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Taylor’s hypothesis, or the frozen turbulence approximation, can be used to estimate
also the specific energy dissipation rate ε by comparing experimental results with the
Kolmogorov–Obukhov expression. The hypothesis assumes that a frequency detected by
an instrument moving with a constant large velocity V can be related to a wavenumber by
ω = kV . It is, however, not obvious how large the translational velocity has to be in order to
make the hypothesis valid, or at least applicable with some acceptable uncertainty. Using
the space–time-varying structure function for homogeneous and isotropic conditions, this
question is addressed in the present study with emphasis on small velocities V . The
structure function is obtained using results from numerical solutions of the Navier–Stokes
equation. Particular attention is given to the V variation of the estimated specific energy
dissipation, εest, compared with the actual value, ε, used in the numerical calculations. In
contrast to previous studies, the results emphasize velocities V less than or comparable to
the one-component root-mean-square velocity, urms. We find that ε can be determined to
an acceptable accuracy for V ≥ 0.3 urms. A simple analytical model is suggested to explain
the main features of the observations, both Eulerian and Lagrangian. The model assumes
that the observed time variations are solely due to eddies moving past the observer, thus
ignoring eddy deformation and intermittency effects. In spite of these simplifications,
the analysis accounts for most of the numerical results when also eddy-size-dependent
velocities are accounted for.

Key words: turbulence simulation, turbulence modelling

1. Introduction

Taylor’s hypothesis (Taylor 1938), also known as the frozen turbulence approximation,
is frequently used for estimating a wavenumber spectrum on the basis of measured
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frequency spectra (Lumley 1965; Wyngaard & Clifford 1977; Lueck, Wolk & Yamazaki
2002; Moin 2009; Geng et al. 2015). The hypothesis can just as well be used for the
correlation function, or as in the present study, the structure function (Schulz-DuBois
& Rehberg 1981). Given a randomly varying velocity field u with components uj(r, t),
j = 1, 2, 3 and r = {r1, r2, r3}, we can formulate Taylor’s hypothesis by referring to a
frame of reference moving with a known velocity V to give a time series uj(r0 + V t, t). An
experiment can for instance be realized by a flying hot wire system (Kelso, Lim & Perry
1994). The Taylor hypothesis, or the frozen turbulence approximation, assumes uj(r0 +
V t, t) ≈ uj(r0 + V t, 0). Associated with the signal we have the correlation function
Ruj(r, t) = 〈uj(ξ , τ )uj(ξ + r, τ + t)〉 for any velocity component uj with respect to the
r direction. Usually the longitudinal velocity component is selected where uj = u‖ =
u · r/r. Assumptions of homogeneous and stationary conditions are essential, and we
assume also isotropic conditions. In terms of differential operators, Taylor’s hypothesis
states ∂/∂t ≈ −V · ∇. In terms of the correlation function, Taylor’s hypothesis states
Ruj(r, t) ≈ Ruj(Vt, 0). This means that an observer moving with a known velocity V with
respect to the turbulence reference frame where 〈u〉 = 0 can obtain a long time series
and then from this construct a time-varying velocity correlation function Rt(t). Given
the hypothesis, this correlation function can subsequently be used to give Ruj(r, 0) =
Rt(Vt). An alternative form in terms of wavenumber spectra E is often used, where
E(k, ω) is found by Fourier transforming the correlation function with respect to the
spatial and temporal variables. In a spectral representation, Taylor’s hypothesis has
the form E(k, 0) = Et(ω) dω/dk with ω = Vk, i.e. when dω/dk can be taken to be
constant, and we have Et(ω) being the frequency power spectrum obtained from the time
series.

The Taylor hypothesis can be understood graphically by representing the correlation
function, or alternatively the related space–time-varying second-order structure function
S(r, t) = 2(〈u2〉 − R(r, t)) as a surface over an (r, t) plane and then sampling this surface
along a ‘cut’ or line r = Vt. The resulting function S(Vt, t) can be shown as a function
of t or, as turns out to be more convenient, as a function of r = Vt. This presentation
is illustrated in the following. The second-order structure functions contain power-law
subranges that are readily visualized in log–log presentations.

1.1. Estimation of the specific energy dissipation rate
A key parameter for characterizing turbulence conditions is the specific energy dissipation
rate ε. This is used in many applications, for instance for quantifying the turbulent
mixing in marine environments (Kiørboe 2008; Pécseli et al. 2020). When an estimate
for the wavenumber velocity power spectrum is obtained, ε can be estimated (Stiansen
& Sundby 2001) by comparing experimental results with the Kolmogorov–Obukhov
spectrum C0ε

2/3k−5/3, where C0 ∈ {0.4 − 0.9} is the Kolmogorov–Obukhov constant
(Sreenivasan 1995). The accuracy of the obtained value for ε depends on the sampling
velocity V . It thus has a practical value to find the error in estimating the specific energy
dissipation rate on the basis of turbulence measurements for varying sampling velocities
V . This particular application of the Taylor hypothesis is central for the present study.
The Kolmogorov–Obukhov constant is known only with some uncertainty (Sreenivasan
1995). It can be argued that a relative error in the estimate for ε is acceptable as long as
it is comparable with the uncertainty in C0, assumed to be approximately ±30 %. If the
viscous subrange of the turbulence can be resolved (Davidson 2004), the transition scale

932 A22-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.969


Taylor’s hypothesis

size separating the two ranges can be identified. This apparent value of the Kolmogorov
scale can then be compared with the actual value.

A limiting case with V = 0 has been emphasized by Tennekes (1975). The random
advection by large-scale energy-containing eddies could be sufficiently fast to make
Taylor’s hypothesis effective also in this case now with ω = V ′k interpreted in terms of
some average velocity V ′ related to

√
〈u2〉. This case was subsequently discussed and

the model amended (Wyngaard & Clifford 1977) to account for scale-size-dependent
advection velocities (Del Álamo & Jiménez 2009; Renard & Deck 2015). The problem
in interpreting Taylor’s hypothesis for small V is found in the uncertainty in the actual
sweeping velocity of the small scales. The relative motion of these smallest scales with
respect to the observer is due in part to the the bulk motion with velocity V , and in part to
the advection of small scales induced by the larger scales. Taylor’s hypothesis in its original
form ignores the contribution from the latter. An eddy velocity is scale-size-dependent:
this approach is pursued in more detail in Appendix A. Since the largest eddies contain
most of the energy, their characteristic ‘eddy turnover velocity’ is ∼

√
〈u2〉. It is reasonable

to take this value as a reference velocity here. The choice is, however, not unique: a
ratio of the correlation length and the correlation time could be chosen as well. The
given databases do not allow us to distinguish various reference velocity choices to any
significant accuracy.

There are in principle no upper limits on the velocity V with regards to the Mach
number, but practical experimental conditions can limit the range of realistic velocities.
In many experiments, in the laboratory or in nature, the velocity V can be chosen freely,
at least to some extent. In a number of cases, however, the velocity is imposed by external
conditions, such as a tidal current (Pécseli et al. 2020). A practical advantage of using
Taylor’s hypothesis is that a one-point measurement suffices. To obtain, for instance, the
full frequency–wavenumber power spectrum, a minimum of two point measurements are
needed (de Kat & Ganapathisubramani 2015).

The accuracy of Taylor’s hypothesis for varying sampling velocities is not well
understood, in particular not for small translation velocities V . Experimental observations
have been reported (Cheng et al. 2017) where the hypothesis seems to give incorrect
results, and other limitations have also been mentioned (Dennis & Nickels 2008; de Kat
& Ganapathisubramani 2015). The present work aims at investigating the hypothesis for
varying sampling velocities V with emphasis on small values including V = 0, since
the hypothesis is already found to be justified (Taylor 1938) for large V , as normalized
by the root-mean-square velocity component urms. In his original work, Taylor (1938)
had velocities V/

√
〈u2〉 ∈ {20; 80}; see for instance his figure 5. In the following data

analysis we use a reference velocity urms =
√

〈u2〉/3 to represent one velocity component
throughout.

There are other methods for estimating the value of ε. For wind-generated turbulence
in the oceans, ε has at times been found by some empirical formula where a readily
measurable quantity like the wind velocity enters (MacKenzie & Leggett 1993). The
accuracy of this model is not well understood.

Only three-dimensional, locally homogeneous isotropic conditions are considered in
the present study, but the problem remains relevant and interesting also for non-isotropic
conditions such as those met in laboratories and boundary layers (Shet, Cholemari &
Veeravalli 2017; Squire et al. 2017; Han, Wang & Zheng 2019), as well as for flow
conditions on large scales in the Earth’s atmosphere and lower ionosphere (Nastrom
& Gage 1985; Larsén, Vincent & Larsen 2013; Vierinen et al. 2019) where a spatially
two-dimensional model may be applicable.
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1.2. Choice of presentation in terms of structure functions
The present analysis uses the space–time-varying second-order structure function for tests
of the Taylor hypothesis. When the term ‘structure function’ is used in the following, it
implies everywhere that it is of second order. Given a full space–time-varying structure
function S(r, t) we can construct the time-varying structure function that would be
derived from a time series obtained by an observer moving with constant velocity
V: this correspond to mapping a cut in the space–time-varying structure function
along the line r = Vt. The result will be S(Vt, t). Taking this as representative for
S(r, 0) we can estimate ε by comparing with the Kolmogorov–Obukhov expression
CK(εr)2/3, introducing the Kolmogorov constant CK . The result will be in error, unless
V is very large. Taylor’s hypothesis can be tested numerically for different values of
V , in particular to find the accuracy of an estimated energy dissipation rate ε. A
corresponding systematic experimental study in a laboratory or in nature will be difficult to
carry out.

The form of presentation given before has one drawback: for small values of V we
need long time sequences to cover the variability of the structure function. A figure with
results for several velocities V will thus contain very long and very short time series. The
presentation is made neater and more compact by introducing a spatial-separation-like
variable by taking t = r/V to give S(r, r/V). This form shows how Taylor’s hypothesis
is reached when V → ∞ for a finite r. We can introduce normalized units r/ηK to write
S(r/ηK, (r/ηK)uK/V) corresponding to a normalized time t/τK , where ηK , τK and uK are
the Kolmogorov length, time and velocity, respectively. We find that V is best normalized
by urms so we can write S(r/ηK, (r/ηK)(uK/urms)urms/V), where uK/urms � 1 is constant
for a given experiment or numerical simulation. The results obtained in the present work
are assumed to be universal and applicable for similar estimates using the inertial subrange
of the velocity power spectrum. In some cases this latter approach can be preferable
(Wyngaard & Clifford 1977).

The bulk of the present work refers to Eulerian sampling with constant translational
velocities V . An alternative sampling is also relevant where the fluctuating flow velocities
are obtained along self-consistently moving particle, i.e. Lagrangian, orbits. We find that
for this Lagrangian sampling the scale-size-dependent advection velocities (Del Álamo
& Jiménez 2009; Renard & Deck 2015) are particularly important. We discuss also this
problem.

2. Numerical results

The present study is based on numerical simulations of the incompressible Navier–Stokes
equations. Two simulation results are available with different specific energy
dissipation rates. The Navier–Stokes equations were integrated by using fully de-aliased
pseudo-spectral methods for a total time spanning almost three decades: from the order
of a tenth of the Kolmogorov time scale, τK , to approximately three times the integral
time scale, TL. The flow was forced by keeping the total energy constant in the first
two wavenumber shells. The energy input rate equals the energy dissipation rate when
steady-state conditions are reached, i.e. when correlations depend on time separations and
not absolute times. The average value of ε is thus known after a transient time interval
where a steady state is established. The calculations and relevant tests are described in the
original papers (Biferale et al. 2004, 2005a,b), so here only some basic information is
summarized.
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Figure 1. The numerically obtained normalized longitudinal structure function S(r)/u2
K ≡ 〈(u‖(ξ , t) −

u‖(ξ + r, t))2〉/u2
K , shown on a double logarithmic scale for varying normalized separation r/ηK , with

ηK = (ν3/ε)1/4 being the Kolmogorov length scale (see also Pécseli et al. 2020). The Kolmogorov velocity
uK = (νε)1/4 is used for normalization. Results from the two simulations (I and II) are shown with blue dashed
and black solid lines, respectively. Analytical results are shown for the inertial and viscous subranges by the
slopes of the red lines with r2/3 and r2, respectively. For clarity of presentation, the two slopes as well as an
empirical analytical approximation (thin red line) have been offset vertically by a factor of 2. The vertical arrow
indicates the ‘cross-over’ length between the two subranges at r = η0. The uncertainty at small separations is
indicated by grey shading. This shading is representative also for the following figures 2, 3, 8 and 9.

2.1. Description of the database
The computations giving the two datasets (I and II) are carried out for three-dimensional
flows, performed in 512 × 512 × 512 and 1024 × 1024 × 1024 systems of grid points
for extended time periods of 1167 and 1841 time steps, respectively. The box sizes
are 2π × 2π × 2π in computational units for both cases. The system is periodic in all
directions. From the numerically obtained flow field, a large number (1.92 × 105 and
3.64 × 105, respectively) of point-particle trajectories are constructed and these form
the basis for the following analysis. (It is not practically feasible to store the entire
space–time information of the velocity field u(r, t).) The database can be seen as a
numerical equivalent of, for instance, the laboratory experiment of Ott & Mann (2000)
and Mann et al. (2005) where the trajectories of a large number of small polystyrene
spheres were followed by image velocimetry techniques. The basic parameters of the
two numerical simulations are summarized in table 1, where Reλ denotes the microscale
Reynolds number and the Kolmogorov microscale is ηK ≡ (ν3/ε)1/4, while τK ≡ (ν/ε)1/2

is the Kolmogorov time scale. Parameters are given in standard notation (Biferale et al.
2005b) using computational units. We have ε to be approximately the same for both
simulations, but the specific viscosities ν differ. Consequently the two Reynolds numbers
as well as the two Kolmogorov scales are substantially different. The universal subranges
are different for the two cases. The uncertainties in the results are confined to regions for
small particle separations, and the estimated error is illustrated by grey shading in figure 1.

Since only simulation particle trajectories are available, the numerical results cannot be
used for directly obtaining any frequency spectrum from single-point measurements. By
using two-point measurements of velocity components of many pairs of particles, uj(ξ , t)
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Simulation I Simulation II

dx 2π/512 = 0.012272 2π/1024 = 0.0061359
ν 2.05 × 10−3 8.8 × 10−4

ε 0.8853212 0.810878
E = 1

2 〈u2〉 = 3
2 u2

rms 3.01 2.96
urms (average) 1.42 1.40
λ 0.2642 0.179
Reλ 183 286
ηK 0.00993 = 0.81 dx 0.0054 = 0.88 dx
τK 0.048 0.033
uK ≡ ηK/τK 0.206 0.164
T 5.84 4.23

Table 1. Simulation I lasts 1167 time steps with dt = 0.005; simulation II lasts 1841 time steps with dt =
0.0023. All values in computational units. The time duration of the simulations is T . The value of urms given is
an average of the root-mean-square values of the three velocity components.

and uj(ξ + r, t) taken at the same time t and different r, a structure function can, however,
be determined just as in the laboratory experiment of Ott & Mann (2000). The analysis can
be extended to points also at different times, i.e. uj(ξ , ϑ) together with uj(ξ + r, ϑ + t),
to obtain estimates for the full space–time-varying structure function. The two particles
are selected with the only constraints being on their space–time separation, irrespective
of their ‘history’. The space–time-varying structure function can be used for tests of the
Taylor hypothesis, as discussed in the following. The analysis has a Lagrangian counterpart
which is discussed separately.

2.2. Basic results
To demonstrate the quality of the data used for the present study, we first show the structure
function S(r, t) ≡ 〈(u‖(ξ , ϑ) − u‖(ξ + r, ϑ + t))2〉, with u‖ being the velocity component
along the separation vector r. In the following we use the abbreviation S(r) for S(r, t = 0).
Using the basic parameters ε and ν, a well-known argument (Chandrasekhar 1957) gives
the only dimensionally correct combination (Buckingham 1914) to be

S(r) = 〈(u‖(ξ , t) − u‖(ξ + r, t))2〉 = CK(εν)1/2F(rε1/4/ν3/4) (2.1)

for homogeneous and isotropic conditions, where F(z) is a dimensionless function of a
dimensionless variable z and CK is the Kolmogorov constant. In an inertial subrange,
independent of ν, we require F(z) = z2/3 in order make the viscosity ν vanish from
the expression (Chandrasekhar 1957; Beran 1968), thereby giving the well-known result
for the structure function in the inertial subrange, CK(εr)2/3. The Kolmogorov constant
is determined empirically to be in the range CK ∈ {2.1, 2.5}. The same dimensional
arguments (Chandrasekhar 1957) will give the expression for the temporal structure
function of any velocity component to be

〈(u(ξ , ϑ) − u(ξ , ϑ + t))2〉 = CTεt (2.2)

in a subrange independent of ν, with CT being a universal dimensionless constant (Du
et al. 1995; Falkovich et al. 2012). The result (2.2) is ambiguous in one respect: the result
can be obtained experimentally either by sampling the flow in a fixed position as a function
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ε (m2 s−3) ηK (m) τK (s) uK (m s−1)

Open ocean 10−10–10−6 10−2–10−3 102–1 10−4–10−3

Fjord 5 × 10−8 3 × 10−3 6 5 × 10−2

Shelf 10−7–10−6 2 × 10−3–10−3 3–1 6 × 10−2–10−3

Coastal zone 10−7–10−4 2 × 10−3–2 × 10−4 3–0.1 6 × 10−4–2 × 10−3

Tidal front 10−5 5 × 10−4 ∼ 0.3 1.5 × 10−3

Table 2. The specific energy dissipation ε (dissipated energy per unit mass of fluid) and other characteristic
turbulence parameters as found in the oceans (Granata & Dickey 1991; Kiørboe & Saiz 1995; Pécseli et al.
2020).

of time or by following an ensemble of particles along their Lagrangian orbits to obtain
the time-varying velocity (Sawford & Yeung 2015). In the first case, the time variation
will in part be due to smaller-scale universal eddies being swept past the observer by
large-scale non-universal eddies, and the result thus be ‘contaminated’ by non-universal
effects (Tennekes & Lumley 1972; Tennekes 1975). Using a second-order Lagrangian
model of grid turbulence the Kolmogorov constant CT was estimated by Du et al. (1995)
for the Lagrangian structure function, giving CT ∈ {3.0 ± 0.5}.

Analytical results for the structure function in the viscous subrange (Davidson 2004)
give 〈(u‖(ξ , t) − u‖(ξ + r, t))2〉 = Cνr2ε/ν. The numerical coefficient is here obtained
analytically as Cν = 1/15. The separation between the inertial and viscous subranges is
found for CK(εr0)

2/3 = Cνr2
0ε/ν, i.e. at r0 = (15CK)3/4ηK ≈ 13ηK ≡ η0. The difference

between ηK and η0 is not trivial (Pécseli & Trulsen 2007). For ideally frozen turbulence
this length scale translates to a time η0/V . In most laboratory experiments, the
Kolmogorov scale is in or below the millimetre range and the viscous subrange cannot
be resolved. For conditions met in nature, however, also this subrange has importance
(Kiørboe 2008), so for completeness we show representative data relevant there in table 2.

Approximations for the structure functions are found for the combined intermediate
separations r, i.e. the inertial subrange, and for small r, i.e. the viscous subrange
(see Appendix B). In Appendix A we discuss in detail a model for the space–time
variation of the structure function in the inertial subrange. For large r outside the inertial
range, the structure function will approach the value 2u2

rms, with urms again being the
root-mean-square value of the velocity component chosen for the structure function.

Normalized numerical results for the structure functions are shown in figure 1 for the
two datasets. The results have been plotted for separations up to r ≈ π in computational
units. The figure uses double logarithmic axes and the normalizations are made by the
length ηK and velocity uK scales. In this form we find an excellent agreement between the
two simulations. Earlier results (Pécseli et al. 2020) used a reduced sampling rate during
the evaluation of the structure function. This has effect for the statistical uncertainty of the
results for small r. The analytical approximation discussed in Appendix B is very good
and agrees with the numerical results within the line thickness in the plot. We find this
observation to be worth emphasizing. Figure 1 is our reference, i.e. the one that should be
reproduced by use of Taylor’s hypothesis, should it be ideally applicable.

Also the transverse structure functions G(r) ≡ 〈(u⊥(ξ , t) − u⊥(ξ + r, t))2〉 were
determined with u⊥ being either one of the velocity components ⊥ r. Apart from
a difference in the numerical factor, also G(r) follows the universal (εr)2/3 scaling,
indicating that the smallest scales have reached an isotropic statistical equilibrium.
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A large-scale eddy turnover time can be defined as Tt ≡ L/urms. With L ≈ π in
computational units we find Tt ≈ 2 for both simulations. This time is of the same
order of magnitude as the simulation time T , see table 1, so the largest eddies may
not have reached an equilibrium. It is found that the root-mean-square values of the
three velocity components are somewhat different for the two datasets. We find the
normalized root-mean-square values of the three components urms,j/uK with j = 1, 2, 3
to be {7.7, 6.3, 6.7} and {10.6, 7.2, 8.1} for datasets I and II, respectively.

Both the viscous and inertial subranges of the turbulence are well resolved for both
simulations. There are no indications of a ‘bottleneck’ effect (Dobler et al. 2003) in the
power spectrum obtained by Fourier transform of the autocorrelation function entering
S(r). Physically, the bottleneck effect arises because of the finite resolution of the
sub-Kolmogorov scales in numerical simulations, giving a lack of small-scale vortices.
This makes the energy cascade less effective around the Kolmogorov length scale, as
compared with the ideal physical conditions. Some numerical results seem to indicate
that the bottleneck effect is a consequence of viscous effects stabilizing small vortex tubes
against the kink instability (Woodward et al. 1995). These problems do not arise here. We
conclude that the quality of the database is such that we can test the validity of also the
Taylor hypothesis for both inertial and viscous subranges with confidence by using these
data.

2.3. Space–time-varying structure function
To test the Taylor hypothesis we choose the space–time-varying longitudinal structure
function S(r, t) ≡ 〈(u‖(ξ , ζ ) − u‖(ξ + r, ζ + t))2〉. The particle-trajectory data are
searched for particles at some position and then at a later time t at a displaced
position r within a narrow |r| interval. The velocity differences are recorded and the
data subsequently averaged. The time resolution is given by the computational time
step. Similarly, also the space–time-varying transverse structure function G(r, t) can be
obtained.

In figures 2 and 3 we show numerically obtained longitudinal structure functions for
the two datasets. To cover an r range extending by more than four orders of magnitude,
the samples for the evaluation of the Eulerian structure function are collected in bins with
size varying exponentially with r. At small r the bin size is changed to a linear variation
in order to balance the requirements of both spatial resolution and statistical uncertainty.
For the range r/ηK < 3 the number of samples per bin varies like r2 and more rapidly for
larger r values. This gives rise to an increasing statistical uncertainty by several orders of
magnitude towards the smallest r values. For this reason a least squares local second-order
polynomial approximation noise reduction has been applied for r/ηK < 3 in figures 2 and
3 as well as in figure 1. For the three orders of magnitude, extended discrete t-range similar
measures are incorporated. Reference dashed lines are inserted for normalized velocities
V/urms = {0.1, 0.3, 1, 3, 10, 100}. This normalization turns out to be the most suitable for
the following. To obtain the limiting case in figure 1 we have to sample along a line with
V/urms → ∞.

In the viscous and inertial subranges, the spatially varying structure function S(r) is
insensitive for the large-scale dynamics and the value of urms, except for a transition
zone between the inertial and non-universal ranges. Its time-varying Eulerian counterpart
S(t) will, on the other hand, contain significant contributions from the large-scale
energy-containing non-universal eddies (Tennekes 1975) characterized by velocities of
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Figure 2. Estimate for the normalized longitudinal structure function S(r, t)/u2
K using dataset I, shown as a

function of normalized variables r/ηK and t/τK with logarithmic scales on all axes. Solid black lines are for
the levels {0.1, 0.3, 1, 3, 10, 30}, the dashed lines for normalized velocities V/urms = {0.1, 0.3, 1, 3, 10, 100}.
These lines will be parallel when projected on the (r, t) plane for logarithmic scales. The time separation axis
begins at t = 0.02τ , the spatial separations at r = 0.4ηK . Thin black parallel lines are given for selected t values
and serve only as a guide for the eye.
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Figure 3. Estimate for the normalized longitudinal structure function using dataset II, shown as a function of
normalized variables r/ηK and t/τK with logarithmic scales on all axes. Levels and normalizations are as in
figure 2.

the order of urms. A transition region in S(r, t) for varying (r, t) can thus be expected,
but the details of this transition have not been discussed in the literature. To gain
more information, we suggest taking the ratio of the total and the longitudinal structure
functions ST(r, t) ≡ 〈(u(ξ , ϑ) − u(ξ + r, ϑ + t))2〉 ≡ 2G(r, t) + S(r, t) and S(r, t). The
result is shown in figure 4. For vanishing time separations both have the same universal
scalings with r and ε in the viscous and inertial subranges, with only the numerical
coefficients being different for the longitudinal and transverse cases. For large time
separations the large non-universal eddies will deteriorate the proportionality of the two
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Figure 4. Colourplot of the ratio ST (r, t)/S(r, t) for dataset II plotted on double logarithmic axes. The
construction of the figure uses the longitudinal as well as both transverse velocity components. The solid
black line is drawn for the level 11/3. Some noise is found in the data for small spatial separations, for reasons
already mentioned.

structure functions. For r → 0 the difference between the transverse G and longitudinal S
structure functions vanishes, and the ratio (2G + S)/S → 3 for all times t > 0.

To get a numerical reference value for comparison with the ratio used for illustration
in figure 4 we have for vanishing time separations the general relation (Batchelor 1953)
G(r) = S(r) + 1

2 rS ′(r). For any power-law relation S(r) = Arα we have G(r)/S(r) =
1 + 1

2α applicable for both the viscous and the inertial subranges. For the inertial subrange
we find G(r)/S(r) = 4/3 while the viscous subrange gives G(r)/S(r) = 2. The transition
from the viscous to the inertial subrange is here found at a separation length scale
of approximately 10ηK for the transverse structure function, to be compared with the
separation for the parallel structure function at approximately 13ηK . In figure 4 the results
should be compared to values 11/3 and 5 for the two subranges also for t > 0. Some
details are seen better in figure 5. For t = 0 we note a clear separation between the
viscous and inertial subranges along the r/ηK axis, and also a well-defined transition
region in the (r, t) plane as the time separation is increased. This transition is not along a
straight line in the (r, t) plane, although it can be approximated by r = turms for r > η0.
The grey area in figure 4 corresponds to a level close to the value 3. The results in
figures 4 and 5 invite the interpretation that the velocity vector directions (parallel and
perpendicular) to a separation vector, for r > η0, become decoupled for times larger
than r/urms, i.e. G(r > η0, t > r/urms) ≈ S(r > η0, t > r/urms). Similar observations can
be made for r in the viscous subrange, but here the separation line does not have a
correspondingly simple form, although r = turms can be an approximation also here.
If the two points with separation r are selected at the same time with separations in
the universal subrange, they will move without relative displacement when advected by
eddies with scale sizes larger than the separation (Csanady 1973; Mikkelsen, Larsen &
Pécseli 1987; Del Álamo & Jiménez 2009). The separation between the two points is
on the other hand controlled by eddies smaller than the separation distance. In this limit
the root-mean-square value of the velocity is immaterial. If, however, the two points are
sampled at different times, the separation of the points is influenced also by the large-scale
eddy motion. The larger the time separation, the stronger is the effect of large scales.
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Figure 5. The ratio ST (r, t)/S(r, t) derived from the longitudinal and transverse structure functions for dataset
II is shown here on a linear vertical scale for selected times t/τK = 0.0, 0.04, 0.35, 0.70, 2.51, 6.84 and 17.45.
For r > η0 we find a plateau developing near 11/3 shown by a dashed line, while for r → 0 with t = 0 we find
a saturation at the level 5. The curves are uncertain for r < ηK because only few samples for the estimation of
the structure functions are found at these small separations. The noise for small r seen in figure 4 is found also
here.

With a spatial separation r we associate eddies with a similar scale. A corresponding eddy
turnover time, or coherence time, is τr ≈ ε−1/3r2/3 (Tennekes 1975), while a characteristic
velocity is ur ≈ (εr)1/3. Due to the motion of the large-scale non-universal eddies, the
smaller inertial eddies are displaced a distance �e ≈ urms/t in the time interval t entering
the structure functions. When �e > r and t > τr the correlation is reduced between the
directions of the two samples of the local fluid velocities entering the structure function.
Scales larger than r retain, on the other hand, their coherence at the same time separation.
Appendix A contains more details of the arguments, showing also an illustrative model.
Scale-dependent advection velocities are also discussed here.

2.4. The Lagrangian structure function
For comparison with the analytical result (2.2) we show in figure 6 the normalized
Lagrangian structure function SLx(t)/u2

K ≡ 〈(ux(ξ(ϑ), ϑ) − ux(ξ(ϑ + t), ϑ + t))2〉/u2
K as

a function of normalized time (Biferale et al. 2008; Sawford & Yeung 2015). The initial
variation follows a clear t2 variation, which becomes closer to a t-proportional variation
at later times, t/τK > 2. The agreement is not perfect, indicating that a significant fraction
of the Lagrangian trajectories entering the averaging are short and within the viscous
subrange, while others are long and close to the outer scales in the non-universal part of the
turbulence. In figure 7 we show (on double logarithmic axes) samples from the distribution
of the lengths of trajectories entering the construction of the Lagrangian structure function,
illustrating the systematic increase in average trajectory lengths with increasing time.
The separation between the inner and outer scales in the present simulations is not
sufficient to give the analytical result (2.2) unambiguously. The initial t2 variation is
explained by a short time series expansion of ux(r(t), t) ≈ ux(0, 0) + dux/dt|t=0 t in the
Lagrangian structure function. For large time separations t/τK the velocities ux(ξ(ϑ), ϑ)

and ux(ξ(ϑ + t), ϑ + t) become independent and S → 2〈u2
x〉 for the Lagrangian structure

function. This limit is not accessible within the spatial and temporal ranges available in
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Figure 6. Estimate for the normalized Lagrangian structure function SLx(t)/u2
K using dataset II, shown as

a function of normalized time variable t/τK with logarithmic scales on both axes. Solid red reference lines
give the slopes for t2 and t. The thin red curve gives the empirical transition between the viscous and the
inertial ranges corresponding to the transition parameter p = 5/2 (see Appendix B). The underlying green
curve illustrates the corresponding analytical model for the transition from the universal range to the asymptotic
limit for a transition parameter p = 2.

the simulations, but in figure 6 we note that the curve begins to ‘flatten out’ for large t/τK .
Indications are that the Lagrangian time scale is shorter than its Eulerian counterpart,
in agreement with some analytical results (Weinstock 1976). The difference between the
time exponents for the Lagrangian structure function and its Eulerian counterpart taken for
vanishing spatial separations demonstrates the limitations of the result in (2.2) as discussed
before. The time variation of the Eulerian structure function in the inertial subrange is
very different from the corresponding variation of its Lagrangian counterpart (Tennekes
& Lumley 1972).

2.5. Implementation of Taylor’s hypothesis
The velocity fluctuations in a turbulent environment in nature can be sampled by a
detector moving with velocity V along a straight-line trajectory at two times ϑ and ϑ + t,
corresponding to two positions ξ and ξ + r ≡ ξ + V t. Repeating the measurement many
times, an ensemble of realizations can be obtained and the average of the mean square
velocity difference can subsequently be estimated. The result will correspond to a point
on the structure function S(r = Vt, t). With a spatial correlation length rc, the range of
relevant time variation is t ∈ {0, rc/V}, i.e. for times outside this range, the correlation
function is negligible. When V is large, the range of time variation is small and we have
S(r = Vt, t) ≈ S(r = Vt, 0) ≡ S(r = Vt) which represents the Taylor hypothesis applied
for the structure function. The question is how large V has to be for the approximation to
be valid.

In figures 8 and 9 we show results for structure functions S(r, r/V). The data are
obtained by sampling the structure function S(r, t) in figure 2 along lines r = Vt for
V/urms = 0.1, 0.3, 1, 3, 10 and 100. The red lines give the analytical approximation (B1)
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101100
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fr
100
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Figure 7. Snapshots of the normalized distribution function fr of normalized lengths r/ηK measured from
start-point to end-point of trajectories that enter the construction of the Lagrangian structure function in
figure 6. Selected snapshot times are t/τK ≈ 1, 3, 10, 20 and 35. The figure uses double logarithmic axes.

102

r/ηK

101100

10–1

S/uK
2

100

101

102

Figure 8. Sampling of the normalized structure function S along lines r = Vt for V/urms = 0.1, 0.3, 1, 3,
10 and 100 from figure 2 (dataset I). The thin red line gives the analytical approximation (B1) for S(r). The
results for V/urms = 3, 10 and 100 are hardly distinguishable with the given line thickness. The top curve is for
V/urms = 0.1 with V increasing from top to bottom.

for S(r). The results for V/urms = 3, 10 and 100 are hardly distinguishable and agree
entirely with S(r) within the inertial subrange.

As V is decreased we observe several features in figures 8 and 9. (i) Deviations from
the ideal results S(r) are first found for the viscous subrange for decreasing V . The power
law (i.e. the slope in a double logarithmic presentation) for the viscous subrange remains
approximately constant when reducing V . (ii) The sampled curves move consistently to
higher values of S/u2

K as V is reduced. A power law for the structure function remains an
acceptable approximation, but the exponent reduces for decreasing V . (iii) The separation
point between viscous and inertial subranges moves towards smaller r/ηK for decreasing
V when V < urms. (iv) The estimates of ε are steadily increasing for decreasing sampling
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Figure 9. Results corresponding to figure 8, here using figure 3 (dataset II).

velocities V . Considering the inertial subrange only, we find ε to be determined with an
accuracy of 10 % for V/urms = 3, and of approximately 25 % for V/urms = 1. Even for a
value as low as V/urms = 0.3 we find the difference between the ideal and the sampled
result in the inertial subrange to agree within a factor of 3, noting though that the slope
of the sampled curve deviates from the analytical value 2/3. As a ‘rule of thumb’ it can
be argued that when V/urms ≥ 0.7 we have ε determined with an accuracy comparable to
or better than that found for C0. An order-of-magnitude (or better) estimate for ε can be
obtained for V/urms ≥ 0.3.

In figures 10 and 11 we show the variation of S(0, t). Since the exact value r = 0 is
not obtainable in the analysis, we use the three smallest available r separations: r/ηK =
0.6, 0.8 and 1.0 for dataset I and r/ηK = 0.4, 0.6 and 0.8 for dataset II. The analytical
form (2.2) finds no support in figure 10, for reasons already mentioned. Alternatively
it was hypothesized by Tennekes (1975) that a fixed observer does not experience the
(εt) scaling of the structure function as found by dimensional reasoning, but rather
a time variation caused by the smaller inertial eddies swept past the observer by the
large-scale non-universal part of the spectrum, where most of the energy is found (see
also Appendix A). By this argument we expect that (εr)2/3 → (εturms)

2/3, where it is
implicitly assumed that the large non-universal eddies contain nearly all of the energy. A
more accurate estimate is found by taking a plausible velocity probability density to be
a Maxwellian giving 〈u2/3

‖ 〉 = u2/3
rms × 21/3Γ (5/6)/

√
π ≈ 0.80u2/3

rms to replace urms in the
foregoing expression.

The normalized separation time scale between the two subranges is estimated to be
t0/τK = 1.5 ± 0.5 for the two datasets taken together. For comparison we have the
result obtained by the suggestion of Tennekes (1975) giving t0/τK = η0/(urmsτK) = 1.79
using the values from table 1. The agreement is reasonable considering the uncertainties
involved. Since the scales in the viscous subrange contain the smallest part of the energy,
the scale-size dependence of the advection velocities (Del Álamo & Jiménez 2009; Renard
& Deck 2015) is of minor importance there. Consequently, the argument of Tennekes
(1975) applies best for this subrange.

932 A22-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.969


Taylor’s hypothesis

102

t/τK

10110010–1

S/uK
2

100

10–1

101

102

Figure 10. Estimate of the time variation of the normalized Eulerian structure function S(0, t) for dataset I.
The exact value r = 0 is not available due to the construction of the present database, so we show results for
the three smallest available r separations for dataset I, r/ηK = 0.6, 0.8 and 1.0; the smallest separation is at
the bottom. The lines are slightly irregular due to the limited number of samples for small r separations. Two
lines for t2 and t1/2 are inserted in red for reference. On average, the smallest r separation (steepest t variation,
shown with black line) comes closest to the result ∼ t2 for t/τK < 1. The thin red line represents the p = 1 fit
discussed in Appendix B. Note that power-law approximations become inaccurate for t > τK .
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S/uK
2

100
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102

Figure 11. Results corresponding to those shown in figure 10, here using dataset II. The black, green and blue
curves correspond to r/ηK = 0.4, 0.6 and 0.8.

We tested the estimate (εturms)
2/3 argued before for the time variation of the fixed-point

Eulerian structure function (see also Appendix A). It seems that the result has little support
in our analysis. This observation has support in the analysis of Wyngaard & Clifford
(1977). The agreement was worst for dataset II. We find it unlikely that the Eulerian
fixed-point results can be used for estimating ε, but studies for very high Reynolds numbers
might give more promising results.
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Figure 12. Variation on a linear scale of the estimated specific energy dissipation rate εest normalized with its
actual value in the simulation for varying V/urms. Both datasets are included. Both V and urms are assumed to
be known with certainty.

3. Discussion

The present database has the same shortcoming as several other direct numerical solutions
of the Navier–Stokes equation: the moderate Reynolds number. Compared with conditions
in nature, the oceans in particular, see table 2 (Granata & Dickey 1991; Kiørboe & Saiz
1995; Pécseli et al. 2020), the parameters are not unreasonable, however, and the data
suffice to test the applicability of Taylor’s hypothesis. In spite of the moderate Reynolds
numbers usually found in nature, a clear inertial subrange can usually be identified for
all three velocity components. Examples for such power spectra are shown, for instance,
by Pécseli et al. (2020). To make a comparison between the numerical results and the
conditions found in nature we can use the approximation for the Reynolds number Re =
(L/ηK)4/3, where L is the outer scale (Frisch 1995). With L/ηK ≈ 600 and 1200 in the
two simulations, respectively, we have the estimates Re ≈ 5 × 103 for dataset I and Re ≈
12 × 103 for dataset II.

Some of the main findings of the present analysis are summarized in figure 12, shown
on a semi-logarithmic scale. These results are obtained by approximating curves for a
given V > 0 in figures 8 and 9 by CK(εestr)2/3. The ratio εest/ε is then determined for the
selected V-value, where ε refers to the rest frame value. The curve fitting is associated
with some uncertainty, resulting in the error bars. It is found that the estimates εest/ε
thus obtained are steadily increasing for decreasing sampling velocities V . The error bars
indicate the uncertainty of εest and they also increase in magnitude with decreasing V .
A ‘rule of thumb’ requirement for the applicability of the Taylor hypothesis seems to
be V ≥ urms � uK , where the velocity V is measured with respect to the frame where
the average value of the turbulent velocity fluctuations vanishes. Within an acceptable
uncertainty we can even accept velocities V ≈ 0.3urms, where the error on ε is still smaller
than a factor of 3. For most conditions in the oceans (Granata & Dickey 1991; Kiørboe &
Saiz 1995; Pécseli et al. 2020), see table 2, this requirement is easy to satisfy. There is,
however, a subsidiary requirement of having long time series available measured in terms
of τK . For V = 10−3 m s−1 we will need time series much longer than 10 s, in reality
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several hours. By cruising along a linear trajectory in a fjord, for instance, the detector is
likely to leave the turbulent region and it might be necessary instead to follow some closed
path.

The foregoing discussion was based on the inertial subrange since it is the one usually
obtained. Should data for the viscous subrange be available then estimates for ε can be
obtained also there. This analysis has been carried out with results similar to those in
figure 12, albeit with smaller error bars.

The exponent for a power-law approximation for the viscous subrange is nearly constant
for varying V values used in the analysis. The corresponding exponent for the inertial
subrange is decreasing systematically for decreasing V from its original value of 2/3 at
V → ∞. In the limit V → 0 we find an exponent of approximately 1/2.

4. Conclusions

In the present analysis we estimated the error resulting from using the Taylor hypothesis (or
the ‘frozen turbulence approximation’) for varying sampling velocities. The analysis made
use of the structure function rather than the power spectrum. The latter form of the analysis
is the one often found in the literature. The results found using the structure function
are, however, assumed to be universally valid and the conclusions can be applied to the
power spectra as well. We find it important that the results are supported by two numerical
solutions of the Navier–Stokes equation with different Reynolds numbers, although the
calculations are made using the same numerical program.

A summary visualization (figure 12) shows the relative error when the Taylor hypothesis
is used for estimating ε as compared with the accurate value which is known in the
numerical analysis. Figure 12 can be used for calibration of experimental results when
the sampling velocity V is known.

The hypothesis put forward by Tennekes (1975) suggests that small turbulent eddies
are swept past a fixed observer by the large-scale non-universal eddies with a velocity
sufficiently large to make Taylor’s hypothesis valid also in this case. This conjecture
was also tested in our analysis and found some support concerning the predicted time
variation, but not for use in determining ε. A better agreement may possibly be found for
Reynolds numbers significantly exceeding those found in the present numerical solutions
of the Navier–Stokes equation. Appendix A describes a model where the observed
temporal variations due to ‘sweeping’ of small scales by the large energy-containing eddies
dominate the time variations caused by the energy cascade. It is found that the model has
features similar to those found in the numerical results.

The root-mean-square value of the fluid velocity has no importance for the viscous and
inertial subrange of the spatially varying structure function for vanishing time delay. The
value of urms is, on the other hand, important for the time-varying Eulerian structure
function for vanishing spatial separation. The present results demonstrate the existence
of a well-defined transition region near r/t ≈ urms when the entire space–time-varying
structure function is analysed.

Turbulent mixing is central for many turbulence applications; in particular it has been
found (Rothschild & Osborn 1988) that it is essential for the the feeding process of
plankton in marine environments. The specific energy dissipation rate is a key parameter
here. Studying microorganisms in such conditions, it is often found that the relevant
scale sizes are smaller than η0 ≈ 13ηK . Therefore the modelling needs to consider also
the viscous subrange (Pécseli & Trulsen 2007; Kiørboe 2008; Pécseli et al. 2020). This
subrange may be poorly resolved by use of Taylor’s hypothesis. The inertial subrange can
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still be used to determine ε, which can then be used for the ensuing analysis. The value for
the viscosity ν in the same environment will depend on the salinity of the water (Sharqawy,
Lienhard & Zubair 2010, 2012), which needs to be determined independently.

Taylor’s hypothesis has wider applications than for fluid dynamics, being used also in,
for instance, studies of plasma turbulence (Treumann, Baumjohann & Narita 2019). Here it
will be a great simplification that in many cases measurements of a scalar, the electrostatic
potential or the plasma density, suffices. Plasma media, especially magnetized plasmas, are
particularly rich in wave phenomena, and a universal turbulent spectrum is found in only
a few cases (Pécseli 2015). For a wide class of plasma wave phenomena the fluctuations
are compressible and this gives a complication when estimating the mean square velocity
fluctuations: the Eulerian and Lagrangian values will usually be different (Tennekes &
Lumley 1972).
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Appendix A. A model for space–time-varying structure functions

This appendix illustrates the properties of a model where the observed time variations are
solely due to the sweeping by the non-universal large energy-containing eddies, ignoring
variations due to eddy deformation and vortex stretching. These effects are likely to be
important for modelling the space–time structure of sheared turbulence (Maré & Mann
2016). Intermittency effects are ignored. The model used in the following was discussed in
part by Tennekes (1975) and also by Chen & Kraichnan (1989) and Yakhot, Orszag & She
(1989). The following summary uses results from Kofoed-Hansen & Wandel (1967). The
model is formulated in terms of the full space–time-varying correlation function rather
than the velocity component alternative used in the foregoing parts of this work. The
original analysis of Kofoed-Hansen and Wandel (KHW) is extended.

The KHW analysis is based on a series expansion of the correlation function (Hinze
1975) in the form

RE(τ ) = 〈u(t) · u(t + τ)〉 =
∞∑

n=0

(−1)n

〈(
dnu
dt2

)2

E

〉
τ 2n

(2n)!
(A1)

and subsequently evaluating terms (dnu/dtn)E = ((u − v) · ∇)nu, where v is a suitably
defined probing velocity (Wandel & Kofoed-Hansen 1962; Kofoed-Hansen & Wandel
1967). Only the leading terms are retained in the series expansions entering the analysis.
The applications of this model, and some related to it, are discussed in the following.
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A.1. Unfiltered advection velocities
The numerical simulations use periodic boundary conditions, so the corresponding
wavenumber spectrum is not representative for those occurring naturally. The ‘outer scale’,
in particular, is not well defined in the simulations. We have chosen a generally accepted
form for the longitudinal spectrum with k ∈ {−∞, ∞}, shown in standard notation as

E11(k) = 9
55

αε2/3L5/3 1
(1 + (Lk)2)5/6 , (A2)

with α ≈ 1.5 being a numerical constant of the same order of magnitude as the
spectral Kolmogorov constant. By EK(k) = k3 d(k−1 dE11(k)/dk)/dk, the expression (A2)
is related to the standard von Kármán (1948) spectrum:

EK(k) = αε2/3L5/3 (Lk)4

(1 + (Lk)2)17/6 . (A3)

Both (A2) and (A3) have an asymptotic k−5/3 inertial Kolmogorov–Obukhov subrange.
We consider the von Kármán spectrum as representative for the non-universal large-scale
and inertial ranges of locally homogeneous isotropic turbulence found in nature and many
laboratories. Large scale anisotropies and inhomogeneities are not accounted for.

The two transverse spectra (Batchelor 1953) are found by 1
2(E11(k) − k dE11(k)/dk)

giving the forms

E22(k) = E33(k) = 3
110

αε2/3L5/3 3 + 8(Lk)2

(1 + (Lk)2)11/6 . (A4)

By (A2) we have the variances

〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉 = α(εL)2/3 3

√
πΓ (1/3)

44Γ (11/6)
≈ 0.34α(εL)2/3 ≡ u2

rms. (A5)

For later reference we introduce the abbreviation σ 2
u ≡ 〈u2〉 = 3u2

rms. The Reynolds
number is estimated by Re = (L/ηK)4/3 (Frisch 1995).

With E = E11 + E22 + E33, a corresponding spatial correlation function is given through
the Wiener–Khinchine theorem as

∫ ∞
0 E(k) cos(kr) dk. The normalized structure function

derived from this is shown in figure 13. Since the von Kármán spectrum by construction
has a long inertial range, the structure function has a corresponding r2/3 range.

The suggestions put forward by Tennekes (1975) postulate that the Eulerian fixed-point
observed time variations are dominated by the sweeping of the large non-universal
energy-containing eddies, where a characteristic velocity is σu. To implement this
model we write the Eulerian correlation function used before as

∫ ∞
0 E(k) cos(kr) dk →∫ ∞

0 E(k) cos(kut) dk, where the sweeping velocity u has a probability density P(u) =
(u2/σ 3

u )
√

2/π exp(−1
2 (u/σu)

2). We find
∫ ∞

0 E(k) exp(−1
2 (kσut)2)(1 − (σukt)2) dk. The

corresponding fixed-point Eulerian time-varying structure function is found as

ST(t) = 2〈u2〉 − 2
∫ ∞

0
E(k) e− 1

2 (σukt)2
(1 − (σukt)2) dk. (A6)

This result is shown in figure 14 with a solid line. We find that ST(t) ∼ (εt)2/3 in a
large time interval as anticipated by Tennekes (1975). The same result was found also
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100

r/L
10–110–2

0.05

0.10

0.5

S T
(r

)/
2〈u

2 〉

1.0

Figure 13. The model structure function for varying normalized spatial separations. A reference dashed line
gives the slope of r2/3. The effects of the large-scale non-universal eddies accounted for in the von Kármán
spectrum become noticeable when r/L ∼ 1.

100

tσu/L
10–110–2

0.05

0.10

0.5

S T
(t

)/
2〈u

2 〉

1.0

Figure 14. The temporal variation model structure function for varying normalized time separations. For
reference the thin dashed line gives the slope of t2/3. The heavy dashed line gives the result for filtered advection
velocities.

by Kofoed-Hansen & Wandel (1967). For small times t an approximation is ST(t) ≈
3Γ (2/3)α(εσut/2)2/3. The result (A6) assumes a spectrum without a viscous subrange,
but takes the limit r → 0 nonetheless. This inconsistency has no consequence for t � τK .

To find the full space–time-varying structure function we make the following argument:
reaching a space–time position (r, t) amounts to propagating with a constant deterministic
velocity V so that r = Vt, to arrive at time t. To illustrate the idea we can take a
one-dimensional case

∫ ∞
0 E(k) cos(kr) dk, with r = (u + V)t. Averaging this expression

over velocities u with a Maxwellian distribution in one dimension gives the correlation
function ∫ ∞

0
E(k) e− 1

2 (kσut)2
cos(kVt) dk →

∫ ∞

0
E(k) e− 1

2 (kσut)2
cos(kr) dk. (A7)

The full three-dimensional case is more complicated. As an alternative to the series
expansion of Kofoed-Hansen & Wandel (1967) we can write cos(kr) = cos(k|u + V |t) ≡
cos(kUt). With a change of variables u2 = (U − V )2 = U2 + V2 − 2UV cos Θ , where Θ

is the angle between U and V , we rewrite the Gaussian probability density for u. After an
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Figure 15. Model results for the space–time-varying structure function. Since the model applies only to the
inertial subrange, the figure is restricted to r ≥ η0 and t ≥ τK . The solid blue line gives r = σut.

integration for all Θ ∈ {0, 2π} and 0 ≤ U < ∞ we have

ST(r, t) = 2〈u2〉 − 2
∫ ∞

−∞
E(k) e− 1

2 (σukt)2
(

cos(kr) − sin(kr)
kr

(σukt)2
)

dk

= 2
∫ ∞

−∞
E(k)

(
1 − e− 1

2 (σukt)2
(

cos(kr) − sin(kr)
kr

(σukt)2
))

dk, (A8)

where ST ≡ S + 2G. The result (A8) reproduces (A6) in the limit r → 0 as required. It
will mostly be small k in the spectrum that contributes for large t due to the combination
kt in the arguments in (A8). So far the model assumes all scales to have a velocity u + V
with an average over all u. The model is improved in § A.2.

The result (A8) is shown in figure 15. We find the similarities between the results in
figures 15 and 2 interesting. It is thus conceivable that many of the details in figure 4 can
be explained by the sweeping motion caused by the large non-universal eddies.

The analysis of Kofoed-Hansen & Wandel (1967) allows also an estimate of the
Lagrangian structure function. The result turns out to consist of simply replacing σu by
σu

√
2. We analysed also this case using the model spectrum (A3). The observed time

variation was ∼ t2/3 and in noticeable disagreement with that in figure 6.
As far as the inertial subrange is concerned, it makes no substantial difference to

distinguish the component spectra and the full summed spectrum and corresponding
structure functions. By the choice of the von Kármán spectrum we illustrate here
a systematic and physically plausible transition to the large-scale non-universal
energy-containing eddies for k → 0.

The present model could in principle be generalized to include a viscous subrange. There
is, however, no universally accepted spectral model that includes such a viscous subrange.

A.2. Filtered, scale-size-dependent advection velocities

A.2.1. The Eulerian case
In the foregoing section it is implicitly assumed that all scales are advected with the
same velocity. In reality an eddy with characteristic size D is advected by scale sizes
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Figure 16. Model results for the space–time-varying structure function corresponding to figure 15, here using
a velocity filter accounting for scale-size-dependent velocities.

≥ D (Csanady 1973; Mikkelsen et al. 1987), while smaller scales distort the eddy. This
argument can be expressed in terms of wavenumbers by letting D ∼ 1/k. At a wavenumber
k the sum of component power spectra E(k) entering (A6) will contain contributions from
all wavelengths ≤ 2π/k due to the aliasing. At any given k we can account for the advection
caused only by the larger scales by introducing a filtered power spectrum u2

f (k) =∫ k
0 EK(ξ) dξ replacing σ 2

u . For very large wavenumbers (small scales) the filter gives
approximately σ 2

u while small k gives (11/9)(kL)5(Γ (5/6)/Γ (1/3)
√

π)σ 2
u ≈ 0.3(kL)5σ 2

u .
The result for filtered, or scale-size-dependent, velocities is shown with a heavy dashed
line in figure 14. The structure function is now only approximately following a simple
power law, and here with an exponent smaller than 2/3, closer to 1/2. The model result is
now in better agreement with the numerical results found in figures 10 and 11, keeping in
mind though that those contain also the viscous subrange. The spatially varying structure
functions shown in figure 1 are not affected by this filtered advection. A summary of the
results for the full space–time variation of the structure function is found in figure 16. The
overall features remain the same as in figure 15. The modifications due to the filtering are
modest for r ≥ σut, while differences are found in the details for r < σut.

The present velocity-filtered model opens the possibility of a ∼ t2/3 inertial subrange
also for the time-varying Eulerian structure function, but only if a time range
τK � t � L/σu can be realized. This is not the case for the present numerical
simulations.

As an additional illustration of the properties of the filtered KHW model, we show in
figure 17 results obtained by sampling the structure function along a line t = r/V and
then changing the plotting variables as in figures 8 and 9. Comparing figures 8, 9 and
17 we keep in mind that the KHW model in its form used here contains only the inertial
subrange. Also for the KHW model we find a saturation as V increases, although here the
requirement appears to be more restrictive, i.e. the model requires V/σu ≥ 3 before we can
argue that S(r, r/V) ≈ S(r, 0). The general features of figures 8, 9 and 17 are the same:
the curves for S(r, r/V) increase and move towards smaller r values as V decreases. Also
we find a slow systematic decrease in the average slope of the structure function as V is
decreased.
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100
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Figure 17. Model results (in a double logarithmic presentation) for samples of the Taylor hypothesis applied
to the filtered version of the KHW structure function using V/σu = 1/8, 1/4, 1/2, 1, 5/2, and 10 from top to
bottom, to be compared with figures 8 and 9. The dashed line gives the slope of r2/3 for reference.

A.2.2. The Lagrangian case
The KHW result for the Lagrangian structure function (see figure 18) is not promising
by giving a t2/3 form for the time variation in a large time interval, different from the
numerical results in figure 6 and in disagreement also with (2.2). We believe the mistake
to be that the KHW model includes an advection velocity in the Lagrangian model in the
same way as in the Eulerian case. The temporal variations in the Eulerian case are in part
caused by small eddies advected past the fixed observer by the large energy-containing
eddies (Tennekes & Lumley 1972). A Lagrangian co-moving observer will not observe
similar time variations. In this case the observed time variations are due to eddies moving
with respect to each other and to eddy deformations. A characteristic eddy velocity for
an eddy of size � can be formed by dimensional reasoning as ue ∼ (ε�)1/3, which can be
expressed in terms of wavenumbers by the replacement � ∼ 1/k. A more detailed eddy
velocity model (Orszag 1977) corresponding to an eddy of scale size 1/k can be derived
from the power spectrum as

ue(k) =
√∫ 2k

1
2 k

EK(κ) dκ, (A9)

albeit with an ad hoc choice of the eddy definition (Orszag 1977). A change in definition
will only give rise to a change in a numerical coefficient. The effects of the detection
point moving along a Lagrangian orbit together with an eddy in a surrounding of other
eddies with other velocities can be described by the replacement u2

rms → u2
e(k) in (A6). We

recall that for incompressible homogeneous isotropic flows 〈u2〉 is the same, irrespective of
Lagrangian or Eulerian samplings being used. The Lagrangian structure function is shown
with a dashed heavy line in figure 18. We find a clear ∼ t variation, in agreement with (2.2).
Since u2

e(k) < u2
f (k) for all k > 1/L, we can conclude that the Lagrangian integral time

scale is here larger that its Eulerian counterpart. This is at variance with results obtained
by, for instance, Weinstock (1976).

The model illustrated in the present appendix is restricted by assuming all observed time
variations to be caused by advection of eddies. Nonetheless it is found that the results can
be brought into fair agreement with those of the numerical simulations, in particular when
the filtered advection velocity is applied. One basic feature of the KHW model is retained
in its filtered version: it derives all time variations (both Eulerian and Lagrangian) from
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Figure 18. Model results for the Lagrangian structure function. The solid line gives the result found by Wandel
& Kofoed-Hansen (1962) and the thick dashed line is the one suggested in the present analysis. The two thin
dashed lines give the reference slopes of t2/3 and t, respectively.

the wavenumber spectrum alone. The present results are based on a von Kármán spectrum
in order to have a well-defined outer scale. Due to the periodic conditions used in the
simulations, that part of the simulation results differs from the von Kármán spectrum. The
analysis here can readily be generalized to two-dimensional turbulence, but for that case
(A8) has to be modified (Pécseli & Mikkelsen 1985; Pécseli & Trulsen 1995).

Appendix B. Approximations for structure functions

We have analytical expressions for the structure functions for the two universal subranges,
the inertial and the viscous. There seems to be no analysis covering both ranges, but we
can give a phenomenological expression and test it against the data. It turns out that it is
possible to give a very satisfactory model.

Assume that we have an experimentally or numerically determined monotonically
increasing (decreasing) function F( y) with functional forms F1( y) and F2( y) for small
and large values of the variable y, respectively. The function F can be approximated by a
class of curves of the form

F( y) = F1( y)F2( y)
(Fp

1( y) + Fp
2( y))1/p

, (B1)

where p is an adjustable transition parameter, not necessarily an integer. We use this
model for approximating the Eulerian and also the Lagrangian structure functions. For the
Eulerian case with y = r, we have F1(r) = C1r2ε/ν and F2(r) = C2(rε)2/3 and find that
the choice p = 5/4 gives an excellent fit as shown in figure 1. The coefficients C1 and C2
are determined through least squares fitting to take values 0.062 and 1.924. These should
be compared with Cν = 1/15 ≈ 0.0667 and CK . A Fourier transform of the correlation
function obtained from the fitted curve in figure 1 reproduces a subrange following the
spectral Kolmogorov–Obukhov 5/3 law.

The approximation inherent in (B1) can always be used, but there is no a priori reason
for it to be particularly good, so the observed fine agreement deserves attention. In a
previous study (Pécseli et al. 2020) we gave an analytical approximation using p = 1,
but found that the choice mentioned before is more accurate. The difference between the
values of C1 and Cν may be due to an upper wavenumber limit for the viscous subrange in
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the numerical solutions. It could also be due to the increased statistical uncertainty of the
numerical result at small r values.

Analytical approximations can be given also for the results shown in figures 10 and 11.
With F1(t) = C1t2 and F2(t) = C2t1/2 and proper choices of the constants C1 and C2, and
using p = 1, we find the analytical curves shown with thin red lines in figures 10 and 11.

An approximation for the Lagrangian structure function over the entire universal range
in figure 6 can be obtained as well. With F1(t) = C1t2 and F2(t) = C2t, using p = 5/2 we
obtain the result given by the thin red curve in figure 6. For the normalized Lagrangian
counterpart of the structure function (see figure 6), we found C1 = 12.677 and C2 = 9.101.

The Lagrangian structure function differs from the Eulerian one by showing a trend
towards the constant asymptotic limit within the available r range. The green (partly
underlying) curve in figure 6 is the result of using the expression (B1) a second time
with F1 set equal to the universal range approximation (the thin red curve), F2 = 2u2

x,rms
and p = 2.
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