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Turbulent flows driven by a vertically invariant body force were proven to become exactly
two-dimensional (2-D) above a critical rotation rate, using upper bound theory. This
transition in dimensionality of a turbulent flow has key consequences for the energy
dissipation rate. However, its location in parameter space is not provided by the bounding
procedure. To determine this precise threshold between exactly two-dimensional and
partially three-dimensional (3-D) flows, we perform a linear stability analysis over a
fully turbulent 2-D base state. This requires integrating numerically a quasi-2-D set of
equations over thousands of turnover times, to accurately average the growth rate of the
3-D perturbations over the statistics of the turbulent 2-D base flow. We leverage the
capabilities of modern graphics processing units to achieve this task, which allows us
to investigate the parameter space up to Re = 105. At the Reynolds numbers typical of
3-D direct numerical simulations and laboratory experiments, Re ∈ [102, 5 × 103], the
turbulent 2-D flow becomes unstable to 3-D motion through a centrifugal-type instability.
However, at even higher Reynolds numbers, another instability takes over. A candidate
mechanism for the latter instability is the parametric excitation of inertial waves by the
modulated 2-D flow, a phenomenon that we illustrate with an oscillatory 2-D Kolmogorov
flow.

Key words: rotating turbulence, geostrophic turbulence

1. Introduction

Global rotation tends to make turbulent flows two-dimensional (2-D) and invariant along
the rotation axis. This result is often referred to as the Taylor–Proudman theorem, which
states that slowly evolving large-scale rapidly rotating flows organise into Taylor columns,
invariant along the rotation axis (the vertical axis thereafter). However, in most numerical
and experimental studies of rapidly rotating turbulence, these large-scale columns coexist
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with erratic three-dimensional (3-D) small-scale motion (Bartello, Métais & Lesieur 1994;
Yeung & Zhou 1998; Smith & Waleffe 1999; Chen et al. 2005; Morize & Moisy 2006;
Staplehurst, Davidson & Dalziel 2008; Thiele & Müller 2009; Moisy et al. 2011; Yarom,
Vardi & Sharon 2013; Gallet et al. 2014; Yokoyama & Takaoka 2017; Seshasayanan
& Alexakis 2018). Although the latter contain typically less kinetic energy than the
large-scale columns, they need to be precisely characterised, because they are responsible
for the efficient 3-D dissipation of kinetic energy (Campagne et al. 2015). Indeed, at
the theoretical level, the 3-D inertial waves have been shown to induce a forward wave
turbulent cascade leading to ‘anomalous’ kinetic energy dissipation, i.e. a dissipated power
independent of molecular viscosity (Galtier 2003; Bellet et al. 2006). On the one hand,
wave turbulence provides the right framework to address the decay of rotating turbulence
initialised with inertial waves only. On the other hand, forced rotating turbulence in a finite
domain generically exhibits intense Taylor columns when global rotation is sufficiently
fast, which challenges a description in terms of inertial waves only (even when energy is
input into wave modes only (see Brunet, Gallet & Cortet 2020; Le Reun et al. 2020)).

We focus on such forced rotating turbulence in statistically steady state. Restricting
attention to a steady body force at scale L, the goal is to characterise the turbulent flows
arising at large Reynolds number Re = UL/ν, where U is the root-mean-square (r.m.s.)
flow velocity and ν is the kinematic viscosity, and low Rossby number Ro = U/2ΩL,
where Ω denotes the global rotation rate. Two situations emerge depending on the spatial
structure of the body force:

(i) When the body force is 3-D and directly drives some vertically dependent flow
structures, it was shown by Alexakis (2015) that the statistically steady state never
corresponds to a rapidly rotating turbulent flow with both Re � 1 and Ro � 1. The
reason is that the r.m.s. velocity U is an emergent quantity that cannot be specified
at the outset of a numerical simulation. In (non-turbulent) flows characterised by
Re ∼ 1, the flow can achieve arbitrarily low Ro provided the global rotation is fast
enough. However, for turbulent flows with Re � 1, the r.m.s. velocity saturates at a
value U ∼ ΩL, such that the Rossby number approaches unity.

(ii) By contrast, it is only when the body force is invariant along the rotation axis that one
can reach simultaneously Re � 1 and Ro � 1, a regime that we refer to as rapidly
rotating turbulence.

For the latter situation, one can prove that the flow becomes exactly 2-D when the
Rossby number is reduced at fixed (but arbitrarily large) Reynolds number and fixed
aspect ratio of the fluid domain, using rigorous upper bound theory. This has important
consequences for the energy dissipation rate of rapidly rotating turbulent flows: the
anomalous dissipation associated with the forward energy cascade of 3-D turbulence is
replaced by the laminar-like viscous dissipation of the domain-scale velocity structures
that arise from the 2-D inverse energy cascade (Alexakis & Doering 2006; van Bokhoven
et al. 2009; Campagne et al. 2014; Deusebio et al. 2014; Campagne et al. 2016; Buzzicotti
et al. 2018; van Kan & Alexakis 2020; Pestana & Hickel 2019). Mapping the energy
dissipation rate of rotating turbulence in parameter space requires determination of the
transition between exactly 2-D and partially 3-D rapidly rotating flows. Indeed, the
mathematical results in Gallet (2015) only provide a lower bound on the critical Rossby
number Roc(Re) below which the flow becomes purely 2-D. The bound typically scales
as Re−6 with logarithmic corrections, i.e. we are only able to prove that the flow becomes
exactly 2-D for extremely low Rossby numbers. However, one should keep in mind that
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Three-dimensionality in rapidly rotating flows

this Re−6 scaling behaviour is only a limitation of the bounding method, not a property
of the true threshold Roc(Re): we establish in the following that Roc(Re) is in fact much
greater than Re−6, so that exact two-dimensionalisation takes place over a signification
region of parameter space.

The very existence of a clear-cut transition between exactly 2-D and partially 3-D flows
suggests an alternative approach to the study of rapidly rotating turbulence: instead of
running costly 3-D direct numerical simulations (DNS) at large Reynolds number and ever
lower Rossby number, in the present study we start from high Re and very low Ro, where
we know the flow is 2-D, and investigate the appearance of three-dimensionality as we
increase Ro. The goal is to determine the boundary Roc(Re) in parameter space between
exactly 2-D flows and partially 3-D ones through linear stability analysis. The challenge
is that the base state of this linear stability analysis is a body-forced turbulent 2-D flow.
Because of the inverse energy cascade, such flows typically achieve a statistically steady
state after a long transient, the duration of which scales with the viscous time scale L2/ν.
For a given Reynolds number Re � 1, one typically needs to integrate the 2-D equations
for a number Re of large-scale eddy turnover times. Once the statistically steady 2-D base
state is reached, thousands of additional turnover times are needed to correctly sample the
growth rate of the infinitesimal 3-D perturbations and conclude on the stability of the flow.
We leverage the capabilities of modern graphics processing units (GPUs) to address this
challenge: the linear stability problem for the 3-D perturbations is effectively 2-D and fits
on the memory of a single GPU, which outperforms central processing units (CPUs) for
the rapid computation of fast Fourier transforms. This enables us to investigate the 2-D to
3-D transition up to Re = 105, one to two orders of magnitude above the typical values
reported in experimental and fully 3-D numerical studies.

2. Theoretical set-up

We consider the flow of a Newtonian fluid inside a parallelepiped domain (x, y, z) ∈
[0, L] × [0, L] × [0, H], in a frame rotating at a rate Ω > 0 around the vertical z axis. We
focus on periodic boundary conditions in all three directions, although the results apply
equally to a fluid layer of height H/2 with stress-free boundary conditions at the top and
bottom. The flow is driven by a vertically invariant body force f = f0 sin(8πy/L)ex, where
ex denotes the unit vector along x, and the velocity field u(x, y, z, t) satisfies the rotating
Navier–Stokes equation

∂tu + (u · ∇)u + 2Ω ez × u = −∇p + νΔu + f , (2.1)

together with the incompressibility constraint ∇ · u = 0. This equation admits some
vertically invariant 2-D solutions, u2-D(x, y, t), that satisfy the 2-D Navier–Stokes equation

∂tu2-D + (u2-D · ∇)u2-D = −∇P + νΔu2-D + f , (2.2)

where the Coriolis force is absorbed by the pressure gradient. In a non-rotating system
and at large Reynolds number, such 2-D solutions are unstable to 3-D perturbations and
quickly evolve into fully 3-D turbulence.

However, rapid global rotation stabilises these 2-D solutions with respect to 3-D
perturbations, even the turbulent ones: at large Reynolds number and very low Rossby
number, the flow u2-D(x, y, t) evolves in a complicated and chaotic fashion, but it remains
invariant in the vertical direction. Such exact two-dimensionalisation of the flow only holds
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up to a Reynolds-number-dependent and aspect-ratio-dependent critical Rossby number
Roc(Re, L/H) above which three-dimensionality spontaneously arises. To determine the
precise threshold Roc, we consider the evolution of an infinitesimal 3-D perturbation to
the 2-D turbulent base flow u2-D(x, y, t). This 3-D perturbation satisfies the Navier–Stokes
equation (2.1) linearised around u2-D. Because the latter is independent of z, the different
vertical Fourier modes of the 3-D perturbation decouple at linear order. Without loss
of generality, we can thus restrict attention to a 3-D perturbation consisting of a single
vertical Fourier mode, û3-D(x, y, t) eiqz, where û3-D(x, y, t) is a complex-valued 3-D vector.
The full velocity field is u(x, y, z, t) = u2-D(x, y, t) + û3-D(x, y, t) eiqz + c.c., where c.c.
denotes the complex conjugate of the second term. Upon linearising the vorticity equation
around the 2-D base flow, we obtain the evolution equation for the vorticity of the 3-D
perturbation, ω̂3-D = (∇⊥ + iqez) × û3-D:

∂tω̂3-D = (∇⊥ + iqez) × [u2-D × ω̂3-D + û3-D × (ω2-Dez)]

+ 2iqΩû3-D + ν(∇2
⊥ − q2)ω̂3-D, (2.3)

where ∇⊥ = (∂x, ∂y, 0) and ω2-D = (∇⊥ × u2-D) · ez.
Linear stability analysis thus boils down to an effectively 2-D fluid problem governed

by (2.2) and (2.3). However, the aspect ratio of the 3-D domain remains a key control
parameter, as it restricts the acceptable values of the vertical wavenumber q entering these
2-D equations. Anticipating the results presented in figure 2, we observe that Roc is an
increasing function of the vertical wavenumber |q| throughout most of the parameter space.
In other words, the most unstable mode corresponds to the gravest vertical wavenumber
compatible with the vertical boundary conditions, q = 2π/H. Linear stability analysis for
a low value of qL thus yields the threshold Rossby number for a deep domain, while
linear stability analysis for a large value of qL yields the threshold Rossby number for a
shallow domain, the dimensionless vertical wavenumber and the aspect ratio being related
by qL = 2πL/H. In the following, we thus refer to the threshold Rossby number computed
for low (respectively large) values of qL as the onset of 3-D motion in deep (respectively
shallow) fluid layers.

The stability analysis consists of two steps. First, we integrate (2.2) until the 2-D
turbulent flow reaches a statistically steady state, which constitutes the base state of the
linear stability analysis. This base flow is independent of the global rotation rate Ω ,
which does not appear in (2.2). Secondly, we introduce the 3-D perturbation by solving
simultaneously (2.2) and (2.3).

We compute the r.m.s. velocity from the statistically steady 2-D base flow,
U = 〈u2

2-D〉1/2
x,t , where 〈 · 〉x,t denotes an average over space and time. Even though U

is an emergent quantity – as opposed to a true control parameter of (2.2) – we build
the Reynolds number Re and Rossby number Ro with this r.m.s. velocity to facilitate
comparison with other experimental and numerical set-ups. The relation between Re and
the forcing-based Grashof number associated with (2.2) is provided in the appendix. The
problem thus involves three dimensionless parameters: the Reynolds and Rossby numbers
defined above, and the aspect ratio of the fluid domain through the dimensionless vertical
wavenumber qL. A typical set of numerical runs consists in holding Re and qL fixed, and
sweeping over the values of Ro by changing the rotation rate Ω . The corresponding time
series of the kinetic energy of the 3-D perturbation, E3-D(t) = 〈|û3-D|2〉x, are displayed in
figure 1 for such a set of runs. For low Rossby number (large rotation rate), the 3-D kinetic
energy decays monotonically in time: the 2-D turbulent base flow is stable with respect to

901 R5-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.541


Three-dimensionality in rapidly rotating flows

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

t U
L

lo
g

|u
3-

D
|2

U
2

FIGURE 1. Time series of the kinetic energy of the 3-D perturbation, for fixed Reynolds
number Re = 9.3 × 104 and aspect ratio qL = 6π. The Rossby number increases from bottom
to top: Ro = 3.7 × 10−3 (black), 4.9 × 10−3 (red), 7.4 × 10−3 (green) and 9.8 × 10−3 (blue),
respectively. The first two time series correspond to stable situations, while the 3-D perturbation
grows exponentially for the two highest values of Ro.
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(2-D turbulence)
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(3-D flow)

qL = 2π
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FIGURE 2. Threshold for instability to 3-D perturbations in the (Ro, Re) plane, for three values
of the aspect ratio. Full symbols with Ro ∈ [0.015, 0.03] correspond to a centrifugal-type
instability. The open symbols at lower Ro depart from this behaviour, and display the
characteristics of the parametric excitation of inertial waves.

3-D perturbations. By contrast, for larger Rossby number, the 3-D kinetic energy grows
rapidly, indicating an instability. The growth rate of the 3-D kinetic energy displays a
strongly intermittent behaviour, associated with the turbulent dynamics of the background
2-D flow.

Through long numerical integrations we infer the average growth rate, γ = 〈(d/dt) log
E3-D〉t, as a function of the Rossby number Ro. The threshold Rossby number Roc(Re, qL)

for the emergence of three-dimensionality is obtained when γ = 0. We determine
Roc(Re, qL) by repeating similar sets of numerical runs for various values of Re and qL
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and show it in figure 2. The boundary clearly separates the low-Ro region of parameter
space, where the system has 2-D flow attractors, from the large-Ro region, where the flow
becomes 3-D. It is worth stressing the fact that Roc is much larger than the conservative
lower bound computed in Gallet (2015): the threshold lies in a region of parameter
space accessible to DNS (Godeferd & Lollini 1999; Mininni, Alexakis & Pouquet 2009;
Mininni & Pouquet 2010) and laboratory experiments (Hopfinger, Browand & Gagne 1982;
Dickinson & Long 1983; Morize & Moisy 2006; Gallet et al. 2014; Yarom & Sharon
2014), which typically reach Re ≤ 3000 and Ro ∈ [10−2, 1]. However, the integration of
the quasi-2-D equations on GPUs allows us to extend this boundary to more extreme values
of the dimensionless parameters, all the way to Re � 105 and Ro � 2 × 10−3.

The location of the boundary depends on the aspect ratio qL: for a shallow fluid layer
with qL = 20π, Roc seems to asymptote to a Re-independent value at large Re, at least up
to Re = 105. By contrast, for deeper fluid layers (lower values of qL), Roc does depend on
Re at large Reynolds number, with the approximate scaling behaviour Roc ∼ Re−1, shown
as a dashed line in figure 2. The instability arises over a turbulent base state, a situation less
documented than standard instabilities arising over steady or periodic base flows. To gain
intuition into the instability process, we thus pursue two approaches. First, we compare
the present instability to known instabilities of steady vortices in rotating flows, namely
the centrifugal and elliptical instabilities. Secondly, we discuss the decomposition of the
low-Ro 3-D perturbation into inertial waves, the instabilities of which can be investigated
through a perturbative expansion in Rossby number.

3. Centrifugal instability

For the shallowest fluid domain considered in figure 2 qL = 20π, the 3-D instability
exhibits many features of the centrifugal instability. First, we observe that the unstable
mode develops only inside anticyclones, an example being provided in figure 3(a,d).
Secondly, the inviscid Rayleigh criterion for the centrifugal instability of an axisymmetric
vortex is that the quantity φ(r) = 2[V(r)/r + Ω][ω2-D(r) + 2Ω] be negative for some
value of r, where V(r) and ω2-D(r) are the azimuthal velocity profile and the vorticity
profile, respectively (Kloosterziel & Van Heijst 1991). For a given radial structure of
the anticyclone, this instability criterion yields ω(r = 0) + CΩ < 0, where the first
term is the (negative) vorticity at the vortex centre, and C > 0 is a dimensionless
constant that depends on the shape of the anticyclone (Sipp, Lauga & Jacquin 1999;
Sipp & Jacquin 2000). As a proxy to the Rayleigh criterion, we have computed the
quantity R(t) = [minx(ω2-D) + 2Ω]/2Ω , where the overline denotes a smoothing over
one turnover time L/U. In figure 4, we represent a scatter plot of the (smoothed)
instantaneous growth rate (d/dt)(log E3-D) as a function of R(t). The two quantities
are strongly correlated, the growth rate being positive whenever Rayleigh’s instability
criterion is satisfied, i.e. when R(t) � 0. This is another indication that the instability
arising in the present system is of centrifugal type.

Finally, rigorous upper bound theory indicates that the time average of the minimum
2-D vorticity scales with the large-scale turnover time, |〈minx(ω2-D)〉t| � U/L up
to logarithmic terms (see appendix A.3 in Gallet 2015). This is an indication that
minx(ω2-D) scales as U/L, so that the generalised Rayleigh criterion yields Ro ≤ const.:
at low viscosity (large Reynolds number), we expect the centrifugal instability to arise
above a Re-independent threshold Rossby number. The shallow-layer qL = 20π data in
figure 2 indeed asymptote to a Re-independent threshold Rossby number at large Re.
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FIGURE 3. Unstable mode near threshold: (a–c) normalised vorticity ω2-D(L/U)

of the 2-D turbulent base flow and (d–f ) corresponding unstable three-dimensional
perturbation; (a,d) Re = 9.3 × 104, qL = 20π, Ro = 2.0 × 10−2, (b,e) Re = 9.3 × 104,

qL = 6π, Ro = 7.4 × 10−3 and (c, f ) Re = 9.3 × 104, qL = 2π, Ro = 2.7 × 10−3.
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FIGURE 4. Scatter plot of the smoothed growth rate versus the Rayleigh-like parameter
R(t) = minx(ω2-D)/2Ω + 1. The symbols correspond to the mean value in each horizontal
bin and the vertical bars show the standard deviation. The strong correlation between the
two quantities is characteristic of a centrifugal instability developing inside anticyclones when
R(t) � 0.

A similar correlation between the Rayleigh criterion R(t) and the growth rate was
observed for all the filled symbols in figure 2 with Ro � 0.1, which indicates that the
corresponding instability is of centrifugal type. However, for large Reynolds number and
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lower values of the vertical wavenumber, qL = 6π or qL = 2π (i.e. for deeper fluid layers),
we observed no clear correlations between R(t) and the growth rate: these are the open
symbols in figure 2. These data points also depart from the Roc = const. asymptote of the
shallow layer qL = 20π, which is additional evidence that they do not correspond to a
centrifugal instability.

4. Three-dimensionality in deeper fluid layers

For lower values of qL (deeper fluid layers) and large Reynolds number, the threshold
to three-dimensionality departs from the Ro = const. centrifugal asymptote (see figure 2).
The deeper the layer, the lower the value qL of the gravest vertical mode, and the sooner
the threshold departs from the asymptote as Re increases. We conjecture that the qL =
20π threshold would probably also depart from the centrifugal asymptote if we could
investigate even higher Reynolds numbers. There is thus another instability at play in deep
domains and at large Reynolds number. To characterise the corresponding unstable modes,
in the second and third columns of figure 3 we provide snapshots of the 2-D base flow and
3-D perturbation, during a phase of rapid growth of the latter. A first difference with the
centrifugal instability is that the unstable mode can develop inside the elliptical core of
both cyclones (figure 3b,e) and anticyclones (figure 3c, f ). This points towards the elliptical
instability as a potential candidate for this large-Re instability.

However, at least two arguments seem to challenge this interpretation. First, we played
the – arguably artificial – game of replacing the 2-D turbulent base flow by a steady flow
that corresponds to either figure 3(b) or 3(c) (i.e. we freeze the 2-D base flow). We probed
the stability of the frozen flow over a range of Rossby numbers that extends up to twice
the threshold Rossby number of instability of the time-dependent flow. Surprisingly, we
observed that such artificial steady flows do not lead to an instability over that range
of Rossby numbers. The unavoidable conclusion is that the time dependence of the
base flow plays a central role in the instability mechanism, which thus differs from the
simple elliptical instability of a steady vortex. Secondly, theoretical predictions based
on weak-ellipticity expansions lead to a threshold for instability of the form Re ∼ Ro−2

(Le Dizes & Eloy 1999; Le Dizes 2000), while our data points indicate a scaling law
closer to Re ∼ Ro−1 for the 2-D/3-D threshold at high Re in deep domains, albeit in a
moderate parameter range (see figure 2 for qL = 6π and qL = 2π).

Because the high-Re deep-domain instability arises at low Rossby number, we can
address it through a standard low-Ro inertial-wave expansion of the 3-D perturbation.
In this framework, the 2-D base flow and the 3-D perturbation are decomposed onto a
helical basis of inertial waves, with slowly varying amplitudes. These wave amplitudes
evolve primarily through resonant triadic interactions. However, these interactions do
not transfer energy between the 3-D waves and the 2-D base flow, and therefore the
3-D instability cannot arise from resonant triadic interactions (Greenspan 1968; Smith &
Waleffe 1999; Chen et al. 2005). In some sense, this is the reason behind the existence of
exact two-dimensionalisation: these instabilities, which would lead to a constant threshold
Reynolds number Rec (set by the balance between an inviscid growth rate γ ∼ U/L and
the viscous damping rate ν/L2) cannot arise over a purely 2-D base flow. Instead, one
needs to go to the next order in Rossby number to uncover mechanisms that do transfer
energy between the 2-D flow and the 3-D perturbations. At this order, quasi-resonant triads
and resonant quartets of inertial waves were recently highlighted as important instability
mechanisms to induce 2-D motion from an inertial-wave base flow (Kerswell 1999;
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10−4 10−3 10−2

Ro

103

104

105

Re
Ro−1

Oscillatory

Stationary

FIGURE 5. Threshold of instability to 3-D perturbations in the (Ro, Re) plane for an oscillatory
Kolmogorov flow (blue circles) and a steady Kolmogorov flow (red squares). While the steady
Kolmogorov flow has a Ro � const. instability threshold, the oscillatory Kolmogorov flow is
much more unstable, with a threshold Reynolds number that scales as Ro−1 (dashed line).

Smith & Waleffe 1999; Le Reun 2019; Le Reun, Favier & Le Bars 2019; Brunet et al. 2020;
Le Reun et al. 2020).

We argue that the opposite mechanisms can arise in the present system: 3-D inertial
waves can arise spontaneously over a 2-D base flow, either through resonant quartets of
inertial waves, or through the parametric excitation of inertial waves by the time-dependent
2-D flow. Both mechanisms would lead to an inviscid growth rate γ ∼ Ro U/L: at
threshold, the latter balances the viscous damping rate ν/L2, which leads to a threshold
Re ∼ Ro−1 in parameter space. The parametric excitation of inertial waves by the
time-dependent 2-D flow is a particularly appealing mechanism, as it provides an
explanation for both the Re ∼ Ro−1 scaling behaviour and the key role of the time
dependence of the base flow. A simple illustration of this mechanism is provided by the
oscillatory Kolmogorov flow: instead of the intricate 2-D turbulent base flow, consider
the simpler flow u2-D = 2U sin(4πy/L) cos(4πUt/L)ex as a model of large-scale flow
structures of typical velocity U evolving with the eddy turnover time L/U. We determine
the threshold for the growth of 3-D perturbations around this 2-D base flow using a
numerical code based on Floquet theory in time. As shown in figure 5 for qL = 2π, the
threshold of the corresponding parametric instability scales as Re ∼ Ro−1 (blue circles).
By contrast, the steady version of this Kolmogorov flow, u2-D = √

2U sin(4πy/L)ex,
yields an instability threshold Ro � const. (red squares), reminiscent of the centrifugal
asymptote in figure 2. Indeed, for such a parallel flow the streamlines have an infinite radius
of curvature, and the φ centrifugal-instability criterion above reduces to the existence of
a point in the flow where ω2-D ≤ −2Ω . This criterion yields a threshold Rossby number
Roc = 1/(4π

√
2) � 0.0563 for the steady Kolmogorov flow, in excellent agreement with

the numerical value (see figure 5).
The stark contrast between the instability thresholds of the steady and oscillatory

Kolmogorov flows in figure 5 illustrates once again that the time dependence of the 2-D
base flow is a key ingredient for instability to 3-D perturbations at high Reynolds number
and low Rossby number.
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5. Discussion

We have investigated the onset of three-dimensionality in rapidly rotating turbulent
flows using the capabilities of modern GPUs. Interestingly, the threshold between exactly
2-D and partially 3-D flows crosses the region of parameter space that is accessible to
laboratory experiments and fully 3-D DNS. In this region of parameter space, we have
provided evidence that three-dimensionality arises through the centrifugal destabilisation
of anticyclones. The corresponding threshold Rossby number depends only weakly on
the Reynolds number for large enough Re. However, our approach also allowed us to
reach a region of parameter space that goes beyond the parameter range of state-of-the-art
experiments and DNS, up to Re = 105 and Ro = 2 × 10−3 simultaneously. For such
extreme parameter regimes, the threshold between 2-D and 3-D flows scales as Re ∼ Ro−1,
and the time dependence of the base flow appears as a crucial ingredient of the instability
process. We proposed the parametric amplification of inertial waves by the fluctuating 2-D
turbulent flow as a candidate mechanism for this instability, which we exemplified through
the stability analysis of the rapidly rotating oscillatory Kolmogorov flow. Whether and
how this instability is connected to standard forms of the elliptical instability remains
to be investigated. The scaling Re ∼ Ro−1 for the instability threshold is yet another
confirmation that the limits Re → ∞ and Ro → 0 do not commute: the end state of rapidly
rotating turbulence depends very much on the distinguished limit considered when sending
Re to infinity and Ro to zero (Alexakis 2015; Gallet 2015; Le Reun 2019).

While this study is motivated primarily by theoretical fluid dynamics, some connection
can be made to the dynamics of natural flows. Very much like rotating turbulence
can be decomposed into a 2-D slow manifold coexisting with 3-D waves, rotating
stratified oceanic and atmospheric flows can be decomposed into balanced motion – the
quasi-geostrophic slow manifold – and waves. In both cases the slow manifold leads to
an inverse energy cascade, with energy condensing into domain-scale structures in the
absence of large-scale damping, and in both cases the waves can induce a ‘wave-turbulent’
forward energy cascade. Because such condensation of kinetic energy at the basin scale is
absent from oceanic data, it has been hypothesised that part of the balanced energy may
be transferred to wave-like motion and cascaded to small scales, a phenomenon coined
‘loss of balance’ (Vanneste 2013; Rocha, Wagner & Young 2018). In the simpler context
of rapidly rotating unstratified turbulence, the slow manifold consists of 2-D flows, and
loss of balance corresponds to the emergence of 3-D waves. Our study thus highlights
basic instability mechanisms leading to spontaneous loss of balance in a rapidly rotating
unstratified turbulent flow. It provides the region of parameter space where 3-D structures
develop, shedding light on the possible emergence of a forward energy cascade as the
Rossby number increases.

We stress the fact that the present linear stability analysis only provides sufficient
conditions for the emergence of 3-D structures. For Rossby numbers lower than Roc,
we cannot rule out the emergence of three-dimensionality through finite-amplitude
instabilities (FAIs). In other words, below Roc(Re) we know that the system possesses
a 2-D flow attractor, but this attractor may coexist in phase space with a fully 3-D flow
attractor (see e.g. Yokoyama & Takaoka (2017) for the coexistence of a quasi-2-D attractor
and a strongly 3-D one). The statistically steady state realised by the system would then
depend on the initial condition. As shown in Gallet (2015), however, there exists a value
Roabs(Re) of the Rossby number below which such FAIs are ruled out: for Ro ≤ Roabs(Re),
the 2-D flow is absolutely stable to 3-D perturbations and the system ends up in the 2-D
flow attractor regardless of the initial condition. If Roabs(Re) < Roc(Re), then FAIs can
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Re qL Resolution (Nx, Ny) dt
U
L

≤ 5 × 102 [2π, 6π, 20π] 256 × 256 [3 × 10−4, 5 × 10−4]
[1, 2 × 103, 2.5 × 103] [2π, 6π, 20π] 384 × 384 2 × 10−4

1.2 × 104 [2π, 6π, 20π] 512 × 512 10−4

3.2 × 104 [2π, 6π, 20π] 1024 × 1024 7 × 10−5

9.3 × 104 [2π, 6π, 20π] 1536 × 1536 4 × 10−5

TABLE 1. Resolution (Nx, Ny) and average (adaptive) time step dt(U/L) for the values of the
Reynolds number considered in this study. The simulations are run for a large number of time
steps, of the order of Re L/(U dt).

arise for Ro ∈ [Roabs(Re), Roc(Re)], depending on the initial condition. If Roabs(Re) =
Roc(Re), FAIs are ruled out. Again, the determination of Roabs(Re) through fully 3-D DNS
remains prohibitively expensive at large Re and low Ro. Instead, the existence of FAIs,
as well as whether and when a forward energy cascade develops, could be investigated
through nonlinear extensions of this work: one could design a weakly nonlinear model
by keeping only the first unstable vertically dependent mode and its feedback onto the
2-D base flow, in the spirit of Benavides & Alexakis (2017) and Seshasayanan, Gallet &
Alexakis (2017). For physical systems that are amenable to 3-D DNS in extreme parameter
regimes, models of this kind have predictive skills when compared to 3-D DNS, at least at
a qualitative level (van Kan & Alexakis 2019). For the problem at stake, such a model
may capture the emergence of a forward energy cascade as Ro increases (Alexakis &
Biferale 2018), thus providing direct information on the region of parameter space where
rapidly rotating turbulence displays an ‘anomalous’ or fully turbulent energy dissipation
rate, independent of molecular viscosity.

Acknowledgements

We thank S. Le Dizès, S. Benavides and A. Alexakis for insightful discussions. This
work is supported by the European Research Council under grant agreement 757239.

Declaration of interests

The authors report no conflicts of interest.

Appendix. Numerical methods

The numerical simulations are performed using standard pseudo-spectral methods, with
dealiasing using the two-thirds rule. The fields are decomposed into a Fourier–Fourier
basis in spectral space and discretised on a (Nx, Ny) grid in the x and y directions of
the physical space. Time stepping is performed using a standard four-step third-order
Runge–Kutta scheme. The adaptive time step dt satisfies a Courant–Friedrichs–Lewy
(CFL) condition constructed from both advective and rotation time scales. The spatial
resolutions and the average time step are given in table 1. The simulations are run for a
number of time steps of the order of Re L/(U dt).
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Simulations of the 2-D Navier–Stokes equations (2.2) are performed until the flow
reaches a statistically steady state, which constitutes the base flow of the present linear
stability analysis. The Reynolds and Rossby numbers are built using the r.m.s. velocity U
of this 2-D base flow. The control parameter of the 2-D Navier–Stokes equation (2.2) is the
Grashof number Gr = f 1/2

0 L3/2/ν, while the r.m.s. velocity U is an emergent quantity. For
low Grashof number, U is given by the laminar balance between the viscous and forcing
terms, U/

√
f0 L ∼ Gr. For larger Grashof number, Gr � 500, the r.m.s. velocity obeys the

approximate scaling law U/
√

f0 L � 6.0 × 10−3 Gr1/2 with 20 % accuracy.
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