We can then assume that the
fund keeps the same structure and number of members over the study period.
Liability, contributions and benefits are therefore invariant with respect to actu-
arial risk over the period under study. Actuarial risks regroup the random events
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that affect the number of members into the fund. However, those variables are
yearly indexed with the general increase of wages wt. For t ∈ T1, we have:

Lt = Lt−1 (1 + wt) ; Wt = Wt−1 (1 + wt) and Bent = Bent−1 (1 + κwt) (5)

and their initial values L0,W0 and Ben0 known at t = 0; κ ≥ 0 is amodel param-
eter. In practice, the pension payments Bent are often indexed with a certain rate
which is a function of the inflation rate. In order to reduce the complexity of our
model, we assume that this indexation rate is a certain proportion of the salary
increase as this latter is highly positively correlated to the inflation. From the
above definitions, uncertainty, represented by vector

(
(1 + wt) , ξt

)T
t=1, affects

both assets and liabilities. As often in the literature (e.g. Kouwenberg (2001)),
we use a vector autoregressive model (VAR model) such that:

ht = c + �ht−1 + εt, εt ∼ N (0, �) ,

ht : = (
ln (1 + wt) ln (ξ1t) · · · ln (ξkt) · · · ln (ξdt)

)�
,

t ∈ T1

(6)

where ht is a {(d + 1) × 1} vector of continuously compounded rate, c the
{(d + 1) × 1} vector of coefficients, � the {(d + 1) × (d + 1)} matrix of coef-
ficients, εt the {(d + 1) × 1} vector of error term and � the {(d + 1) × (d + 1)}
covariance matrix. The parameter estimation of this model requires time series
analysis. For example in Kouwenberg (2001), annual observations of the total
asset returns and the general wage increase from 1956 to 1994 are used to es-
timate the coefficients of the VAR model. The resulting estimates will serve in
constructing the scenario tree which constitutes the workhorse of multistage
stochastic programs.

2.3. The ALM problem

The total cost of funding is the sum of regular (
∑
crt−1Wt) and remedial (

∑
Zt)

contributions over the studied period. In this study, we are looking for the in-
vestment strategy Ht, contribution rate cr t and remedial contribution Zt for
which the total expected cost of funding is minimized. The optimization is made
under risk, legal, budget, regulatory and operating constraints. The constraints
and objective of the ALM study will be presented in this section.

We denote by symbol Et (x) the conditional expectation of random variable
x with respect to the natural filtration Ft whereas P {E} denotes the occurrence
probability of event E. At each decision time t, the optimization problem con-
sists in minimizing the total expected costs under the constraints considered in
the following subsections. To simplify the notation, we omit the scenario index s.

2.3.1. Risk constraints. The pension fund wants to guarantee the participants
a certain amount of pension. But the members also depend on the pension fund
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to actually provide for their needs in the future. Therefore, the safety of the
portfolio is of paramount concern. This safety is translated in risk constraints.

A pension fund has long term obligations, up to decades, and therefore, its
planning horizon is large, too. The main goal of an ALM is to find acceptable
allocations which guarantee the solvency of the fund during the planning hori-
zon. In general, solvency is measured by the funding ratio Ft (also called cover
ratio) that we define for a given time t by

Ft := A∗
t

Lt
.

Underfunding occurs when the funding ratio is less than one. The assertion Ft ≤
1 is equivalent to saying that the surplus at time t, i.e. A∗

t −Lt, is negative. When
this occurs, the shortfall could be provided by the fund’s sponsor or any other
external contribution. That is the remedial contribution as in Haneveld et al.
(2010). Depending on how the random vector ωt := (

(1 + wt) , ξt
)
, t ∈ T1,

behaves, Ft may change over time. Therefore, the pension fund rebalances its
assets portfolio and redefines its contribution rate in order to control the funding
ratio. The higher Ft is, the healthier the fund is. However, the decision maker
would like to avoid as much as possible the changes in contribution rates. We
will see in the model description that the parameters can be set in order to limit
those variations.

The long term objective of the pension fund consists in fulfilling both long
and short (one year) term constraints. We define two types of funding ratio risk
constraints in this paper. Their goal is to constrain the funding ratio to be larger,
on average, than a predefinedminimum γ, γ ≥ 0.Namely, the expected shortfall
Eh−1

(
A∗
h − γ Lh

)−
, h > t, is required to be less than a certain amountβt known

at time t. Here, (a)− := max {−a, 0} is the negative part of a ∈ R. Also in
order to simplify understanding, the expression expected shortfall is used to
nameEh−1

(
A∗
h − γ Lh

)−
. That is slightly different from its definition in actuarial

science where γ has to be equal to one. The one period risk constraint (OICC1)
is expressed by

Et
(
A∗
t+1 − γ Lt+1

)− ≤ βt, t ∈ T0 \ {T} . (7)

and for the multiperiod (MICC) approach,

Eh−1
(
A∗
h − γ Lh

)− ≤ βt, h ∈ Tt+1 and t ∈ T0 \ {T} (8)

where βt and γ are parameters defined by the pension fund. According to the
short term approach (7), at each decision time t, the expected shortfall over the
following period should be smaller than a certain amountβt. Notice that, at time
t, the short term risk only controls the expected shortfall of

(
A∗
t+1 − γ Lt+1

)−

over the following one-year period.
When we want to control the expected shortfall over the whole remaining

period up to maturity, the risk constraint (8) is a good measure of long term
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risk (multiperiod). That is, at time t, Equation (8) means that the one period
expected shortfall Eh−1 (Ah − γ Lh)− should be smaller than βt at any future
node with h ∈ Tt+1. Equation (8) can be rewritten as

max
h∈Tt+1

Eh−1
(
A∗
h − γ Lh

)− ≤ βt, t ∈ T0 \ {T} (9)

meaning at time t, that, the highest one year expected shortfall, over the remain-
ing periods to maturity, has to be smaller than the amount βt. Parameter βt is
set by the pension fund at time t as a function of the total assets and liabilities
at that time; e.g. βt := f (At, Lt) = αAt, 0 ≤ α ≤ 1. Readers should notice
that when T = 1, (7) is equivalent to (8).

In SP, constraints such as (7) and (8), i.e. bounding an expected shortfall, are
named ICC. They were proposed by Haneveld (1986) as a quantitative alterna-
tive for chance constraints (CC). In Section 3, both ICC andCCwill be discussed
more specifically. Successful applications of the ICC in ALM for pension fund
can be found in Drijver (2005) and Haneveld et al. (2010). The authors assumed
that βt := β is unchanged over the studying period and in their numerical illus-
trations, the ICC is only applied to the first stage. In such case, one can prove that
the OICC and the MICC are equivalent. Instead, we remove that assumption
in our work. Therefore, we define:

βt := αLt (10)

where α, 0 ≤ α ≤ 1, denotes a scale free risk parameter. Until now, we are not
aware of any implementation of the MICC (8) in a multistage framework. The
feasible set of theMICC formulation is contained in the feasible set of the OICC
formulation. Obviously, the two constraints cannot be implemented in the same
model at the same time. There comes the other particularity of this paper: we
analyze the multiperiod risk constraint and then measure how conservative it is
comparing to the one-period approach.

2.3.2. Other constraints. Risk constraints are important, but institutional and
legal rules regarding pension fund operations in general are also relevant. As
stated in Pflug et al. (1998), institutional and legal rules are designed to restrict
the risk of losses which would adversely affect pensioners. Hence, the following
restrictions are integrated to the model.

First, the fund is not allowed to sell an asset that is not owned. This is the
not short selling assets constraints and can be expressed by

Hk,t ≥ 0,

Bk,t ≥ 0,

Sk,t ≥ 0 for k ∈ K and t ∈ T0.
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The no short selling constraint goes with the not borrowing cash constraint ex-
pressed by

Ct ≥ 0, t ∈ T0.
Second, at any time, the fund should dispose a minimum amount in cash in
order to pay eventual claims such as death benefits or pensions. This can be
called liquidity constraint and is formulated in our model as

Ct
(
1 + r f

) + Et (crtWt+1 − Bent+1) ≥ 0

which means that, on average, the cash allocation Ct at time t should be suffi-
cient to cover the eventual negative value of the cash flow balance over period
[t, t + 1]. Notice that the term liquidity constraint used here may have a differ-
ent meaning in another context, e.g. Fonseca et al. (2007) in a macroeconomic
framework.

Third, the fund is subject to portfolio constraints imposed by the legislator in
order to keep a minimum control on its risk exposure. It consists on bounding
the holding in asset k by setting upper and lower bounds, uk and lk, respectively,
on Hk,t. That is

lkAt ≤ Hk,t ≤ ukAt, k ∈ K, t ∈ T0 \ {T} . (11)

For example in Switzerland,2 the amount allocated to stocks should not exceed
50% of total wealth. In such case, lstocks = 0 and ustocks = 0.5At and constraint
(11) is equivalent to

0 ≤ Hstocks,t ≤ 0.5At, t ∈ T0 \ {T} .

These bounds are also applicable to cash Ct, and we obtain

lc At ≤ Ct ≤ ucAt, t ∈ T0 \ {T} . (12)

Notice that, in Equations (11) and (12), upper and lower bounds can also be
time dependent.

Finally in an asset allocation problem, dynamics and budget constraints, al-
ready defined in Section 2.2 are inavoidable. If they were left out, the optimiza-
tion programwould be unbounded. The constraints presented in this subsection
are common in any ALM SP implementation; see e.g. Kusy and Ziemba (1986),
Carino et al. (1994), Consigli and Dempster (1998), Bogentoft et al. (2001) and
Dert (1995) among others.

2.3.3. The optimization problem. As we are considering a DB fund, it is natu-
ral to assume that the aim of the fund is to minimize its costs while controlling
the risk. Thus, the ALMmodel is a dynamic decision making optimization tool
to minimize the total expected cost under risk and operating constraints. Deci-
sions are taken at the beginning of each one-year period. Accordingly, the ALM
model is developed as a multiperiod decision problem, for which, we are asked
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to come up with an optimal asset allocation, contribution rate and remedial
contribution at the beginning of each year.Moreover, penalty costs are assigned
to the undesirable events: remedial contributions, and yearly absolute variation
of contribution rates. All these components together constitute the objective
function:

min
H,cr,Z

E0

[
T−1∑
t=0

vt+1 (crtWt+1 + λzZt+1) +
T−2∑
t=0

vt+1λ�cr�cr tWt+1

]
(13)

where �cr t := | crt+1 − crt | is the absolute variation of contribution rate from
year t to t+1, vt is the discount factor for a cash flow in year t, λz and λ�cr are, re-
spectively, penalty parameters for remedial contribution and absolute variation
of contribution rate. The variables crt and �crt are bounded:

cr l ≤ cr t ≤ cru and �cr ≤ �cr t ≤ �̄cr , t ∈ T0 \ {T}
where crl , �cr are the lower bounds and cru , �̄cr the upper bounds of cr t, �cr t ,
respectively. The optimal decisions have to lead to a funding ratio greater than a
certain minimum F̄ (sometimes called target funding ratio) at the end of period
of study T:

FT = AT
LT

≥ F̄ .

The entire ALM model, with objective and constraints, can be found in Ap-
pendix 1. An optimization program such as (13) is often referred to as a here
and now problem. Uncertainty, characterized by ωt = (

(1 + wt) , ξt
)
, t ∈ T1,

is approached by scenarios. Therefore, we define ω̃ with a finite number S of
possible realizations ω̃s := (

ω̃s
1, . . . , ω̃

s
T

)
, s ∈ S := {1, ..., S}, from t = 0 to

t = T with relative probability ps .
The objective (13) is obviously linear as it can be rewritten as a linear combi-

nation of decision variables. We can also notice that dynamics and constraints
(except risk constraints that have to be rewritten in a linear form for the stochas-
tic program) presented in Sections 2.2 and 2.3 are all linear in decision variables.
If the risk constraints OICC (7) and MICC (8) were written in a linear form,
the ALM problem would be a SLP, theoretically solvable by any SLP software
depending on its size. In the next section, we will show how they can be turned
into linear. The books Kall and Mayer (2011), Shapiro et al. (2009) and Birge
and Louveaux (2011) provide good resources to deal with such problems. When
the size is big, resolution may require heuristic methods. Size is big means that
number of asset classes is large or/and time horizon is long or/and number of
scenarios is large. Decisions variables are Ht, Bt, St,Ct, crt and Zt for t ∈ T0; but
only first stage values H0, B0, S0,C0, cr0 and Z0 are crucial to the decisionmaker,
since, almost surely, a true realization of the random data will be different from
the set of generated scenarios.

By definition, the pension fund risk problem is often a shortfall problem. In
such models, the relevant measure of risk for the firm is the expected amount
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(if any) by which goals are not met, Carino et al. (1994). The model considered
in this paper has a general DB ALM structure such as explored in Haneveld
et al. (2010) and Ziemba and Mulvey (1998). Its main particularity consists in
the integration of ICC by the way of OICC (7) and MICC (8). A successful im-
plementation of constraints (7) in ALM for a DB fund can be found in van der
Vlerk et al. (2003) and Haneveld et al. (2010). In their works, the optimization
problem is solved assuming that the parameter βt is constant: βt = β. Further-
more, remedial contribution is provided only when funding ratio falls short in
two consecutive years. Implementing this latter condition has led to the use of
binary variables. The authors proposed a heuristic solution to the problem.

As we will explain in Section 3, the parameter β is not scale free. A certain
value of β does not have equivalent meaning for two different pension funds. It
can be too low for a certain fund, whereas too high for another one. In addi-
tion, the pension fund actual situation should be taken into account. Our paper
is an extension of Haneveld et al. (2010). As a novelty, we assume that the risk
parameter βt vary with respect to time t and is defined as a proportion α of the
actual level of liability at time t, see equality (10). Roughly speaking, on aver-
age, the total asset should cover a proportion of magnitude (1 − α) of liability
at any time. In our model, remedial contribution can however be provided at
anytime where solvency is in question, avoiding the use of binary variables, and
indirectly, the need of heuristics. Penalty parameter λz punishes the abuse of
remedial contributions.

The main features of this study turns around the following points:

• As in Haneveld et al. (2010) where optimal decision is analyzed for different
values of their risk parameter β, we first measure the effect of our risk pa-
rameter α on the decisions H0, cr0 and Z0; this with respect to the OICC. In
addition, for a fixed value α, the influence of the initial funding ratio is also
explored.

• Second, as a safer alternative to the OICC, we propose theMICC (constraint
(8)), and we then measure how constraining it is, compared to the OICC.
In constraint (8), index h is a decision time index, and we are not aware of
any implementation of such constraint in ALM. The OICC considered in the
first item is actually extended to a multiperiod risk constraint, reinforcing the
long-term aspect of the pension fund’s ALM.

In the rest of this paper, OICC (resp. MICC) will stand for the one period (resp.
multiperiod) ICC itself as well as the ALMmodel with the OICC (resp.MICC).

3. INTEGRATED CHANCE CONSTRAINT

3.1. Definition

The most important constraints, of course, deal with the goal of the pension
fund: in all circumstances, the funding ratio should remain high enough for
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avoiding financial distress. This latter is expressed in terms of shortfall con-
straints, which are of ICC type in this paper.

For the sake of clarity, we define the generic linear functionG : R
d× → R

m

such that
G (X, ω) := BX− D

where X ∈ X is an d-vector of decision variables, X ⊂ R
d is a polyhedral and

closed set and ω := (B, D) : � → R
m ×R

d ×R
m is a random parameter on the

probability space (�,F,P). The support ofω is defined as the smallest closed set
 ⊂ R

m×R
d ×R

m having the property P (ω ∈ ) = 1. For i ∈ I := {1, . . . ,m},
the vector B is of dimension R

m × R
d such as B := (

B1 · · · Bi · · · Bm
)�

with

Bi ∈ R
d , whereas D := (

D1 · · · Di · · · Dm
)�

with Di ∈ R. As supposed in
our SP model, we assume that ω = (B, D) has a finite number S of possible
realizations ωs = (Bs, Ds) , s ∈ S = {1, ..., S} with respective probability ps .
The ICC is given by

E (BX− D)− =
S∑

s=1

ps
(
BsX− Ds)− ≤ β, (14)

and has been introduced by Haneveld (1986) as an alternative to chance con-
straints (Charnes et al. (1958)). However, Haneveld et al. (2010), van der Vlerk
et al. (2003) and Drijver (2005) have pioneered its application to ALM for pen-
sion funds and since then, it has been implemented in practice.

With the ICCs, the feasible set is a polyhedron (convex) as it contains only
continuous variables. Usually, the ICCs can be implemented easily using an ap-
propriate software and are very attractive from an algorithm point of view.Han-
eveld andVanDer Vlerk (2002) propose a faster algorithm for big size problems.

Without loss of generality, we assume m > 1. Therefore, Equation (14) can
be rewritten as

E
{
(Bi X− Di )

− , i ∈ I
} ≤ β.

When index i is a decision stage index with conditional expectation at stage i ,
we obtain a multistage program and variable X becomes stage dependent (Xi ).
That is, at stage j ∈ I \ {m}:

Ei (Bi+1Xi − Di+1)
− ≤ β j , i ∈ { j, j + 1, . . . ,m− 1} (15)

which is equivalent to the MICC (8) for I = T0 and Bh+1Xh − Dh+1 = Ah+1 −
γ Lh+1. At time t, that is

Eh
(
A∗
h+1 − γ Lh+1

)− ≤ βt, h ∈ Tt \ {T} . (16)

The parameter βt is then set at time t and will remain applicable until T. As
decision is taken at each stage, the MICC inequality (8) shows a collection of
inequality (16) going from t = 0 to t = T − 1. Similarly, when m = 1, one can
prove that Equation (14) leads to the OICC (7).
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3.2. OICC and MICC: Scenario tree interpretation

Section 2.1 briefly explains our scenario treemodel.We recall that the node (t, s)
corresponds to a certain scenario s at decision time t. To avoid anticipativity, we
have to consider thatmany pairs (t, s)might correspond to the same node on the
scenario tree picture. For example in Figure 1, the nodes (1, 1) , (1, 2) , . . . , (1, 8)
correspond graphically to the empty red circle. At each node (t, s), the fund’s
manager has to rebalance the asset portfolio and fix the contribution rate. These
decisions are taken considering the actual scenario and possible future paths as
well as the risk constraints.

3.2.1. OICC. In principle, considering a certain node (t, s), the OICC con-
straint (7) would be implemented as follows:

Et,s
(
A∗s
t+1 − γ Lst+1

)−
:=

∑
s ′ ∈S

ps
′

t,s

(
A∗s ′
t+1 − γ Ls

′

t+1

)−
≤ αLst (17)

where ps
′
t,s stands for the conditional probability to reach node

(
t + 1, s

′)
going

from (t, s) and ps
′
t,s = 0 for any scenario s

′
of t + 1 not descending from (t, s).

As in van der Vlerk et al. (2003), we include the linear inequality (17) in every
subproblem (t, s) , t < T of our multistage recourse model. At (t, s), they re-
flect the short-term risk constraint, stating that the expected funding shortfall
over the following period (t + 1) is at most αLst . In other words, on average, the
pension fund should be able to cover the proportion (1 − α) of its total liability.
The increase of α will relax the feasibility set of the optimization problem.

3.2.2. MICC. Considering the node (t, s), the MICC constraint can be for-
mulated in the following way:

Eh−1,s
(
A∗s
h − γ Lsh

)− ≤ αLst , h ∈ Tt+1 and t ∈ T0 \ {T} (18)

with
Eh−1,s

(
A∗s
h − γ Lsh

)− =
∑
s ′ ∈S

ps
′

h−1,s

(
A∗s ′
h − γ Ls

′

h

)−
.

Under (18), at each node (t, s), decisions are taken such that the descending
nodes’ one-period expected shortfall are smaller than αLst (defined at current
node). Such constraint permits to have a certain control of the cover ratio over
the whole remaining periods: [t + 1,T], whereas (17) only covers one period:
[t, t + 1]. For example, at initial time t = 0, the minimum cost is defined such
that the expected shortfall at any node in the tree (as descendant of the initial
node) is smaller than β0 = αLs0 as in Haneveld et al. (2010):

∑
s ′ ∈S

ps
′

t,s

(
A∗s ′
t+1 − γ Ls

′

t+1

)−
≤ β0, t ∈ T0 \ {T} , s ∈ S.
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Furthermore, at each node (t, s) , t ∈ T1 \ {T} , s ∈ S, we add the restriction:

∑
s ′ ∈S

ps
′

t,s

(
A∗s ′
t+1 − γ Ls

′

t+1

)−
≤ αLst .

That is how we implement (18) at initial node. If we repeat the same procedure
at each node of the tree, we can then propose a simpler SP reformulation:

Proposition 3.1. Constraint (18) is equivalent to the following statement:
At each node (t, s) , t < T, s ∈ S

∑
s ′ ∈S

ps
′

t,s

(
A∗s ′
t+1 − γ Ls

′

t+1

)−
≤ min

0≤t′≤t
αLst′ . (19)

That is, at a given node (t, s) , t < T, s ∈ S, the expected shortfall over the next
period should be less or equal to the smallest value of αLst′ calculated over the
preceding nodes

(
t′, s

)
, t′ ≤ t. This is based on the fact that, in the multiperiod

framework, decision taken at node (t, s) is influenced by the history of ωs
t up to

time t, in particular βs
t at preceding nodes. Inequality (19) is linear and describes

a polyhedral set. The proof of Proposition 3.1 is straightforward when we go
backward in time starting from nodes (T − 1, s), see Appendix 2 for an example
based sketch of proof. At each node (t, s), as we know the history of βs

t up to
time t, one can determine the smallest βs

t′, t
′ ≤ t. Therefore, implementation of

MICC consists in including the linear constraint (19) at each node (t, s).

4. NUMERICAL ILLUSTRATIONS

This section contains computational results for the SP model. Let us recall that
we are dealing with a DB pension fund whose objective is to minimize the total
expected costs under constraints. The study will focus on risk constraints that
are of ICC type. First, based on the OICC, the effects of risk parameter and
cover ratio on the optimal decisions are analyzed. Prima facie, the MICC ap-
pears to be a safer and more restrictive than OICC. Based on the same analysis
as before, the cost of conservativeness is subsequently measured.

For this study, consider a hypothetical large pension fund that may invest
into d = 4 classes of asset ordered by level of risk:

1. Deposits.
2. Bonds.
3. Real estate.
4. Stocks.

We are aware of the fact that the number of assets is often much larger in prac-
tice. That said, only four classes of assets are considered here in order to reduce
the complexity of the model. After investing in these asset classes, the rest is
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TABLE 1

DATA ON THE ASSET CLASSES.

Asset classes k lk uk c̄ Initial investments

Cash − 0 1 0 4,950
Deposits 1 0 0.5 0.00150 16,500
Bonds 2 0.1 1 0.00150 38,500
Real estate 3 0 0.30 0.00425 17,600
Stocks 4 0 0.50 0.00425 32,450

TABLE 2

VALUES OF THE OTHER DETERMINISTIC PARAMETERS.

λZ = 350 λ�cr = 1 r f = 0.008 vt = (1 + r f )−t

�cr = −0.08 crl = −0.08 �̄cr = 0.05 cru = 0.3
Ā0 = 110, 000 γ = 1.05 F̄ = 1.05

held in cash. The deterministic properties of asset classes are described in Ta-
ble 1. Investment limits are defined with respect to practical rules of liquidity
and diversification; transaction costs are taken fromHaneveld et al. (2010) with
c̄S = c̄B = c̄, whereas the initial investments are defined considering general
statistics of pension fund’s assets allocation in Switzerland, see Towers Tow-
ers Watson (2003) (where we assume that “real estate” corresponds to “other
assets”). The portfolio constraints are defined in term of proportion and all
amounts are assumed to be in thousands of Swiss francs. The values of the other
deterministic parameters are shown in Table 2.

The time horizon T = 5 is split into five periods of one year each. Conse-
quently, the considered ALM model has five stages, allowing for decisions at
t = 0 (now) up to time t = 4. The random vector ωt follows a VAR process,
approximated in our case by a multistage scenario tree. In the following consid-
erations, we first present the descriptive statistics of our model. Then, we discuss
the numerical results obtained from our study.

4.1. Scenarios

The implementation of the scenario tree requires a careful specification of
the VAR process. For this purpose, we use the estimation results obtained
in Kouwenberg (2001). More specifically, the author estimates this process
based on annual observations of the total asset returns and the general wage
increase from 1956 to 1994. Table 3 displays descriptive statistics of the time
series, whereas Table 4 shows the estimated correlation matrix of the residuals.
Future returns for financial planning models can be constructed by sampling
from the error distribution of the VAR model and applying the estimated
equations of Table 5. We refer to Kouwenberg (2001) for further details on
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TABLE 3

STATISTICS, TIME SERIES 1956–1994 KOUWENBERG (2001).

Statistics

Assets Mean S.D. Skewness Kurtosis

Wages 0.061 0.044 0.434 2.169
Deposits 0.055 0.025 0.286 2.430
Bonds 0.061 0.063 0.247 3.131
Real estate 0.081 0.112 −0.492 7.027
Stocks 0.102 0.170 0.096 2.492

TABLE 4

RESIDUAL CORRELATIONS OF VAR-MODEL, KOUWENBERG KOUWENBERG (2001).

Assets Wages Deposits Bonds Real estate Stocks

Wages 1
Deposits 0.227 1
Bonds −0.152 −0.268 1
Real estate −0.008 −0.179 0.343 1
Stocks −0.389 −0.516 0.383 0.331 1

TABLE 5

COEFFICIENT OF THE VAR MODEL, KOUWENBERG (2001).

ln
(
1 + wagest

) = 0.018 + 0.693 ln
(
1 + wagest−1

) + e1t σ1,t = 0.030
(2.058) (5.789)

ln
(
1 + depositst

) = 0.020 + 0.644 ln
(
1 + depositst−1

) + e2t σ2,t = 0.017
(2.865) (5.448)

ln (1 + bondst) = 0.058 + e3t σ3,t = 0.060
(6.241)

ln (1 + real estatet) = 0.072 + e5t σ5,t = 0.112
(4.146)

ln (1 + stockst) = 0.086 + e6t σ6,t = 0.159
(3.454)

this model estimation and for building the tree as well. For this purpose, we
specify a branching structure of 1 − 10 − 6 − 6 − 4 − 4. This scenario tree has
one initial node at time 0 and 10 succeeding nodes at time 1, . . ., resulting in
10×6×6×4×4 = S= 5, 760 path from 0 to 5, each with probability ps = 1

5,760 .
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4.2. Numerical results

This section presents the outputs of our study. All numerical results were im-
plemented using the solver CPLEX in the mathematical programming lan-
guage AMPL. The ALM models are formulated as large LP-problems with
616, 321 variables. In the model with the OICC, there are 995, 347 constraints
and 3, 041, 032 non-zeros in the constraint matrix, whereas they are, respec-
tively, 1, 002, 317 and 3, 105, 602 in the MICC. On average, the solution times
are 381 s and 448 s, respectively, for OICC and MICC.

As a result of the ALM analysis, we are supposed to provide the first stage
optimal decisions: a contribution rate, a remedial contribution and asset allo-
cation that minimize the total cost. In the first part of this section, we analyze
the effects of the risk parameter α and the initial funding ratio F0 on the opti-
mal decision. The optimization is made with respect to OICC. The values of α

ranges from 0 to 0.085, whereas the initial funding ratio F0 = Ā0
L0

vary from 0.5
to 1.5. In order to vary F0, we change the initial liability L0 accordingly, as Ā0 is
specified from Table 2. In the second part, we compare the OICC to the MICC.

4.2.1. OICC. In order to analyze the impact of the risk parameter α, we fix
the value of the initial cover ratio. That is

L0 := 120, 000 ⇒ F0 = Ā0

L0
= 0.9166, ⇒ under covered.

In what follows, the letter O at the top of a symbol stands for OICC, whereas
M is related to MICC. Figure 2 shows the evolution of the contribution rate
cr0. The value of cr0 is particularly high as the institution is underfunded. We
observe that when α ≤ αO

∗ := 0.025 (O at the top stands for OICC), the con-
tribution rate is at its maximum: cru = 0.3 as specified in Table 2. From 0.025,
cr 0 decreases linearly until it reaches the value 0.27 at α = ᾱO := 0.04, and
remains unchanged thereafter. According to the objective (13), the total cost
is composed of the total contribution and of the total remedial contribution,
these, over the period under study. Remedial contribution should be seen as
an external financial support that may come from the sponsor of the pension
fund. Figure 3 displays the allocation of the total costs into the two types of
contribution. The proportion of remedial contribution linearly decreases from
9% at α = 0 to reach 0% at αO

∗ = 0.025 and stays constant for α ≥ αO
∗ . Indeed,

Figures 2 and 3 help understand how the ALM model parameters have been
defined. It is conventional to assume that, from a certain level of risk and for
a fix cover ratio, the sponsor will no more provide any financial support to the
fund. In this model, the penalty parameter λz has been set such that the total
remedial contribution is zero for α ≥ αO

∗ . Consequently, cr0 decreases from
α = αO

∗ . It remains equal to 0.27 for α ≥ ᾱO due to the target cover ratio at
maturity: F5 ≥ F̄ = 1.05.
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FIGURE 2: OICC: Contribution rate at t = 0 as function of α. (Color online)

FIGURE 3: OICC: Initial cost allocation in function of α.

Figure 4 describes the optimal asset allocation for different values of α.
Assets are ordered with respect to their level of risk. For small values of the
risk parameter, the proportion of riskier assets (stocks and real estate) tends to
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FIGURE 4: OICC: Asset allocation at t = 0 in function of α.

increase with an increase of α. When it approaches αO
∗ , as the remedial contri-

bution is already low, the decision maker starts reducing the risk exposition of
its portfolio. However, the proportion of bonds is increased in order to improve
the performance of the asset portfolio. The risk exposition is then progressively
reduced until α = ᾱO, from which, it remains unchanged thereafter. The value
ᾱO can be seen as the smallest value of α, above what, the OICC influence is no
more significant, i.e. contribution rate, remedial contribution and asset alloca-
tion stay constant.

Next, we consider the effect of the initial funding ratio on the first stage
optimal decision. We vary the value of L0 so that the initial funding ra-
tio F0 lies between 0.5 and 1.5, and we assume α = 0.035. Figure 5 dis-
plays the evolution of the contribution rate cr0, whereas Figure 6 shows how
the total cost is distributed into regular and remedial contributions. As ex-
plained earlier, it is conventional to assume that, above a certain funding ra-
tio FO∗

0 , the remedial contribution is zero and contribution rate decreases as
well. From Figures 5 and 6, it can be seen that the ALM model is set such that
FO∗
0 := 0.9.
Figure 7 describes the behavior of the first stage optimal asset allocationwith

respect to F0. When F0 < FO∗
0 , the optimal asset allocation is stable: approxi-

mately 30% in riskier assets. From F0 = FO∗
0 , the cover ratio is high enough to

nomore obtain remedial contribution and to reduce the contribution rate. How-
ever, the decision maker has to act in a riskier way in order to meet pension fund
liabilities. As a result, the risk exposition increases up to 50% at F0 = 1.275. An
important target of our model is to guarantee a funding ratio F5 ≥ F̄ by mini-
mizing the total cost and risk level. For larger values of F0, with a higher chance
to fulfill the condition F5 ≥ F̄ , the contribution rate and the risk exposition
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FIGURE 5: OICC: Contribution rate at t = 0 in function of F0. (Color online)

FIGURE 6: OICC: Initial cost allocation in function of F0.

(i.e. proportion of higher risk assets) decrease. We recall that the objective is not
to maximize the wealth, but to minimize the total cost. Thus, the wealthier the
fund is, the more prudent the allocation will be.

https://doi.org/10.1017/asb.2017.49 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.49


ON INTEGRATED CHANCE CONSTRAINTS IN ALM FOR PENSION FUNDS 595

FIGURE 7: OICC: Asset allocation at t = 0 in function of F0.

FIGURE 8: MICC: Contribution rate at t = 0 in function of α. (Color online)

4.2.2. MICC. In this section, we first present the results of the ALM model
with the MICC, and second, we compare with the OICC. For the MICC analy-
sis, assumptions are similar to the ones made for the model with OICC. Figures
8–13 display the results of the analysis. The effect of the risk parameter α is
measured in Figures 8–10, whereas Figures 11–13 analyze the initial funding
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FIGURE 9: MICC: Initial cost allocation in function of α.

ratio impact. Although the first stage optimal decisions are different, they be-
have similarly. The parameters αM

∗ , ᾱM and FM∗
0 (respectively αO

∗ , ᾱO and FO∗
0

for OICC) slightly differ:

αM
∗ := 0.027; ᾱM := 0.07; FM∗

0 := 0.9.

The feasible set of the MICC formulation is contained in the feasible set of
the OICC formulation. That is why the above parameters are greater or equal
to their analogues in OICC. Notice that, according to Figures 4 and 10 and
for α ≥ ᾱO in OICC and α ≥ ᾱM in MICC, the asset allocations are exactly
the same; showing that when α is above ᾱO (resp. ᾱM), the OICC (resp. MICC)
has no influence on the initial ALM model. In general, the optimal decisions
obtained from OICC and MICC slightly differ. For example, when α = 0.05
and F0 = 0.9166, the first stage optimal decision of the MICC is

H0 :=
(
0.41 0.59 0 0

)� ; cr0 = 0.279 and Z0 = 0,

whereas for the OICC:

H0 :=
(
0.26 0.66 0.08 0

)� ; cr0 = 0.270; and Z0 = 0.

Asset allocations are calculated as percentage of the total asset. According to
the above example, the decisions related to the OICC approach are riskier than
the ones of MICC, especially regarding the asset allocation. In what follows, we
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FIGURE 10: MICC: Asset allocation at t = 0 in function of α.

FIGURE 11: MICC: Contribution rate at t = 0 in function of F0. (Color online)

will try to quantify the cost of this risk reduction. For a pension fund, this can be
done by measuring the difference in term of the total cost (regular contribution
+ remedial contribution). Hence, Figure 14 compares the total costs of OICC
and MICC, whereas Figure 15 displays the contribution rate difference, all this
with respect to α. When α ≤ αO

∗ = 0.025 or α ≥ ᾱM = 0.07, the contribution
rate and total cost are equal for both models. For αO

∗ ≤ α ≤ ᾱM, OICC and
MICC slightly differ, i.e. MICC costs more for a maximum variation of 2, 000
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FIGURE 12: MICC: Initial cost allocation in function of F0.

FIGURE 13: MICC: Asset allocation in function of F0.

(less than 2%of total asset) and 1.5%, respectively, for the total cost and the con-
tribution rate. Consequently, although being more conservative, the MICC has
to be considered as a serious contender for optimal ALM for the two following
reasons:

• it is safer, and
• the cost of this safety is less than 2% of total asset.
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FIGURE 14: Comparison of OICC and MICC in function of α: Total cost.

FIGURE 15: Comparison of OICC and MICC in function of α: Contribution rate cr0.
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FIGURE 16: Comparison of OICC and MICC in function of F0: Total cost.

Figures 16 and 17, which compare the effect of F0 on the OICC and on the
MICC, confirm that result.

5. CONCLUSION

In this paper, we considered the effects of ICC on an ALMmodel for a defined
benefit pension fund. ICC are appropriate for modeling risk constraints, in par-
ticular when a quantitative risk measure is preferable. At each decision time, the
ICCs put an upper bound on the one period expected shortfalls. In particular,
the upper limit considered here is a fixed proportion of total liability making the
risk parameter scale free as well as time dependent.

First, the ALM model describing the influences of the ICCs on the op-
timal decisions is implemented. The application of the model to our nu-
merical example show that it fairly reproduces the behavior of the decision
maker, especially on the contribution rate, remedial contribution and wealth
allocation.

Second, we defined two types of ICC: the one period OICC and the MICC.
MICC is basically more restrictive andmore cautious than OICC. Based on our
illustrative example, the cost generated by the rise in security with the MICC is
quantified. Although the optimal decisions from the OICC and the MICC are
not the same, the total costs are very close, showing that the MICC could be a
good alternative.

However, in further considerations, it would be interesting to analyze the
impact of the first stage decisions on the other stages in order to conclude which
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FIGURE 17: Comparison of OICC and MICC in function of F0: Contribution rate cr0.

approach is better. In addition, the results mainly rely on the chosen scenario
tree. The analysis of the results stability regarding the scenario tree would also
be of great interest.
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NOTES

1. OICC (resp. MICC) stands for One period Integrated Chance Constraint (resp. Multiperiod
Integrated Chance Constraint) which will be more clearly defined in Section 3.

2. OPP2 of April 18th, 1984, Art 55-b, (As of January 1st, 2012).
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APPENDICES

Appendix A: The ALM program description

We start this section by defining indices, variables and parameters of the model.
Second, the ALM model with the objective and the constraints are also dis-
played.
Indices

t time index, t = 0, 1, . . . ,T

s scenarios index, s = 1, . . . , S

k index of asset classes, k = 1, . . . , d

Decision variables

Zst remedial contribution by the sponsor at time t in scenario s

Cs
t total cash amount at the beginning of year t in scenario s

Hs
k,t value of the investments hold in asset class k, at the beginning of

year t and in scenario s

Bsk,t value of the asset class k, bought at the beginning of year t

and in scenario s

Ssk,t value of the asset class k, sold at the beginning of year t

and in scenario s

cr st contribution rate for year t + 1 in scenario s

Ast total asset value at time t in scenario s
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A∗s
t total asset value just before the asset allocation and the remedial

contribution at time t in scenario s

�s
crt variation (increase or decrease) of contribution rate from year t

to t + 1 in scenario s

Random parameters

r sk,t random rate of return on asset class k over year t in scenario s

and ξk,t := 1 + rk,t

Ws
t random total wages of active participants in year t in scenario s

Lst random value of liabilities at time t in scenario s

Benst random total benefit payments to active participants in year t

in scenario s

Deterministic parameters

T time horizon

S number of scenarios

d number of asset classes

α risk parameter defined by either the sponsor or the regulator

c̄Bk proportional transaction cost for purchasing an asset class k

c̄Sk proportional transaction cost for purchasing an asset class k

lk lower bound on the proportion of asset class k

in the total asset portfolio

uk upper bound on the proportion of asset class k

in the total asset portfolio

lc lower bound on the proportion of cash kin the total asset portfolio

uc upper bound on the proportion of cash kin the total asset portfolio

crl lower bound on the contribution rate

cru upper bound on the contribution rate

�cr lower bound on the yearly absolute variation of the contribution rate

https://doi.org/10.1017/asb.2017.49 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.49


606 Y.A.F. TOUKOUROU AND F. DUFRESNE

�̄cr upper bound on the yearly absolute variation of the contribution rate

F̄ target funding ratio

γ lower bound on the funding ratio

r f risk free interest rate

λz penalty parameter for remedial contribution

λ�cr penalty parameter for absolute variation of contribution rate

H̄k,0 value of the initial allocation in asset class k

C̄0 initial cash amount

Objective
The objective of the model is to determine the asset allocation, contribu-

tion rate and remedial contributions that minimize the total cost defined as
follows:

min
H,cr,Z

E0

[
T−1∑
t=0

vt+1 (crtWt+1 + λzZt+1) +
T−2∑
t=0

vt+1λ�cr�cr tWt+1

]
,

under the following constraints. In the model description, anytime we use
indices s and/or k is equivalent to saying for any s = 1, . . . , S and/or for any
k = 1, . . . , d.

Budget constraints and total value of the assets

A0 =
d∑
k=1

H̄k,0 + C̄0 + Z0 −
d∑
k=1

(
c̄Bk Bk,0 + c̄Sk Sk,0

) =
d∑
k=1

Hk,0 + C0,

AsT =
d∑
k=1

Hs
T−1,kξ

s
T,k + Cs

T−1

(
1 + r f

) + cr sT−1W
s
T − BensT = A∗s

T ,

Ast =
d∑
k=1

Hs
k,t−1ξ

s
k,t + Cs

t−1

(
1 + r f

) + cr st−1W
s
t − Benst + Zst

−
d∑
k=1

(
c̄Bk B

s
k,t + c̄Sk S

s
k,t

) ; t = 1, . . . ,T − 1

Ast = A∗s
t + Zst −

d∑
k=1

(
c̄Bk B

s
k,t + c̄Sk S

s
k,t

) =
d∑
k=1

Hs
k,t + Cs

t ; t = 1, . . . ,T − 1.
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Asset classes dynamics

Hk,0 = H̄k,0 + Bk,0 − Sk,0

Hs
k,t = ξ sk,tH

s
k,t−1 + Bsk,t − Ssk,t ; t = 1, . . . ,T.

Cash dynamics

C0 = C̄0 + Z0 −
d∑
k=1

(
1 + c̄Bk

)
Bk,0 +

d∑
k=1

(
1 − c̄Sk

)
Sk,0

Cs
t = Cs

t−1

(
1 + r f

) + cr st−1W
s
t − Benst + Zst −

d∑
k=1

(
1 + c̄Bk

)
Bsk,t

+
d∑
k=1

(
1 − c̄Sk

)
Ssk,t ; t = 1, . . . ,T.

Not short selling assets and not borrowing cash constraints

Hs
k,t ≥ 0 ; Bsk,t ≥ 0 ; Ssk,t ≥ 0 ; Cs

t ≥ 0 ; t = 0, . . . ,T.

Liquidity constraints

Cs
t

(
1 + r f

) + Et,s
(
cr st Wt+1 − Bent+1

) ≥ 0 ; t = 0, . . . ,T − 1.

Portfolio constraints

lkAst ≤ Hs
k,t ≤ ukAst ; t = 0, . . . ,T − 1,

lc Ast ≤ Cs
t ≤ ucAst ; t = 0, . . . ,T − 1.

Constraints on contribution rates

cr l ≤ cr st ≤ cru and �cr ≤ �s
cr t ≤ �̄cr ; t = 0, . . . ,T − 1.

The decision variables are subject to the non-anticipativity constraints. The
ICCs defined in Section 2.3.1 control the risk-level of the model. They also have
to be included in the model as explained in Section 3.2.

Appendix B: Proposition 3.1, an example based sketch of proof

We consider the event tree of Figure B1with a time horizon T = 3 and a branch-
ing structure of 1− 5− 4− 2, leading to S= 5× 4× 2 = 40 scenarios. A node
is a possible outcome of the stochastic event at a given time. The starting and
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FIGURE B1: A scenario tree with 40 scenarios and 66 nodes.

ending nodes of the tree are round whereas the others are rectangular. At each
t ∈ {2, 3}, the rectangular nodes are name according to time and following a
top-down alphabetic order. For example, the rectangle (1, a) describe the out-
come at the first node of time 1. At each node, the economical values such as
total asset, total liability and expected shortfall can be determined. For sake of
clarity, we recall that, due to non-anticipativity, the node (1, a) is equivalent to
the node

(
1, s ′) , s ′ ∈ {1, . . . , 8} as described before, the node (1, b) is equivalent

to the node
(
1, s ′) , s ′ ∈ {9, . . . , 16} and so on for the other nodes. The other

notations used here are similar to the ones in the paper. We define

�(t,s) :=
∑
s ′ ∈S

ps
′

t,s

(
A∗s ′
t+1 − γ Ls

′

t+1

)−
,

where ps
′
t,s stands for the conditional probability to reach node

(
t + 1, s

′)
going

from (t, s) and ps
′
t,s = 0 for any scenario s

′
of t + 1 not descending from (t, s).

The MICC defined in Equation (18) is then

{
�h−1,s, h ∈ Tt+1

} ≤ βt,s, t ∈ {0, 1, 2} .

The value βt,s := αLst is the ICC upper limit computed at time t in scenario s.
According to this set of constraints,
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from initial node at t := 0

h ∈ {1, 2, 3} ⇒ �0,s ≤ β0, �1,s ≤ β0, and �2,s ≤ β0, s ∈ S. (20)

At t := 1,

from node (1, a), h ∈ {2, 3} ⇒ �1,s ≤ β1,s, and �2,s ≤ β1,s, s ∈ {1, 2, . . . , 8}
from node (1, b), h ∈ {2, 3} ⇒ �1,s ≤ β1,s, and �2,s ≤ β1,s, s ∈ {9, 10, . . . , 16}

...
...

...
...

from node (1, e), h ∈ {2, 3} ⇒ �1,s ≤ β1,s, and �2,s ≤ β1,s, s ∈ {33, 34, . . . , 40} .

At t := 2

from node (2, a), h = 3 ⇒ and �2,s ≤ β2,s, s ∈ {1, 2}
from node (2, b), h = 3 ⇒ and �2,s ≤ β2,s, s ∈ {3, 4}

...
...

...
...

from node (2, t), h = 3 ⇒ and �2,s ≤ β2,s, s ∈ {39, 40} .

Therefore, we obtain for any s ∈ S that

at time 0, �0,s ≤ β0 ⇔ �0,s ≤ β0

at time 1, �1,s ≤ β0, �1,s ≤ β1,s ⇔ �1,s ≤ min
{
β0, β1,s

}
at time 2, �2,s ≤ β0, �2,s ≤ β1,s, �2,s ≤ β1,s ⇔ �2,s ≤ min

{
β0, β1,s, β2,s

}
.

The obtained result leads obviously to Proposition 3.1 in the paper. Consider-
ing such an example is therefore without loss of generality. For an other event,
tree with different time horizon and branching structure, the proposition can be
proved using the same procedure.
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