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We study the multiplicity and concentration behaviour of positive solutions for a
quasi-linear Choquard equation

—ePApu+ V(@) |uP~2u = e#=N (—
|

% F(u)>f(u) in RY,

where A, is the p-Laplacian operator, 1 < p < N, V is a continuous real function on
RN, 0 < pu < N, F(s) is the primitive function of f(s), ¢ is a positive parameter and
* represents the convolution between two functions. The question of the existence of
semiclassical solutions for the semilinear case p = 2 has recently been posed by
Ambrosetti and Malchiodi. We suppose that the potential satisfies the condition
introduced by del Pino and Felmer, i.e. V has a local minimum. We prove the
existence, multiplicity and concentration of solutions for the equation by the
penalization method and Lyusternik—Schnirelmann theory and even show novel
results for the semilinear case p = 2.
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1. Introduction and main results

In this paper, we consider the existence, multiplicity and concentration behaviour
of positive solutions for the following class of generalized Choquard equation (here
‘SNE’ abbreviates ‘semilinear nonlinear equation’):
2 pn—N 1 q q—2 : N
—efAu+V(z)u=¢ W*M [u]" .  in RY,
x

ue HY2RY), wu(z) >0 forall z € RY,

(SNE)

where € > 0, 0 < ¢ < N and the exponent ¢ lies in a suitable range.
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This problem was motivated by some recent works related to the existence of
standing waves of the nonlinear Schrodinger equation of the kind

2
ihOW = _QLM + W (@) — (K () |[2]9)[@|"2F  in RY. (1.1)
m

Here m is the mass of the bosons, h is the Planck constant, W(z) is the exter-
nal potential and K (x) is the response function that possesses information on the
mutual interaction between the bosons. This type of non-local equation is known
to influence the propagation of electromagnetic waves in plasmas [7] and also plays
an important role in the theory of Bose-Einstein condensation [16]. It is clear that
¥ (z,t) = u(z)e” (E/Mt solves the evolution equation (1.1) if, and only if, u solves

—?Au+ V(z)u = (K(x)* |u/)|ulf%u  in RY (1.2)

with V(z) = W(x) — E and &2 = h%/2m.
When the response function K(z) is equal to d(z) and ¢ = 2, the nonlinear
response is local, and nonlinear Schréodinger equation (1.2) becomes

—e?Au+V(z)u = g(u) inRY. (1.3)

The semiclassical problems for the Schrodinger equation (1.2), i.e. the parameter
€ goes to zero, describe the transition between quantum mechanics and classical
mechanics. The study of existence and concentration of the semiclassical states
of the Schrédinger equation (1.3) goes back to the pioneering work by Floer and
Weinstein [21]. Since then it has been studied extensively under various hypotheses
on the potential and the nonlinearity (see, for example, [3,5,6,8-11,18,19,21-23,
35,36,38,40] and the references therein).

If the parameter ¢ is equal to 1 and the response function K () is of Coulomb type
(for example, 1/|z|* and F(u) = |u|?/q), then we arrive at the Choquard—Pekar
equation,

—Au+u= (131|“ * |u|q> lu[7 %y in RV, (1.4)
The case when ¢ = 2 and pu = 1 goes back to the description by Pekar in 1954 of
the quantum theory of a polaron at rest [37] and the modelling in the 1976 work
of Choquard of an electron trapped in its own hole, in a certain approximation to
Hartree-Fock theory of one-component plasma [25].

Equation (1.4) was proposed by Penrose in 1996 as a model of self-gravitating
matter [33] and is known in that context as the Schrédinger-Newton equation. Since
then many efforts have been made to study the existence of non-trivial solutions
for problem (1.4). In [27], by using critical point theory, Lions obtained a solution
u € HY(R3), u # 0. For a general class of K(x) and nonlinearity, Ackermann [1]
proposed an approach to prove the existence of infinitely many geometrically dis-
tinct weak solutions to the problem with potential V' periodic in x; and 0 not in
the spectrum of —A + V(z). Concerning the properties of the ground-state solu-
tions, Ma and Zhao [28] considered the generalized Choquard equation (1.4) for
q > 2; they proved that every positive solution is radially symmetric and monotone
decreasing about some point, under the assumption that a certain set of real num-
bers, defined in terms of N, o and ¢, is non-empty. Under the same assumption,
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Cingolani et al. [14] gave some existence and multiplicity results in the electro-
magnetic case, and established the regularity and some decay of the ground states
of (1.4) asymptotically at infinity. Moroz and Van Schaftingen [30] eliminated this
restriction and showed the regularity, positivity and radial symmetry of the ground
states for the optimal range of parameters, and also derived that these solutions
decay asymptotically at infinity. Moroz and Van Schaftingen also established the
existence of a ground state for the Choquard equation with general nonlinearity
in [31].

The question of the existence of semiclassical solutions for the non-local prob-
lem (1.2) has been posed more recently [5, p. 29]. Consider the semilinear elliptic
equation

—2Au+V(z)u =N <|$1|M * |u|q) lu[97%u in RV, (1.5)
It can be observed that if v is a solution of (1.5) for 2o € RY, then the new function
defined by u = v(xg + ex) satisfies

1
—Au+V(rg+ex)u= <|u * |u|q> lul97%u  in RV,
x
This suggests some convergence, as € — 0, of the family of solutions to a solution
ug of the limit problem

—Au+ V(zg)u = <|$1|“ * |u|q> lul7" %y in RV, (1.6)
It is expected that, in the semiclassical limit ¢ — 0, the dynamics should be gov-
erned by the classical external potential V(z). In particular, there should be a
correspondence between semiclassical solutions of the equation and critical points
of the potential.

In the case when N = 3, p = 1 and F(u) = |u]9, ¢ = 2, Wei and Win-
ter [41] constructed families of solutions by a Lyapunov—Schmidt-type reduction
when inf V' > 0, and Secchi [39] obtained the result when V' > 0 and lim inf |2| — oo,
V(z)|x|” > 0 for some v € [0,1). This method of construction depends on the exis-
tence, uniqueness and non-degeneracy up to translations of the positive solution of
the limiting equation (1.4), which is a difficult problem that has only been fully
solved in the case when N = 3, 4 = 1 and p = 2. In the presence of non-constant
electric and magnetic potentials, Cingolani et al. [13] showed that there exists a fam-
ily of solutions having multiple concentration regions that are located around the
minimum points of the potential. Assuming that electric and magnetic potentials
are compatible with the action of a group G of linear isometries of R?, Cingolani et
al. [15] showed that there is a combined effect of the symmetries and the potential
V on the number of semiclassical solutions. Yang and Ding [43] considered (1.2).
By using variational methods, they were able to obtain the existence of solutions
with non-negative potentials. Very recently, in an interesting paper, Moroz and
Van Schaftingen [32] used variational methods to develop a novel non-local penal-
ization technique to show that equation (SNE) has a family of solutions concen-
trated at the local minimum of V', with V satisfying some additional assumptions
at infinity.
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Motivated by the above references, in the present work we study the existence,
multiplicity and concentration behaviour of positive solutions of the generalized
Choquard equation (SNE). Since the methods applied here can also be used to
study a more general case, instead of studying the semilinear case we consider the
generalized quasi-linear Choquard equation driven by the p-Laplacian operator and
general nonlinearity and conclude directly that the multiplicity and concentration
behaviour of positive solutions still hold for the purely Laplacian case with power-
type nonlinearity. In fact, we shall study the quasi-linear Choquard equation of the

form
1
et V== o (er ) ) w R,
ue O ®N)NWHP(RY)  with 1 <p < N, (QNE)

u(z) >0 forall z € RY,

where ¢ > 0, 0 < g < N, F is the primitive function of f and the p-Laplacian
operator A, is defined by

Ayu = div(|VulP 2 Vu).

Here we assume that p > 1 and general hypotheses, which are satisfied by a
large class of nonlinearities that includes u? for ¢ > p, hold on f. Except for a
very special situation treated by Wei and Winter [41], little is known regarding the
non-degeneracy of the ground-state solutions of the semilinear Choquard equation

“Autu= (/RN ﬁ *F(u))f(u) in RV,

and it is impossible to apply the arguments in [41] to investigate the existence and
concentration behaviour of the solutions. We also point out that, for the quasi-linear
Choquard equation

—Apu+ |uP2u = </RN ﬁ * F(u))f(u) in RY,

whether its positive solutions are non-degenerate, unique under translation, radially
symmetric and monotone decreasing about some point, or decay asymptotically at
infinity is still an open problem. So we cannot apply the Lyapunov—Schmidt-type
reduction arguments or the arguments in [12,13,15] to obtain the multiplicity or
concentration of the semiclassical states for the quasi-linear Choquard equation.
To overcome this difficulty, we adapt the penalization method developed by
del Pino and Felmer [18,19]. However, now that we are working with a class of
non-local problems, we have to be careful in our use of this method. We have
proved new estimates involving this class of problems, which permit this use of
the penalization method. Note that our arguments are totally different from those
in [32], because in the latter the penalization method is associated with some Hardy-
type inequalities, which are avoided in our paper. Here, we are able to prove the
existence, multiplicity and concentration behaviour around the minimum point set
of potential V. Our approach uses some abstract minimax theorems, such as the
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Lyusternik—Schnirelmann category, to obtain the multiplicity of positive solutions.
Relating to the concentration behaviour for the semiclassical solutions of the non-
local quasi-linear problem, since we are working with the p-Laplacian operator,
which is nonlinear, we use the Moser iteration method to overcome some technical
difficulties in order to show some estimates about the non-local term (for more
details see §§5 and 6). Finally, our results are also new for p = 2 (more precisely,
for (1.5)).
The potential V' is a continuous function satisfying assumptions (Vq)—(Vs):

V(z) > Vo= inf V(z)>0 forallzeR". (V1)

rz€eR
There is an open and bounded domain A C RY such that
Vo < zienafAV(ff) (V)
and
M={zecRY:V(z)=V;} C A (Vs3)

Assuming 0 < p < p, in order to prove the existence of positive solutions, the
nonlinearity f: RT — R is a function of C! class and verifies the following condi-

tions: |f( )|
s—>0 sp—1 =0 (fl)
there exists p < ¢ < $p*(2 — (u/N)) such that
_f(s)
51i>rgo sq—1 = O’ (f2)

where p* = Np/(N — p) is the critical exponent. Moreover, we also assume that
there holds

fl(s)s> = (p—1)f(s)s >0 Vs >0. (f3)

To comment on the assumptions on the nonlinearity f, we recall an important
inequality due to Hardy, Littlewood and Sobolev [26], which will be frequently used.

ProOPOSITION 1.1 (Hardy—Littlewood—Sobolev inequality). Let s,r > 1 and 0 <
p< N with 1/s +p/N +1/r = 2. Let f € L*(RY) and h € L"(RY). There exists
a sharp constant C’(s,N,u,r), independent of f and h, such that

J e e AR
R

N JRN |x—y|l‘

REMARK 1.2. In general, F'(s) = |s|? for some ¢ > 0. By the Hardy-Littlewood—

Sobolev inequality,
1
— x F F
o (0 )0

is well defined if F(u) € L*(RY) for s > 1 defined by
2

T
s+N
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Now we are working with u € WP(RY), we require that sq € [p, p*], and since we
consider the subcritical case it must hold that

P L p* %

Zlo- L la- L),

2< N> ses 2< N>
Here we only consider the case ¢ > p.

REMARK 1.3. From assumption (f3), since f is a function of C!, the following
monotonicity conditions hold:

f(s)

5 —
sp—1

is strictly increasing on (0, +00), (5)

and, consequently,
0 < pF(s) < f(s)s Vs >0, (£y)

where

F(t):/O f(s)ds.

It also implies that the nonlinearity f verifies the well-known Ambrosetti—-Rabino-
witz-type superlinear condition for non-local problem, since, for 8 := 2p > p,

0<OF(s) <2f(s)s ¥s>0. (f5)

Recall that if Y is a closed set of a topological space X, we denote by catx(Y)
the Lyusternik—Schnirelmann category of Y in X, namely the smallest number of
closed and contractible sets in X which cover Y.

Our main result, theorem 1.4, establishes the existence of a multiplicity of solu-
tions to the non-local problem involving the Lyusternik—Schnirelmann category of
the sets M and Mg, where

M; = {z € RY: dist(x, M) < 8} for 6 > 0.

THEOREM 1.4. If 0 < p < p, suppose that the nonlinearity f satisfies (f1)—(f3)
with p < g < (N — pw)p/(N — p), and potential V' satisfies assumptions (V1)—(V3).
Then, for any 0 > 0, there exists e5 such that (QNE) has at least catps, (M) positive
solutions, for any 0 < € < g5. Moreover, if u. denotes one of these positive solutions
with global mazimum n. € RY, then

lim V(1) = Vo.

Here, we make a few observations about the restrictions on the parameter 0 <
pw<pandp<q<(N—u)p/(N—p)in the above theorem. In fact, to obtain the
existence results for the autonomous case V(z) = V; for all x € R, we can weaken
the conditions on the nonlinearities by assuming there are Cy > 0 and ¢y, g2 > %p

with
P Iz p* 1%
o= < Z (2 &
2( N><Q1 (J2<2( N)

such that, for all s € R,
[F(s)] < Co(ls|™™h + [s]2=271). (f1)
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However, to obtain the multiplicity and concentration of the solutions for the quasi-
linear non-local problems when V satisfies (V1)—(V3), we need to put further restric-
tions on the exponent ¢ to adapt the penalization method introduced by del Pino
and Felmer in [18]. We will treat the non-local part (1/|z|*) * F(u) as a bounded
term and introduce the monotone condition (f3) on f at the same time. Using
this idea, we introduce the assumption 0 < y < p and the range of the exponent
p<q<(N—pup/(N—p)tomake the penalization method applicable.

As a particular case, if p = 2, we directly obtain the multiplicity and concen-
tration results for semilinear Choquard-type equation, which also complement the
results obtained in [13,15,32].

COROLLARY 1.5. Consider the semilinear Choquard equation in R3:

—2Au A+ V(a)u = e (1 . F(u)> Flu),

||
ue HY(R?), u>0.

(SNE')

If0 < p < 2, suppose that the nonlinearity f satisfies (f1)—(f3) with 2 < g < 2(3—p),
and the potential function V satisfies assumptions (V1)—(V3). Then, for any § > 0,
there exists €5 such that (SNE') has at least catpr, (M) positive solutions for any
0 < € < g5. Moreover, if u. denotes one of these positive solutions with n. € R? its
global mazximum, then

gl_r% V(ns) =Tb.

1.1. Notation

C and C; denote positive constants. Br denotes the open ball centred at the
origin with radius R > 0.

If w is a mensurable function, we denote by u and u_ its positive and negative
part respectively, i.e.

us(xr) = max{u(z),0} and wu_(z)= max{—u(x),0}.

Cs°(RY) denotes the space of the functions that are infinitely differentiable with
compact support in RY.
E := WHP(RYN) is the usual Sobolev space with norm

Jul| := (/RN(IVUP + |u|p)>1/p.

L*(RY), for 1 < s < oo, denotes the Lebesgue space with the norms

1/s
= ([ 1)
RN

From the assumptions on V| it follows that

o= ([ awar s viespn)

is an equivalent norm in F.
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Let X be a real Banach space and let I: X — R be a functional of class C'. We
say that (u,) C X is a Palais-Smale (PS) sequence at ¢ (henceforth denoted (PS),)
for I if (u,,) satisfies

I(uy) = ¢ and I'(uy,) —0 asn — .

Moreover, I satisfies the PS condition at ¢ if any PS sequence at ¢ possesses a con-
vergent subsequence. If A is a C''-manifold of X and I: N'— R is a C'-functional,
we say that I|y satisfies (PS), if any sequence (u,) C N such that

I(up) = ¢ and || (un)|]« — 0

contains a convergent subsequence. Here, denote by ||I’(uy)|l« the norm of the
derivative of I restricted to N at the point w.

2. The limit problem

As far as we know, there are no results about the p-Laplacian equation with non-
local nonlinearities. Thus, we need to show some results about the limit problem.
Our intention in this section is to show some results involving the quasi-linear
problem. To this end, we begin our study by considering the quasi-linear problem

_ 1
~Apu+ Al ~%u = (W

* F(u)> f(u) inRY,

ue WHP(RY), 1<p<N,

(2.1)

where A is a positive constant.

In order to find positive solutions, we shall henceforth consider f(s) = 0 for all
s < 0.

The corresponding energy functional associated with problem (2.1) is defined by

La) = [ 0vap vy -5 [ (e F)F

From the growth assumptions on f and remark 1.2, the Hardy-Littlewood—
Sobolev inequality implies that L 4 is well defined on E and belongs to C!, with its
derivative given by

Ly = [ (VaP20uTor Al up)- [ (@) s vae e B,

Therefore, it is easy to see that all the solutions of (2.1) correspond to critical points
of the energy functional, L 4.
Next, let us denote by N4 the Nehari manifold associated to L4, given by

Na={ueE:u#0, L'y(u)u=0}

or

Na= {u € Biuo0, /RN(W“'p + Afuf?) = /RN (;VL \ F(u))f(u)u}.
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From assumptions (f1) and (f3), for any £ > 0 there exists C¢ > 0 such that
[F(s)] < &]s[” + Cels|.
By using the Hardy-Littlewood—Sobolev inequality, for u € N4, we have
[ull” < C(Iull?? + [lulP* + [lul*?).
Thus, there exists a > 0 such that
lu]| >« Yu e Na. (2.2)

Setting

aatw) = [ (v A - [ (e F) s

we have (J/(u),u) < 0 and, from remark 1.3, standard arguments show that N4 is
a complete manifold of codimension 1 in E.

The following lemma is a revised version of the corresponding lemma in [4], which
we sketch here for the reader’s convenience.

LEMMA 2.1. L4 satisfies the mountain pass geometry, that is,

(1) there exist p,09 > 0 such that La|s = 6o > 0 for allu e S ={u € E: ||ul| =
P

(2) there exist r > 0 and e with |le|]| > r such that La(e) < 0.

Proof.
(1) From the growth assumptions on f and the Hardy—Littlewood—Sobolev inequal-

ity, we derive

1
La(u) = Zlull” = C([ul? + [[ul®).

Since ¢ > p, (1) follows if we choose p small enough.
(2) Fixing up € E with ugj (v) = max{ug(x),0}, we set

t’LLo

[[uoll

g(t)z%( >>0 for t > 0,

where

(u) = ;/RN( L *F(u))F(u). (2.3)

||

By the Ambrosetti-Rabinowitz condition (fz),

22717 for all ¢t > 0.

Integrating this over [1, s|lug||] with s > 1/|luo||, we find

mww>s(“0)wawﬁﬂ

[[uoll
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Therefore,

1
La(sug) < CysP — Cys*  for s > W,
Ug

and (2) holds for e = sug and s large enough. O

THEOREM 2.2. Suppose that (f1)—(f3) hold with p < g < (N — p)p/(N — p). Then,
for any A > 0, problem (2.1) has a positive ground-state solution.

Proof. By the mountain pass theorem without the PS condition, there exists a PS
sequence (u,) C E such that

L'y (uy) — 0, La(up) — ma,
where the minimax value m4 can be characterized by

0<my:= inf La(tu) = inf La(u). 2.4
mai= nf  max altu) = mf Ly(u) (2.4)

It is easy to see that (u,) is bounded in E. Moreover, we claim that there exist
7,8 > 0 and a sequence (y,,) C RY such that

If the above claim does not hold for (u,), by Lions’s result we must have that
U, — 0 € L5(RN) forp<s<p.
Recalling that, for any £ > 0 there exists C¢ > 0 such that
[F(s)| < EJs[” + Cels|? Vs >0,

it follows from the Hardy—Littlewood—Sobolev inequality that

/RN <|ml|u * F(“n))f(un)un -0,

leading to ||u,|| — 0, which contradicts (2.4), showing that the claim holds. Fixing
Up, = Up (- — Yn), we derive

[l te (2.5)

Since L4 and Ly are both invariant by translation, it also holds that
L'y(v,) =0 and La(v,) — ma.

%

Observing that (v,) is also bounded, we may assume v, — v in E, v,(z)
(2.5).

v(z) almost everywhere (a.e.) in RY, v, — v in L (RV) and v # 0 by
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For ¢ € C§°(RY),
/ (IVon[P~2V0, — |Vo|P~2V0, Vo, — Vo)
RN
= —/ (|Vv[P =2V, Vu, — Vu)p
RN

— / (|Vop P2V, — |Vv|P~2Vu, Vo) (v, —v)
RN

[ v [ (5 P ) 1) - ol

||
(2.6)
It is easy to see that
/ (|Vo[P~2Vv, Vo, — Vo)p — 0,
Y (2.7)
/ (|Vop P2V, — |Vu|P~2Vv, V) (v, —v) = 0
RN
and
[t =0 > 0 (2.9)
RN

as n goes to co. For the non-local term, from the growth condition, we know that
F(vy,) is bounded in L2N/CN=m)(RN), Moreover, since v,(z) — v(z) a.e. in RV,
the continuity of F' gives F(v,(z)) — F(v(x)) a.e. in RY. Therefore, F(v,,) must
converge weakly to F(v) in L2V/(N=1)(RN). Using the Hardy-Littlewood-Sobolev
inequality, we know the convolution term

_ 2N/pw(pN
En xw(zx) €L (RY)

for all w € L2N/2N=1)(RN); this is a linear bounded operator from L2N/(2N=1)(RN)
to L2N/#(RN). Consequently,

1
||

o « F(u(y)) in L2N/RRN),

* Fun(y)) =

Using the fact f has a subcritical growth, we have

[ <1 . F(vn))f(vn)(vn e 0. 29)

||

The following inequalities are very useful [17]. For p > 2 and &,1 € RV,

(6726 — P20, € — ) > dale — P, } (2.10)
€172 — [nlP~2] < d2(|€P72 + [n[P~2)1€ —nl- '
For 1 <p<2andé§,neRY,
(1€[P~2€ = [nP~2n, & —m) = da([€] + [n))P2[¢ —nl?, 2.11)
I[P~ = [n[P~2] < da€ —nlP~. '
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Here dy, da, d3 and dy4 are some constants. For 1 < p < 2, from (2.6)—(2.9) and
(2.11), we know that

2/p
(/ Vo, — Vv|p<p>
RN

|Vo, — Vol? / ) (2-p)/p
S P
b (/RN (V| + |Vv|)2*p<p RN(|VUn + |Voul5)Pe

<C [ {(|Vou|[P72V, — |Vv|P~2Vo, Vo, — Vo)p — 0. (2.12)
RN

Similarly, we can prove the same local convergence property for the case p > 2. The
above limits imply that for some subsequence of (v,,) we have

Vun(z) = Vo(z) ae xzeRY.

These limits allow us to conclude that L’;(v) = 0. Using the definition of m4
together with Fatou’s lemma, we also deduce that L 4(v) = m 4. Moreover, by choos-
ing v_ as a test function, and recalling that f(s) = 0 for all s < 0 and L/, (v)v_ =0,
a direct computation gives v > 0. Now, if y < pandp < ¢1 < g2 < (N—p)p/(N—p),
we claim that v € CL¥(RN) for some o € (0,1). Indeed, setting

loc

K(z) = ﬁ « F(v) :/R F)

N |z =yt
we first claim there exists C' > 0 such that
|K(z)] < C Vo eRN. (2.13)

Since, for some Cy,
[F(v)] < Co([v]” + [v]7)

holds, we derive

_ ’/ F(v)
lz—y|<1 |‘T - y|,u

’/ F(v)
+ i A
lz—y|>1 |I - y|#

v|P + |v|?
<af BEEREL o[ e
lo—yl<1 [T —yl# jo—y|>1
p q
<G [P + ol

|lz—y|<1 |£C - y|P«

Here, we have used the fact that ¢ € (p, p*). Choosing

te( N N } d e( N Np }
_ and s , ,
N —pu" (N —p)q
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it follows from the Holder inequality that

/ |vlP < (/ vlt”>1/t</ 1 )(tl)/t
i< e =ylt =\ ey lo—yl<1 [T — g/ =D

(t—=1)/t
<0 (/ V1=t (=) dr)
[r|<1

1/s (s—1)/s
/ ‘Ulq < </ U|sq> (/ 1)
le—y|<1 |z —yl le—y|<1 lz—yl<1 [T — y|su/(s=1)

(s=1)/s
< CQ(/ ‘7,|N—1—s,u/(s—1) d,,,) )
i<

Since both N —1 —¢u/(t —1) > =1 and N —1 — su/(s — 1) > —1, there exists

('3 > 0 such that
p q
/ M <03 Vre RN7
\

z—y|<1 |‘T - y|#

and

proving (2.13).
From the above arguments, v is a solution of the quasi-linear problem

—Apv+ AP~ = K(2)f(v) in RN

with K € L>®(RYM) and f is a function with subcritical growth. Adapting some
arguments found in [4,24], we can show that there exists C' > 0 such that ||v||pe~ < C
and v decays to zero as || — oo. Then, by regularity theory, there exists a € (0,1)
such that v € Cllo’ca (RY). Now, we can apply Harnack’s inequality to conclude that
v(z) >0 in RV, O

LEMMA 2.3. Suppose that (f1)—(f3) hold with p < g < (N — u)p/(N — p). Let u be
the solution obtained in theorem 2.2. Then there exist C, 3 > 0 such that

lu(x)| < Cexp(—Blz]) Va e RN,

Proof. Since K (z) := (1/]z|*) * F'(u) < C, using assumption (f;) and the fact that
the solution u decays uniformly to zero as |z| — +00, we can take py > 0 such that

( 1 *F(U)>f(U(x))u1—P(x) <14

||

for all || > po. Consequently,

_ 1
—Apu(x) + %Aup 1(x) = (|I|“

* F(u))f(u(ac)) - %Au”_l <0

for all |z| > po. Let s and T be positive constants such that

(p—1)s" <14 and wu(z) < Texp(—spo) for all |z| = po.
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Hence, the function () = T exp(—s|z|) satisfies
—ApY + 3 AP S (A= (p— D)) >0
for all x # 0. Since p > 1,
(Jlz[P~2z — [y[P "y, —y) 2 0

for all 2,y € RY. We now take as a test function 1 = max{u — ¢,0} € Wy *(|z| >
po). Hence, combining these estimates yields

0= / (IVu[P=2VuVn + $ AuP~'n)
]RN
g / [(VulP~2Vu — [Ve[P2V) Vi + L APt — =Ly
]RN

> 14 (@ =) (u— ) da > 0
{z€RN: u>vy}
for all |z| > po. Therefore, the set 2 := {x € RN : |z| > pp and u > (x)} is empty.
O
3. The penalized problem

By changing variables, it is possible to see problem (QNE) is equivalent to the
perturbed problem

—Apu+ V(ex)|ulP~2u = (|331|“ * F(u))f(u) in RY,

u € CI’Q(RN)OWLP(RN), u(z) >0 for all x c RN,

loc

(QNEY)

Moreover, without loss of generality, we can assume that

V(0) = min V(z) = V.

z€RN
In what follows, the energy functional associated with (QNE™) is given by

Tw) == [ (9ul + Vie)lul?) - 3a),
D JrN
where § was given in (2.3).

In order to overcome the lack of compactness of the problem (QNE), we shall
adapt the penalization method introduced by del Pino and Felmer in [18] to treat
the non-local problems. So, we choose ¢ > 2 to be determined later, and take a > 0
to be the unique number such that f(a)/a?~1 = V,/f. We set

f(s) if s < a,

Vo
—5

7 Pl if s > a.

https://doi.org/10.1017/50308210515000311 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000311

Solutions for a quasi-linear Choquard equation

Let 0 < t, < a < T, and take a function n € C§°(R,R) such that
(m) 1(s) < f(s) for all s € [ta, Tu],
(12) nta) = f(ta), n(Tu) = F(To), 0/ (ta) = f'(ta) and 0/ (To) = f'(Ta),
(n3) the map s — n(s)/sP~! is non-decreasing for all s € [t,, Ty].
By using the above functions we can define f € CY(R,R) as follows:

. {f(s> i s ¢ [to, T, .
n(s) if s € [ta, Ta].

37

Letting X, denote the characteristic function of the set A, we introduce the penal-

ized nonlinearity g: RN x R — R by setting

g(x,s) = Xa () f(5) + (1 = Xa(@)) f(s).

(3.1)

Note that, by (f1)—(fs) and (n1)—(ns), it is easy to check that g(z,s) satisfies the

following properties:

TICIL)
|s|—0 sP—L

There exists p < ¢ < p*/2(2 — pu/N) such that
tim 5% _ g,
s—oo 89—

Moreover,
0 < 2pG(x,s) := 2p/ glx,7)dr < 2g(z,s)s forallze A, s>0,
0
and
Vo N
0 < pG(z,s) < g(z,s)s < 757’ for all z e RV \ 4, s> 0.

Finally, we also have that

g(x,s)s and G(z,s)

S —r
3P/2 317/2

are both increasing for all z € RY, s> 0.

(g1)

(84)

REMARK 3.1. It is easy to check that if u, is a positive solution of the equation

1
—ePApu+ V() |uP2u = "N (W * G(%“))Q(%U) in RV,

uE Cl,a(RN) N WLP(RN)’ u(x) >0 forall z € RN

loc

(APE)

such that u.(z) < t, for all x € RN \ A, then g(z,u.) = f(u.) and therefore u. is

also a solution of problem (QNE).
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In view of the remark above, we deal in the following with the penalized problem

—Apu+ V(ex)|uP2u = <1 * G(ex, u))g(ez, u) in RY,

Eds (APE")
u € WHP(RY), u(z) >0 forall z € RY,
and we shall look for solutions u. of problem (APE") verifying
ue(z) <t, forallz e RN\ A, (3.2)

where
A= {x e RY: cx € A},

In what follows, the energy functional associated with (APE") is given by

1w = [ (9up +Viea)luP) - 2.0,

where

5. (u) = %/RN (1 *G(sx,u))G(ex,u).

|

Moreover, the Nehari manifold associated to I, will be denoted by N, i.e.

N = {u CE:uto, /RN(|VU|”+V(€x)|u|p) _ /RN <1*G(5w,u))g(sx,u)u}.

|

Note that 0 < 2pG(x,s) < 2g(z, s)s always holds for all x € RY, s > 0.
Consequently, for any non-negative function v # 0 € F, similar arguments to
those explored in the proof of lemma 2.1 can again be used to show that

1
I (tu) < C1tP — Cot®®  for t > Tall
u

Then, using the monotone condition (g4), there exists a unique ¢, > 0 such that
tyu € N and I, (t,u) = maxy>o I (tu). Setting

vty = { [ 9 vt - [ (o Glena )atee

we shall show that N, is a complete manifold of codimension 1 in E. In fact, note
that f(s) < f(s) for all s > 0. By using the Hardy—Littlewood—Sobolev inequality
again, for u € N, we obtain

[l < C([|ull®? + [|ul[*9).
Then, there exists ag > 0 such that

lu]| = ap Yu € MN:. (3.3)
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From (f3) and (g2),

! = p||lul|? — _ u)u x,u)u(z
vwu=plulr - [ [ (2 noumaten )
+Gley, u)g' (e, u)u®(x)

+ G(ey,u)g(ex,u)u(x))

_ /RN (1 * G(Em,u)) [g(ez, w)u + ¢ (e, u)u?]

||

_ /A s (1 L Glen, u)) (Fwu+ f(u)?)

B /(JR \A2)N{ta <u<Ty} <x|# ¥ G<Efca“)> {n(w)u + 7' (u)u®}
M\ A)N{ta<usTs

Vi 1
_ Yop ( x G(ax,u)) Juf?
tJemaonqust,y \|zl*

1
sP /Agu{u<ta} <|=T|“ ’ G<€x7u>)f(wu

- (1 et
(RNM\A)N{ta<u<Ta} \|T[*

1
Yo < * G(ex, u)> |u|P. (3.4)
t Jemaongust.y \ |zl

Since u # 0, at least one of the following three cases must hold:
suppu N {A. U{u <t,}} #0,
suppu N {(RY \ A:) N {ta <u < To}} #0,
suppu N { (RN \ A) N {u > T,}} # 0.

Thus,
Vi(u)u <0,

which means the manifold N. is a natural constraint for I.

4. Palais—Smale condition for the penalized problem

In this section, we shall establish a convergence criterion for the PS sequences of
the energy functional of the penalized problem (APE*). Recall that the energy
functional associated with (APE") is given by

1 1 1

L) = /RN(WW FV(en)lul) - 5 /RN <W ) G(sx,u))G(sx,u)

and the Nehari manifold N, is

1
N = {u € E:u#0, / (IVu|P+V (ex)|u|P) = / <*G(5x,u)>g(sx,u)u}.
RN RV \ |o[#
(4.1)
The same arguments as in lemma 2.1 prove the ensuing result.
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LEMMA 4.1. The penalized functional I. has a PS sequence (u,) C E at m., where
the minimazx value m. is defined by

me := ueiEn\f{O} max I (tu) = ule%a I (w), (4.2)

that is,
I(up) =0 and I.(up) — me.

Moreover, there exists a constant k > 0, independent of €, £ and a, such that ms < &
for all € small.

Proof. We only need to check I. satisfies the mountain pass geometry.

CLAIM 4.2. There exist p,dyg > 0 such that I.|s = 6o > 0 for allu € S = {u €
E: lul = p}.

From the growth assumptions (g;) and (gz2) on g(x, s) and the Hardy-Littlewood—
Sobolev inequality, we derive

1
L) 2 Zlul” = C(ful* + flul®).

The claim follows if we choose p small enough.
CLAIM 4.3. There exist v > 0 and e with ||e|| > r such that I.(e) < 0.

Take a positive function ¢ € E with suppt C A and observe that
Glex, ) = F().

Similar to the arguments in lemma 2.1, there exist two positive constants C7, Cs
independent of €, M, a, such that
1
I.(s¢) < C18P — Cas*P for s > ——

I

showing that claim 4.3 is true for e = s¢ and s large enough.
Using the mountain pass theorem without the PS condition, we get the existence
of a (PS),, sequence (uy) C E with

me = inf ) mexlo(tu) = inf I(u).

Recalling that supp C A, it is easy to check the existence of constant « > 0,
independent of ¢, ¢, a, such that m. < & for all £ small. O

Before to prove our next result, we need to fix the ensuing notation:
1 N 2p
B:=queW PRY): ||ul]f < 71(5—1— 1) (4.3)
p—
and

Ko (u) (@) = ﬁ « Glex,u).

With the above notation, we are able to show the following result.
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LEMMA 4.4. Suppose that (f1)—(f3) occur with p < ¢ < (N — p)p/(N —p). Then

there exists Ly such that

SUPyen |}~(s(u)($)|Loo(RN)
4y

1
< 3 for all €.

Proof. Note that
|G(ez,u)| < |F(u)] < C(|ul? + |ul?) for all e.

Repeating the arguments used in the proof of (2.13), we find a positive constant
C such that .
sug | Ke(u)(x)| oo rry < Co. (4.4)
ue

From this, there exists £y > 0 such that
sup,ep [Ke (1) ()] oz Co

<
4 4

VA
l\D.\ =

(4.5)

O

Now take @ > 0 to be the unique number such that f(a)/a?~! = V;/ly and
consider the penalized problem with nonlinearity defined in (3.1).

LEMMA 4.5. Assume (V1)—(V3) and (f1)—(f3) with p < ¢ < (N — p)p/(N —p) and
let (un) be a (PS),. sequence for I. with ¢ € [me,rK]. Then, for each ¢ > 0 there
exists R = R({) > 0, verifying

n—oo

limsup/ (IVun|? + V(ex)|u, ) < ¢.
RN\Bg

Proof. Once we obtain that (u,) is a PS sequence of I, at ¢, it is easy to see (uy)
is bounded. In fact,

I = g )i = (5= 50 ) [ (P + Vi)

2 2p
1 1

+ % /]RN <|$|M * G(Ez,un)>g(6z,un)un
1 1

-3 /RN <|x|” * G(Ex,un)) G(ex,un)

>(;—;)4Jw%w+w%wmw

Consequently, there exists ng € N such that

2
/ (Vunl? + Volun?) < —P—(k+1), n > no,
RN p—-
and so, by lemma 4.4,

SUPp>p, ‘i{(un)(m”Lm(RN) < 1

4 DX
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For R > 0, let ng € C°°(RY) be such that nr(z) = 0 if x € Br/2(0) and nr(z) =1
if x ¢ Br(0), with 0 < nr(z) < 1 and |Vngr(x)| < C/R, where C is a constant
independent of R. Note that

[ (9 al? V(e unl?) = 1) (i)

+ [ (1 ' G(ex,um)g(ex,un)um
RN

||#
— /N IV [P~ 21, Vi, Vi g.
R

Since (unng) is bounded in E, it follows that I.(uy,)(unnr) = 0n(1). For n > ng
and £ > 0 fixed, let R > 0 be large enough such that A. C Bpg/(0), using (g3);
with £y obtained in lemma 4.4, we obtain

/ (IVanl? + V) unl?)
RN\Bg/2

1 C
= — x G(ex,uy) |glex, up)un + = ||unl|? + on(1
/]RN\BR/2 (|$|“ ( )> ( ) R” | .

N

RN C
MWolunl? + 5 lualP + 04(1):

/ SUPyp>n, |I~((un)(x)‘L°°(
RN\BR /2 to

Combining (4.5) with the boundedness of (u,) and taking n — oo, we obtain

limsup/ (IVun|? + V(ex)|unl?) <.
RN\Br

n—oo

O

LEMMA 4.6. Under the conditions of lemma 4.5, the functional I. satisfies the
(PS),.. condition for all c € [m.,K].

Proof. Since (uy,) is also bounded, we may assume u, — u in E, u,(x) = u(z) a.e.

in RN and u,, — v in LI (RY). Setting

W = / (IVun P2V, — [VulP ">V, Vu, — Vu)
RN
+ [ Vi) unl 2 = P, ), (46
RN
we have

Wy, = Il (un)uy — Il (un)u _|_/ ( 1
RN

||

* Gex, un))g(sm, Up ) (U, — 1) + 0, (1).

If ¥, — 0 as n — oo, then arguments such as those in §2 lead to
Uy, — u in FE.
To see why ¥,, — 0, we begin by observing that
I (up)uy = IL(up)u = o, (1).
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Next, we shall prove that the following limit holds:

/RN (|x1|,t * G(Exvun)>9(€x7un)(un —u) = o,(1).

Note that G(ex,u,) is bounded in L2N/CN=1)(RN). Moreover, since u, (z) — u(x)
a.e. in RY, and thus G(ex,u,(z)) — G(ex,u(x)), we obtain that G(ex,u,) must
converge weakly to G(ex,u) in L*V/ZN=#)(RN). Using the Hardy-Littlewood
Sobolev inequality, we know the convolution term

1
w w(z) € LN/MRYN)  for all w(x) € L2N/CN=(RN)
x
is a linear bounded operator from L2N/CN=m(RN) to L2N/#(RN). Consequently,
1
* Gex, uy) — o « Gex,u) in L2N/HRY).
x

Since g has a subcritical growth, by Sobolev’s compact embedding, for any fixed
R > 0, it holds that

[zl

/BR ( * G(Exvun))g(sx,un)(un —u) = 0.

Using the growth condition and the boundedness of ((1/]z|*) * G(ex,u,)), we get

From lemma 4.5 and the Sobolev embedding theorem, for each ¢ > 0 there exists
R = R(¢) > 0 such that

1
1imsup/ ( * G(Em,un)> lg(ex, up)uny] < CaC.
RN\Br

n—oo

Similarly, using the Holder inequality, we can also prove that

1
limsup/ < * G(sx,un)> lg(ex, up)ul < CsC.
RM\Bp \ ||

n—oo

In conclusion,

O

COROLLARY 4.7. Under the conditions of lemma 4.5, I.|n. satisfies the (PS), con-
dition for all ¢ € [me, K].

Proof. Let (un) C N be a sequence such that I.(u,) — ¢ and ||I.(u,)|« — 0.
Then, there exists (A,) C R such that

Ié(un) = Anyé(un) + On(l)-
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From (3.4),
, 1
Vi(up)up < —p = *x Gex,up) | f(un)un
AcUfun<to} \|2Z[H
- p/ ( * G(ex, un))n(un)un
RN\ AN {ta<un<Ta} \|T[H
_ Vop

1
7/ < * G(s:c,un)) [t |P
bo J@M\ANN{un T} \|T[H

< _p/AE (p}'“ . G(em,un)>f(un)un.

0= Ié(un)un = )‘nyé(un)un + 0"(1)’

Since

our goal is to show A, — 0. Otherwise, it must hold that Y. (uy)u, — 0, and then

/AE ( ﬁ " G<€Mn>)f<un>un ~o.

From the definition of the Nehari manifold, we have

[ vl s Vi) = [ (o G gterunun

1
— /AE <|33|“ * G(ex,un)>f(un)un
" /RN\A (Iﬂcll’ *Glex, “”)>9(5x» Un)un
— /RN\A («’L’l|“ * Gex, un)>g(5x, Un )ty + 0n (1)

< / SUpP,en | K (u)() | Lo (RN
= Jrva

/ LVoltn|? + 0n (1)
0

< 1/ V0|un|p+0n(1)7
2 Jrv\a,

leading to
/ (IVun|? + V(ex)|u,|?) — 0,
]RN

which is a contradiction. Thus, A,, — 0 and (uy) is a (PS), sequence of I.. Now,
the corollary follows from lemma 4.6. O

5. Solutions for the penalized problem

In this section, we shall prove the existence and multiplicity of solutions. We begin
showing the existence of the positive ground-state solution for (APE™).
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THEOREM 5.1 (existence of ground-state solution). Suppose that the nonlinearity
f satisfies (f1)—(f3) with p < ¢ < (N — p)p/(N — p) and that the potential function
V' satisfies assumptions (V1)—(V3). Then, for any ¢ > 0, problem (APE*) has a
positive ground-state solution u..

Proof. Similarly to lemma 2.1, it follows that I. also satisfies the mountain pass

geometry. Let
o= ) = 1)

Then, we know there exists a PS sequence at m,, i.e.
I(uy,) =0 and I.(up) — me.

Thus, by lemma 4.6, the existence of ground-state solution u. is guaranteed. More-
over, by choosing u._ as a test function and recalling that g(z,s) = 0 for all s <0

and I’ (uc)u._ = 0, a direct computation gives u. > 0. Repeating the arguments in
§2, we have u. € Cllo’g (RM), a € (0,1). By applying Harnack’s inequality, we can
conclude that u.(z) > 0 in RV, O

Next, we shall show the existence of multiple solutions and study the behaviour
of their maximum points in relation to the set M.

Let 6 > 0 be fixed and let w be a ground-state solution of problem (2.1) with
A = Vj. Define 7 to be a smooth non-increasing cut-off function in [0, 00) such that

with t. > 0 satisfying
I (1, ) = I (teWe ),
1{12&5( (t¥ey) ( w)

and let us define &.: M — N by &.(y) = t.¥.,. By construction, ®.(y) has
compact support for any y € M.

LEMMA 5.2. The function . has the following limit:
lir% I.(®.(y)) = my, wuniformly iny e M.
e—

Proof. Suppose by contradiction that the lemma is false. Then, there exist d9 > 0,
(yn) C M and €, — 0 such that

e, (Pe, (yn)) — myy| = do. (5.1)

Considering the change of variable z = (ex —yn)/en, if 2 € Bs /., (0), it follows that
enz € Bs(0) and €,z 4+ yn € Bs(yn) C Ms C A. Since G(ex,s) = F(s) in A, we
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deduce that

L, @) = 2= [ 90zt

P

% [ Vst )l nensDuE@)P = St nllencol)

From Lebesgue’s theorem,

lim (A

n—oo RN

P+ Vienz)|W. EnsYn

)dx:/ (IVwl? + Volw|?) da
]RN

n,Yn

and

lim §(Z, ,.) = F(w).

n|—o0

Since te, ¥e, 4, € Ne,, it is easy to see the sequence t., — 1. In fact, from

p:/ / F(tsnkpsmyn)f(tsnwsmyn)tsnwsn,yn
RN JRN

|z —y|»

)

2, [ IV, PV I,
R

we derive

Hw”P — llm / / E Eﬂvyw)f(t wsnvyn )tEnWEn,yn
RN JRN '

t2, |z — y[#

Now, using the fact that w is a ground-state solution of problem (2.1) together with
remark 1.3, we get that ¢, — 1. Now, note that

i §(te,n(lenz (=) = §(w(2)).

So we get lim, o0 Ie, (e, (yn)) = my,, which contradicts (5.1), finishing the proof
of the lemma. O

For any § > 0, let p = p(§) > 0 be such that Ms; C B,(0). Let x: RY — RY be

defined as
xz  for |z| < p,
x(@)
PT for lx] = p
]

Finally, let us consider 3.: N. — RY given by

fRN ex)|ul?

fRN |ulP

From the above notation, we have the following lemma.

Be(u) =

LEMMA 5.3. The function ®. verifies the ensuing limit

liII(l) Be(P:(y)) =y uniformly iny € M.
e—
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Proof. If it is not true, then there exist §o > 0, y,, € M and €, — 0 such that
18 (P, (yn)) —yn| = do >0 VneN. (5.2)
Using the definitions of ., and [, , we obtain

Jew IX(e2 4 ) — ynlIn(lenz)w(2) P
Jew In(lenz))w(z)|P

Be(Pe,, (Yn)) = yn +

Lebesgue’s theorem implies
|ﬂs(¢5n (yn)) - yn| — 07
which contradicts (5.2). O

PROPOSITION 5.4. Let e, — 0. Let (uy,) C N, be a sequence verifying I, (u,) —
my,. Then, there exists yp € RY, such that v, = un(x + §n) has a convergent
subsequence in E. Moreover, up to a subsequence, y, — y € M, where 4y, = €,Un-

Proof. Since u,, € N;, and I. (u,) — my,, we have that (u,) is bounded in E.
Thus, there are r,§ > 0 and y,, € RY such that

n—oo

lim inf/ |t |P dz = 6. (5.3)
Br(yn)
If (5.3) does not hold, again using Lions’s lemma, we have that

u, — 0in L*(RY) for p < s < p*.

Once we obtain that u, € AN, , the Hardy-Littlewood-Sobolev inequality gives
u, — 0 in F, which is a contradiction because I, (u,) — my, > 0. Thus, (5.3)
holds. Setting v, () = up, (x4 §x), up to a subsequence if necessary, we can assume
v, = v # 0 in E. Let ¢, > 0 be such that v,, = t,v, € Ny,. Then,

my, < LVO ('Ijn) = LVO (tnun) < Is(tnun) < Is(un) — myy,

and so
Ly, (0,) = my, and (9,) C Ny,.

Then (9,,) is a minimizing sequence, and by Ekeland’s variational principle [42] we
may also assume it is a bounded (PS)mVO sequence. Thus, for some subsequence,
Op, — 0 weakly in E' with @ # 0 and Ly, (0) = 0. Furthermore, using results found
in [2,29], we derive that

LVO (fjn — ’D) — My, — LVO (’17), L/Vo ({)n — f}) — 0.
Since

my, = lim LVo ('En)

- :1;: (;S’({;n)ﬁn = S(ﬁn)) > (;%’(ﬁ)ﬁ - 3(@))

= Ly, () > my,,
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it follows that

Ly, (0, — 0) — 0, L’V0 (0p, — D) = 0.

Consequently,
Up — 0 in E.

Thus, from o, = t,v, € My, we see that (¢,) is bounded, and so we can assume
that, for some subsequence, t,, — to > 0 and, consequently, v, — v in E.

Now, we shall show that (y,) = (€,9,) has a subsequence satistying y, — y € M.
We begin by claiming that (y,,) is bounded in R . Indeed, suppose by contradiction
that (y,) is not bounded. Then, there exists a subsequence, still denoted by (y.),
such that |y,| — 0o. Once we obtain that

(IVun|? + V(ex)|unl?) = % *x Gex,uy) |glex, uy)up,
J. [ (&

and I, (u,) — my,, we can infer that u,, € B for n large enough. Then, by (4.4),
there exists Cy > 0 satisfying

< (Y.
Loo(RN)

1
sup |—— * G(ex,u
neN |1'|N ( ”)

Consider R > 0 such that A C Br(0). Without loss of generality we may assume
that |y,| > 2R. Thus, for any z € Bg/., (0),

lenz + Yn| = |yn| — lenz| > R. (5.4)

By the change of variables x — z + ¢, using the fact that V(ex) > V and (5.4),
we get

[ (90l + ValoaP)
RN
< Co/ 9(e2 + Yn, Un)Vn
RN

- CO/ g(ez + Yn,vp)vp + C g€z + Yn, Vn)Un
BR/E-,L (O) RN\BR/E” (0)

<G / Flvn)vn + Co / Fwn)vn.
Br/e,, (0) RN\Bg/.,, (0)

Since f(s) < (Vo/€o)s?~! and v, — v in E, we obtain

3 090+ Vatou) < | (@) = 0a(1).

RN\Br/e,, (0)

Taking n — oo leads to a contradiction. Thus, up to a subsequence, 1, — y € RV.
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It remains to check that y € M. Arguing by contradiction again, we suppose that
V(y) > Vo. Then, recalling that ¥,, — ¥ in E, we can use Fatou’s lemma to obtain

my, = LVO ('Ij)
1

<< [ 0viP vy - 36)

< lim inf {; /(|Vﬁn|p + V(enz + yn)|0nl?) — 3(%)}

n— oo

< liminf I (thun)

n— oo

< liminf I, (uy,)

n— oo

- mV07
which is absurd. O

_Let h: Rt — R* be a positive function verifying h(e) — 0 as ¢ — 0 and let
N = {u € N.: I.(u) < my, + h(¢)}. From lemma 5.3, it follows that N # 0.

LEMMA 5.5. Let 6 >0 and Ms = {z € RY : dist(z, M) < 6}. Then

li inf —qy| =0.
;%iﬁﬁ%yum Yl

Proof. Let e, — 0. For each n € N, there exists (u,) C NE, such that

inf |8 (un) —y|l= su inf |6. (u) —y|+ 0,(1).
3 1 () =31 = 500 1y 18, (4) =31+ on1)

Since (u,) C Nz, C M., it follows that
my, g me, g Isn (Un) g my, + h(&n),

which means that
I, (up) = my, and (up) C M.

From proposition 5.4, there exists a sequence §,, € RY such that v, (z) = w, (z+7,)
has a convergent subsequence in E. Moreover, up to a subsequence, y, — y € M,
where vy, = €,7,. Therefore,

Jew x(e2)|unl?
Be(uy) = o [tnl?
_ fRN X(€2 + yn) |Un (2 + Fn)|?
Jan [un(z + 80P
Jan [X(e2 + yn) = ynl|va(2)|?
Jew lvn(2)[P

Consequently, there exists y,, € M; such that
lim |ﬂs(un) - yn| = Oa

n—oo

=Yn + —y e M.

finishing the proof of the lemma. O
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THEOREM 5.6 (multiplicity of solutions). Suppose that the nonlinearity f satisfies
(f1)—(f3) with p < ¢ < (N — p)p/(N — p) and the potential function V satisfies
assumptions (V1)—(Vs3). Then, for any § > 0, there exists £5 > 0 such that prob-
lem (APE") has at least catpr, (M) positive solutions, for any 0 < & < 5.

Proof. We fix a small ¢ > 0. Then, by lemmas 5.2 and 5.5, 8. o @, is homotopic to
the inclusion map id: M — My, and so

catg (Ne) = cata, (M).

Since that functional I. satisfies the (PS). condition for ¢ € [m(Vy), m(Vo) + h(e)],
by the Lyusternik—Schnirelmann theory of critical points [29], we can conclude
that I. has at least catps, (M) critical points on N.. Since the manifold A is a
natural constraint for I, I. has at least catps, (M) critical points in E. By repeating
the arguments explored in §2, we deduce u. € Cl’a(RN)7 a € (0,1). Applying

loc
Harnack’s inequality, we can conclude that u.(z) > 0 in RV. O

6. Solutions for the original equation

In this section, our main goal is to show that the solutions u. obtained in theorem 5.6
are indeed solutions for problem (QNE™). We will use the Moser iteration technique
[34] to prove

ue(x) <t, forall z e RV \ A,

where
A= {x e RY: cx € A},

For completeness, we shall sketch the proof here.

LEMMA 6.1. Let (g,) be a sequence where €, — 0 as n — 0 and (z,) C A.,. If
Ue, 18 a solution of problem (APE™) in theorem 5.6, then, up to a subsequence,
U 1= U, (- + x,) converges uniformly on compact subsets of RY.

Proof. For each n € N and L > 0, let
L
L,

1

N

—1
2L = v’L’(’g )Un and wrp, = ’Un’l)g

with 8 > 1 to be determined later. Note that v,, satisfies

1
8y Vo2 = (G )aulo) iR,
v e WHP(RY), v(z) >0 forall z € RV,

where V.(z) = V(ex + x4), g:(v) = g(ex + x,v) and G.(v) = G(ex + zy,v).
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Taking ¢ = z1,, as a test function, we obtain

/ Ui(,i_l)‘vvn|p = 7p(6 - 1)/ vzﬁfn_p_lvn|vvn|p72vvnva,n
RN RN

1 _
o (e et ot

Since

—p— - ~1
/ Ui,ﬂn b 1UTL|V7J?’L|ZD 2VU7LVUL,7L - / 'Uz(ﬁ )|an|p 2 0,
RY {vn-L}

we get

_ 1 _ _
Loemmnr < [ (s Geton )i = [ Vil
RN 7 Ry \|7[* ’ RN ’
Since (vy,) is bounded in E, there exists Cy > 0 such that

L * Ge(vg)

|1‘|” < (.

Lo (RN)

sup
neN

From assumptions (f1) and (fs), for any > 0 there exists C¢ > 0 such that
|ge(vn)] < §|Un|p_1 + C&lvn|q_1'
Thus, choosing 0 < £ small enough, we obtain a constant C; > 0 such that
/ vz(i71)|V1}n|p <Gy / v%vi(ifl). (6.1)
RN RN '

On the other hand, by the Sobolev embedding we get

wpmle < Co / IV (0nvra®Y)IP
]RN

<C-1r [ ANl + Gy [ AT
RN ' RN

= CO5(8 — 1) / BED 0, P+ Cy / A VI [
, o UL

{vn<L}
< Cyp? /RN U§E5_1)|V1}n|p. (6.2)
From (6.1) and (6.2), Holder’s inequality and the boundedness of (v,,) imply
(winlpe < C5p” /RN vﬁvzfg_l) = C5 /3P /RN VPl

N\a=p)/p” Lo (p"—(g—p))/p"
< 05510(/ P ) </ wr, PP P (qp)))
RN RN

< Coflwinla- (6.3)
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with

*

pp ) < p*,

p<at=—————
p*—(q—p

whenever wr, , € L% (RV).
Since vy, n < vy, we know that wy,, € La*(RN) if v2 € Lo (RN). If it is true, it
follows from (6.3) that

Ca1) - p/p* \p/e”
( / vy P ) < Ceﬁ”( / (v on) ) < Coflvnl b
RN RN

Applying Fatou’s lemma in L, we get
onlap < C3/°BYP|unlpar < o0, (6.4)

if v3e" ¢ LY(RN) holds.

Start the iteration by setting 3 := p* /a* > 1. Since v,, € LP?" (RY), the inequality
(6.4) is then true. Note that if 32a* = @p*, then (6.4) also holds with 3 replaced
by 32. Consequently,

1/82 2 1 1/32 2
pB2 S C7/ﬁ ﬁg/ﬁ |Un arf? S CV7/ﬁjL /0 ﬁ1/5+2/5 |/U7l‘ﬂ0t*'

‘Un
Iterating this process and using fa* = p*, we obtain

m gt m _
< OFim P gr T |y,

|U7’L|ﬁma* p* .

Passing to the limit as m — oo, we have
[tnleo < Cs Vn €N

Let £2 C RY be a bounded domain and let & > 0. Equations (g;) and (g2) imply
that

Vsn(r)vﬁl(x)< ! G€<vn>)g€<vn><x> <C VneNveeo.

ol

From a result due to Di Benedetto [20], for any compact set K C {2, there exists a
constant Ck 2, depending only on Cs, N, p and dist(K, 012), such that

|Un|c;)(,a(9) < C_'K“Q Vn € N

with some 0 < a < 1. Then (v,,) possesses a convergent subsequence in CP_(RY),
finishing the proof.

PROPOSITION 6.2. For any € > 0, define
m> :=sup { WaX Ue: Ue € N, is a solution of problem (APE*)}.

€

Then, m? is finite for ¢ small enough and lim. g+ m} = 0.
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Proof. Arguing by contradiction, we suppose that there exists (e,) C R* such that
en — 0 and u., € N, is a solution of (APE™) such that

be, = Max Ug, — 00.
Then, ue, (z,) = b > 0 for some b > 0 and (z,,) € 0A.,,.
Since €, — 0, we have that I. (u,) — my,. Once we obtain u. (z,) = b >0,
by setting vy, := ue, (- + ), it follows that v, — v weakly in E with v # 0 by
lemma 6.1. Let t,, > 0 be such that o,, = t,,v,, € Ny,. Then,

Ly, (0,) = my, and (0,)C NVO-
Repeating the arguments in lemma 5.4, we derive
Up = U in E.

Thus, from 0, = t,v, € NVO, (tn) is bounded. Thus, we can assume that, for some
subsequence, ¢, — to > 0, and so v,, — v in E. Next, we shall show that (z,) =
(enxy) has a subsequence satisfying

Tn—T €M and V(z)="V.

First we claim that (Z,) is bounded in RY, because (Z,,) C 4. Thus, up to a
subsequence, Z,, — T € 0/, from which it follows that V(zZ) > V4. Then, recalling
that 9, — ¥ in E, we can use Fatou’s lemma to obtain

my, = L, (0)
! Bl + V(2)[5]P) — F(©
<< [ 0vir - v@lir) - 5)

n—oQ

1
< lim inf {p /(|Vﬁn\p + Vienz + Zn)|0n|?) — S’(f}n)}
= liminf I, (t,un,)
n—oo

< liminf I, (uy,)
n—oo

- mVOa

which is absurd. Thus, m? < 400 for € > 0 small enough.
To prove lim,_,q+ m} = 0, we suppose by contradiction that there exist €, — 0"
and b > 0 with

Mgy = 0> 0.

Thus, for each n € N, there exists a solution u., € N of (APE*) in such a way
that

maxue, = m. — %b > %b Vn € N.
En

Hence, there exists a sequence (z,) C 0A., such that

Ue, (Tn) = 2b>0 VneN.

https://doi.org/10.1017/50308210515000311 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000311

54 C. O. Alves and M. Yang

Repeating the same arguments employed in the first part of the proof, we get a
contradiction. Therefore,

lim m =0.
e—0+

6.1. Proof of theorem 1.4
We divide the proof into two parts.

6.1.1. Proof of existence

Proof of theorem 1.4. Given ¢ > 0 such that Ms G A, we can invoke theorem 5.6 to
obtain, for any e € (0,&5) fixed, cataz (M) solution of (APE"). Taking e5 smaller
if necessary, we can use lemma 6.2 to conclude that, if u. is one of these solutions,
then

ues(x) <t, forall xze dA..

The rest of the proof is similar to [18], but we sketch it for completeness. The
function u. € E solves the equation

1
—Apu+ V(ex)|uf~u = <x|# * G(ex, u))g(ex, u) in RV,

Define
max{u. —t,,0}, € RN\ A,
Ve =
0, elsewhere,

and observe that v. € E. Taking it as a test function in the above equation we get

/ Ve |P 4 c(z)v? + tac(z)v. = 0, (6.5)
RN\ A,
where
c(x) = V(ex)|uc(x)[P~2 — ( ! ) (1 * G(Ew,u5)>g(5x,u5).
ue(x) ) \ ||

Since

L * G(ex, uc) < Gy

||~ Loe (RN)
and

g(ex,ue) < Vo (@),

uc(r) %u

we see that

<u61) ( " G(Ex’ue))g<m’“€) < 3 Voue (z)P 3,

() ) \ Jal

since Cy/My < 5. Consequently, ¢(z) > 0 in RV \ A., and all the terms in (6.5) are
zero. In particular, v. = 0. Thus, (3.2) holds and wu. is a solution of (QNE™). The
theorem is proved. O
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6.1.2. Proof of concentration

LEMMA 6.3. Let v, > 0 be a solution of the following problem:

_ F(vy) )

—Ayv, + Vi (x vnp2vn=(/ ")fvn in RV,
p ()| | RN |x_y‘u ( )

v, € WHP(RYN)  with 1 < p < N,

where Vy,(z) = V(e + €n0n). Assume that (f1)—(f3) hold with p < p and p < ¢ <
(N —w)p/(N —p). If v, = v in E with v # 0, then v, € L™(RY) and there ezists
C > 0 such that |v,|e < C for all n € N. Furthermore,

| llim vp(x) =0 wuniformly inn € N.
T|—0o0

Proof. Let (v,) be a sequence of positive solutions satisfying v, — v in E and
define .
Ko(s) = / Flon) |
Ry [T —yl*
We first claim there exists C' > 0 such that

|Kn(z)] <C VYneN. (6.6)

Next we adapt some arguments in [4,24] that are related to the Moser iteration
method.

Forany R>0,0<r < iR, letne C*(RM),0< n<1withn(z)=1if[z| > R
and |Vn| < 2/r. Note that by (f1) and the claim above, we obtain the following
estimate: given £ > 0, there exists C¢ such that

| K (2) f(00)] < EJon ()P 4 Celvn ()P 1 Vo € RY and n € N. (6.7)

For each n € N and for [ > 0, let
S v (), va() <
R U CO =

and
p(B-1)

ln

B-1

2in =nPv v, and wp, = Ny,

with 5 > 1 to be determined later.
Taking z;,, as a test function, we obtain

/ npvfgf_l)|an|p =—p(B— 1)/ fufﬁfpflnvaan\”*QanVvlyn
RN ’ RN
-1 —1
+ - Kn(x)f(vn)npvnvﬁgf ) /]RN Vn|vn|p77pvlpf )
—p/ npflvf(f_l)vﬂan|p*2anV77.
RN ’

By (6.7) and for £ sufficiently small, we get

1 * -1 _ —1 _
/ Pof |V, [P < C&/ Wb P, )*p/ P, |V, P2V 0, V.
RN RN RN

https://doi.org/10.1017/50308210515000311 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000311

56 C. O. Alves and M. Yang

Now, following the same arguments explored in [4], we find

[vnlL(ai=R) < Clonlps (o> R/2)-

Again using the convergence of (v,) to v in WP(RM), for each v > 0 fixed, there
exists R > 0 such that |'Un|Loc(|x‘>R) < «y for all n € N. Thus,

| l‘im vp(x) =0 uniformly in n € N,
€T |— o0

which completes the proof of the lemma. O
LEMMA 6.4. There exists § > 0 such that |vy|eo = 9 for all n € N,
Proof. Since v, — v # 0 in E, there exist (y,,) € RN and R, 3 > 0 such that

/ ol > 5.
Bﬁ(yn)

If ||vn||Loe vy — 0, then we get

< [ fonl < fonlt Balu)| < Clunlz 0.
B

2(yn)

which is a contradiction. O

If u., is a solution of problem (QNE™), then v, (z) = uc, (x + ) is a solution of
the problem

_ F(vy,) .
—Ayv, + Vi (x vnp2vn:</ >fvn in RV,
P ( )‘ | RN |337y|/‘t ( )
vy € B, vp(z) >0 Vo eRY,

with V,,(z) = V(epz +€,9n) and (§,) C RY given in proposition 5.4. Moreover, up
to a subsequence,
v, —v inE and y, >y in M,

where y, = €,9n. If b, is a maximum point of v,,, we know it is a bounded sequence
in RY. Thus, there exists R > 0 such that b, € Bg(0). Thus, the global maximum
of ue, is ze = by + Yy, and
EnZen = Enbn + €nln = Enbn + Yn.

From the boundedness of (b, ), we get the limit

lim e, z. = v,

e—=0
which, together with the continuity of V', gives

lim V(epze,) = Vo.

n—oo
If u. is a positive solution of (QNE™), the function w.(z) = u-(z/¢) is a positive
solution of (QNE). Thus, the maximum points 7. and z. of w. and u,, respectively,
satisfy the equality 7. = €z., from which it follows that
lim V(ns) = V.

|e] =00
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