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Abstract
A principled approach to understand networks is to formulate generative models and infer their parame-
ters from given network data. Due to the scarcity of data in the form ofmultiple networks that have evolved
from the same process, generative models are typically formulated to learn parameters from a single net-
work observation, hence ignoring the natural variability of the “true” process. In this paper, we highlight
the importance of variability in evaluating generative models and present two ways of quantifying the
variability for a finite set of networks. The first evaluation scheme compares the statistical properties of
networks in a dissimilarity space, while the other relies on data-driven entropy measures to compute vari-
ability in network populations. Using these measures, we evaluate the ability of four generative models
to synthesize networks that capture the variability of the “true” process. Our empirical analysis suggests
that generative models fitted for a single network observation fail to capture the variability in the network
population. Our work highlights the need for rethinking the way we evaluate the goodness-of-fit of new
and existing network models and devising models that are capable of matching the variability of network
populations when available.

Keywords: network models, variability, entropy, generative models

1. Introduction
The representation of various natural and artificial systems in the form of complex networks,
where the nodes serve as elements and edges describe interactions between elements, has been
tremendously useful in understanding the structure and function of these systems (Watts &
Strogatz, 1998; Barabási & Albert, 1999; McPherson et al., 2001; Ladyman et al., 2013). Indeed, the
growth of network science has provided new perspectives on complex systems using data-based
mathematical models, which have been used to analyze and model these systems at various scales
(Barabasi, 2012). In particular, the increasing availability of high throughput data from a wide
variety of sources, such as the Internet (Faloutsos et al., 1999), World Wide Web (Huberman,
2003), online social networks (Moreno, 1934), citation and collaboration networks (Price, 1965;
Perc et al., 2017), and biological networks (brain connectivity [Fields & Song, 1989], protein-
protein interactions [White et al., 1986]), has fueled the rapid development of the field of network
science. Topological analysis of real-world networks has revealed a variety of characteristic prop-
erties such as small-worldness (Watts & Strogatz, 1998), scale-free degree distributions (Barabási
& Albert, 1999), degree correlations (Newman, 2003a; Maslov & Sneppen, 2002; Pastor-Satorras
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Figure 1. Traditional setup used in network modeling: a network model consists of an algorithmic procedure that is param-
eterized using the observed network G∗ as an input. The parameterized model can then be used to synthesize multiple
networks, and the quality of themodel is evaluated by comparing the synthesized networks with the original input network.

et al., 2001), motifs (Milo et al., 2002), and communities (Palla et al., 2005; Reichardt & Bornholdt,
2006; Newman, 2008).

A principled approach to understanding these complex networks (and the processes that give
rise to them) is to formulate generative models and infer their parameters from given data
(Newman, 2003b; Goldenberg et al., 2009). These generative models attempt to identify a com-
mon set of laws and principles that can explain the structure and evolution of the networks, and
the underlying system it represents (Barabasi, 2002, 2016). The set of laws and principles there-
fore shed light on predicting implicit characteristics and future development of the system. For
instance, a brain network model that explains the development of brain structure can help make
early diagnosis of brain disease. Consequently, a goal of network modeling is to solve the prob-
lem of decoding how the observed structure of a network supports its perceived/desired function
(Alderson, 2008). Due to this, a long-standing question in the network science community has
concerned the existence of a general model capable of generating synthetic networks that are sta-
tistically representative of real networks. Traditionally, generative models have been formulated
to use a single empirical observation G∗ of the true system as the input to an algorithmic proce-
dure, whose parameters are best fit to synthesize networks statistically similar to G∗ (see Figure 1
for a pictorial representation). Note that it is far from guaranteed that best-fit parameterization of
the algorithm will yield a satisfactory generative model. Nevertheless, there are an infinite num-
ber of models that can be formulated for a given network observation (Vallès-Català et al., 2018).
Unfortunately, most of the existing models either make assumptions biased by system-specific
observations that are not plausible across domains, or focus on replicating a few predefined topo-
logical features, such as degree distribution and clustering, at the expense of other potentially
more important characteristics. Without any indication that they are either necessary or sufficient
as descriptors for the actual network data, these summary quantities can often be highly mislead-
ing (Goldenberg et al., 2009). Further, even when a model is capable of consistently reproducing
a set of target properties, it might fail to capture their naturally occurring stochasticity (Gutfraind
et al., 2012).

As depicted in Figure 2, statistical modeling of networks based on a single observation assumes
that G∗ is somehow representative of the “true” process A∗. Learning a model using a single
observation that does not reflect the variability in the process A∗ can potentially bias a model to
synthesize networks that over-fit G∗. Such a setup could restrict the generalizability of the model
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Figure 2. Procedure used for evaluating network models in this paper: Assuming G∗ is not an outlier, how well do existing
network models approximate the process A*?

by failing to synthesize networks that provide a reliable representation of the “true” process. To
understand this, we need to define the concept of a network population.

Definition 1.1 (Network Population). Let G1(V1, E1) be an arbitrary network that has nonzero
probability of being synthesized using the process A∗. A finite set of k such realizations GA∗ =
{Gi(Vi, Ei)} ∀i= 1, . . . , k is called a network population, where Vi and Ei are the sets of nodes and
edges in Gi.

To illustrate the variability in networks synthesized using a single known process A∗, we use
the preferential attachment process of Barabási & Albert (1999) to synthesize a population of
100 networks (labeled as “data” in Figure 3). The stochasticity in the generative process of the
BA-model leads to the synthesis of networks that show some variability in their global network
properties (degree assortativity and transitivity are used in Figure 3). As depicted in Figure 2, we
typically observe a single network from the population and ideally would like a generative model
to be capable of learning about the original process A∗ using the observation G∗. Consequently,
one network from the population was selected at random as input for training two other network
models, namely dk-random graphs as model 1 and action-based networks as model 2 (see Section
2 for more details), which were then used to synthesize populations of 100 networks each. Finally,
we compare the distribution of degree assortativity and transitivity in the three populations in
Figure 3. We observe that the networks synthesized by model 1 all have exactly the same global
network properties. While there is no variability in these properties, a simple comparison with the
observed network G∗ might lead to a conclusion that the model aptly describes the underlying
process A∗, which can prove to be highly misleading. On the other hand, the population of net-
works synthesized by model 2 shows more variability, but fails to match the network properties of
G∗ or the original population.

The inability of network models to synthesize realistic network populations necessitates the
evaluation of network models using a well-formulated methodology that treats the observed
network as a sample originating from some unknown process A∗. Statistical hypothesis testing
for goodness-of-fit typically involves measuring the discrepancy between observed values and the
values expected under the model in question. Similarly, in the context of networks, we would like
to evaluate the ability of a candidate model to approximate the network population GA∗ using a sin-
gle observed network G∗ (see Figure 2 for a pictorial representation). Although, in most cases, we
do not have a population of independent instances of networks that can be used to draw a set of
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Figure 3. Distribution of global network properties assortativity and transitivity in populations of networks synthesized by
the Barabási–Albert model and two other models. The inability of network models to replicate the distributional properties
of the original process A∗ highlights the need for devising better techniques for training and evaluatingmodels using network
populations.

samples (Moreno & Neville, 2009), it has been shown that it is possible to establish a baseline test
set to evaluate the ability of a network model to capture the distribution of network populations
(Arora & Ventresca, 2019). Emmert-Streib & Dehmer (2012) made a similar observation, where
it was shown that evaluating the complexity of a network model using a single network can be
biased because of the variability in the samples, and therefore introduced a complexity measure
based on network populations.

Even though network science has provided us with numerousmethods to compare pairs of net-
works (see Emmert-Streib et al., 2016; Donnat & Holmes, 2018 for reviews), comparing network
populations has been a relatively unexplored area. Given the importance of natural variability in
generative processes (Arora & Ventresca, 2019), it is imperative to devise methods that can be
used to compare populations and quantify their variability. Such methods can help researchers in
the development of models that augment our current understanding of complex networks and the
underlying process they represent.

One way to quantify the information content in a finite population of networks is to use
entropy-based measures to compute the amount of randomness in the population. Dehmer &
Mowshowitz (2011) review the diverse contexts and applications that led to the development
of various entropy-based measures for graphs/networks. Information-theoretic metrics have also
been used for quantifying the difference between pairs of complex networks (De Domenico &
Biamonte, 2016). Methods for quantifying the Shannon entropy of canonical and microcanonical
network ensembles have also been proposed (Anand & Bianconi, 2009; Bianconi, 2008), which
were subsequently extended to the case of stochastic block models (SBMs) (Peixoto, 2012). While
closed-form expressions can be obtained for simple null models, achieving the same for a popu-
lation of real-world networks is rather unlikely. Alternatively, data-driven techniques to quantify
the information content and variability in network populations can aid the rapid development of
more explanatory network models that capture the distributional properties of a population.
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While the inability of certain network models to reproduce the naturally occurring variabil-
ity in networks can be attributed to the fact that they sample each edge independently through
Bernoulli distributions (Moreno et al., 2018), there could be other factors contributing to the lack
of variability. There are at least two ways of overcoming this obstacle: (i) systematic develop-
ment of models that can replicate the distributions of populations, or (ii) devising techniques that
can allow existing models to utilize additional information from the population. There has been
recent work on mapping networks into natural Euclidean spaces for conventional hypothesis test-
ing (Ginestet et al., 2017), which can help us determine if two groups of networks are significantly
different in statistics. Latent space models (LSMs) (Hoff et al., 2002) were proposed to synthesize
networks by mapping the nodes into some low-dimensional Euclidean space while keeping the
relationships. Gollini & Murphy (2016) adapted LSMs for multiple input networks and proposed
a joint LSM considering multiple networks in the posterior. In Durante et al. (2017), the context
was extended to multiple observations drawn from a common population, and a nonparametric
model was proposed. Lunagómez et al. (2019) proposed another Bayesian model where the prob-
ability of an observation is based on the Hamming distance to the Fréchet mean of the group.
Similarly, Sweet et al. (2012) proposed a hierarchical modeling framework to learn better mod-
els of network populations. Although these approaches incorporate information about multiple
networks to learn better representations for the population, they fail to explicitly account for the
natural variability in the population.

To recap, an ideal generative model M would exactly correspond to the true process A∗ that
defines the dynamical processes responsible for the observed data G∗. That is, if A∗ defines a
probability distribution PG(A∗) ∀G ∈ GA∗ , then PG(M) and PG(A∗) would be identical. As stated
above, A∗ is usually unknown and the number of observed networks in the data G∗ are usually
small (sometimes only one).

1.1 Summary of main contributions
In this work, we expand on previous work (Arora & Ventresca, 2019) exploring the distributional
properties of four competing generative models: Chung-Lu model, dk-random graphs, exponen-
tial random graphs, and action-based network generators (ABNGs) (Section 2 briefly describes
each model). In Section 3, we describe the network population data drawn from three known
processes and six real-world populations. As described in Figure 2, model parameters are fit
using a representative sample G∗ chosen at random. In Section 4, we propose the construction
of a dissimilarity space that measures the distributional properties of network populations with
respect to the observed network G∗. In Section 4.1, the fitted models are used to synthesize net-
works followed by an investigation of their distributional properties. This evaluation is done by
comparing the statistical properties of the synthesized networks with the properties of the corre-
sponding population of networks. In Section 5, we propose empirical measures for quantifying
the variability in network populations, and subsequently use it for the evaluating network mod-
els that synthesized networks using information extracted from an increasing number of network
samples1.

2. Background
In this section, we briefly introduce the four generative models that are used in the empirical anal-
ysis in Section 4.1. Chung-Lumodel and exponential random graphs are classical models based on
independent edge sampling and conditional sampling on local structure, respectively. Two recent
models, dk-random graphs and ABNGs, aimed at matching the distribution of graph ensembles
and simulating the network formation process are introduced. Where applicable, details regard-
ing user-defined inputs have also been provided. In our experimental analysis in Section 4, each
model uses the network G∗ = (V , E) to learn a fixed set of parameters. In Section 5, we also test
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scenarios when these network models use multiple input networks to learn better models for
network populations.

2.1 Chung-Lumodel
The Erdös–Rėnyi model (Erdös & Rényi, 1959, 1960) assumes that nodes are homogeneous with
respect to how they connect to other nodes. This assumption fails to produce networks exhibiting
properties observed in real-world networks, see Chapter 3 of Cohen & Havlin (2010) for a more
comprehensive description of properties of real-world networks that cannot be explained by the
random graph model. This inspired a general class of models of inhomogeneous random graphs
that can be visualized as attempts at making the random graph model more realistic. The Chung-
Lu model Chung & Lu (2002a,b) is one of the simplest models in this category, where a node i is
assigned a degree ki from the degree distribution of G∗ and an edge is placed between the node
pair (i, j) with probability proportional to kikj, that is, the probability that an edge exists between
nodes i and j is given by

Pi,j = kikj
2|E| . (1)

This model has the disadvantage that the final degree sequence is not precisely equal to the
desired degree sequence (it matches the degree sequence in expectation), but it has some signifi-
cant calculational advantages thatmake the derivation of rigorous results easier (Newman, 2003b).
The Chung-Lu model is often used as a null model owing to its simplicity and ability to synthe-
size fairly realistic networks (Pinar et al., 2012). Unfortunately, the Chung-Lu model synthesizes
networks with low clustering coefficients making it unsuitable for most real-world applications.

2.2 Exponential random graphs
One of the most popular statistical network models in the social science literature is the exponen-
tial random graph models (ERGMs) (Strauss, 1986; Wasserman & Pattison, 1996; Anderson et al.,
1999). These models deal with link formation mechanisms using conditional dependence, which
states that the existence of links in a network is shaped by the presence or absence of other links
(and possibly node-level attributes) (Robins et al., 2007). These dependence assumptions claim
the existence of local processes, that may depend on the local structure, capable of generating
node interactions observed in real-world networks. ERGMs represent probability distributions
over networks with an exponential linear model that uses feature counts of local graph properties
considered relevant by the modeler (e.g., edges, triangles, paths):

P(Y=G∗|θ)= 1
Z
exp (θTφ(G∗)), (2)

where (i) φ(G∗) are feature counts of G∗; (ii) θ are parameters to be learned; and (iii) Z is a
normalizing constant. The generality of the exponential distribution makes it an ideal candidate
for representing the conditional probability distribution between different local graph properties
φ(G∗). Further, there is theoretical evidence supporting the exponential form as it can be derived
from first principles using maximum entropy arguments (Park & Newman, 2004).

Generating an ERGM consists of the following steps (Robins et al., 2007): (i) assume that
the existence of each edge is a random variable; (ii) a dependence hypothesis is proposed that
embodies the local processes assumed to generate the network; (iii) network configurations
(e.g., triangles, 2-stars) get parameter values based on the dependency hypothesis; (iv) parameters
are simplified using homogeneity or other constraints to reduce number of parameters; (v) model
parameters are estimated and interpreted from the observed network data to get a statistical model
for the network. Though ERGMs are the most widely used models for social networks, they are
plagued with the degeneracy problem (i.e., the probability distribution is biased toward empty
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and complete networks), whereas real-world networks are sparse. In our experimental evaluation,
the following feature counts φ(G∗) were used as they are known to be capable of circumventing
the degeneracy problem (see Snijders et al., 2004; Hunter, 2007 for more details): (i) total num-
ber of edges, (ii) geometrically weighted degree distribution, (iii) geometrically weighted dyadwise
shared partner distribution, and (iv) geometrically weighted edgewise shared partner distribution.

2.3 dk-random graphs
In Orsini et al. (2015), it was observed that fixing some structural properties in a network model
to those observed in the given network can lead to the appearance of other statistical properties
as a consequence. These observations follow from earlier research on the dk-series (Mahadevan
et al., 2006), which defines a series of null models or random graph ensembles (Orsini et al.,
2015). Consequently, dk-random graphs (Orsini et al., 2015) model networks as random ensem-
bles, where ensemble size is controlled using dk-distributions. dk-random graphs for d = 0, 1, 2
correspond to the random graph model (Erdös & Rényi, 1959), configuration model (Bender &
Canfield, 1978; Molloy & Reed, 1995), and random graphs with a given joint degree distribution
(Stanton & Pinar, 2012), respectively.

The sampling algorithm of dk-random graphs relies on ergodic edge-swapping operations to
sample networks from an ensemble defined using the chosen dk-distributions. The lack of an
edge-swapping operation that is ergodic for 3k-distributions leads to the creation of 2.1k and 2.5k-
targeting rewiring, where the moves preserve the 2k-distribution, but each move is accepted with
probability p designed to drive the graph closer to a target value of average clustering c̄(2.1k) or
degree-dependent clustering c̄(k)(2.5k). Experimental results (Orsini et al., 2015; Schieber et al.,
2017; Arora & Ventresca, 2017) have shown that dk-random graphs can synthesize networks
resembling the input network G∗ across a wide range of network properties and for most real-
world networks. Despite this fact, the limited inferential capabilities and inability to perform tasks
such as compression, extrapolation limit the utility of dk-random graphs. In our empirical analy-
sis, we used the dk2.5 variant as it is known to outperform other network models on a variety of
measures (Schieber et al., 2017; Arora & Ventresca, 2017).

2.4 Action-based network generators
A variety of generative models have been designed to synthesize networks having specific prop-
erties (such as power law degree distributions, small-worldness), leaving the modeler with the
nontrivial task of choosing an appropriate one. To alleviate the burden of choosing an appropriate
model, machine learning and evolutionary algorithms can be used to automatically infer appro-
priate network generation mechanisms from the observed network structure (Menezes & Roth,
2019). Along these lines, a novel action-based framework was proposed in Arora & Ventresca
(2016, 2017) that builds on the common assumption that complex networks naturally form
through local node interactions, where the nodes themselves are typically oblivious of the global
topology.

The action-based approach of Arora & Ventresca (2017) models networks using local node
interactions based on simple link creation processes known as actions. An action is a decision
process a node uses to form a link with another node. Given a predefined set of actions, the aim
of action-based networks is to learn a probability distribution over these actions, such that the
resultant model can synthesize networks statistically similar to a given network observation. A
synthesis algorithm f (M, n) can then be used to synthesize networks containing n nodes using
the learned action-based modelM, leading to ABNGs. The fundamental idea behind action-based
networks is to define a unifying network generative process, which follows from observations by
Zheng et al. (2014), who note that there must exist an assembling algorithm to combine local
mechanisms for emergence of different complex network structures.
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For an observed network G∗, the action-based model M is determined by solving a
multiobjective optimization problem. While choosing an appropriate set of user-defined network
characteristics Y and action set A is a challenge, some prior information about network char-
acteristics and plausible actions can yield efficient models (Arora & Ventresca, 2017). In our
empirical analysis, we used degree distribution, local assortativity (Piraveenan et al., 2008), and
local transitivity of the observed network as the set of network properties in the objective function.

3. Network Population Data
• Barabási–Albert: The Barabási–Albert model (Barabási & Albert, 1999) was used to syn-
thesize networks with each arriving node adding five edges using the linear preferential
attachment mechanism.

• Forest Fire: Network populations synthesized using the Forest Fire model (Leskovec et al.,
2007) used a forward burning probability p= 0.38.

• Stochastic Block Model: The SBM was used to synthesize networks with three assortative
communities of sizes 30, 70, and 50.

• Brain Networks: We used diffusion-weighted imaging (DWI) data from the 100 unrelated
subjects of the HCP 900 subjects data release (Van Essen et al., 2013) to get the structural
brain networks. The preprocessing of the DWI data to get the corresponding networks is
described in Amico & Goni (2018). One network represents the abstracted brain structure
of one subject. Nodes in network represent regions of interest (ROIs) in brain and edges
represent the density of connecting fibers. All networks share the same set of nodes since
brain images of different subjects are regularized into a common template of ROIs.

• Contact Networks: Sixty-nine daily cumulated networks where nodes represent visitors of
the Science Gallery while the edges represent close-range face-to-face proximity between
the concerned persons (Isella et al., 2011). Since visitors showing up on different days are
different, the node sets are not fixed for the 69 networks.

• Social Networks in Indian Villages: Data from a survey of social networks in 75 villages in
rural southern Karnataka, a state in India (Banerjee et al., 2013). One network represents the
social network of one village. Nodes in the network represent individuals and edges represent
different social interactions.

• Travian Network Datasets: Data collected over 30 days for real-time strategy game Travian.
The message network contains links for messages sent between players, while the trade
network represents trading relations (Hajibagheri et al., 2015).

• Autonomous Systems: The graph of routers comprising the Internet can be organized into
subgraphs called Autonomous Systems (AS). The dataset (Views, 2000) contains 733 daily
instances spanning an interval of 785 days from November 8, 1997 to January 2, 2000. The
first 100 networks were used in this study.

Table 1 shows the statistics and some common network metrics of listed datasets. First three
populations are generated from parameterized network models, and the the rest six are networks
obtained from real-world interactions. Among the real-world populations, the Travian and con-
tact networks are created from interactions among different sets of individuals across different
days, but the underlying systems that support these interactions remain the same. The networks
are thus different instances of interaction processes happening on a fixed system and can thus
be hypothesized to have a common generative process. The structural organization of the human
brain is controlled by the human genome, and it is safe to assume that the network represen-
tation of different individuals belongs to a population. Similarly, it is reasonable to assume that
social interactions between individuals in different villages arise from similar generative mecha-
nisms. Daily instances of subgraphs of AS can again be assumed to have a common underlying
generative process.
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Table 1. Statistics and networkmetrics of network populations (standard deviation in parentheses), APL is the average path
length

Name Sample Size # of nodes Density Transitivity Assortativity APL

Barabási–Albert 100 100 0.098 0.173 −0.082 2.22

(0) (0) (0.0069) (0.036) (0.016)


Forest 100 200 0.058 0.406 −0.032 3.102

Fire (0) (0.017) (0.043) (0.098) (0.401)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM 100 150 0.072 0.177 −0.512 2.72

(0) (0.0025) (0.0097) (0.054) (0.0527)

Brain 100 360 0.032 0.422 0.141 3.73

Networks (0) (0.001) (0.011) (0.042) (0.129)


Contact 69 167.21 0.045 0.470 0.362 4.104

Networks (64.71) (0.012) (0.143) (0.215) (1.091)


Social 43 212.23 0.048 0.198 −0.078 2.77

Networks (53.54) (0.013) (0.037) (0.054) (0.0207)


Travian 30 1144.5 0.0039 0.019 −0.055 4.35

Trades (123.22) (0.00055) (0.003) (0.036) (0.134)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Travian 30 1722.2 0.0026 0.108 −0.513 2.72

Messages (180.76) (0.00023) (0.022) (0.034) (0.244)


Autonomous 100 3196.3 0.001099 0.015 −0.221 3.77

Systems (101.7) (0.000027) (0.0013) (0.004) (0.014)

4. Pairwise evaluation
Evaluation of the distributional properties of a generative model requires a well-defined method-
ology that correctly represents the distribution over networks. Although model-based techniques
for hypothesis testing of networks have been proposed in the literature (Moreno & Neville,
2013; Peixoto, 2015; Casiraghi et al., 2016), they heavily rely on the choice of a baseline model.
Alternatively, one could build on the concept of a network morphospace (Avena-Koenigsberger
et al., 2014), which provides a coarse-grained approach for classifying andmapping network archi-
tectures according to a set of network-level structural characteristics. The network morphospace
can be transformed to a network dissimilarity space (DG∗ ⊂R

d), where networks are placed based
on their dissimilarity to the single observed network G∗ ∈ GA∗ with respect to a variety of dissim-
ilarity measures (see Definition 4.1). The true process and network models also have counterpart
distributions PDG∗ (A∗) and PDG∗ (M) in the network dissimilarity space. In an appropriately
defined dissimilarity space, if PDG∗ (M) sufficiently approximates PDG∗ (A∗), we might be able
to conclude that model M can synthesize networks that belong to the same population as the
observed network G∗.

The utility of such a network dissimilarity space relies heavily on the choice of dissimilar-
ity measures used for network comparison. Network science provides numerous quantitative
tools to measure and classify different patterns of local and global network architectures across
disparate types of systems. The development of methods for the pairwise comparison of networks
is an active area of research, and in recent years many new methods have been introduced (see
Soundarajan et al., 2014; Emmert-Streib et al., 2016; Donnat & Holmes, 2018 for reviews), which
generally take the following form:

Definition 4.1 (Dissimilarity Measure). Given two networks G1 ∈ G1 and G2 ∈ G2, a (bivariate)
network dissimilarity measure d(G1,G2) is a mapping from G1 × G2 →R.
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Any dissimilarity measure that defines a real-valued distance akin to the one in Definition 4.1,
which goes to zero for a pair of isomorphic networks, can be used in the dissimilarity space.
A set of node-level measures that could prove particularly useful for the network dissimilarity
space is provided by the dk-series (Orsini et al., 2015), which is a systematic series of properties
(Y0, Y1, . . . ) of network structure defined in a way such that each Yi provides more detailed infor-
mation about the network structure and Yn fully characterizes a network with n nodes. Orsini
et al. (2015) have shown that the first three terms in the dk-series (Y = degrees + correlations +
clustering/transitivity) are capable of almost fully defining local and global organization of most
real-world networks that do not exhibit community structure.

As shown in Sections 1 and 2, most generative models are aimed at inferring the generative pro-
cess using a single network observation. In our experiments with the dissimilarity space proposed
above, we assume a single network randomly drawn from the network population serves as the
input networkG∗ for the generative models. The rest of the networks in the population are treated
as unobserved samples and are used to evaluate the performance of models on matching the vari-
ability in the network population. Although Section 4.1 only shows the result for one randomly
drawnG∗, the analysis and conclusion are consistent for differentG∗ samples (See Supplementary
Information).

4.1 Experimental results
In our experiments to evaluate the distributional properties of generative models, we propose
to use the Kolmogorov–Smirnov (KS) statistic for evaluating the dissimilarity between networks
based on node-level properties of degree, correlations, and clustering. To examine the ability of
existing generative models to approximate the ground truth process using a single network obser-
vation (assuming it is representative of the true process with respect to the measures of interest),
we propose two different experiments: (i) a controlled experiment where a known process is
used to create a population of networks, and (ii) set of real-world networks that have most likely
evolved from a common generative process (e.g., social interaction networks of different villages)
or generative processes that share the same mechanisms.

4.1.1 Networks without community structure
Figure 4 shows the results for the first set of experiments when the Barabási & Albert (1999)
and Forest Fire models (Leskovec et al., 2007) are used as the true processes A∗. For the second
experiment, we consider the five real-world network populations described above, with results
presented in Figures 5, 6, and 8. Results presented in Figures 4, 5, 6, and 8 are composed of three
different plots:

1. Scatter plots below the diagonal show each synthesized/real network as a point in the
network dissimilarity space, where the coordinates are computed using the Kolmogorov–
Smirnov distance of the associated properties when the network is compared to the
observed networkG∗ (the observed network itself is at the (0,0) position). Networkmodels
(colored triangles) showing higher overlap with networks originating from the true process
(black dots) are better.

2. In the blocks above the diagonal, we evaluate the amount of overlap betweenPDG∗ (A∗) and
PDG∗ (M) using the 2-D KS distance (Peacock, 1983) (lower the better). This quantifies the
extent to which a given generative model is able to reproduce the distributional properties
of the population representing the true process.

3. Plots along the diagonal show the density distributions of the Kolmogorov–Smirnov dis-
tance of the associated properties when the network is compared to the observed network
G∗. Similar density distribution to the ground truth (black curves) implies good match in
the properties.
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Figure 4. Empirical evaluation of the ability of network models to approximate the ground truth system based on
observation of a single network. The Barabási–Albert and Forest Fire models are used as the true generators.

Based on Figures 4 and 5, we can easily conclude that ABNG consistently outperforms the
other models considered here by replicating the natural variability of network populations when
computed in the dissimilarity space for both the experimental settings. In social networks in
Indian villages and Travian Trades networks, ERGM generates dense graphs (causing spikes to
the right in degree KS plot) because of model degeneracy. The plots also show that dk-random
graphs, which are considered to be the state of the art, fail to capture the variability of the true
generative process and potentially over-fit the observed network. This leads us to question the
fundamental idea behind dk-random graphs, that is, whether exactly preserving the distribution
of differently sized subgraphs of a given network leads to a good model for real-world networks.
In fact, in most cases we see that the Chung-Lu model, by matching the degree distribution in
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Figure 5. Empirical evaluation of the ability of network models to approximate the ground truth system based on obser-
vation of a single network. Two real-world datasets were considered: contact networks, and social networks in Indian
villages.

expectation, outperforms dk-random graphs by synthesizing networks with more variability.
These results highlight the need for evaluating the ability of a generative model to capture the
distributional properties of a network population as comparing only with the observed network
might produce misleading results.

The results in Figures 4 and 5 suggest that networkmodels, when carefully designed, can poten-
tially capture the structural variability in network populations (when evaluated in the dissimilarity
space) using a single network as input. But when this analysis was extended to more network pop-
ulations, all network models failed to synthesize populations that resemble the original one, and
the results are presented in Figure 6.
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Figure 6. Empirical evaluation of the ability of network models to approximate the ground truth system based on
observation of a single network. Two real-world datasets were considered: Travian trades and structural brain networks.

4.1.2 Networks with community structure
While the network dissimilarity space defined in Section 4 works well for networks without com-
munities, it will prove ineffective for networks with community structures, which is a property
seen in most real-world networks (Fortunato & Hric, 2016). In this section, we extend the net-
work dissimilarity space by adding a fourth dimension to compare the community structures of
two networks. The following procedure was used for comparing community structures in the
extended network dissimilarity space:

1. Compute node memberships using a community detection algorithm (Infomap commu-
nity detection algorithm (Rosvall & Bergstrom, 2008) was used in our experiments).
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Figure 7. Empirical evaluation of the ability of network models to approximate the ground truth system based on obser-
vation of a single network. The stochastic block model is used as the true generator, and the ability of different models to
replicate the community structure is tested.

2. Sort the communities based on sizes, that is, community 1 is the largest community.
3. Compare the sorted memberships using the normalized mutual information measure

(Danon et al., 2005).

We also add the microcanonical SBM (Peixoto, 2017) (referred to as SBM-fit in the plots) to
our set of generative models and evaluate its ability to replicate the community structure of these
networks.

Again, we performed two different experiments to test the validity of our extended network
dissimilarity space: (i) a controlled experiment where the true process is known, and (ii) set of
real-world networks (with communities) that have most likely evolved from a common generative
process. For the first case, we used the standard version of the SBM (Wasserman & Anderson,
1987; Faust &Wasserman, 1992) with three communities of different sizes, and the results can be
seen in Figure 7. As expected, ABNGperformswell on the original measures, but fails to reproduce
the community structure, while the fitted SBM is the most likely candidate capable of replicating
the true process. This is an expected result as the four original models are not designed to create
networks with communities. Figure 8 shows the results for the networks of AS and Travian
messages, where only the fitted SBM was able to capture some of the features of the true process.
Results presented in Figure 8 show the inability of the microcanonical block model to reproduce
the local transitivity of the true generative process, thus creating an exciting direction for future
research.

In summary, our empirical analysis in the dissimilarity space has highlighted the discrep-
ancy between observed network population and synthesized network as well as the importance
of considering distributional properties of network populations for evaluating generative models
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Figure 8. Empirical evaluation of the ability of network models to approximate the ground truth system based on obser-
vation of a single network. The ability of different models to replicate the community structure of networks of autonomous
systems and Travian messages networks is tested.
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of complex networks. This shows that there is an urgent need to rethink the network modeling
problem and create new models that are explicitly designed to reproduce the variability in the
structural properties of network populations.

5. Evaluating variability in network populations
In previous sections, we empirically verified that current state-of-the-art models are ineffective
in reproducing topological variability when the input is a single network. More specifically, while
synthesized networks can match metrics to one network from a population, the dissimilarity dis-
tribution of synthesized networks PDG∗ (M), and of the original population, PDG∗ (A∗) do not
match. Quantifying such inherent variability can help assess the performance of models in match-
ing the distributional properties of the populations. Shannon entropy is a measure of the inherent
uncertainty or variability of a single variable. Therefore, we can measure the Shannon entropy of
a network population using a network as the random variable. For a given network population
GA∗ = {G1(V1, E1), . . . ,Gk(Vk, Ek)}, assuming that each network Gi is observed with probability
Pi, the entropy of the population GA∗ can be calculated using the following formula:

H = −
k∑

i=1
Pi log Pi. (3)

While this provides a convenient way of measuring the information content in a given network
population, insufficient information about the process A∗ means that we do not have explicit
values for the Pi’s. Using the formula in Equation (3) becomes even more complicated for real-
world populations as the probabilities (Pi’s) are unknown, and assigning equal probabilities to each
network in the population can inadvertently lead to inappropriate conclusions by maximizing the
entropy of the population.

An alternative method for quantifying the information content is to use some discrete ran-
dom variable X ∈ B as an event that is observed in every network in the population, where B
is the set of all possible events. Then, the probability mass function of the random variable X
in a network population given by p(xi)= Pr(X = xi) can be used to evaluate the entropy of the
population:

Hx = −
∑

xi∈B
p(xi) log (p(xi)). (4)

For a network population that contains networks defined on the same set of nodes, that is,
Vi =V ∀i, the random variable X can be defined as events that are related to topological structure
of subsets of nodes, such as density, clustering coefficient. For simplicity, we assume all networks
in one population share the same set of nodes to avoid the additional topological variability caused
by variability in nodes. Otherwise, the definition and computation of node variability are challeng-
ing, for example, the study of graph automorphism which is a relabeling of nodes that does not
change the structure of graph. In fact, this assumption is satisfied in real-world populations created
from brain networks of different individuals, traffic flow in a city across different days, social net-
works of the same group of people over time, etc. In this paper, we start our analysis with entropy
measures defined on pairs of nodes in a network population. For example, we can measure the
variability of an edge between any pair of nodes vi, vj ∈V , or the edge existence entropy as

He(eij)= −(p1 log2 p1 + p0 log2 p0), (5)

where p1 = Pr(eij = 1) and p0 = Pr(eij = 0) are the empirical distributions of edge eij in the
network population. He thus measures the average uncertainty in the existence of an edge in
a network population. Another measure of variability for a pair of nodes can be defined using
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the hop distance δij between nodes vi, vj ∈V , i �= j. In this case, the random variable D ∈ � ⊆
{1, . . . , |V| − 1,∞} and its variability in the population can be used to define the geodesic entropy

Hd(δij)= −
∑

d∈�

pd log|�| pd, (6)

where pd is the proportion of network samples in which the distance δij between node vi and
vj is d, and the set � is determined empirically. Using Equations (5) and (6), we can compute
the edge existence and geodesic entropies for any pairs of nodes. To obtain variability of these
measures over the entire network, mean edge existence and geodesic entropies of all pairs of nodes
can be used to quantify the average variability of these measures in the network population.

As defined in Equation (4), these entropy measures can easily be extended to account for larger
subsets of nodes, such as graphlets of varying sizes (Przulj et al., 2004), to quantify their variability
in the network population. As a first step, we restricted our analysis to measure the entropy of edge
existence and geodesic distances between pairs of nodes to account for variability in local density,
strength of connection, and communication efficiency in a network population. As a result, these
entropy measures can allow us to gauge the degree of uncertainty associated with topological
structures in a network population.

5.1 Experimental results
In this section, we use the definitions of edge and geodesic entropies provided in Equations (5)
and (6), respectively, to evaluate the variability of network population of 100 structural brain net-
works (described in Section 3). Among the real-world network populations described in Section 3,
only the structural brain networks satisfy the assumption of a fixed node set, which is central to the
measures proposed for evaluating variability of network populations in Section 5. Additionally, we
also synthesize network populations using three models, namely configuration model, dk-random
graphs, and action-based networks, and compare their variability with the real-world dataset.
Instead of randomly picking one network from the network population as input, we parameterize
each model using multiple input networks assuming that the additional information will enhance
the ability of models to synthesize populations that are representative of the “true” distribution. In
addition to the model training and synthesis on the complete dataset, network population of 100
networks, partial input is considered by bootstrapping to verify the modeling performance and
the effect of sample size on entropy measures.

To verify the effect of sample size to the entropy methods, 20 replications are done for each
sample size si ∈ S= {2, 3, 5, 10, 20, 50, 80, 100}. In each replication, si networks are randomly
drawn from the 100 networks without replacement, thus creating a network population with sam-
ple size si, which is then used to compute edge existence entropy and geodesic entropy. Given
a sampled network population, a mean degree sequence is estimated by averaging the degree
sequences of the si networks in the population. This mean degree sequence is then used by the
configuration model to synthesize a network population. Similarly, for ABNG, mean value of
the user-defined characteristics in the network population can be used for learning actionmatrices
for the population. For the dk-random graph model, a probability matrix is created by averaging
the adjacency matrices of the si networks in the population. A representative network is then sam-
pled from the probability matrix, which is repeatedly rewired using the 2.5k-rewiring scheme to
synthesize network populations.

Figure 9 shows the edge and geodesic entropies of structural brain networks and networks
synthesized using the configuration model, dk-random graphs, and ABNG. The real network
populations lie on the left side of the space, and the synthesized network populations of three
models are positioned right of them. The edge and geodesic entropy of the full dataset (100 struc-
tural brain networks) and population synthesized by different models are annotated in the plot.
Partial population with bootstrapping are colored by their population sizes. For the three models
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Figure 9. Edge existence entropy and geodesic entropy distributions for brain networks and synthetic networks with dif-
ferent sample sizes. Each point represents the edge and geodesic entropy of one network population containing multiple
networks. With increasing population size, the geodesic entropy increases and gets peaked at around population size of 10
and then decreases. That is caused by insufficient sample size and network sparsity. Models that are better on matching the
variability will have scatters closer to “full dataset”.

and input, the edge existence entropy and geodesic entropy both increase with increasing sample
size before 10 samples despite the geodesic entropy decreases when the population size is larger
than 10. Both entropymeasures converge for more than 50 samples. Generally, limited population
size will reduce the accuracy of entropy measures.

The performance of network generative models on local variability can be evaluated by com-
paring the entropy of input network population and model synthesized network populations. All
three models overestimate edge existence entropy which means in this scenario, true structural
brain networks have lower variability in local connectivity than the models express overall. ABNG
gets a better estimate than the other two models with respect to edge existence entropy. As for
geodesic entropy, both ABNG and dk-random graph model overestimate it but configuration
model estimates the geodesic entropy accurately. In conclusion, none of the three models can
match the variability of input network population. They either overestimate the edge existence
entropy or overestimate geodesic entropy.

Figure 10 shows the assortativity–transitivity space, similar to the one in Figure 3, for the
100 structural brain networks and network populations synthesized in the results presented in
Figure 9. Instead of 20 replications for each population size setting, Figure 10 only shows 1 repli-
cation. Each point in the plot represents the assortativity and transitivity of one network. Among
the three models, configuration model, dk-random graphs, and ABNG, dk-random graph model
performs the best on matching the centroid which represents the average metrics. However, it has
the lowest generalized variance implying it fails at matching the variability of the group. ABNG
outperforms the other two models at matching the generalized variance implying its capability of
capturing the variability of input networks. Furthermore, there is no significant relation between
population size annotated by color and the goodness-of-fit in the space for all three models.
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Figure 10. First row shows distribution of assortativity of vertex degree and transitivity in network populations of struc-
tural brain networks and networks synthesized from them by configuration model, dk-random graphs and ABNG. Second
row shows the centroid distance between synthesized networks and input networks. Lower distance means better estimate
on mean value. Last row shows the generalized variance of assortativity and transitivity of synthesized networks while the
dashed line represents the level of input networks. Being closer to dashed line indicates better estimate on the variance on
both metrics.

6. Conclusions
Traditional approaches for evaluating the ability of a network model to synthesize networks
exhibiting real-world characteristics have compared the similarity of the synthesized networks
with the observed network. While this approach assumes that the particular observation is rep-
resentative of the underlying process that created the observation, it does not account for the
natural variability of the population from which it is sampled. Our experiments have highlighted
the importance of considering network populations for evaluating generative models. Although it
is difficult to obtain data corresponding to network populations, we have shown that it is possible
to establish a baseline test set to evaluate the ability of a network model to capture the distri-
bution of network populations. This test set can then be used for preliminary validation of a
network model before it is used for drawing conclusions about real-world networks. Moreover,
a quantitative evaluation of the distributional goodness-of-fit has been left for the future.

The need for devising generative models for network population is raised in this paper given
limitedmodels that can learn the properties of network populations. More specifically, the devised
models should be capable of matching the inherent variability of real-world network populations
when available. Instead of modifying and transforming existing network generative models to fit
the representative/average network of a network population, we need to develop models that can
extract and quantify the variability existing in network populations. For example, Bayesian mod-
eling frameworks are being successfully used to learn the joint distribution of edges in network
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population that shares the same set of vertices (Gollini & Murphy, 2016; Durante et al., 2017;
Lunagómez et al., 2019), though the topology of networks is not explicitly fitted.

As discussed in Section 5, population size plays a crucial role in a data-driven evaluation of the
variability in network populations. Preliminary results show that both entropymeasures proposed
in Section 5 are biased when evaluated for small population size. This can be a serious limitation
when the population sizes are small. Future work on the development of an unbiased measure
of variability accompanied with a quantitative analysis of the effect of network sample size and
power can guide the sampling process of networks and the development of improved generative
network models.
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