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We study the multiplicity and concentration behaviour of positive solutions for a
quasi-linear Choquard equation

−εp∆pu + V (x)|u|p−2u = εµ−N

(
1

|x|µ
∗ F (u)

)
f(u) in R

N ,

where ∆p is the p-Laplacian operator, 1 < p < N , V is a continuous real function on
RN , 0 < µ < N , F (s) is the primitive function of f(s), ε is a positive parameter and
∗ represents the convolution between two functions. The question of the existence of
semiclassical solutions for the semilinear case p = 2 has recently been posed by
Ambrosetti and Malchiodi. We suppose that the potential satisfies the condition
introduced by del Pino and Felmer, i.e. V has a local minimum. We prove the
existence, multiplicity and concentration of solutions for the equation by the
penalization method and Lyusternik–Schnirelmann theory and even show novel
results for the semilinear case p = 2.
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1. Introduction and main results

In this paper, we consider the existence, multiplicity and concentration behaviour
of positive solutions for the following class of generalized Choquard equation (here
‘SNE’ abbreviates ‘semilinear nonlinear equation’):

−ε2∆u + V (x)u = εµ−N

(
1

|x|µ ∗ |u|q
)

|u|q−2u in RN ,

u ∈ H1,2(RN ), u(x) > 0 for all x ∈ RN ,

⎫⎪⎬
⎪⎭ (SNE)

where ε > 0, 0 < µ < N and the exponent q lies in a suitable range.
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This problem was motivated by some recent works related to the existence of
standing waves of the nonlinear Schrödinger equation of the kind

i�∂tΨ = − �2

2m
∆Ψ + W (x)Ψ − (K(x) ∗ |Ψ |q)|Ψ |q−2Ψ in RN . (1.1)

Here m is the mass of the bosons, � is the Planck constant, W (x) is the exter-
nal potential and K(x) is the response function that possesses information on the
mutual interaction between the bosons. This type of non-local equation is known
to influence the propagation of electromagnetic waves in plasmas [7] and also plays
an important role in the theory of Bose–Einstein condensation [16]. It is clear that
Ψ(x, t) = u(x)e−(iE/�)t solves the evolution equation (1.1) if, and only if, u solves

−ε2∆u + V (x)u = (K(x) ∗ |u|q)|u|q−2u in RN (1.2)

with V (x) = W (x) − E and ε2 = �2/2m.
When the response function K(x) is equal to δ(x) and q = 2, the nonlinear

response is local, and nonlinear Schrödinger equation (1.2) becomes

−ε2∆u + V (x)u = g(u) in RN . (1.3)

The semiclassical problems for the Schrödinger equation (1.2), i.e. the parameter
ε goes to zero, describe the transition between quantum mechanics and classical
mechanics. The study of existence and concentration of the semiclassical states
of the Schrödinger equation (1.3) goes back to the pioneering work by Floer and
Weinstein [21]. Since then it has been studied extensively under various hypotheses
on the potential and the nonlinearity (see, for example, [3, 5, 6, 8–11, 18, 19, 21–23,
35,36,38,40] and the references therein).

If the parameter ε is equal to 1 and the response function K(x) is of Coulomb type
(for example, 1/|x|µ and F (u) = |u|q/q), then we arrive at the Choquard–Pekar
equation,

−∆u + u =
(

1
|x|µ ∗ |u|q

)
|u|q−2u in RN . (1.4)

The case when q = 2 and µ = 1 goes back to the description by Pekar in 1954 of
the quantum theory of a polaron at rest [37] and the modelling in the 1976 work
of Choquard of an electron trapped in its own hole, in a certain approximation to
Hartree–Fock theory of one-component plasma [25].

Equation (1.4) was proposed by Penrose in 1996 as a model of self-gravitating
matter [33] and is known in that context as the Schrödinger–Newton equation. Since
then many efforts have been made to study the existence of non-trivial solutions
for problem (1.4). In [27], by using critical point theory, Lions obtained a solution
u ∈ H1(R3), u �≡ 0. For a general class of K(x) and nonlinearity, Ackermann [1]
proposed an approach to prove the existence of infinitely many geometrically dis-
tinct weak solutions to the problem with potential V periodic in xi and 0 not in
the spectrum of −∆ + V (x). Concerning the properties of the ground-state solu-
tions, Ma and Zhao [28] considered the generalized Choquard equation (1.4) for
q � 2; they proved that every positive solution is radially symmetric and monotone
decreasing about some point, under the assumption that a certain set of real num-
bers, defined in terms of N , α and q, is non-empty. Under the same assumption,
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Cingolani et al . [14] gave some existence and multiplicity results in the electro-
magnetic case, and established the regularity and some decay of the ground states
of (1.4) asymptotically at infinity. Moroz and Van Schaftingen [30] eliminated this
restriction and showed the regularity, positivity and radial symmetry of the ground
states for the optimal range of parameters, and also derived that these solutions
decay asymptotically at infinity. Moroz and Van Schaftingen also established the
existence of a ground state for the Choquard equation with general nonlinearity
in [31].

The question of the existence of semiclassical solutions for the non-local prob-
lem (1.2) has been posed more recently [5, p. 29]. Consider the semilinear elliptic
equation

−ε2∆u + V (x)u = εµ−N

(
1

|x|µ ∗ |u|q
)

|u|q−2u in RN . (1.5)

It can be observed that if v is a solution of (1.5) for x0 ∈ RN , then the new function
defined by u = v(x0 + εx) satisfies

−∆u + V (x0 + εx)u =
(

1
|x|µ ∗ |u|q

)
|u|q−2u in RN .

This suggests some convergence, as ε → 0, of the family of solutions to a solution
u0 of the limit problem

−∆u + V (x0)u =
(

1
|x|µ ∗ |u|q

)
|u|q−2u in RN . (1.6)

It is expected that, in the semiclassical limit ε → 0, the dynamics should be gov-
erned by the classical external potential V (x). In particular, there should be a
correspondence between semiclassical solutions of the equation and critical points
of the potential.

In the case when N = 3, µ = 1 and F (u) = |u|q, q = 2, Wei and Win-
ter [41] constructed families of solutions by a Lyapunov–Schmidt-type reduction
when inf V > 0, and Secchi [39] obtained the result when V > 0 and lim inf |x| → ∞,
V (x)|x|γ > 0 for some γ ∈ [0, 1). This method of construction depends on the exis-
tence, uniqueness and non-degeneracy up to translations of the positive solution of
the limiting equation (1.4), which is a difficult problem that has only been fully
solved in the case when N = 3, µ = 1 and p = 2. In the presence of non-constant
electric and magnetic potentials, Cingolani et al . [13] showed that there exists a fam-
ily of solutions having multiple concentration regions that are located around the
minimum points of the potential. Assuming that electric and magnetic potentials
are compatible with the action of a group G of linear isometries of R3, Cingolani et
al . [15] showed that there is a combined effect of the symmetries and the potential
V on the number of semiclassical solutions. Yang and Ding [43] considered (1.2).
By using variational methods, they were able to obtain the existence of solutions
with non-negative potentials. Very recently, in an interesting paper, Moroz and
Van Schaftingen [32] used variational methods to develop a novel non-local penal-
ization technique to show that equation (SNE) has a family of solutions concen-
trated at the local minimum of V , with V satisfying some additional assumptions
at infinity.
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Motivated by the above references, in the present work we study the existence,
multiplicity and concentration behaviour of positive solutions of the generalized
Choquard equation (SNE). Since the methods applied here can also be used to
study a more general case, instead of studying the semilinear case we consider the
generalized quasi-linear Choquard equation driven by the p-Laplacian operator and
general nonlinearity and conclude directly that the multiplicity and concentration
behaviour of positive solutions still hold for the purely Laplacian case with power-
type nonlinearity. In fact, we shall study the quasi-linear Choquard equation of the
form

−εp∆pu + V (x)|u|p−2u = εµ−N

(
1

|x|µ ∗ F (u)
)

f(u) in RN ,

u ∈ C1,α
loc (RN ) ∩ W 1,p(RN ) with 1 < p < N,

u(x) > 0 for all x ∈ RN ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(QNE)

where ε > 0, 0 < µ < N , F is the primitive function of f and the p-Laplacian
operator ∆p is defined by

∆pu = div(|∇u|p−2∇u).

Here we assume that p > 1 and general hypotheses, which are satisfied by a
large class of nonlinearities that includes uq for q > p, hold on f . Except for a
very special situation treated by Wei and Winter [41], little is known regarding the
non-degeneracy of the ground-state solutions of the semilinear Choquard equation

−∆u + u =
( ∫

RN

1
|x|µ ∗ F (u)

)
f(u) in RN ,

and it is impossible to apply the arguments in [41] to investigate the existence and
concentration behaviour of the solutions. We also point out that, for the quasi-linear
Choquard equation

−∆pu + |u|p−2u =
( ∫

RN

1
|x|µ ∗ F (u)

)
f(u) in RN ,

whether its positive solutions are non-degenerate, unique under translation, radially
symmetric and monotone decreasing about some point, or decay asymptotically at
infinity is still an open problem. So we cannot apply the Lyapunov–Schmidt-type
reduction arguments or the arguments in [12, 13, 15] to obtain the multiplicity or
concentration of the semiclassical states for the quasi-linear Choquard equation.

To overcome this difficulty, we adapt the penalization method developed by
del Pino and Felmer [18, 19]. However, now that we are working with a class of
non-local problems, we have to be careful in our use of this method. We have
proved new estimates involving this class of problems, which permit this use of
the penalization method. Note that our arguments are totally different from those
in [32], because in the latter the penalization method is associated with some Hardy-
type inequalities, which are avoided in our paper. Here, we are able to prove the
existence, multiplicity and concentration behaviour around the minimum point set
of potential V . Our approach uses some abstract minimax theorems, such as the
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Lyusternik–Schnirelmann category, to obtain the multiplicity of positive solutions.
Relating to the concentration behaviour for the semiclassical solutions of the non-
local quasi-linear problem, since we are working with the p-Laplacian operator,
which is nonlinear, we use the Moser iteration method to overcome some technical
difficulties in order to show some estimates about the non-local term (for more
details see §§ 5 and 6). Finally, our results are also new for p = 2 (more precisely,
for (1.5)).

The potential V is a continuous function satisfying assumptions (V1)–(V3):

V (x) � V0 = inf
x∈RN

V (x) > 0 for all x ∈ RN . (V1)

There is an open and bounded domain Λ ⊂ RN such that

V0 < inf
x∈∂Λ

V (x) (V2)

and
M = {x ∈ RN : V (x) = V0} ⊂ Λ. (V3)

Assuming 0 < µ < p, in order to prove the existence of positive solutions, the
nonlinearity f : R+ → R is a function of C1 class and verifies the following condi-
tions:

lim
s→0

|f(s)|
sp−1 = 0; (f1)

there exists p < q < 1
2p∗(2 − (µ/N)) such that

lim
s→∞

f(s)
sq−1 = 0, (f2)

where p∗ = Np/(N − p) is the critical exponent. Moreover, we also assume that
there holds

f ′(s)s2 − (p − 1)f(s)s > 0 ∀s > 0. (f3)

To comment on the assumptions on the nonlinearity f , we recall an important
inequality due to Hardy, Littlewood and Sobolev [26], which will be frequently used.

Proposition 1.1 (Hardy–Littlewood–Sobolev inequality). Let s, r > 1 and 0 <
µ < N with 1/s + µ/N + 1/r = 2. Let f ∈ Ls(RN ) and h ∈ Lr(RN ). There exists
a sharp constant C(s, N, µ, r), independent of f and h, such that∫

RN

∫
RN

f(x)h(y)
|x − y|µ � C(s, N, µ, r)|f |s|h|r.

Remark 1.2. In general, F (s) = |s|q for some q > 0. By the Hardy–Littlewood–
Sobolev inequality, ∫

RN

(
1

|x|µ ∗ F (u)
)

F (u)

is well defined if F (u) ∈ Ls(RN ) for s > 1 defined by

2
s

+
µ

N
= 2.
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Now we are working with u ∈ W 1,p(RN ), we require that sq ∈ [p, p∗], and since we
consider the subcritical case it must hold that

p

2

(
2 − µ

N

)
< q <

p∗

2

(
2 − µ

N

)
.

Here we only consider the case q > p.

Remark 1.3. From assumption (f3), since f is a function of C1, the following
monotonicity conditions hold:

s → f(s)
sp−1 is strictly increasing on (0, +∞), (f ′

3)

and, consequently,
0 < pF (s) � f(s)s ∀s > 0, (f4)

where

F (t) =
∫ t

0
f(s) ds.

It also implies that the nonlinearity f verifies the well-known Ambrosetti–Rabino-
witz-type superlinear condition for non-local problem, since, for θ := 2p > p,

0 < θF (s) � 2f(s)s ∀s > 0. (f5)

Recall that if Y is a closed set of a topological space X, we denote by catX(Y )
the Lyusternik–Schnirelmann category of Y in X, namely the smallest number of
closed and contractible sets in X which cover Y .

Our main result, theorem 1.4, establishes the existence of a multiplicity of solu-
tions to the non-local problem involving the Lyusternik–Schnirelmann category of
the sets M and Mδ, where

Mδ = {x ∈ RN : dist(x, M) � δ} for δ > 0.

Theorem 1.4. If 0 < µ < p, suppose that the nonlinearity f satisfies (f1)–(f3)
with p < q < (N − µ)p/(N − p), and potential V satisfies assumptions (V1)–(V3).
Then, for any δ > 0, there exists εδ such that (QNE) has at least catMδ

(M) positive
solutions, for any 0 < ε < εδ. Moreover, if uε denotes one of these positive solutions
with global maximum ηε ∈ RN , then

lim
ε→0

V (ηε) = V0.

Here, we make a few observations about the restrictions on the parameter 0 <
µ < p and p < q < (N − µ)p/(N − p) in the above theorem. In fact, to obtain the
existence results for the autonomous case V (x) = V0 for all x ∈ RN , we can weaken
the conditions on the nonlinearities by assuming there are C0 > 0 and q1, q2 > 1

2p
with

p

2

(
2 − µ

N

)
< q1 � q2 <

p∗

2

(
2 − µ

N

)
such that, for all s ∈ R,

|f(s)| � C0(|s|q1−1 + |s|q2−1). (f ′
1)
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However, to obtain the multiplicity and concentration of the solutions for the quasi-
linear non-local problems when V satisfies (V1)–(V3), we need to put further restric-
tions on the exponent q to adapt the penalization method introduced by del Pino
and Felmer in [18]. We will treat the non-local part (1/|x|µ) ∗ F (u) as a bounded
term and introduce the monotone condition (f3) on f at the same time. Using
this idea, we introduce the assumption 0 < µ < p and the range of the exponent
p < q < (N − µ)p/(N − p) to make the penalization method applicable.

As a particular case, if p = 2, we directly obtain the multiplicity and concen-
tration results for semilinear Choquard-type equation, which also complement the
results obtained in [13,15,32].

Corollary 1.5. Consider the semilinear Choquard equation in R3:

−ε2∆u + V (x)u = εµ−3
(

1
|x|µ ∗ F (u)

)
f(u),

u ∈ H1(R3), u > 0.

⎫⎪⎬
⎪⎭ (SNE′)

If 0 < µ < 2, suppose that the nonlinearity f satisfies (f1)–(f3) with 2 < q < 2(3−µ),
and the potential function V satisfies assumptions (V1)–(V3). Then, for any δ > 0,
there exists εδ such that (SNE′) has at least catMδ

(M) positive solutions for any
0 < ε < εδ. Moreover, if uε denotes one of these positive solutions with ηε ∈ R3 its
global maximum, then

lim
ε→0

V (ηε) = V0.

1.1. Notation

C and Ci denote positive constants. BR denotes the open ball centred at the
origin with radius R > 0.

If u is a mensurable function, we denote by u+ and u− its positive and negative
part respectively, i.e.

u+(x) = max{u(x), 0} and u−(x) = max{−u(x), 0}.

C∞
0 (RN ) denotes the space of the functions that are infinitely differentiable with

compact support in RN .
E := W 1,p(RN ) is the usual Sobolev space with norm

‖u‖ :=
( ∫

RN

(|∇u|p + |u|p)
)1/p

.

Ls(RN ), for 1 � s � ∞, denotes the Lebesgue space with the norms

|u|s :=
( ∫

RN

|u|s
)1/s

.

From the assumptions on V , it follows that

‖u‖ε :=
( ∫

RN

(|∇u|p + V (εx)|u|p)
)1/p

is an equivalent norm in E.
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Let X be a real Banach space and let I : X → R be a functional of class C1. We
say that (un) ⊂ X is a Palais–Smale (PS) sequence at c (henceforth denoted (PS)c)
for I if (un) satisfies

I(un) → c and I ′(un) → 0 as n → ∞.

Moreover, I satisfies the PS condition at c if any PS sequence at c possesses a con-
vergent subsequence. If N is a C1-manifold of X and I : N → R is a C1-functional,
we say that I|N satisfies (PS)c if any sequence (un) ⊂ N such that

I(un) → c and ‖I ′(un)‖∗ → 0

contains a convergent subsequence. Here, denote by ‖I ′(un)‖∗ the norm of the
derivative of I restricted to N at the point u.

2. The limit problem

As far as we know, there are no results about the p-Laplacian equation with non-
local nonlinearities. Thus, we need to show some results about the limit problem.
Our intention in this section is to show some results involving the quasi-linear
problem. To this end, we begin our study by considering the quasi-linear problem

−∆pu + A|u|p−2u =
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈ W 1,p(RN ), 1 < p < N,

⎫⎪⎬
⎪⎭ (2.1)

where A is a positive constant.
In order to find positive solutions, we shall henceforth consider f(s) = 0 for all

s � 0.
The corresponding energy functional associated with problem (2.1) is defined by

LA(u) =
1
p

∫
RN

(|∇u|p + A|u|p) − 1
2

∫
RN

(
1

|x|µ ∗ F (u)
)

F (u).

From the growth assumptions on f and remark 1.2, the Hardy–Littlewood–
Sobolev inequality implies that LA is well defined on E and belongs to C1, with its
derivative given by

L′
A(u)ϕ =

∫
RN

(|∇u|p−2∇u∇ϕ+A|u|p−2uϕ)−
∫

RN

(
1

|x|µ ∗F (u)
)

f(u)ϕ ∀u, ϕ ∈ E.

Therefore, it is easy to see that all the solutions of (2.1) correspond to critical points
of the energy functional, LA.

Next, let us denote by NA the Nehari manifold associated to LA, given by

NA = {u ∈ E : u �= 0, L′
A(u)u = 0}

or

NA =
{

u ∈ E : u �= 0,

∫
RN

(|∇u|p + A|u|p) =
∫

RN

(
1

|x|µ ∗ F (u)
)

f(u)u
}

.
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From assumptions (f1) and (f2), for any ξ > 0 there exists Cξ > 0 such that

|F (s)| � ξ|s|p + Cξ|s|q.

By using the Hardy–Littlewood–Sobolev inequality, for u ∈ NA, we have

‖u‖p � C(‖u‖2p + ‖u‖p+q + ‖u‖2q).

Thus, there exists α > 0 such that

‖u‖ � α ∀u ∈ NA. (2.2)

Setting

JA(u) =
∫

RN

(|∇u|p + A|u|p) −
∫

RN

(
1

|x|µ ∗ F (u)
)

f(u)u,

we have 〈J ′
A(u), u〉 < 0 and, from remark 1.3, standard arguments show that NA is

a complete manifold of codimension 1 in E.
The following lemma is a revised version of the corresponding lemma in [4], which

we sketch here for the reader’s convenience.

Lemma 2.1. LA satisfies the mountain pass geometry, that is,

(1) there exist ρ, δ0 > 0 such that LA|S � δ0 > 0 for all u ∈ S = {u ∈ E : ‖u‖ =
ρ},

(2) there exist r > 0 and e with ‖e‖ > r such that LA(e) < 0.

Proof.
(1) From the growth assumptions on f and the Hardy–Littlewood–Sobolev inequal-
ity, we derive

LA(u) � 1
p
‖u‖p − C(‖u‖2p + ‖u‖2q).

Since q > p, (1) follows if we choose ρ small enough.

(2) Fixing u0 ∈ E with u+
0 (x) = max{u0(x), 0}, we set

g(t) = F

(
tu0

‖u0‖

)
> 0 for t > 0,

where

F(u) = 1
2

∫
RN

(
1

|x|µ ∗ F (u)
)

F (u). (2.3)

By the Ambrosetti–Rabinowitz condition (f2),

g′(t)
g(t)

� 2p

t
for all t > 0.

Integrating this over [1, s‖u0‖] with s > 1/‖u0‖, we find

F(su0) � F

(
u0

‖u0‖

)
‖u0‖2ps2p.
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Therefore,

LA(su0) � C1s
p − C2s

2p for s >
1

‖u0‖
,

and (2) holds for e = su0 and s large enough.

Theorem 2.2. Suppose that (f1)–(f3) hold with p < q < (N − µ)p/(N − p). Then,
for any A > 0, problem (2.1) has a positive ground-state solution.

Proof. By the mountain pass theorem without the PS condition, there exists a PS
sequence (un) ⊂ E such that

L′
A(un) → 0, LA(un) → mA,

where the minimax value mA can be characterized by

0 < mA := inf
u∈E\{0}

max
t�0

LA(tu) = inf
u∈NA

LA(u). (2.4)

It is easy to see that (un) is bounded in E. Moreover, we claim that there exist
r, δ > 0 and a sequence (yn) ⊂ RN such that

lim inf
n→∞

∫
Br(yn)

|un|p � δ.

If the above claim does not hold for (un), by Lions’s result we must have that

un → 0 ∈ Ls(RN ) for p < s < p∗.

Recalling that, for any ξ > 0 there exists Cξ > 0 such that

|F (s)| � ξ|s|p + Cξ|s|q ∀s � 0,

it follows from the Hardy–Littlewood–Sobolev inequality that∫
RN

(
1

|x|µ ∗ F (un)
)

f(un)un → 0,

leading to ‖un‖ → 0, which contradicts (2.4), showing that the claim holds. Fixing
vn = un(· − yn), we derive ∫

Br(0)
|vn|p � 1

2δ. (2.5)

Since LA and L′
A are both invariant by translation, it also holds that

L′
A(vn) → 0 and LA(vn) → mA.

Observing that (vn) is also bounded, we may assume vn ⇀ v in E, vn(x) →
v(x) almost everywhere (a.e.) in RN , vn → v in Lp

loc(R
N ) and v �= 0 by (2.5).
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For ϕ ∈ C∞
0 (RN ),∫

RN

(|∇vn|p−2∇vn − |∇v|p−2∇v,∇vn − ∇v)ϕ

= −
∫

RN

(|∇v|p−2∇v,∇vn − ∇v)ϕ

−
∫

RN

(|∇vn|p−2∇vn − |∇v|p−2∇v,∇ϕ)(vn − v)

− A

∫
RN

|vn|p−2(vn − v)ϕ +
∫

RN

(
1

|x|µ ∗ F (vn)
)

f(vn)(vn − v)ϕ.

(2.6)

It is easy to see that ∫
RN

(|∇v|p−2∇v,∇vn − ∇v)ϕ → 0,∫
RN

(|∇vn|p−2∇vn − |∇v|p−2∇v,∇ϕ)(vn − v) → 0

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

and ∫
RN

|vn|p−2(vn − v)ϕ → 0 (2.8)

as n goes to ∞. For the non-local term, from the growth condition, we know that
F (vn) is bounded in L2N/(2N−µ)(RN ). Moreover, since vn(x) → v(x) a.e. in RN ,
the continuity of F gives F (vn(x)) → F (v(x)) a.e. in RN . Therefore, F (vn) must
converge weakly to F (v) in L2N/(2N−µ)(RN ). Using the Hardy–Littlewood–Sobolev
inequality, we know the convolution term

1
|x|µ ∗ w(x) ∈ L2N/µ(RN )

for all w ∈ L2N/(2N−µ)(RN ); this is a linear bounded operator from L2N/(2N−µ)(RN )
to L2N/µ(RN ). Consequently,

1
|x|µ ∗ F (vn(y)) ⇀

1
|x|µ ∗ F (v(y)) in L2N/µ(RN ).

Using the fact f has a subcritical growth, we have∫
RN

(
1

|x|µ ∗ F (vn)
)

f(vn)(vn − v)ϕ → 0. (2.9)

The following inequalities are very useful [17]. For p � 2 and ξ, η ∈ RN ,

〈|ξ|p−2ξ − |η|p−2η, ξ − η〉 � d1|ξ − η|p,
||ξ|p−2 − |η|p−2| � d2(|ξ|p−2 + |η|p−2)|ξ − η|.

}
(2.10)

For 1 < p < 2 and ξ, η ∈ RN ,

〈|ξ|p−2ξ − |η|p−2η, ξ − η〉 � d3(|ξ| + |η|)p−2|ξ − η|2,
||ξ|p−2 − |η|p−2| � d4|ξ − η|p−1.

}
(2.11)
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Here d1, d2, d3 and d4 are some constants. For 1 < p � 2, from (2.6)–(2.9) and
(2.11), we know that

( ∫
RN

|∇vn − ∇v|pϕ
)2/p

�
( ∫

RN

|∇vn − ∇v|2
(|∇vn| + |∇v|)2−p

ϕ

)( ∫
RN

(|∇vn + |∇v|2)pϕ

)(2−p)/p

� C

∫
RN

〈|∇vn|p−2∇vn − |∇v|p−2∇v,∇vn − ∇v〉ϕ → 0. (2.12)

Similarly, we can prove the same local convergence property for the case p � 2. The
above limits imply that for some subsequence of (vn) we have

∇vn(x) → ∇v(x) a.e. x ∈ RN .

These limits allow us to conclude that L′
A(v) = 0. Using the definition of mA

together with Fatou’s lemma, we also deduce that LA(v) = mA. Moreover, by choos-
ing v− as a test function, and recalling that f(s) = 0 for all s � 0 and L′

A(v)v− = 0,
a direct computation gives v � 0. Now, if µ < p and p < q1 � q2 < (N−µ)p/(N−p),
we claim that v ∈ C1,α

loc (RN ) for some α ∈ (0, 1). Indeed, setting

K(x) :=
1

|x|µ ∗ F (v) =
∫

RN

F (v)
|x − y|µ ,

we first claim there exists C > 0 such that

|K(x)| � C ∀x ∈ RN . (2.13)

Since, for some C0,

|F (v)| � C0(|v|p + |v|q)

holds, we derive

|K(x)| =
∣∣∣∣
∫

RN

F (v)
|x − y|µ

∣∣∣∣
=

∣∣∣∣
∫

|x−y|�1

F (v)
|x − y|µ

∣∣∣∣ +
∣∣∣∣
∫

|x−y|�1

F (v)
|x − y|µ

∣∣∣∣
� C0

∫
|x−y|�1

|v|p + |v|q
|x − y|µ + C0

∫
|x−y|�1

(|v|p + |v|q)

� C0

∫
|x−y|�1

|v|p + |v|q
|x − y|µ + C.

Here, we have used the fact that q ∈ (p, p∗). Choosing

t ∈
(

N

N − µ
,

N

N − p

]
and s ∈

(
N

N − µ
,

Np

(N − p)q

]
,
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it follows from the Hölder inequality that

∫
|x−y|�1

|v|p
|x − y|µ �

( ∫
|x−y|�1

|v|tp
)1/t( ∫

|x−y|�1

1
|x − y|tµ/(t−1)

)(t−1)/t

� C1

( ∫
|r|�1

|r|N−1−tµ/(t−1) dr

)(t−1)/t

and ∫
|x−y|�1

|v|q
|x − y|µ �

( ∫
|x−y|�1

|v|sq

)1/s( ∫
|x−y|�1

1
|x − y|sµ/(s−1)

)(s−1)/s

� C2

( ∫
|r|�1

|r|N−1−sµ/(s−1) dr

)(s−1)/s

.

Since both N − 1 − tµ/(t − 1) > −1 and N − 1 − sµ/(s − 1) > −1, there exists
C3 > 0 such that ∫

|x−y|�1

|v|p + |v|q
|x − y|µ � C3 ∀x ∈ RN ,

proving (2.13).
From the above arguments, v is a solution of the quasi-linear problem

−∆pv + A|v|p−2v = K(x)f(v) in RN

with K ∈ L∞(RN ) and f is a function with subcritical growth. Adapting some
arguments found in [4,24], we can show that there exists C > 0 such that ‖v‖L∞ < C
and v decays to zero as |x| → ∞. Then, by regularity theory, there exists α ∈ (0, 1)
such that v ∈ C1,α

loc (RN ). Now, we can apply Harnack’s inequality to conclude that
v(x) > 0 in RN .

Lemma 2.3. Suppose that (f1)–(f3) hold with p < q < (N − µ)p/(N − p). Let u be
the solution obtained in theorem 2.2. Then there exist C, β > 0 such that

|u(x)| � C exp(−β|x|) ∀x ∈ RN .

Proof. Since K(x) := (1/|x|µ) ∗ F (u) � C, using assumption (f1) and the fact that
the solution u decays uniformly to zero as |x| → +∞, we can take ρ0 > 0 such that(

1
|x|µ ∗ F (u)

)
f(u(x))u1−p(x) � 1

2A

for all |x| � ρ0. Consequently,

−∆pu(x) + 1
2Aup−1(x) =

(
1

|x|µ ∗ F (u)
)

f(u(x)) − 1
2Aup−1 � 0

for all |x| � ρ0. Let s and T be positive constants such that

(p − 1)sp < 1
2A and u(x) � T exp(−sρ0) for all |x| = ρ0.
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Hence, the function ψ(x) = T exp(−s|x|) satisfies

−∆pψ + 1
2Aψp−1 � ( 1

2A − (p − 1)sp)ψp−1 > 0

for all x �= 0. Since p > 1,

〈|x|p−2x − |y|p−2y, x − y〉 � 0

for all x, y ∈ RN . We now take as a test function η = max{u − ψ, 0} ∈ W 1,p
0 (|x| >

ρ0). Hence, combining these estimates yields

0 �
∫

RN

(|∇u|p−2∇u∇η + 1
2Aup−1η)

�
∫

RN

[(|∇u|p−2∇u − |∇ψ|p−2∇ψ)∇η + 1
2A(up−1 − ψp−1)η]

� 1
2A

∫
{x∈RN : u�ψ}

(up−1 − ψp−1)(u − ψ) dx � 0

for all |x| > ρ0. Therefore, the set Ω := {x ∈ RN : |x| > ρ0 and u � ψ(x)} is empty.

3. The penalized problem

By changing variables, it is possible to see problem (QNE) is equivalent to the
perturbed problem

−∆pu + V (εx)|u|p−2u =
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈ C1,α
loc (RN ) ∩ W 1,p(RN ), u(x) > 0 for all x ∈ RN .

⎫⎪⎬
⎪⎭ (QNE∗)

Moreover, without loss of generality, we can assume that

V (0) = min
x∈RN

V (x) = V0.

In what follows, the energy functional associated with (QNE∗) is given by

Jε(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p) − F(u),

where F was given in (2.3).
In order to overcome the lack of compactness of the problem (QNE), we shall

adapt the penalization method introduced by del Pino and Felmer in [18] to treat
the non-local problems. So, we choose � > 2 to be determined later, and take a > 0
to be the unique number such that f(a)/ap−1 = V0/�. We set

f̂ :=

⎧⎪⎨
⎪⎩

f(s) if s � a,

V0

�
sp−1 if s � a.

https://doi.org/10.1017/S0308210515000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000311


Solutions for a quasi-linear Choquard equation 37

Let 0 < ta < a < Ta and take a function η ∈ C∞
0 (R, R) such that

(η1) η(s) � f̂(s) for all s ∈ [ta, Ta],

(η2) η(ta) = f̂(ta), η(Ta) = f̂(Ta), η′(ta) = f̂ ′(ta) and η′(Ta) = f̂ ′(Ta),

(η3) the map s → η(s)/sp−1 is non-decreasing for all s ∈ [ta, Ta].

By using the above functions we can define f̃ ∈ C1(R, R) as follows:

f̃ :=

{
f̂(s) if s �∈ [ta, Ta],

η(s) if s ∈ [ta, Ta].

Letting XΛ denote the characteristic function of the set Λ, we introduce the penal-
ized nonlinearity g : RN × R → R by setting

g(x, s) := XΛ(x)f(s) + (1 − XΛ(x))f̃(s). (3.1)

Note that, by (f1)–(f4) and (η1)–(η3), it is easy to check that g(x, s) satisfies the
following properties:

lim
|s|→0

g(x, s)
sp−1 = 0. (g1)

There exists p < q < p∗/2(2 − µ/N) such that

lim
s→∞

g(x, s)
sq−1 = 0. (g2)

Moreover,

0 < 2pG(x, s) := 2p

∫ s

0
g(x, τ) dτ � 2g(x, s)s for all x ∈ Λ, s > 0, (g3)i

and

0 < pG(x, s) � g(x, s)s � V0

�
sp for all x ∈ RN \ Λ, s > 0. (g3)ii

Finally, we also have that

s → g(x, s)s
sp/2 and

G(x, s)
sp/2 are both increasing for all x ∈ RN , s > 0. (g4)

Remark 3.1. It is easy to check that if uε is a positive solution of the equation

−εp∆pu + V (x)|u|p−2u = εµ−N

(
1

|x|µ ∗ G(x, u)
)

g(x, u) in RN ,

u ∈ C1,α
loc (RN ) ∩ W 1,p(RN ), u(x) > 0 for all x ∈ RN

⎫⎪⎬
⎪⎭ (APE)

such that uε(x) � ta for all x ∈ RN \ Λ, then g(x, uε) = f(uε) and therefore uε is
also a solution of problem (QNE).
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In view of the remark above, we deal in the following with the penalized problem

−∆pu + V (εx)|u|p−2u =
(

1
|x|µ ∗ G(εx, u)

)
g(εx, u) in RN ,

u ∈ W 1,p(RN ), u(x) > 0 for all x ∈ RN ,

⎫⎪⎬
⎪⎭ (APE∗)

and we shall look for solutions uε of problem (APE∗) verifying

uε(x) � ta for all x ∈ RN \ Λε, (3.2)

where

Λε := {x ∈ RN : εx ∈ Λ}.

In what follows, the energy functional associated with (APE∗) is given by

Iε(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p) − Σε(u),

where

Σε(u) = 1
2

∫
RN

(
1

|x|µ ∗ G(εx, u)
)

G(εx, u).

Moreover, the Nehari manifold associated to Iε will be denoted by Nε, i.e.

Nε =
{

u ∈ E : u �= 0,

∫
RN

(|∇u|p +V (εx)|u|p) =
∫

RN

(
1

|x|µ ∗G(εx, u)
)

g(εx, u)u
}

.

Note that 0 < 2pG(x, s) � 2g(x, s)s always holds for all x ∈ RN , s > 0.
Consequently, for any non-negative function u �= 0 ∈ E, similar arguments to

those explored in the proof of lemma 2.1 can again be used to show that

Iε(tu) � C1t
p − C2t

2p for t >
1

‖u‖ .

Then, using the monotone condition (g4), there exists a unique tu > 0 such that
tuu ∈ Nε and Iε(tuu) = maxt�0 Iε(tu). Setting

Yε(u) =
{ ∫

RN

(|∇u|p + V (εx)|u|p) −
∫

RN

(
1

|x|µ ∗ G(εx, u)
)

g(εx, u)u
}

,

we shall show that Nε is a complete manifold of codimension 1 in E. In fact, note
that f̃(s) � f(s) for all s > 0. By using the Hardy–Littlewood–Sobolev inequality
again, for u ∈ Nε, we obtain

‖u‖p � C(‖u‖2p + ‖u‖2q).

Then, there exists α0 > 0 such that

‖u‖ � α0 ∀u ∈ Nε. (3.3)
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From (f3) and (g2),

Y ′
ε(u)u = p‖u‖p −

∫
RN

∫
RN

(
1

|x − y|µ

)
(g(εy, u)u(y)g(εx, u)u(x)

+ G(εy, u)g′(εx, u)u2(x)

+ G(εy, u)g(εx, u)u(x))

� −
∫

RN

(
1

|x|µ ∗ G(εx, u)
)

[g(εx, u)u + g′(εx, u)u2]

= −
∫

Λε∪{u<ta}

(
1

|x|µ ∗ G(εx, u)
)

{f(u)u + f ′(u)u2}

−
∫

(RN \Λε)∩{ta�u�Ta}

(
1

|x|µ ∗ G(εx, u)
)

{η(u)u + η′(u)u2}

− V0p

�

∫
(RN \Λε)∩{u�Ta}

(
1

|x|µ ∗ G(εx, u)
)

|u|p

� −p

∫
Λε∪{u<ta}

(
1

|x|µ ∗ G(εx, u)
)

f(u)u

− p

∫
(RN \Λε)∩{ta�u�Ta}

(
1

|x|µ ∗ G(εx, u)
)

η(u)u

− V0p

�

∫
(RN \Λε)∩{u�Ta}

(
1

|x|µ ∗ G(εx, u)
)

|u|p. (3.4)

Since u �= 0, at least one of the following three cases must hold:

suppu ∩ {Λε ∪ {u < ta}} �= ∅,

suppu ∩ {(RN \ Λε) ∩ {ta � u � Ta}} �= ∅,

suppu ∩ {(RN \ Λε) ∩ {u � Ta}} �= ∅.

Thus,
Y ′

ε(u)u < 0,

which means the manifold Nε is a natural constraint for Iε.

4. Palais–Smale condition for the penalized problem

In this section, we shall establish a convergence criterion for the PS sequences of
the energy functional of the penalized problem (APE∗). Recall that the energy
functional associated with (APE∗) is given by

Iε(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p) − 1
2

∫
RN

(
1

|x|µ ∗ G(εx, u)
)

G(εx, u)

and the Nehari manifold Nε is

Nε =
{

u ∈ E : u �= 0,

∫
RN

(|∇u|p +V (εx)|u|p) =
∫

RN

(
1

|x|µ ∗G(εx, u)
)

g(εx, u)u
}

.

(4.1)
The same arguments as in lemma 2.1 prove the ensuing result.

https://doi.org/10.1017/S0308210515000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000311


40 C. O. Alves and M. Yang

Lemma 4.1. The penalized functional Iε has a PS sequence (un) ⊂ E at mε, where
the minimax value mε is defined by

mε := inf
u∈E\{0}

max
t�0

Iε(tu) = inf
u∈Nε

Iε(u), (4.2)

that is,
I ′
ε(un) → 0 and Iε(un) → mε.

Moreover, there exists a constant κ > 0, independent of ε, � and a, such that mε < κ
for all ε small.

Proof. We only need to check Iε satisfies the mountain pass geometry.

Claim 4.2. There exist ρ, δ0 > 0 such that Iε|S � δ0 > 0 for all u ∈ S = {u ∈
E : ‖u‖ = ρ}.

From the growth assumptions (g1) and (g2) on g(x, s) and the Hardy–Littlewood–
Sobolev inequality, we derive

Iε(u) � 1
p
‖u‖p − C(‖u‖2p + ‖u‖2q).

The claim follows if we choose ρ small enough.

Claim 4.3. There exist r > 0 and e with ‖e‖ > r such that Iε(e) < 0.

Take a positive function ψ ∈ E with suppψ ⊂ Λ and observe that

G(εx, ψ) = F (ψ).

Similar to the arguments in lemma 2.1, there exist two positive constants C1, C2
independent of ε, M , a, such that

Iε(sψ) � C1s
p − C2s

2p for s >
1

‖ψ‖ ,

showing that claim 4.3 is true for e = sψ and s large enough.
Using the mountain pass theorem without the PS condition, we get the existence

of a (PS)mε
sequence (un) ⊂ E with

mε := inf
u∈E\{0}

max
t�0

Iε(tu) = inf
u∈Nε

Iε(u).

Recalling that suppψ ⊂ Λ, it is easy to check the existence of constant κ > 0,
independent of ε, �, a, such that mε < κ for all ε small.

Before to prove our next result, we need to fix the ensuing notation:

B :=
{

u ∈ W 1,p(RN ) : ‖u‖p � 2p

p − 1
(κ + 1)

}
(4.3)

and
K̃ε(u)(x) :=

1
|x|µ ∗ G(εx, u).

With the above notation, we are able to show the following result.
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Lemma 4.4. Suppose that (f1)–(f3) occur with p < q < (N − µ)p/(N − p). Then
there exists �0 such that

supu∈B |K̃ε(u)(x)|L∞(RN )

�0
<

1
2

for all ε.

Proof. Note that

|G(εx, u)| � |F (u)| � C(|u|p + |u|q) for all ε.

Repeating the arguments used in the proof of (2.13), we find a positive constant
C0 such that

sup
u∈B

|K̃ε(u)(x)|L∞(RN ) � C0. (4.4)

From this, there exists �0 > 0 such that

supu∈B |K̃ε(u)(x)|L∞(RN )

�0
� C0

�0
� 1

2
. (4.5)

Now take a > 0 to be the unique number such that f(a)/ap−1 = V0/�0 and
consider the penalized problem with nonlinearity defined in (3.1).

Lemma 4.5. Assume (V1)–(V3) and (f1)–(f3) with p < q < (N − µ)p/(N − p) and
let (un) be a (PS)c sequence for Iε with c ∈ [mε, κ]. Then, for each ζ > 0 there
exists R = R(ζ) > 0, verifying

lim sup
n→∞

∫
RN \BR

(|∇un|p + V (εx)|un|p) < ζ.

Proof. Once we obtain that (un) is a PS sequence of Iε at c, it is easy to see (un)
is bounded. In fact,

Iε(un) − 1
2p

I ′
ε(un)un =

(
1
2

− 1
2p

) ∫
RN

(|∇un|p + V (εx)|un|p)

+
1
2p

∫
RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un

− 1
2

∫
RN

(
1

|x|µ ∗ G(εx, un)
)

G(εx, un)

�
(

1
2

− 1
2p

) ∫
RN

(|∇un|p + V (εx)|un|p).

Consequently, there exists n0 ∈ N such that∫
RN

(|∇un|p + V0|un|p) � 2p

p − 1
(κ + 1), n � n0,

and so, by lemma 4.4,

supn�n0
|K̃(un)(x)|L∞(RN )

�0
� 1

2
.
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For R > 0, let ηR ∈ C∞(RN ) be such that ηR(x) = 0 if x ∈ BR/2(0) and ηR(x) = 1
if x /∈ BR(0), with 0 � ηR(x) � 1 and |∇ηR(x)| � C/R, where C is a constant
independent of R. Note that∫

RN

ηR(|∇un|p + V (εx)|un|p) = I ′
ε(un)(unηR)

+
∫

RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)unηR

−
∫

RN

|∇un|p−2un∇un∇ηR.

Since (unηR) is bounded in E, it follows that I ′
ε(un)(unηR) = on(1). For n � n0

and ε > 0 fixed, let R > 0 be large enough such that Λε ⊂ BR/2(0), using (g3)ii
with �0 obtained in lemma 4.4, we obtain∫

RN \BR/2

(|∇un|p + V (εx)|un|p)

=
∫

RN \BR/2

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un +
C

R
‖un‖p + on(1)

�
∫

RN \BR/2

supn�n0
|K̃(un)(x)|L∞(RN )

�0
V0|un|p +

C

R
‖un‖p + on(1).

Combining (4.5) with the boundedness of (un) and taking n → ∞, we obtain

lim sup
n→∞

∫
RN \BR

(|∇un|p + V (εx)|un|p) < ζ.

Lemma 4.6. Under the conditions of lemma 4.5, the functional Iε satisfies the
(PS)c condition for all c ∈ [mε, κ].

Proof. Since (un) is also bounded, we may assume un ⇀ u in E, un(x) → u(x) a.e.
in RN and un → u in Lp

loc(R
N ). Setting

Ψn =
∫

RN

(|∇un|p−2∇un − |∇u|p−2∇u, ∇un − ∇u)

+
∫

RN

V (εx)(|un|p−2un − |u|p−2u)(un − u), (4.6)

we have

Ψn = I ′
ε(un)un − I ′

ε(un)u +
∫

RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)(un − u) + on(1).

If Ψn → 0 as n → ∞, then arguments such as those in § 2 lead to

un → u in E.

To see why Ψn → 0, we begin by observing that

I ′
ε(un)un = I ′

ε(un)u = on(1).
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Next, we shall prove that the following limit holds:∫
RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)(un − u) = on(1).

Note that G(εx, un) is bounded in L2N/(2N−µ)(RN ). Moreover, since un(x) → u(x)
a.e. in RN , and thus G(εx, un(x)) → G(εx, u(x)), we obtain that G(εx, un) must
converge weakly to G(εx, u) in L2N/(2N−µ)(RN ). Using the Hardy–Littlewood–
Sobolev inequality, we know the convolution term

1
|x|µ ∗ w(x) ∈ L2N/µ(RN ) for all w(x) ∈ L2N/(2N−µ)(RN )

is a linear bounded operator from L2N/(2N−µ)(RN ) to L2N/µ(RN ). Consequently,

1
|x|µ ∗ G(εx, un) ⇀

1
|x|µ ∗ G(εx, u) in L2N/µ(RN ).

Since g has a subcritical growth, by Sobolev’s compact embedding, for any fixed
R > 0, it holds that∫

BR

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)(un − u) → 0.

Using the growth condition and the boundedness of ((1/|x|µ) ∗ G(εx, un)), we get∫
RN \BR

(
1

|x|µ ∗ G(εx, un)
)

|g(εx, un)un| � C1

∫
RN \BR

|un|p.

From lemma 4.5 and the Sobolev embedding theorem, for each ζ > 0 there exists
R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN \BR

(
1

|x|µ ∗ G(εx, un)
)

|g(εx, un)un| � C2ζ.

Similarly, using the Hölder inequality, we can also prove that

lim sup
n→∞

∫
RN \BR

(
1

|x|µ ∗ G(εx, un)
)

|g(εx, un)u| � C3ζ.

In conclusion, ∫
RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)(un − u) → 0.

Corollary 4.7. Under the conditions of lemma 4.5, Iε|Nε satisfies the (PS)c con-
dition for all c ∈ [mε, κ].

Proof. Let (un) ⊂ Nε be a sequence such that Iε(un) → c and ‖I ′
ε(un)‖∗ → 0.

Then, there exists (λn) ⊂ R such that

I ′
ε(un) = λnY ′

ε(un) + on(1).
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From (3.4),

Y ′
ε(un)un � −p

∫
Λε∪{un<ta}

(
1

|x|µ ∗ G(εx, un)
)

f(un)un

− p

∫
(RN \Λε)∩{ta�un�Ta}

(
1

|x|µ ∗ G(εx, un)
)

η(un)un

− V0p

�0

∫
(RN \Λε)∩{un�Ta}

(
1

|x|µ ∗ G(εx, un)
)

|un|p

� −p

∫
Λε

(
1

|x|µ ∗ G(εx, un)
)

f(un)un.

Since
0 = I ′

ε(un)un = λnY ′
ε(un)un + on(1),

our goal is to show λn → 0. Otherwise, it must hold that Y ′
ε(un)un → 0, and then∫

Λε

(
1

|x|µ ∗ G(εx, un)
)

f(un)un → 0.

From the definition of the Nehari manifold, we have∫
RN

(|∇un|p + V (εx)|un|p) =
∫

RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un

=
∫

Λε

(
1

|x|µ ∗ G(εx, un)
)

f(un)un

+
∫

RN \Λε

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un

=
∫

RN \Λε

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un + on(1)

�
∫

RN \Λε

supu∈B |K̃(u)(x)|L∞(RN )

�0
V0|un|p + on(1)

� 1
2

∫
RN \Λε

V0|un|p + on(1),

leading to ∫
RN

(|∇un|p + V (εx)|un|p) → 0,

which is a contradiction. Thus, λn → 0 and (un) is a (PS)c sequence of Iε. Now,
the corollary follows from lemma 4.6.

5. Solutions for the penalized problem

In this section, we shall prove the existence and multiplicity of solutions. We begin
showing the existence of the positive ground-state solution for (APE∗).
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Theorem 5.1 (existence of ground-state solution). Suppose that the nonlinearity
f satisfies (f1)–(f3) with p < q < (N − µ)p/(N − p) and that the potential function
V satisfies assumptions (V1)–(V3). Then, for any ε > 0, problem (APE∗) has a
positive ground-state solution uε.

Proof. Similarly to lemma 2.1, it follows that Iε also satisfies the mountain pass
geometry. Let

mε := inf
u∈E\{0}

max
t�0

Iε(tu) = inf
u∈Nε

Iε(u).

Then, we know there exists a PS sequence at mε, i.e.

I ′
ε(un) → 0 and Iε(un) → mε.

Thus, by lemma 4.6, the existence of ground-state solution uε is guaranteed. More-
over, by choosing uε− as a test function and recalling that g(x, s) = 0 for all s � 0
and I ′

ε(uε)uε− = 0, a direct computation gives uε � 0. Repeating the arguments in
§ 2, we have uε ∈ C1,α

loc (RN ), α ∈ (0, 1). By applying Harnack’s inequality, we can
conclude that uε(x) > 0 in RN .

Next, we shall show the existence of multiple solutions and study the behaviour
of their maximum points in relation to the set M .

Let δ > 0 be fixed and let w be a ground-state solution of problem (2.1) with
A = V0. Define η to be a smooth non-increasing cut-off function in [0,∞) such that

η(s) =

{
1 if 0 � s � 1

2δ,

0 if s � δ.

For any y ∈ M , let us define

Ψε,y(x) = η(|εx − y|)w
(

εx − y

ε

)
,

with tε > 0 satisfying
max
t�0

Iε(tΨε,y) = Iε(tεΨε,y),

and let us define Φε : M → Nε by Φε(y) = tεΨε,y. By construction, Φε(y) has
compact support for any y ∈ M .

Lemma 5.2. The function Φε has the following limit:

lim
ε→0

Iε(Φε(y)) = mV0 uniformly in y ∈ M.

Proof. Suppose by contradiction that the lemma is false. Then, there exist δ0 > 0,
(yn) ⊂ M and εn → 0 such that

|Iεn(Φεn(yn)) − mV0 | � δ0. (5.1)

Considering the change of variable z = (εx−yn)/εn, if z ∈ Bδ/εn
(0), it follows that

εnz ∈ Bδ(0) and εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ. Since G(εx, s) = F (s) in Λ, we
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deduce that

Iεn(Φεn(yn)) =
tpεn

p

∫
RN

|∇(η(|εnz|)w(z))|p

+
tpεn

p

∫
RN

V (εnz + yn)|(η(|εnz|)w(z))|p − F(tεn
η(|εnz|)w(z)).

From Lebesgue’s theorem,

lim
n→∞

∫
RN

(|∇Ψεn,yn
|p + V (εnx)|Ψεn,yn

|p) dx =
∫

RN

(|∇w|p + V0|w|p) dx

and
lim

|n|→∞
F(Ψεn,yn

) = F(w).

Since tεnΨεn,yn ∈ Nεn , it is easy to see the sequence tεn → 1. In fact, from

tpεn

∫
RN

|∇Ψεn,yn
|p+V (εnx)|Ψεn,yn

|p =
∫

RN

∫
RN

F (tεnΨεn,yn)f(tεnΨεn,yn)tεn
Ψεn,yn

|x − y|µ ,

we derive

‖w‖p = lim
n→∞

∫
RN

∫
RN

F (tεn
Ψεn,yn

)f(tεn
Ψεn,yn

)tεn
Ψεn,yn

tpεn |x − y|µ .

Now, using the fact that w is a ground-state solution of problem (2.1) together with
remark 1.3, we get that tεn → 1. Now, note that

lim
n→∞

F(tεnη(|εnz|)w(z)) = F(w(z)).

So we get limn→∞ Iεn(Φεn
(yn)) = mV0 , which contradicts (5.1), finishing the proof

of the lemma.

For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → RN be
defined as

χ(x) =

⎧⎪⎨
⎪⎩

x for |x| � ρ,

ρx

|x| for |x| � ρ.

Finally, let us consider βε : Nε → RN given by

βε(u) =

∫
RN χ(εx)|u|p∫

RN |u|p .

From the above notation, we have the following lemma.

Lemma 5.3. The function Φε verifies the ensuing limit

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈ M.
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Proof. If it is not true, then there exist δ0 > 0, yn ∈ M and εn → 0 such that

|βε(Φεn
(yn)) − yn| � δ0 > 0 ∀n ∈ N. (5.2)

Using the definitions of Φεn and βεn , we obtain

βε(Φεn(yn)) = yn +

∫
RN [χ(εz + yn) − yn]|η(|εnz|)w(z)|p∫

RN |η(|εnz|)w(z)|p .

Lebesgue’s theorem implies

|βε(Φεn(yn)) − yn| → 0,

which contradicts (5.2).

Proposition 5.4. Let εn → 0. Let (un) ⊂ Nεn be a sequence verifying Iεn
(un) →

mV0 . Then, there exists ỹn ∈ RN , such that vn = un(x + ỹn) has a convergent
subsequence in E. Moreover, up to a subsequence, yn → y ∈ M , where yn = εnỹn.

Proof. Since un ∈ Nεn
and Iεn

(un) → mV0 , we have that (un) is bounded in E.
Thus, there are r, δ > 0 and yn ∈ RN such that

lim inf
n→∞

∫
Br(yn)

|un|p dx � δ. (5.3)

If (5.3) does not hold, again using Lions’s lemma, we have that

un → 0 in Ls(RN ) for p < s < p∗.

Once we obtain that un ∈ Nεn
, the Hardy–Littlewood–Sobolev inequality gives

un → 0 in E, which is a contradiction because Iεn(un) → mV0 > 0. Thus, (5.3)
holds. Setting vn(x) = un(x+ ỹn), up to a subsequence if necessary, we can assume
vn ⇀ v �≡ 0 in E. Let tn > 0 be such that ṽn = tnvn ∈ NV0 . Then,

mV0 � LV0(ṽn) = LV0(tnun) � Iε(tnun) � Iε(un) → mV0 ,

and so
LV0(ṽn) → mV0 and (ṽn) ⊂ NV0 .

Then (ṽn) is a minimizing sequence, and by Ekeland’s variational principle [42] we
may also assume it is a bounded (PS)mV0

sequence. Thus, for some subsequence,
ṽn ⇀ ṽ weakly in E with ṽ �= 0 and L′

V0
(ṽ) = 0. Furthermore, using results found

in [2, 29], we derive that

LV0(ṽn − ṽ) → mV0 − LV0(ṽ), L′
V0

(ṽn − ṽ) → 0.

Since

mV0 = lim
n→∞

LV0(ṽn)

= lim
n→∞

(
1
p
F

′(ṽn)ṽn − F(ṽn)
)

�
(

1
p
F

′(ṽ)ṽ − F(ṽ)
)

= LV0(ṽ) � mV0 ,
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it follows that

LV0(ṽn − ṽ) → 0, L′
V0

(ṽn − ṽ) → 0.

Consequently,

ṽn → ṽ in E.

Thus, from ṽn = tnvn ∈ NV0 , we see that (tn) is bounded, and so we can assume
that, for some subsequence, tn → t0 > 0 and, consequently, vn → v in E.

Now, we shall show that (yn) = (εnỹn) has a subsequence satisfying yn → y ∈ M .
We begin by claiming that (yn) is bounded in RN . Indeed, suppose by contradiction
that (yn) is not bounded. Then, there exists a subsequence, still denoted by (yn),
such that |yn| → ∞. Once we obtain that

∫
RN

(|∇un|p + V (εx)|un|p) =
∫

RN

(
1

|x|µ ∗ G(εx, un)
)

g(εx, un)un,

and Iεn(un) → mV0 , we can infer that un ∈ B for n large enough. Then, by (4.4),
there exists C0 > 0 satisfying

sup
n∈N

∣∣∣∣ 1
|x|µ ∗ G(εx, un)

∣∣∣∣
L∞(RN )

< C0.

Consider R > 0 such that Λ ⊂ BR(0). Without loss of generality we may assume
that |yn| > 2R. Thus, for any z ∈ BR/εn

(0),

|εnz + yn| � |yn| − |εnz| > R. (5.4)

By the change of variables x �→ z + ỹn, using the fact that V (εx) � V0 and (5.4),
we get∫

RN

(|∇vn|p + V0|vn|p)

� C0

∫
RN

g(εz + yn, vn)vn

= C0

∫
BR/εn (0)

g(εz + yn, vn)vn + C

∫
RN \BR/εn (0)

g(εz + yn, vn)vn

� C0

∫
BR/εn (0)

f̃(vn)vn + C0

∫
RN \BR/εn (0)

f(vn)vn.

Since f̃(s) � (V0/�0)sp−1 and vn → v in E, we obtain

1
2

∫
RN

(|∇vn|p + V0|vn|p) �
∫

RN \BR/εn (0)
f(vn)vn = on(1).

Taking n → ∞ leads to a contradiction. Thus, up to a subsequence, yn → y ∈ RN .
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It remains to check that y ∈ M . Arguing by contradiction again, we suppose that
V (y) > V0. Then, recalling that ṽn → ṽ in E, we can use Fatou’s lemma to obtain

mV0 = LV0(ṽ)

<
1
p

∫
RN

(|∇ṽ|p + V (y)|ṽ|p) − F(ṽ)

� lim inf
n→∞

{
1
p

∫
(|∇ṽn|p + V (εnz + yn)|ṽn|p) − F(ṽn)

}
� lim inf

n→∞
Iεn

(tnun)

� lim inf
n→∞

Iεn(un)

= mV0 ,

which is absurd.

Let h : R+ → R+ be a positive function verifying h(ε) → 0 as ε → 0 and let
N̂ε := {u ∈ Nε : Iε(u) � mV0 + h(ε)}. From lemma 5.3, it follows that N̂ε �= ∅.

Lemma 5.5. Let δ > 0 and Mδ = {x ∈ RN : dist(x, M) � δ}. Then

lim
ε→0

sup
u∈N̂ε

inf
y∈Mδ

|βε(u) − y| = 0.

Proof. Let εn → 0. For each n ∈ N, there exists (un) ⊂ N̂ε, such that

inf
y∈Mδ

|βεn(un) − y| = sup
u∈N̂εn

inf
y∈Mδ

|βεn(u) − y| + on(1).

Since (un) ⊂ N̂εn ⊂ Nεn , it follows that

mV0 � mεn � Iεn(un) � mV0 + h(εn),

which means that
Iεn(un) → mV0 and (un) ⊂ Nε.

From proposition 5.4, there exists a sequence ỹn ∈ RN such that vn(x) = un(x+ ỹn)
has a convergent subsequence in E. Moreover, up to a subsequence, yn → y ∈ M ,
where yn = εnỹn. Therefore,

βε(un) =

∫
RN χ(εz)|un|p∫

RN |un|p

=

∫
RN χ(εz + yn)|un(z + ỹn)|p∫

RN |un(z + ỹn)|p

= yn +

∫
RN [χ(εz + yn) − yn]|vn(z)|p∫

RN |vn(z)|p → y ∈ M.

Consequently, there exists yn ∈ Mδ such that

lim
n→∞

|βε(un) − yn| = 0,

finishing the proof of the lemma.
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Theorem 5.6 (multiplicity of solutions). Suppose that the nonlinearity f satisfies
(f1)–(f3) with p < q < (N − µ)p/(N − p) and the potential function V satisfies
assumptions (V1)–(V3). Then, for any δ > 0, there exists εδ > 0 such that prob-
lem (APE∗) has at least catMδ

(M) positive solutions, for any 0 < ε < εδ.

Proof. We fix a small ε > 0. Then, by lemmas 5.2 and 5.5, βε ◦ Φε is homotopic to
the inclusion map id: M → Mδ, and so

catN̂ε
(N̂ε) � catMδ

(M).

Since that functional Iε satisfies the (PS)c condition for c ∈ [m(V0), m(V0) + h(ε)],
by the Lyusternik–Schnirelmann theory of critical points [29], we can conclude
that Iε has at least catMδ

(M) critical points on Nε. Since the manifold Nε is a
natural constraint for Iε, Iε has at least catMδ

(M) critical points in E. By repeating
the arguments explored in § 2, we deduce uε ∈ C1,α

loc (RN ), α ∈ (0, 1). Applying
Harnack’s inequality, we can conclude that uε(x) > 0 in RN .

6. Solutions for the original equation

In this section, our main goal is to show that the solutions uε obtained in theorem 5.6
are indeed solutions for problem (QNE∗). We will use the Moser iteration technique
[34] to prove

uε(x) � ta for all x ∈ RN \ Λε,

where

Λε := {x ∈ RN : εx ∈ Λ}.

For completeness, we shall sketch the proof here.

Lemma 6.1. Let (εn) be a sequence where εn → 0 as n → 0 and (xn) ⊂ Λ̄εn
. If

uεn is a solution of problem (APE∗) in theorem 5.6, then, up to a subsequence,
vn := uεn

(· + xn) converges uniformly on compact subsets of RN .

Proof. For each n ∈ N and L > 0, let

vL,n =

{
vn(x), vn(x) � L,

L, vn(x) � L,

zL,n = v
p(β−1)
L,n vn and wL,n = vnvβ−1

L,n

with β > 1 to be determined later. Note that vn satisfies

−∆pv + Vε(x)|v|p−2v =
(

1
|x|µ ∗ Gε(v)

)
gε(v) in RN ,

v ∈ W 1,p(RN ), v(x) > 0 for all x ∈ RN ,

where Vε(x) = V (εx + xn), gε(v) = g(εx + xn, v) and Gε(v) = G(εx + xn, v).
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Taking ϕ = zL,n as a test function, we obtain∫
RN

v
p(β−1)
L,n |∇vn|p = −p(β − 1)

∫
RN

vpβ−p−1
L,n vn|∇vn|p−2∇vn∇vL,n

+
∫

RN

(
1

|x|µ ∗ Gε(vn)
)

gε(vn)vnv
p(β−1)
L,n

−
∫

RN

Vε(x)|vn|pvp(β−1)
L,n .

Since ∫
RN

vpβ−p−1
L,n vn|∇vn|p−2∇vn∇vL,n =

∫
{vn·L}

v
p(β−1)
L,n |∇vn|p � 0,

we get∫
RN

v
p(β−1)
L,n |∇vn|p �

∫
RN

(
1

|x|µ ∗ Gε(vn)
)

gε(vn)vnv
p(β−1)
L,n −

∫
RN

V0|vn|pvp(β−1)
L,n .

Since (vn) is bounded in E, there exists C0 > 0 such that

sup
n∈N

∣∣∣∣ 1
|x|µ ∗ Gε(vn)

∣∣∣∣
L∞(RN )

< C0.

From assumptions (f1) and (f2), for any ξ > 0 there exists Cξ > 0 such that

|gε(vn)| � ξ|vn|p−1 + Cξ|vn|q−1.

Thus, choosing 0 < ξ small enough, we obtain a constant C1 > 0 such that∫
RN

v
p(β−1)
L,n |∇vn|p � C1

∫
RN

vq
nv

p(β−1)
L,n . (6.1)

On the other hand, by the Sobolev embedding we get

|wL,n|pp∗ � C2

∫
RN

|∇(vnvL,n
β−1)|p

� C3(β − 1)p

∫
RN

vp
nv

p(β−2)
L,n |∇vL,n|p + C3

∫
RN

v
p(β−1)
L,n |∇vn|p

= C3(β − 1)p

∫
{vn�L}

v
p(β−1)
L,n |∇vn|p + C3

∫
RN

v
p(β−1)
L,n |∇vn|p

� C4β
p

∫
RN

v
p(β−1)
L,n |∇vn|p. (6.2)

From (6.1) and (6.2), Hölder’s inequality and the boundedness of (vn) imply

|wL,n|pp∗ � C5β
p

∫
RN

vp
nv

p(β−1)
L,n = C5β

p

∫
RN

vq−p
n wp

L,n

� C5β
p

( ∫
RN

vp∗

n

)(q−p)/p∗( ∫
RN

wL,n
pp∗/(p∗−(q−p))

)(p∗−(q−p))/p∗

� C6β
p|wL,n|pα∗ (6.3)
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with

p < α∗ =
pp∗

p∗ − (q − p)
< p∗,

whenever wL,n ∈ Lα∗
(RN ).

Since vL,n � vn, we know that wL,n ∈ Lα∗
(RN ) if vβ

n ∈ Lα∗
(RN ). If it is true, it

follows from (6.3) that

( ∫
RN

v
p∗(β−1)
L,n vp∗

n

)p/p∗

� C6β
p

( ∫
RN

(v(β−1)
L,n vn)α∗

)p/α∗

� C6β
p|vn|βp

βα∗ .

Applying Fatou’s lemma in L, we get

|vn|βp∗ � C
1/β
7 β1/β |vn|βα∗ < ∞, (6.4)

if vβα∗

n ∈ L1(RN ) holds.
Start the iteration by setting β := p∗/α∗ > 1. Since vn ∈ Lp∗

(RN ), the inequality
(6.4) is then true. Note that if β2α∗ = βp∗, then (6.4) also holds with β replaced
by β2. Consequently,

|vn|p∗β2 � C
1/β2

7 β2/β2 |vn|α∗β2 � C
1/β+1/β2

7 β1/β+2/β2 |vn|βα∗ .

Iterating this process and using βα∗ = p∗, we obtain

|vn|βmα∗ � C
∑m

t=1 β−t

7 β
∑m

t=1 tβ−t |vn|p∗ .

Passing to the limit as m → ∞, we have

|vn|∞ � C8 ∀n ∈ N.

Let Ω ⊂ RN be a bounded domain and let ξ > 0. Equations (g1) and (g2) imply
that ∣∣∣∣Vεn(x)vp−1

n (x) −
(

1
|x|µ ∗ Gε(vn)

)
gε(vn)(x)

∣∣∣∣ � C ∀n ∈ N ∀x ∈ Ω.

From a result due to Di Benedetto [20], for any compact set K ⊂ Ω, there exists a
constant C̄K,Ω , depending only on C8, N , p and dist(K, ∂Ω), such that

|vn|C0,α
K (Ω) � C̄K,Ω ∀n ∈ N

with some 0 < α < 1. Then (vn) possesses a convergent subsequence in C0
loc(R

N ),
finishing the proof.

Proposition 6.2. For any ε > 0, define

m∗
ε := sup

{
max
∂Λε

uε : uε ∈ N̂ε is a solution of problem (APE∗)
}

.

Then, m∗
ε is finite for ε small enough and limε→0+ m∗

ε = 0.
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Proof. Arguing by contradiction, we suppose that there exists (εn) ⊂ R+ such that
εn → 0 and uεn ∈ N̂εn is a solution of (APE∗) such that

bεn
= max

∂Λεn

uεn
→ ∞.

Then, uεn
(xn) � b > 0 for some b > 0 and (xn) ∈ ∂Λεn

.
Since εn → 0, we have that Iεn(un) → mV0 . Once we obtain uεn(xn) � b > 0,

by setting vn := uεn(· + xn), it follows that vn ⇀ v weakly in E with v �= 0 by
lemma 6.1. Let tn > 0 be such that ṽn = tnvn ∈ NV0 . Then,

LV0(ṽn) → mV0 and (ṽn) ⊂ NV0 .

Repeating the arguments in lemma 5.4, we derive

ṽn → ṽ in E.

Thus, from ṽn = tnvn ∈ NV0 , (tn) is bounded. Thus, we can assume that, for some
subsequence, tn → t0 > 0, and so vn → v in E. Next, we shall show that (x̄n) =
(εnxn) has a subsequence satisfying

x̄n → x̄ ∈ M and V (x̄) = V0.

First we claim that (x̄n) is bounded in RN , because (x̄n) ⊂ ∂Λ. Thus, up to a
subsequence, x̄n → x̄ ∈ ∂Λ, from which it follows that V (x̄) > V0. Then, recalling
that ṽn → ṽ in E, we can use Fatou’s lemma to obtain

mV0 = LV0(ṽ)

<
1
p

∫
RN

(|∇ṽ|p + V (x̄)|ṽ|p) − F(ṽ)

� lim inf
n→∞

{
1
p

∫
(|∇ṽn|p + V (εnz + x̄n)|ṽn|p) − F(ṽn)

}
= lim inf

n→∞
Iεn(tnun)

� lim inf
n→∞

Iεn(un)

= mV0 ,

which is absurd. Thus, m∗
ε < +∞ for ε > 0 small enough.

To prove limε→0+ m∗
ε = 0, we suppose by contradiction that there exist εn → 0+

and b > 0 with
mε

∗
n � b > 0.

Thus, for each n ∈ N, there exists a solution uεn ∈ N̂εn
of (APE∗) in such a way

that
max
∂Λεn

uεn
� m∗

εn
− 1

2b � 1
2b ∀n ∈ N.

Hence, there exists a sequence (xn) ⊂ ∂Λεn such that

uεn(xn) � 1
2b > 0 ∀n ∈ N.
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Repeating the same arguments employed in the first part of the proof, we get a
contradiction. Therefore,

lim
ε→0+

m∗
ε = 0.

6.1. Proof of theorem 1.4

We divide the proof into two parts.

6.1.1. Proof of existence

Proof of theorem 1.4. Given δ > 0 such that Mδ � Λ, we can invoke theorem 5.6 to
obtain, for any ε ∈ (0, εδ) fixed, catMδ

(M) solution of (APE∗). Taking εδ smaller
if necessary, we can use lemma 6.2 to conclude that, if uε is one of these solutions,
then

uε(x) < ta for all x ∈ ∂Λε.

The rest of the proof is similar to [18], but we sketch it for completeness. The
function uε ∈ E solves the equation

−∆pu + V (εx)|u|p−2u =
(

1
|x|µ ∗ G(εx, u)

)
g(εx, u) in RN .

Define

vε =

{
max{uε − ta, 0}, x ∈ RN \ Λε,

0, elsewhere,

and observe that vε ∈ E. Taking it as a test function in the above equation we get∫
RN \Λε

|∇vε|p + c(x)v2
ε + tac(x)vε = 0, (6.5)

where

c(x) := V (εx)|uε(x)|p−2 −
(

1
uε(x)

)(
1

|x|µ ∗ G(εx, uε)
)

g(εx, uε).

Since ∣∣∣∣ 1
|x|µ ∗ G(εx, uε)

∣∣∣∣
L∞(RN )

< C0

and
g(εx, uε)

uε(x)
� V0

�0
uε(x)p−2,

we see that (
1

uε(x)

)(
1

|x|µ ∗ G(εx, uε)
)

g(εx, uε) � 1
2V0uε(x)p−2,

since C0/M0 � 1
2 . Consequently, c(x) � 0 in RN \Λε, and all the terms in (6.5) are

zero. In particular, vε ≡ 0. Thus, (3.2) holds and uε is a solution of (QNE∗). The
theorem is proved.
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6.1.2. Proof of concentration

Lemma 6.3. Let vn > 0 be a solution of the following problem:

−∆pvn + Vn(x)|vn|p−2vn =
( ∫

RN

F (vn)
|x − y|µ

)
f(vn) in RN ,

vn ∈ W 1,p(RN ) with 1 < p < N,

where Vn(x) = V (εnx + εnỹn). Assume that (f1)–(f3) hold with µ < p and p < q <
(N − µ)p/(N − p). If vn → v in E with v �≡ 0, then vn ∈ L∞(RN ) and there exists
C > 0 such that |vn|∞ � C for all n ∈ N. Furthermore,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

Proof. Let (vn) be a sequence of positive solutions satisfying vn → v in E and
define

Kn(x) :=
∫

RN

F (vn)
|x − y|µ .

We first claim there exists C > 0 such that

|Kn(x)| � C ∀n ∈ N. (6.6)

Next we adapt some arguments in [4, 24] that are related to the Moser iteration
method.

For any R > 0, 0 < r � 1
2R, let η ∈ C∞(RN ), 0 � η � 1 with η(x) = 1 if |x| � R

and |∇η| � 2/r. Note that by (f1) and the claim above, we obtain the following
estimate: given ξ > 0, there exists Cξ such that

|Kn(x)f(vn)| � ξ|vn(x)|p−1 + Cξ|vn(x)|p∗−1 ∀x ∈ RN and n ∈ N. (6.7)

For each n ∈ N and for l > 0, let

vl,n =

{
vn(x), vn(x) � l,

l, vn(x) � l,

and
zl,n = ηpv

p(β−1)
l,n vn and wl,n = ηvnvβ−1

l,n

with β > 1 to be determined later.
Taking zl,n as a test function, we obtain∫
RN

ηpv
p(β−1)
l,n |∇vn|p = −p(β − 1)

∫
RN

vpβ−p−1
l,n ηpvn|∇vn|p−2∇vn∇vl,n

+
∫

RN

Kn(x)f(vn)ηpvnv
p(β−1)
l,n −

∫
RN

Vn|vn|pηpv
p(β−1)
l,n

− p

∫
RN

ηp−1v
p(β−1)
l,n vn|∇vn|p−2∇vn∇η.

By (6.7) and for ξ sufficiently small, we get∫
RN

ηpv
p(β−1)
l,n |∇vn|p � Cξ

∫
RN

vp∗

n ηpv
p(β−1)
l,n −p

∫
RN

ηp−1v
p(β−1)
l,n vn|∇vn|p−2∇vn∇η.
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Now, following the same arguments explored in [4], we find

|vn|L∞(|x|�R) � C|vn|p∗(|x|>R/2).

Again using the convergence of (vn) to v in W 1,p(RN ), for each γ > 0 fixed, there
exists R > 0 such that |vn|L∞(|x|�R) < γ for all n ∈ N . Thus,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N,

which completes the proof of the lemma.

Lemma 6.4. There exists δ > 0 such that |vn|∞ � δ for all n ∈ N.

Proof. Since vn → v �= 0 in E, there exist (yn) ⊂ RN and R̃, β > 0 such that∫
BR̃(yn)

|vn|p � β.

If ‖vn‖L∞(RN ) → 0, then we get

β �
∫

BR̃(yn)
|vn|p � |vn|p∞|BR̃(yn)| � C|vn|p∞ → 0,

which is a contradiction.

If uεn is a solution of problem (QNE∗), then vn(x) = uεn(x + ỹn) is a solution of
the problem

−∆pvn + Vn(x)|vn|p−2vn =
( ∫

RN

F (vn)
|x − y|µ

)
f(vn) in RN ,

vn ∈ E, vn(x) > 0 ∀x ∈ RN ,

with Vn(x) = V (εnx+ εnỹn) and (ỹn) ⊂ RN given in proposition 5.4. Moreover, up
to a subsequence,

vn → v in E and yn → y in M,

where yn = εnỹn. If bn is a maximum point of vn, we know it is a bounded sequence
in RN . Thus, there exists R > 0 such that bn ∈ BR(0). Thus, the global maximum
of uεn is zε = bn + ỹn and

εnzεn = εnbn + εnỹn = εnbn + yn.

From the boundedness of (bn), we get the limit

lim
ε→0

εnzε = y,

which, together with the continuity of V , gives

lim
n→∞

V (εnzεn) = V0.

If uε is a positive solution of (QNE∗), the function wε(x) = uε(x/ε) is a positive
solution of (QNE). Thus, the maximum points ηε and zε of wε and uε, respectively,
satisfy the equality ηε = εzε, from which it follows that

lim
|ε|→∞

V (ηε) = V0.
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