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This article considers portfolio credit risk models of factor type. The dependence
between the individual defaults is driven by a small number of systematic factors.
The present work aims to investigate the effect of increasing the strength of the
dependence between systematic factors on the default indicators in standard credit
risk models. The intensity of the dependence is measured by means of appropriate
multivariate stochastic orderings, based on the comparison of supermodular and
ultramodular functions.

1. INTRODUCTION AND MOTIVATION

Banks and financial institutions need to assess the risks within their credit portfolios
both for regulatory requirements and for internal risk management. Default risk is
related to the inability of a borrower to reimburse a loan or a bond. The definition
of a default hinges on the relevant bankruptcy rules that themselves depend on geo-
graphical regions, quality of the borrower, and seniority of the loan.
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In case of default, the lender only gets a fraction of the promised payments. In the
most severe cases, no further cash flows are being paid by the borrower. The loss
given default is equal to the difference between the face value of the loan or the
bond and the recovered value. Specifically, in credit risk models, the loss for the
lender due to obligor i in a certain period of time is usually represented as

Xi ¼ Ji � Li, i ¼ 1, 2, . . . , m, (1.1)

where Ji ¼ 1 if obligor i defaults and zero otherwise and Li is the loss given default
(describing the fraction of the loan’s exposure expected to be lost in case of default,
and the exposure at default subject to be lost in the considered time period).

The default indicators might not generally be considered as being mutually inde-
pendent. Dependence between the defaults of different obligors can be caused by
direct links between them (e.g., one obligor is the other’s largest customer) or by
more indirect links. In the latter category, we find industrial firms using the same
input factors (and are thus exposed to the same price shocks) or selling on the
same markets (and are thus tributary of the same demand). A number of macroeco-
nomic factors thus influence the default indicators. Common macroeconomic
factors include business cycles, level of unemployment, or shifts in monetary
policy, for instance. Macroeconomic shocks usually lead to positive dependence.

In credit risk modeling, the random variables J1, . . ., Jm are often correlated via
common mixture models. The idea is that there exists a (small) number of systematic
factors Q1, . . . , Qp such that the Ji’s are independent conditionally to Q.
Unconditionally, however, the Ji’s depend on each other because they are subject
to the same unobservable macroeconomic factors Qj. These factor models are
among the few models that can replicate a realistic correlated default behavior
while dramatically reducing the numerical complexity when computing the distri-
bution of

P
i¼1
m Xi. Many models that are used in practice are based on this approach.

Let pi ¼ Pr[Ji ¼ 1] be the default probability for obligor i. Given the environ-
mental risk factor vector Q ¼ u, the conditional default probability is pi(u) ¼
Pr[Ji ¼ 1 j Q ¼ u] so that pi ¼ E[ pi(Q)]. In general, conditional default probabilities
are functions of linear combinations of the Qj’s, that is, pi(u) is a function ofP

j¼1
p wijuj, where wij � 0 is the relative selectivity of obligor i to risk factor j. In

the CreditRiskþ model, for instance, Q is a vector of p independent
Gamma-distributed random variables Q1, . . . , Qp and

pi(u) ¼ 1� exp �
Xp

j¼1

wijuj

 !
, i ¼ 1, . . . , m:

See http://www.riskmetrics.com for more details. In this case, the heterogeneity of the
portfolio is represented by the different vectors w1, . . . , wm. These weights give the
sensitivity of each obligor to the risk factors in Q.

In this article, we aim to investigate the consequences of increasing the strength
of dependence among the macroeconomic factors Q1, . . . , Qp. Intuitively, we expect
that more positively correlated Qj’s yield more positively dependent Ji’s. If p ¼ 1, we

M. Denuit and E. Frostig152

https://doi.org/10.1017/S0269964808000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000090


will see that the variability of Q1 drives the intensity of the dependence between the
default indicators: The more Q1 is variable, the more the default indicators are posi-
tively dependent. To examine the impact of the dependence among the risk factors on
the default events, we resort to stochastic orderings. Univariate stochastic order
relations aim to mathematically express intuitive ideas such as “being larger than”
or “being less variable than” for random variables. Multivariate stochastic order
relations for random vectors translate the fact that the components of one of these
vectors are more positively dependent than those of the other random vector. These
relations are based on supermodular functions that play an important role in the
theory of stochastic orderings and positive dependence.

The article is organized as follows. Section 2 briefly recalls some useful defi-
nitions. The next sections are devoted to the application in credit risk models.
Section 3 examines the effect on the Ji’s of an increase in the dependence among
the Qj’s. Section 4 considers the special case p ¼ 1 (so that there is only one system-
atic factor). Section 5 discusses credit risk models built from the Poisson distribution.
Section 6 extends the results to the Xi’s given in (1.1). All of the proofs are gathered in
the appendixes.

2. SOME USEFUL PROBABILISTIC TOOLS

This section aims to recall the definitions of some univariate and multivariate stochas-
tic orderings that will be extensively used in the subsequent sections. For more details,
we refer the interested reader to Denuit, Dhaene, Goovaerts, and Kaas [1].

2.1. Univariate Stochastic Orders

Let Wcx denote the standard convex ordering between two variables X and Y.
Specifically, one writes X Wcx Y if and only if

E[c(X)] � E[c(Y)] (2.1)

for every convex function c : R ! R, making these expectations finite. Since both
functions c(x) ¼ x and c(x) ¼ 2x are convex, X Wcx Y implies that E[X ] ¼ E[Y ],
so that only random variables with equal means can be compared through Wcx.
Intuitively speaking, by X Wcx Y we mean that X is “less variable” than Y (since, in
particular, Var[X ] � Var[Y ], but, on average, X and Y are equal).

2.2. Multivariate Stochastic Orders

Definition (2.1) is easily extended to the n-dimensional case by considering appropri-
ate classes of functions defined on Rn by means of a difference operator. Let Di

e be the
ith difference operator defined for a function C : Rn! R as

De
i C(x) ¼ C(xþ e1i)�C(x)

in terms of the ith canonical unit vector 1i. The function C : Rn! R is said to be
supermodular if Di

e Dj
d C (x) � 0 holds for all 1 � i , j � n and e, d . 0. It is said
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to be ultramodular if the aforementioned inequalities also hold in the special case
i ¼ j; that is, C : Rn !R is ultramodular if Di

eDj
dC(x) � 0 for all 1 � i � j � n

and e, d . 0. Ultramodular functions are precisely those functions that are supermod-
ular and convex in each of their coordinates. We refer to Marinacci and Montrucchio
[6] for a detailed account of the properties of ultramodular functions. These functions
are also called directionally convex in applied probability.

Note that if C : Rn! R is twice differentiable, then it is supermodular if and
only if @2C=@xi@xj � 0 for every 1� i , j � n, and it is ultramodular if and only
if, @2C=@xi@xj � 0 for every 1 � i � j � n.

Let X and Y be two n-dimensional random vectors. Suppose that X and Y are such
that

E[C(X)] � E[C(Y)] (2.2)

for all the supermodular functions C, provided the expectations exist. Then X is said
to be smaller than Y in the supermodular order (denoted as X Wsm Y). Similarly, if
(2.2) holds for all of the nondecreasing supermodular functions C, then X is said
to be smaller than Y in the increasing supermodular order (denoted as X Wism Y);
if (2.2) holds for all of the nonincreasing supermodular functions C, then X is said
to be smaller than Y in the decreasing supermodular order (denoted as X Wdsm Y);
if (2.2) holds for all of the ultramodular functions C, then X is said to be smaller
than Y in the ultramodular order (denoted as X Wum Y); if (2.2) holds for all of the
nondecreasing ultramodular functions C, then X is said to be smaller than Y in the
increasing ultramodular order (denoted as X Wium Y); and if (2.2) holds for all of
the nonincreasing ultramodular functions C, then X is said to be smaller than Y in
the decreasing ultramodular order (denoted as X Wdum Y).

Supermodular ordering is a useful tool for comparing dependence structures of
random vectors. Only distributions with the same marginals can be compared in the
supermodular sense. Moreover, if X Wsm Y, then Pearson’s, Kendall’s, and
Spearman’s correlation coefficients are smaller for (Xi, Xj) than for (Yi, Yj) for any
i = j. By writing X Wsm Y we intuitively mean that the components of X and Y
have the same marginal behavior but that the components of Y are more positively
dependent that those of X. Formally, the following statements are equivalent: (1) X
Wsm Y; (2) X and Y have the same marginals and X Wism Y; and (3) X and Y have
the same expectation and X Wism Y. The main difference between the ultramodular
order and the supermodular order is that supermodular order compares only depen-
dence structures of random vectors with fixed marginals, whereas the ultramodular
order additionally takes into account the variability of the marginals, which might
then be different.

3. APPLICATION TO CREDIT RISK MODELS

Let us now compare two credit risk portfolios. The underlying macroeconomic vari-
ables are Q and G (with the same dimension p, usually much smaller than the
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number of credit risks m), and the associated default indicators are J and K, respec-
tively. Here,

Pr[Ji ¼ 1 jQ ¼ g] ¼ Pr[Ki ¼ 1 jG ¼ g] ¼ pi(g), i ¼ 1, . . . , m:

We are now ready to state our first result that allows one to compare J and K when
the Gj’s are more positively dependent than the Qj’s. The key assumptions are about
the behavior of u 7! pi(u).

PROPOSITION 3.1:

(i) If u 7! pi(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and supermodular for each i, . . . , m, then Q Wsm G ) J Wism K.

(ii) If u 7! pi(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and 2pi(u) is supermodular for each i, . . . , m, then Q Wsm G
) J Wdsm K.

(iii) If u 7! pi(u) is linear in u and monotone (either nondecreasing for all i or
nonincreasing for all i), then Q Wsm G) J Wsm K.

The proof is given in Appendix A. This result complements Denuit and Müller
[2], where only the special case p ¼ m is considered. Coming back to the credit risk
setting, let us assume that

pi(u ) ¼ Pr
�
Ji ¼ 1 jQ ¼ u

�
¼ g

Xp

j¼1

wijuj

 !
,

where the wij’s are nonnegative constant. Then, as a direct application of Proposition
3.1, we find that if g is monotone and convex, then Q Wsm G) J Wism K, whereas
if g is monotone and concave, then Q Wsm G) J Wdsm K. Thus, in such credit risk
models, dependence among the risk factors implies a similar dependence structure
among obligors.

Example 3.2: As proposed by Gordy [4], let us assume that the state of obligor i
depends on an unobserved latent variable

Yi ¼
Xp

j¼1

ujwij

 !�1

ei,

where the e i’s are independent and conform to the negative exponential distribution
with unit mean. The obligor defaults if Yi falls below a given threshold ci so that

pi(u ) ¼ Pr ei � ci

Xp

j¼1

ujwij jQ ¼ u

" #
¼ 1� exp �ci

Xp

j¼1

ujwij

 !
:
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In this case, Proposition 3.1 (ii) ensures that Q Wsm G) J Wdsm K.

Remark 3.3: Note that in the original Moody’s KMV model, Yi is of the form

Yi ¼
Xp

j¼1

wijuj þ hiei:

with independent e i, i ¼ 1, . . . , p, that conform to the standard Normal distribution.
For more details, see http://www.moodyskmv.com. In this case, we cannot say
much about the impact of the dependence relations among the risk factor on the
dependence relations among the obligors in the portfolio, since the Normal density
function is not monotone.

Example 3.4: Assume that Pr[Ji ¼ 1] ¼ Pr[Yi . 0] for some underlying random vari-
able Yi. Given Q ¼ u, the Yi’s are independent Poisson random variable with respec-
tive parameter li(u). Thus, Pr[Ji ¼ 1] ¼ 1 2 exp(2li(u)). This model is applied in
the CreditRiskþ model. See McNeil, Frey, and Embrechts [5, p. 356] for more
details. Assume that the li(u)’s are monotone and that the 2li(u)’s are supermodular
in u. Then item (ii) of Proposition 3.1 implies that Q Wsm G) J Wdsm K.

4. MIXTURE MODELS WITH ONE RISK FACTOR

Frey and McNeil [3] considered models where the default probabilities depended on a
single risk factor Q (i.e., p ¼ 1). The single-factor approach is also the idea behind the
regulatory Basel II framework. When the default indicators are exchangeable, one can
think of using de Finetti’s theorem, which states the existence of a univariate factor
such that the default indicators are conditionally independent given that factor. In
other words, for homogeneous portfolios, the assumption of a one-dimensional
factor is not restrictive. The only assumption to be made is upon the distribution of
conditional default probabilities. As earlier, we consider that given Q ¼ u, the
default events are independent. Next, we analyze some of these model with respect
to their dependence structure.

As in Proposition 3.1, let us consider two credit risk portfolios, with respective
univariate risk factors Q and G and the corresponding default indicators are J and K.
Here,

Pr
�
Ji ¼ 1 jQ ¼ g

�
¼ Pr

�
Ki ¼ 1 jG ¼ g

�
¼ pi(g), i ¼ 1, . . . , m:

The next result shows that the variability of the risk factor drives the intensity of the
dependence between the default indicators. The key assumptions are about the behav-
ior of u 7! pi(u).

PROPOSITION 4.1:

(i) If u 7! pi(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and convex for each i, . . . , m, then Q Wcx G¼) J Wism K.
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(ii) If u 7! pi(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and concave for each i, . . . , m, then Q Wcx G¼) J Wdsm K.

(iii) If u 7! pi(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and linear for each i, . . . , m, then Q Wcx G¼) J Wsm K.

The proof is similar to the one of Proposition 3.1 and is thus omitted.

Example 4.2: Let Q be Normally distributed with mean m1 and variance s2
1. Given

Q ¼ u, the default indicators J1, . . . , Jm are independent, all with the same default
probability p(u) ¼ 1/(1 þ exp(u)). Such a model is referred to as the logit-Normal
model. Similarly, let G be Normally distributed with mean m2 and variance s2

2.
Given G ¼ g, the default indicators K1, . . . , Km are independent, all with the same
default probability p(g) ¼ 1/(1 þ exp(g)). Then

m1 ¼ m2 and s2
1 � s2

2 ) J Wism K:

Example 4.3: (Bernoulli regression models): Given Q ¼ u, the default indicators J1,
. . . , Jm are independent with default probabilities that depend on ‘-dimensional
vectors, zi, of deterministic covariates. For example, Frey and McNeil [5] considered

p(u) ¼ F(u)ð Þ
exp �

Pl

j¼1
bjzij

� �
,

where b is an ‘-dimensional vector with real components. Assume that
P

j¼1
l bjzij . 0

and that F is concave. For instance, F corresponds to the negative exponential
distribution, to the Weibull distribution with shape parameter less than 1, or to
the Pareto distribution. Then Proposition 4.1(ii) ensures that Q Wcx G ) I Wdsm J.

5. POISSON MODELS

In this section, we extend the results derived in Proposition 3.1 from dependent
(default) indicators to dependent Poisson counting random variables. If, instead of
considering the default occurrences on each obligor, we work at an aggregate level,
we are then naturally lead to Poisson approximations. This section aims to examine
the effect of increasing the strength of dependence between the macroeconomic
factors on the Poisson variables.

Let N ¼ (N1, . . . , Nm) be a random vector with discrete components. Given Q ¼
u, the Ni’s are independent and have a Poisson distribution with parameter li(u).
Similarly, consider a random vector Q ¼ (Q1, . . . , Qm) such that given G ¼ g, the
Qi’s are independent and have a Poisson distribution with parameter li(g). We
then have the following result.
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PROPOSITION 5.1: Consider two portfolios N ¼ (N1, . . . , Nm) and Q ¼ (Q1, . . . , Qm),
with risk factor vectors Q and G, respectively. Then, we have the following:

(i) If u 7! li(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and supermodular for each i, . . . , m, then Q Wsm G ) N Wium Q.

(ii) If u 7! li(u) is monotone (either nondecreasing for all i or nonincreasing
for all i) and ultramodular for each i, . . . , m, then Q Wsm G ) N Wium Q.

6. LOSSES GIVEN DEFAULT

Let L ¼ (L1, . . . , Lm) be a vector of exchangeable nonnegative random variables inde-
pendent of J and K. The Li’s represent the losses given default as in (1.1). The results
obtained for the comparison of J and K extend to the credit risks as follows.

PROPOSITION 6.1: Let X ¼ JL¼ (J1 L1, . . . , Jm Lm) and Y ¼ KL¼ (K1 L1, . . . , Km Lm)
be two vectors of credit risks of the form (1.1). Then the following hold:

(i) Under the conditions of Proposition 3.1(i) we have that Q Wsm G) X Wism

Y.
(ii) Under the conditions of Proposition 3.1(ii) we have that Q Wsm G) X

Wdsm Y.
(iii) Under the conditions of Proposition 3.1(iii) we have that Q Wsm G) X

Wsm Y.
(iv) Under the conditions of Proposition 4.1(i) we have that if Q Wcx G in the

one-dimensional case, then X Wism Y.
(v) Under the conditions of Proposition 4.1(ii) we have that if Q Wcx G in the

one-dimensional case, then X Wdsm Y.
(vi) Under the conditions of Proposition 4.1(iii) we have that if Q Wcx G in the

one-dimensional case, then X Wsm Y.

These multivariate stochastic inequalities between X and Y then allow one to
compare

P
i¼1
m Xi and

P
i¼1
m Yi.
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APPENDIX A
Proof of Proposition 3.1

It is easily seen that for any function g : f0, 1gm! R, we can write

E[g(J) jQ ¼ u] ¼
X

d[{0,1}m

Ym
j¼1

p
dj

j (u)(1� pj(u))1�dj

 !
g(d):

For i¼ 1, . . . , m, let us define the subset Di ¼ fd : di ¼ 0g of f0, 1gm. Let us denote as ph
(k)(u) the

first partial derivative of ph(u) with respect to uk; that is, ph
(k)(u)¼ @ph(u)/@uk, k ¼ 1, . . . , p. Thus,

@

@uk
E[g(J) jQ ¼ u] ¼

Xm

h¼1

p(k)
h (u)

X
d[Dh

Ym
j¼1,j=h

p
dj

j (u)(1� pj(u))1�dj

 !
D1

hg(d): (A.1)

Let us denote as ph
(k,i)(u) the second partial derivative of ph(u) with respect to uk and ui; that

is, ph
(k,i)(u) ¼ @2ph(u)/@uk@ui for k, i [ f1, . . . , pg. We can then write, for k= i,

@2

@uk@ui
E[g(J) jQ ¼ u]

¼
Xm

h¼1

Xm

q¼1,q=h

p(k)
h (u)p(i)

q (u)
X

d[Dh>Dq

Ym
j¼1, j=h,q

p
dj

j (u)(1� pj(u))1�dj

 !
D1

hD
1
qg(d)

þ
Xm

h¼1

p(k,i)
h (u)

X
d[Dh

Ym
j¼1, j=h

p
dj

j (u)(1� pj(u))1�dj

 !
D1

hg(d): (A.2)

From (A.1) and (A.2), we see that the following hold:

(i) If g is nondecreasing and supermodular (so that Dh
1g(d) � 0 and Dh

1Dq
1g(d) � 0) and

if pi(u) is monotone and supermodular (so that ph
(k)(u)pq

(i)(u) � 0 and ph
(k,i)(u) � 0),

then (A.2) is nonnegative, so that u 7! E[g(J)jQ ¼ u] is supermodular.
(ii) If g is nonincreasing and supermodular (so that Dh

1g(d) � 0 and Dh
1Dq

1g(d) � 0) and
if 2pi(u) is monotone and supermodular (so that ph

(k)(u)pq
(i)(u) � 0 and ph

(k,i)(u) � 0),
then (A.2) is nonnegative, so that u 7! E[g(J)jQ ¼ u] is supermodular.
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(iii) If pi(u) is linear in u, then the second term on the right-hand side of (A.2) vanishes,
and if pi(u) is monotone and g is supermodular, then u 7! E[g(J)jQ ¼ u] is
supermodular.

We are now able to conclude since E[g(J)] ¼ E[C(Q)], where C is defined as C(u) ¼
E[g(J)jQ ¼ u]. Hence, under conditions (i)–(iii),

E[g(J)] ¼ E[C(Q)] � E[C(G)] ¼ E[g(K)];

provided Q Wsm G and g possesses the appropriate properties.

APPENDIX B
Proof of Proposition 5.1

Let g : Nm! R be nondecreasing, where N is the set of nonnegative integers. Let us denote as
lh

(‘)(u) the partial derivative of lh(u) with respect to u‘; that is, lh
(‘)(u) ¼ @lh(u)/@u‘ for ‘ ¼ 1,

. . . , p. Let us lh
(‘,k)(u) the second partial derivative of lh(u) with respect to u‘ and uk; that is,

lh
(‘,k)(u) ¼ @2lh(u)/@u‘ @uk for ‘, k [ f1, . . . , pg. Then it is easily seen that

@

@u‘
E[g(N) jQ ¼ u] ¼

Xm

h¼1

l
(‘)
h (u)

X1
nh¼0

e�lh(u)lh(u)nh

nh!

�
X

n[N h(nh)

Y
k=h

e�lk (u)lk(u)nk

nk!
D1

hg(n),

where Nh(nh) is the set of all the vectors with the hth component equal to nh. Furthermore,

@2

@u‘@uk
E[g(N)jQ ¼ u]

¼
Xm

h¼1

l
(‘)
h (u)

Xm

r¼1, r=h

l(k)
r (u)

X1
nh¼0

X1
nr¼0

X
n[N h,r (nh,nr )

�
Ym
k¼1

e�lk (u)lk(u)nk

nk!
D1

rD
1
hg(n)

þ
Xm

h¼1

l(‘)
h (u)l(k)

h (u)
X1
nh¼0

X
n[N h(nh)

Ym
k¼1

e�lk (u)lk(u)nk

nk!
D2

hg(n)

þ
Xm

h¼1

l
(‘,k)
h (u)

X1
nh¼0

X
n[N h(nh)

Ym
k¼1

e�lk (u)lk(u)nk

nk!
D1

hg(n),

where Nh,r(nh, nr) is the set of all the vectors with the hth and rth component, respectively,
equal to nh and nr. To prove (i), let us consider a nondecreasing and ultramodular function
g. Hence, Dh

1g(n), Dr
1Dh

1g(n), and Dh
2g(n) are all nonnegative. If for i ¼ 1, . . . , m, li(u) is super-

modular in u and li(u), i ¼ 1, . . . , m, are monotone in the same direction, then E[g(N )jQ ¼ u]
is supermodular in u.

Item (ii) is obtained in a similar way, considering again a nondecreasing and ultramodular
function g. If, in addition to being supermodular, u 7! li(u) is convex in each argument, then it
can be proven that u 7! E[g(N)jQ ¼ u] is nondecreasing and ultramodular.
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