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Abstract In this paper, we construct a natural probability measure on the space of real branched
coverings from a real projective algebraic curve (X, cx) to the projective line (CPL, conj). We prove that
the space of degree d real branched coverings having “many” real branched points (for example, more than

\/E1+a, for any « > 0) has exponentially small measure. In particular, maximal real branched coverings
— that is, real branched coverings such that all the branched points are real — are exponentially rare.

Keywords and phrases: real algebraic curves; branched coverings; random maps; Bergman kernel

2020 Mathematics Subject Classification: 14P99; 14H30; 60F10; 32A25

1. Introduction

Let (X, cx) be a real algebraic curve — that is, a smooth complex curve equipped with
an antiholomorphic involution cx called the real structure. We denote by RX the real
locus of X, that is, the set Fix(cx) of fixed points of cx. For example, the projective line
(CP?', conyj) is a real algebraic curve whose real locus equals RP!.

The central objects of this paper are real branched coverings from X to CP! — that
is, the branched coverings u : X — CP' such that wocx = conjo u. Let us denote by
M%(X ) the set of degree d real branched coverings from X to CP'. The first purpose
of the paper is to show that M%(X ) has a natural probability measure p, induced by
a compatible volume form w of X (that is, ¢§w = —w), which we fix once for all. This
probability measure is the real analogue of the probability measure constructed in [2] on
the space of branched coverings between a complex projective curve and CP!. Later in
the introduction we will sketch the construction of the measure u g4, which we will give in
detail in Section 2.3.

By the Riemann—-Hurwitz formula, the number of critical points, counted with
multiplicity, of a degree d branched covering u : X — CP' equals 2d +2g — 2, where
g is the genus of X. The probability measure u, allows us to ask the following question:
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What is the probability that all the critical points of a real branched covering
u € MS(X) are real?

In [1], it is proved that the expected number of real critical points is equivalent to evd
as the degree d of the random branched covering goes to infinity. The constant ¢ is
explicit, given by ¢ = \/gVol(RX ), where Vol(RX) is the length of the real locus of X
with respect to the Riemannian metric induced by w. The main theorem of the paper is
the following exponential rarefaction result for real branched coverings having “many”
real critical points:

Theorem 1.1. Let X be a real algebraic curve. Let €(d) be a sequence of positive real
numbers such that £(d) > Blogd for some B > 0. Then there exist positive constants c;
and co such that the following holds:

pa{u € ME(X), #(Crit(u) NRX) > £(d)Vd} < el

For example, for any fixed @ > 0, we can consider the sequence £(d) = Vd". Theorem 1.1
says that the space of real branched coverings having more than +/d e real critical points
has exponentially small measure. In particular, maximal real branched converings (i.e.,
branched coverings such that all the critical points are real) are exponentially rare.

The probability measure on M%(X ). The construction of the probability measure
on M%(X) uses the fact that there is a natural map from M]E(X) to the space of the
degree d real holomorphic line bundle Picﬁé(X ) (see Proposition 2.5). This map sends a
degree d morphism u to the degree d line bundle v*O(1). The fibre of this map over
Le Pic%(X) is the open dense subset of P(RH?(X, L)?) given by (the class of) pairs
of global sections without common zeros. In order to construct a probability measure
on M%(X ), we produce a family of probability measures {u} LePicd (x) Ol each space

PRH(X,L)?). The probability measure wu; on P(RHY(X, L)?) is the measure induced
by the Fubini-Study metric associated with a real Hermitian product on RHY(X, L)2.
This Hermitian product is the natural £2-product induced by @ (see Section 2.1). This
family of measures, together with the Haar probability measure on the base Picﬁ(X ),
gives rise to the probability measure py on M%(X ).

An example: the projective line. Let us consider the case X = CP! equipped
with the conjugation conj([zo : 21]) = [Zp : Z1]. Given two degree d real polynomials
P,Q e Rhom[XO, X;| without common zeros, we produce a degree d real branched
covering upg : CP! — CP! by sending [zp : 71] to [P(z0,71) : Q(z0,71)]. We also remark
that the pair (AP,AQ) defines the same branched covering. Conversely, one can prove
that any degree d real branched covering u : CP! — CP! is of the form u = upg for
some (class of) pair of polynomials (P, Q) without common zeros. This means that
ME(CPY) = P(R"™[ Xy, X1]? \ Aq), where Ag4 is the set of pairs of polynomials with at
least one common zero. Consider the affine chart {z; # 0}, the corresponding coordinate
T = xo and the polynomials p(X) = P(Xp,1) and ¢q(X) = Q(Xp,1). Then one can see that
a pomt z € {z1 # 0} is a critical point of upg if and only p'(z)g(z) — ¢'(z)p(z) =0 (see
Proposition 3.14).
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In the previous paragraph, we constructed a probability measure on this space by fixing
a compatible volume form on source space, in this case CP'. Indeed, a compatible volume
form induces an £2-scalar product on R%°™[Xy, X7]|, which will induce a Fubini-Study
volume form on P(Rzom [ X0, X1]?) and then a probability on M%((CIP”). If we equip CP!
with the Fubini-Study form, then the induced scalar product on R%°™[X,, X;] is the

one which makes {,/ (Z)XOled_k}O<k<d
considered by Kostlan in [8] (see also [11]). It is the only scalar product invariant under

the action of the orthogonal group O(2) (which acts on the variables Xy and X;) and
such that the standard monomials are orthogonal to each other.

an orthonormal basis. This scalar product was

About the proof. There are two main steps in the proof of our main theorem. First, we
reduce our problem to the problem of the computation of the Gaussian measure of a cone
Cy(qy which lies inside the space of pairs of global sections of a real holomorphic line bundle
over X. This cone is defined by using the Wronskian of a pair of global sections, which
plays a key role. Then we use peak-section theory to estimate some Markov moments
related to this Wronskian. These moments, together with the Poincaré—Lelong formula,
allow us to estimate the measure of the cone Cyg).

Let us sketch the proof in more details. We fix a degree 1 real holomorphic line bundle
F over X so that for any L € Pic]g(X ) there exists a unique F € Pic]%(X ) such that
L=F?®E. Recall that any class of pairs of real global sections without common zeros
[ : B] e PRH(X,F?® E)?) defines a real branched covering u,s by sending a point
1€ X to [a(z): B(x)] € CPL. Theorem 1.1 will follow from the estimate

ppagp|le : Bl € PRHO(X, F?® E)?), #(Crit(uyg) NRX) > £(d)Vd} < cre”2"@D* (1)

where (pagp is the probability measure induced by the Fubini-Study metric on
PRH’(X,F?® E)?). Indeed, if we integrate inequality (1) along Pic%(X) we exactly
obtain Theorem 1.1. To prove estimate (1), we will use the following two facts. First,
a point z is a critical point of wuws if and only if it is a zero of the Wronskian
Wep :=a®VB—B®Va. Second, the push-forward (with respect to the projectivisation)
of the Gaussian measure on RH?(X, F? ® E)? is exactly the probability measure FigE-
These two facts imply that estimate (1) is equivalent to the fact that the Gaussian measure
of the cone
Cecay = [(@, ) e RHO(X, F? ® )%, #(real zeros of Weg) > £(d)v/ d} (2)
is bounded from above by ¢; e—c2t(@d?
In order to estimate the Gaussian measure of Cy(g), inspired by [5], we bound from
above the moments of the random variable (o, ) € RH*(X,F¢® E)? — log H Wap(2) ||7

where z is a point in X such that dist(z,RX) is bigger than li’%d

(see Proposition 3.15).
This condition on the distance is natural, it is strictly related to peak-section theory (see
[6, 12]) and it is the reason why we need the hypothesis on the growth of the sequence
£(d) in Theorem 1.1. The estimate of these moments uses two ingredients: the theory of
peak sections and a comparison between the norms of two different evaluation maps (and
more generally jet maps). Once these moments are estimated, the Markov inequality and
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Poincaré-Lelong formula give us the exponential rarefaction of the Gaussian measure of
the cone (2).

Organisation of the paper. This paper is organised as follows. In Section 2.1 we
introduce the main objects and notations. In Sections 2.2 and 2.3 we study the geometry
of the manifold M%(X ) and construct the probability measure pg on it.

The purpose of Section 3 is to prove Proposition 3.15 — that is, to estimate the moments
of the random variable (a,8) € RHY(X,F¢® E)? — log|l(« @ VB — B R Va)(z)||, for F
and F respectively degree 1 and 0 real holomorphic line bundles. In order to do this, in
Section 3.1 we introduce Gaussian measures on RH(X, F?® F)?, and in Section 3.2 we
study jet maps at points € X which are far from the real locus. Finally, in Section 4 we
deduce Theorem 1.1 from the estimates established in Section 3.

2. Random real branched coverings

2.1. Background

Let (X,cx) be a real algebraic curve — that is, a complex, projective, smooth curve
equipped with an antiholomorphic involution cx, called the real structure. We assume
that the real locus RX := Fix(cx) is nonempty. An example is (CP!, conj), where conj(|xy :
71|) = [To : 1] is a real algebraic curve whose real locus is RP!. A real holomorphic line
bundle p: L — X is a line bundle equipped with an antiholomorphic involution c¢j, such
that pocx = cop and ¢y, is antiholomorphic in the fibres. We denote by RH®(X; L) the
real vector space of real holomorphic global sections of L — that is, sections s € H%(X; L)
such that socx = ¢y, 05s. Let Picﬁé(X) be the set of degree d real line bundles. It is a
principal space under the action of the compact topological abelian group Pich(X) and
so it inherits a normalised Haar measure that we denote by dH (see, for example, [7]).
Finally, recall that a real Hermitian metric A on L is a Hermitian metric on L such that
c;h=h.

Proposition 2.1. Let (X, cx) be a real algebraic curve and let w be a compatible volume
form of mass 1 — that is, ckw =—w and fXa) =1. Let Le Pic%(X) be a degree d real
holomorphic line bundle over X ; then there exists a unique real Hermitian metric h (up
to multiplication by a positive real constant) such that ¢ (L,h) = d - w.

Proof. For the existence and uniqueness of such a metric, see [2, Proposition 1.4]. The
fact that the metric h is real follows from the following argument. Let us consider the
Hermitian metric cz_h on L. Claim: its curvature equals —d - c; w. Indeed, for any z € X
we consider a real meromorphic section s of L such that z and cx(x) are neither zero
nor poles of s (such a section exists by the Riemann—Roch theorem). Then the curva-

ture of (L,@) around z is 8510g<cz_h>x(s(:r),s(:z;)) = 8(‘_Jloghcx(z)(cL(s(z)),cL(s(x))) =

aéloghcx(z)(s(cx(x)),s(cx(x))) = 850} logh(s,s) = —cﬁ(aélogh(s,s), where the last
equality is due to the antiholomorphicity of ¢x. Then the claim follows from the fact
that ddlogh(s,s) =d-w.
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Now consider the real Hermitian metric (h 'm)l/ 2. Tts curvature equals
1, - - - 1
5(8810gh(s, s)+ 8810g<czh>(s, s)) = i(d w—d-cyw)=d- o,

where the last equality follows from the fact that w is compatible with the real structure.
By the uniqueness of the metric with curvature d - w, this implies that (h - czh)l/2 is a
multiple of h. We actually have the equality (h ~m)1/ 2 = h, because for a real point
z € RX and a real vector v € RL, we get (hy(v,v) - (c’z_h)m(v, oNY? = (hgy(v,v) -
hy (v, V)2 = hy (v, v). O

Definition 2.2. Let w be a compatible volume form of mass 1, let L € Picﬁé(X)
be a degree d line bundle over X and let h be the real Hermitian metric given by
Proposition 2.1. We define the £2-scalar product on RH®(X:; L) by

(a,B) 2 = / hy (a (), B(z))w
zeX
for any pair of real holomorphic sections «, 8 € RH°(X; L).

2.2. The space of real branched coverings

In this section we introduce and study the space of real branched coverings from a real
algebraic curve (X, cx) to (CPY, conj).

Definition 2.3. We denote by M%(X ) the space of all degree d real branched coverings
u: X — CP!, which are the branched coverings such that wocx = conjo u.

A natural way to define a degree d real branched covering is as follows. Consider a
degree d real holomorphic line bundle L € Picﬁé(X ) and two real holomorphic sections
a,f € RH(X, L) without common zeros. Then we can define the degree d real branched
covering u,g defined by

Up: T € X > a(z): B(2)] € CP.

Proposition 2.4. Two pairs (a, B), (&', B') of real holomorphic sections of L define the
same real branched covering if and only if (&, 8") = (A, AB8) for some A € R*.

Proof. The proof follows the proof of [2, Proposition 1.1]. O

Proposition 2.5. There exists a natural map from ME(X) to the space Picﬁé(X) of
degree d real line bundles over X. This natural map is given by u € MS(X) — u*O() €
Picfé(X). The fibre over L € Pic]‘é(X) is the open subset of P(RHY(X; L)?) given by (the
class of ) pair of sections (&, B) without common zeros.

Proof. Given a degree d real branched covering u : X — CP!, we get a degree d real
line bundle u*O(1) over X and the class of two real global holomorphic sections without
common zeros [u*zy : u*m] € PRHY(X;u*O(1))?). On the other hand, given a degree d
real line bundle L — X and two real holomorphic global sections without common zeros
(a,B) e RHO(X; L)?, the map ugp : X — CP! defined by z > |a(z) : B(2)] is a degree d
real branched covering satisying u;"ﬁ(’)(l) = L. Moreover, by Proposition 2.4, two pairs
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(o, B) and («’, B') of real holomorphic sections of L define the same real branched covering
if and only if (¢, 8’) = (A, AB) for some A € R*, hence the result. O

2.3. Probability on M%(X)

Let X be a real algebraic curve equipped with a compatible volume form w of total mass
1. In this section, we construct a natural probability measure on the space M%(X ) of
degree d real branched coverings from X to CP*.

Let Le Picﬁé(X ) be a degree d real line bundle equipped with the real Hermitian
metric h given by Proposition 2.1. We recall that in Definition 2.2 we defined the £2-
scalar product on the space RH?(X; L) induced by the Hermitian metric h. This £2-scalar
product induces a scalar product on the Cartesian product RH®(X; L)? and then a Fubini—
Study metric on P(RH(X; L)?). Recall how the Fubini-Study metric is constructed. First
we restrict the scalar product to the unit sphere of RH?(X; L)2. The obtained metric is
invariant under the action of Z/27Z, and the Fubini—Study metric is then the quotient
metric on P(RH?(X; L)?).

Definition 2.6. Let L be a real holomorphic line bundle over X. We denote by uy,
the probability measure on P(RH?(X;L)?) induced by the normalised Fubini-Study
volume form. Here, the Fubini-Study metric on P(RH?(X; L)?) is the one induced by
the Hermitian metric on L given by Proposition 2.1.

Proposition 2.7. The probability measure uy over PRH(X; L)?) does not depend on
the choice of the multiplicative constant in front of the metric h given by Proposition 2.1.

Proof. The proof follows the proof of [2, Proposition 1.7] O

Remark 2.8. For a real holomorphic line bundle L, we denote by A, the space of pairs
of sections (sg,s1) € RHY(X; L)? with at least a common zero. By [1, Proposition 2.11],
the set Ay has zero measure (it is a hypersurface), at least if the degree of L is large
enough. This implies that wu;, induces a probability measure on P(RH®(X; L)2\ Ap), still
denoted by ur.

Definition 2.9. We define the probability measure ug on M%(X ) by the following
equality:

/ fdpg = f / fduyr ) dH(L)
ME(x) LePicd(x) \J ME(x. L)

for any f € M%(X) measurable function. Here

° M%(X, L) is the fibre of the natural morphism M%(X) — Picfé(X) defined in
Proposition 2.5,

e denotes (by a slight abuse of notation) the restriction to M%(X,L) of the
probability measure on P(RHY(X, L)?) defined in Definition 2.6 and

e dH denotes the normalised Haar measure on Picfé(X ).

Remark 2.10. The probability measure ug of Definition 2.9 is the real analogue of the
one constructed in the complex setting in [2] for the study of random branched coverings
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from a fixed Riemann surface to CP!. Also in the complex setting, a similar construction
was considered by Zelditch in [14] in order to study large deviations of empirical measures
of zeros on a Riemann surface.

Example 2.11. Let us consider the case (X, cx) = (CP?, conj), where CP' is equipped
with the Fubini-Study form wpgg. For the projective line CP!, the unique degree d
real line bundle is the line bundle O(d), which is naturally equipped with a real
Hermitian metric hgy whose curvature equals d-w. The space of real holomorphic global
sections RH?(CP'; O(d)) is isomorphic to the space of degree d homogeneous polynomials
RE°™[ X, X;], and the £2-scalar product coincides with the Kostlan scalar product (i.e.,

the scalar product which makes {,/ (z)XOledfk}osde an orthonormal basis; see [8, 11]).

Then a random real branched covering u : CP! — CP! is given by the class of a pair of
independent Kostlan polynomials.

3. Gaussian measures and estimates of higher moments

In this section, we introduce some Gaussian measures on the spaces RH?(X; L)? and
HO(X; L)% asin [1, 5, 6, 10]. We follow the notations of Section 2. In particular, (X, cx)
is a real algebraic curve whose real locus RX is not empty.

3.1. Gaussian measures

In this section, given any degree d real line L € PicD%(X ), we equip the cartesian product
RH®(X;L)? of the space of real holomorphic section with a Gaussian measure y;. In
order to do this, we fix a compatible volume form w of total volume 1 (i.e., ¢k = —w and
/ vw=1). Given Le Picﬁé(X ), we equip L by the real Hermitian metric h with curvature
d - (the metric h is unique up to a multiplicative constant; see Proposition 2.1).

In Definition 2.2, we defined an £2-Hermitian product on the space RH?(X; L) of real
global holomorphic sections of L denoted by (-, -) -2 and defined by

(o, B) 2 =f . he (a(z), B(z))w

for all o, 8 in RHO(X; L).

Definition 3.1. The £2-scalar product on RH%(X; L)2 induces a Gaussian measure yy,
on RH%(X; L)? defined by

yr(4) =

2 2
N/ ez 112 44
T S, prea

for any open subset A C RHY(X;L)2. Here dadpf is the Lebesgue measure on
(RH®(X; L)% (-,-)z2) and Ny denotes the dimension of RH?(X; L), which equals the
complex dimension of HO(X: L).

Remark 3.2. If d > 2g—2, where g is the genus of X, then H'(X; L) =0 and then, by
the Riemann—Roch theorem, we have Ny =d+1—g.
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Proposition 3.3 ([2, Proposition 1.12]). Let f be a function on a Fuclidian space
(V,{-,-)) which is constant over the lines — that is, f(v) = f(Av) for allve V and all A €
R*. Denote by dy the Gaussian measure on V induced by (-,-), and by du the normalised
Fubini—Study measure on the projectivization P(V'). Then for all cones A C V, we have

/A fdy = /F i

where P(A) is the projectivization of A and [f] is the function on P(V) induced by f.

We will also be interested in the complez Gaussian measure on the space H°(X, L)2.
Indeed, the Hermitian metric h on L defines an £2-Hermitian product on H°(X, L) by
the formula

(o, ) g2 :f Xhz(a(fﬂ),ﬂ(:l?))w

for all o, 8 in HO(X; L).
Definition 3.4. The complex Gaussian measure yf on HY(X;L)? is defined by
1 a2 - —11812
C lleell 181
A= —— 2 2 dad
VE) = /(WA : dp

for any open subset A C H°(X;L)2. Here dadf is the Lebesgue measure on
(H°(X; L)% (-,-)p2) and Ny denotes the complex dimension of H°(X; L).

3.2. Jet maps and peak sections

Let F and FE be, respectively, degree 1 and 0 real holomorphic line bundles over X. We
equip F' and E by the real Hermitian metrics given by Proposition 2.1, which we denote
by hr and hg. In particular, the real Hermitian metric hy := hfﬁ ®hg on F¢® E is such
that its curvature equals d-w. Finally, recall that the space HY(X,F?® E) is endowed
with the £2-Hermitian product

(o, B) 2 =/ th(a(x),ﬁ(x))w

defined by for any «, 8 in HO(X; F'® E).

Definition 3.5. For any z € X, let H, be the kernel of the map s € H*(X,F¢Q F) —
s(x) € (F*® E),. Similarly, we denote by Ha, the kernel of the map s € H, — Vs(z) €
(F¢QFE),® T%. ., where V is any connection on Fe® E (indeed, if s € H,, then the value
Vs(z) does not depend on V). We define the following jet maps:

evy:s € HY(X,F'QE)/H, — s(z) € (F'®E),,
evay 1 S € Hy/Hay > Vs(z) € (F'®E), ® Tk,

Definition 3.5 has the following real analogue:
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Definition 3.6. For any point z € X, we define the real vector spaces RH? = H? N
RHY(X,F'®E) and RH), = H) NRH’(X, F¢® F) and the real jet maps

x

vy, 1§ € RH, /RHy, > Vs(z) € (F'®E), ® Tk ,.

ev® s e RHY(X,F*® E)/RH? v s(z) € (F*® E),,

By the fact that F is ample (recall that deg F' = 1), we get that for d large enough,
the maps ev’, ev,, erRI and evq, are invertible. The following proposition estimates the

norms of these maps and of their inverses:

Proposition 3.7 ([6, Propositions 4 and 6]). For any B > 0, there exist an integer
dg and a positive constant cp sych that for any d > dg and any point © € X with
dist(x,RX) > Bl%d, the maps d—2 ev}f, d~2ev,, d_levi and d~'evy, — as well as their
inverses — have norms and determinants bounded from above by cp.

Remark 3.8. In [6, Propositions 4 and 6], the constant B equals 1 and the line bundle
E is trivial. The same proof actually holds for any fixed B > 0 and any E € Pic]%(X ).
Indeed, the proof is based on the theory of peak sections and Bergman kernels, and this
theory holds in this more general setting (see, for example, [4] or [9, Theorem 4.2.1]).

Using the £2-Hermitian product on H%(X, F¢® E), we can identify H*(X, F?® F)/H,
with the orthogonal complement of H, in H°(X,F?¢® E). Similarly, we identify the
quotient H,/Hs, with the orthogonal complement of Hy, in H,. We then have an
orthogonal decomposition

HX,F'®E)=H(X,F'Q E)/H, ® H,/H,, ® Ha,.

Similarly, using the £2-scalar product on RH?(X,F?® E), we have the orthogonal
decomposition

RH°(X,F'Q E)=RH°(X,F?® E)/RH, ®RH, /RH>, ®RHo,.

The map ev, X eva, (resp., evf X engm) gives an isomorphism between HO(X, F*Q E)/H, ®
H,/Hs, (resp., RHY(X,F?® E)/RH, ®RH,/RH,,) and the fibre (F!® E), ® (F?®
E).,®Tx ,-

Moreover, note that we have natural identifications H*(X, F¢® E)/H, ® H,/Ha, = H;-
and RH(X,F¢® E)/RH, ®RH, /RH;, = RHQfE. A direct consequence of Proposition 3.7

is the following:

Corollary 3.9. For any B > 0, there exist an integer dg and a positive constant cp
such that for any d > dg and any x with dist(x,RX) > Bl‘j/ggd, the map (ev§ X ev]sz)_l o
(evg X evgy) : HQJ;E — RH;I has determinant bounded from above by cp and from below by

1/CB.

Definition 3.10. We denote by sy and s; the global holomorphic sections of L? ® E
with unit £2-norm which generate, respectively, the orthogonal complement of H, in
H%X,F?® E) and the orthogonal complement of Hs, in H,. We call these sections the
peak sections at x.
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The point-wise estimates of the norms (with respect to the Hermitian metric hq of
curvature d-w) of the peak sections are well known and strictly related to the estimates
of the Bergman kernel along the diagonal (see [3, 9, 12, 13]). With a slight abuse of
notation, we will denote by ||-|| any norm induced by hg.

Lemma 3.11 ([2, Proposition 1.5]). For any x € X, let sy and s; be the peak sections
defined in Definition 3.10. Then as d — 400, we have the estimates | so(z)| = %(1—}—
O(d™)) and |Vsi(z)|| = %(1—{— 0(d™1)), where the error terms are uniform in z € X.

3.3. Wronskian and higher moments

Let F' and E be, respectively, degree 1 and 0 real holomorphic line bundles over X. The
purpose of this section is to prove Proposition 3.15, which gives key estimates of the
higher moments of the random variable («,8) € RH(X,F?® E)? — log‘ # Wep ()
where W,p is the Wronskian, given by the following:

)

Definition 3.12. Let V be a connection on F¢® E. For any pair of real holomorphic
global sections (o, B) € RH(X, F¢® E)?, we denote by W, the Wronskian ¢ @ VB — f®
Va, which is a real holomorphic global section of F??® E?® T%.

Remark 3.13. The Wronskian Wyg does not depend on the choice of a connection on
Fe® E. Indeed, two connections V and V' on F?® FE differ by a 1-form 6, and then we
have

@®VB—BRVa)—(@V'B—pVa)=a®@(V-V)B-BR(V—-V)a
—aQBR—BRaA®O =0.

Proposition 3.14 ([2, Proposition 2.3]). Let F' and E be, respectively, degree 1 and
0 real line bundles over X and (a,B) € RHY(X,F?® E)? be a pair of sections without
common zeros. A point © € X is a critical point of the map uqp : ¢ € X — |a(z) : B(z)] €
CP! if and only if it is a zero of the Wronskian Wyg defined in Definition 5.12.

Proposition 3.15. Let X be a real algebraic curve equipped with a compatible volume
form w of total volume 1, and let F € Picﬂlk(X). For any B > 0, there exist an integer dp
and a constant cg such that for any E € Picﬂ%(X), any m €N, any d > dp and any point

z e X with dist(z,RX) > Blogdd, we have

T m
/ log | =5 Wap(@)| | dva(e. p) = en(m+ 1),
(@, B)eRHO(X, Fi® E)2 d

Here, dist(-,-) is the distance in X induced by w, yq is the Gaussian measure on
RHY(X,Fe® E)? constructed in Section 3.1 and |-|| denotes the norm induced by the
Hermitian metrics on F' and E given by Proposition 2.1.

Proof. Let us consider the integral we want to estimate:

" dya(a, B). (3)

7
[ WESP
(@, B)ERHO(X, Fig )2 d

https://doi.org/10.1017/51474748020000742 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000742

Random real branched coverings of the projective line 1793

First, remark that the function in integral (3) depends only on the 1-jet of the sections «
and B. We will then write the orthogonal decomposition RH?(X, F¢® E) = RHy, ®RH3- ,
where RH,, is the space of real sections s such that s(z) =0 and Vs(z) =0. As the
Gaussian measure is a product measure, after integration over the orthogonal complement
of RHs- x RHs- we have that integral (3) is equal to

T m
tog | 273 We @) || 47 Iy e, @), (4)
/(a,ﬁ)eRHgiszH;I a3z P RH;, xRH3,

Using the notations of Section 3.2, and in particular Definitions 3.5 and 3.6, let J, : Hg: —
RH% be the map (ev X 6”295) Lo (evy X evs,) and denote

Iy=Jgx Jg: H x Hy- — RH3- x RH;- .

By the changing of variables given by the isomorphism I;, we get

(4) = /
(a,p)eHy, x Hy,

By Corollary 3.9, the maps I; and I have determinants bounded from above by a
constant which depends only on B. In particular, there exists a constant c¢;, depending
only on B, such that

OELY)
(. B)eHy, x Hy-,

where yfic is the complex Gaussian measure defined in Definition 3.4. In order to prove
the result, we have to bound from above the quantity

/(:x, BreHs, x Hy-

Let sp and s; be the peak sections at z introduced in Definition 3.10, and write o =
apoo + ay0oq and B = bgog + bio1. We then have

log H # Wep (x) H ‘m(Id_l)*(dVd lm) xma) )@ B). (5)

log | =5 Was @) || 95 Ly, @) (6)

log | 75 Was@) || 75 111 g, (@B ™)

d3/2
| Wap (@) ]| = 1a0b1 — anbol (50 ® V1 — 51 ® Vo) (@)l| = laoby — s bol —— (14 O(d~2*)),

where the last equality follows from Proposition 3.11. This implies that the integral in
expression (7) equals

m o —lal?~[b]?
[z:(ao,al)e@ ‘log <| apby — ay byl H FEE —=5(50® Vs — 518 Vsg)(x) H) ' Tdadb
b=(bg, b1)eC?

- /t;:(ao, a1)eC?

m o —la2~[b|?
10g(|aob1—a1bo|)‘ —(1+O(d C3(B)))dadb
w4
b=(bg, by)eC?

. e—lal?=1b?
< 2[16(:2 llog|agby — by aq|| Tdadb, (8)
beC?

where the last inequality holds for d > dg, for some dg large enough.
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In the remaining part of the proof, we will estimate the last integral in equation (8). In
order to do this, for any a = (ag, a;) we make a unitary trasformation of C? (of coordinates
bo, b1) by sending the vector (1,0) to v, = \/=(a0, a1) and the vector (0,1) to

lag]2+|a1 |2

L (—a1, ag). We will write any vector of C? as a sum tv, + swg, with s,t € C.

Wy = ———vo
/lag|?+la1|?

Under this change of variables, the integral in equation (8) becomes

—lal?~|s|?~|t? ~lal?~s|?

< 2/ Iloglslllalllmeradsdt — 2/6C2 Iloglslllalllmerads.

- aeC?
(s,)eC? seC
. } (9)
We pass to polar coordinates a = re” for # € S and r e Ry, and s = pe’® for ¢ € S' and
p € R, , and we obtain

2/ llog|slllall|™ dads:S/ log pr|™e "~ r3pdrdp.  (10)
aeC? reR4

seC peRy

~lal?~|s|?

Writing log pr = log p +log r, developing the binomial and using the triangular inequality,
we obtain

(10)<8/; o Z( )Ilogplkllogrlmker2p2r3pdrdp. (11)

peR+ k=0

n —r2

Let us study the integrals f R, Ilogp|"e"’ pdp and fTE]R llogr|™e~""r3dr . To compute
these two integrals, we will use the following formula obtalned by integration by parts:

/(loga:)"d:c =zlogx — n/(logm)"‘ldm, n > 0. (12)

e Computation of the integral fp€R+ |10gp|"e‘p2pd,o. We write

1 00
/ llog p|™ e~ pdp :f (—logp)”e_'”deﬂJr/ (logp)™ e pdp. (13)
eRy p=0 p=1
For the first term of this sum we have
1
2
/ (—logp)™e —p? pdp < —/ (—logp)™dp = £n!, (14)

where we used first that e?”p < f for p € ]0,1] and then n times equation (12).

For the second term of the sum in equation (13), we use first the fact that
1

e=P’ p=<E for any p > 1 and then the change ¢t = 1/p, yielding
1
00 5 0 o2
/ (logp)™e™” pdp < / (log p)” —dp =
p=1 p=1 t=1/p (15)

1
—/ (log(l/t))”te‘tdtzf (—log(t))™te~tdt.
1 0
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The last integral is the same as in inequality (14), so from expressions (14) and
(15) we obtain

o0
2
/ (logp)"e_prdp < %_n!. (16)
p=1

Putting expressions (14) and (16) into equation (13), we obtain
/ |logp|”e_p2pd,0 <2n!. (17)
PERY

e Computation of the integral fTeR+ |log 7"|”e_’"2 r3dr. As before, we write

2 3 1 2 3 o0 2 3
/ logr|™e™" r dr:f (=logr)"e " r dr+/ (logm)™e™" rodr. (18)
reRy 0 r=1

= =

For the first term of the sum, we get

1 1
2 2
/ (—log 7“)"e_r2 r3dr < (—1)”£ (logr)™dr = £n!, (19)
r=0 \/g r=0 \/§
where the first inequality follows from e y3 < %, for r € [0,1], and the last

equality is obtained using n times equation (12).
For the second term of the sum in the right-hand side of equation (18), we use

integration by parts with respect to the functions —%(log "2 and —2re~" to
obtain
o0 1 oo
/ (logr)”e_r2r3dr = [—E(log r)”r2e_T2]
s=1 r=1 (20)
n [ 1 2 > 2
—{——/ (logr)"~“re™" dr+/ (logr)™re™" dr.
2 Jr=1 r=1

As —%(logr)”rze_ﬂ]iozl = 0, we obtain, by using expression (16) in equa-
tion (20),

o 342
(logr)”ef’gr?’dr < in!. (21)
s=1 4

Putting inequalities (19) and (21) in equation (18), we get

4V6+9v2
—_—N.!.

/ Ilogrlne_rzr?’ds < (22)
reRy 12
Now we use inequalities (17) and (22) and we obtain the following estimate:
= m k m—k —r2—s2 3
/T6R+Z<k)|logp| |log 7| e r°pdrdp
peR4 k=0 (23)
4V/3+9 ¢n (m 4349
STZ<k)k!(m—k)!§ 5 (m4+1D!.

k=0
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Putting expression (23) in inequality (11) and using equations (8), (9) and (10), we obtain
the desired estimate for expression (7), hence the result. O

4. Proof of Theorem 1.1

In this section, we prove our main result. We follow the notations of Sections 2 and 3.

Proposition 4.1. Let X be a real algebraic curve equipped with a compatible volume
form w of total volume 1, and let F € PicﬂlQ(X). Fiz o sequence of positive real
numbers (aq)q. Then for any B > 0 there exist dg € N and a constant cg such that
for any E € Pick(X), any d > dp and any sequence of smooth functions (pq)q with
dist(supp(30¢q), RX) > B2 the following holds:

= ad}

d
T -
fx log <W” Waﬂ<x>n>aawd

aq
2 H 994 || ~ Vol(Supp(3d@q)) ) '

Here, dist(:,-) is the distance in X induced by w, Ypagy s the Gaussian measure on
RH(X,F¢Q E)? constructed in Section 3.1 and ||-| denotes the point-wise norm induced
by the Hermitian metrics on F and E given by Proposition 2.1.

VFd®E{(0h/3) eRHY(X,F'® E)?,

=< cpexp (

Proof. For any t4 > 0, let us denote

exp(td fX log<#”Waﬁ(I)”>aé§0d

Remark that

T _
‘/X log <m || Wag(2) ||>88<pd

so that by the Markov inequality we have

m

. (24)

T _
[ 108 (1 Went] )23

) > eldfd

(25)

)=
m=0

T -
/X log (W” Wa,s(:c>||)aagod

Zad}

[ 10w (i 1n @] o0 Javpuos. 20

> aq & exp(td

de®E{(oc,ﬁ) eRH(X,F?® E)?,

< 6_t(la(l/ eXp(td
RHO(X, FiQE)2

Now we have

b g - T
et n [ on(emc

We then apply the Holder inequality with m and m/(m — 1) for the functions
log <#” Weg(z) H) and 1, so that

T _
[ 108 5 [Wapt 030

m

(27)

‘ m

= [99¢a]

(27) < [|88ga|  Vol(Supp(@dga) ™! / log (# [ We (@) ||>‘ 0. ()

Supp(3d¢y)
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By Proposition 3.15, there exist dg € N and a positive constant cp such that for any
d > dp we get

right-hand side of (28) < ||85g0d ||OTZV01(Supp(85<pd))ch(m+ D! (29)
Then by expressions (24), (26) and (29) we have
Was (@) -
de(X)E{(‘XwB) € RHO(Xde ® E)Qs / log ”d/;Tnaa(pd > ad}
X
<efiteg Y (m+ 1)(||aé¢d I -Vol(supp(aé<pd))> to. (30)
m=0
Now we have the identity > > (m+1Daz™ = L3>  am = %(ﬁ -1)= ﬁg, S0
that the right-hand side of inequality (30) equals
—t
s exp(—tqaq) _ . (31)
(1—t4]|09¢a ], - Vol(Supp(dd¢a)))
Putting t; = (2||8<’_)<pd”oo oVol(Supp(aé(pd)))_l, we get the result. O
Lemma 4.2 ([5, Lemma 2]).  There exist positive constants C;, i € {1,...,4} and a family

of cutoff functions xi: X — [0,1], defined for t € (0, ], for some to > 0, such that

Vol(supp(d9x4)) < Cit,
Vol(X \ x; " (D) < Cat,
. ||85xt “Loo < C5t™2 and
. dist(supp(x), RX)) > Cyt.

I

We now prove the following fibre-wise version of Theorem 1.1:

Theorem 4.3. Let £(d) be a sequence of positive real numbers such that £(d) > B(logd)
for some B > 0. Then there exist positive constants ¢, and co such that

W pagp{u € ME(X, F?® E), #(Crit(u) NRX) > £(d)Vd} < cge” 21D’

Here, ipagy is the probability measure defined in Definition 2.6 and M%(X,Fd QF) is
defined in Definition 2.9.

Proof. For any pair of real global sections (¢, 8) € RH %X,F 4 ® F)? without common
zeros, let uyg be the real branched covering defined by z + [a(z) : B(z)]. Consider the set

Coy = (@, B) e RHO(X, F? @ E)?, #(Crit(ugp) NRX) > £(d)Vd}. (32)

Note that this set is a cone in RH?(X, F?® E)2. By Proposition 3.3, this implies that
the Gaussian measure of Cq) equals the Fubini-Study measure of its projectivisation,
which is exactly the measure we want to estimate. In order to obtain the result, we will
then compute the Gaussian measure of cone (32). Moreover, by Proposition 3.14, we have
that z € Crit(uqg) if and only if Wyg(z) =0, so that in order to compute #Crit(uyp), we
can compute the number of zeros of Wys. To do this, we will use the Poincaré-Lelong
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formula — that is, the following equality between currents:

1 -
wi— Yy b= o 90 log || W] (33)
2€{ Wop=0}
where ||| is the (induced) metric on F2QE?® T% given by Proposition 2.1 and w4 is

the corresponding curvature form. Remark that w, equals 2d-w+ O(1) (the term 2d - w
comes from the curvature form of F2?® E? and the term O(1) from the curvature form
of T%). Moreover, remark that the Hermitian metric #H-H has the same curvature as
the Hermitian metric |||, because the curvature form is not affected by a multiplicative
constant. Then equation (33) can also be read as

1 - T
2d-w+ O(1) — smzfaalog<—||Waﬁ\}), (34)
me{%zo} 21 d3/2

where the equality is in the sense of currents. We will apply equation (34) for the functions

Xty given by Lemma 4.2, for t5 = 42(2‘{)@, where C5 is the constant appearing in the lemma.

By equation (34), we then get
t(d)
> 12d{1——= 1)— .
- > pa(1- 22 ) 0m- ¥ pw@| @)

- _
log | —= | W41 )00
/X 0g ( d3/2 ” B ”) Xta 4\/3 ze{ Wep=0}

Note that for any pair of real global sections (o,f) in the cone Cyq) defined in
expression (32), we have

Y xun (@) £2d+2g—2—£(d)Vd, (36)
d

T Wep=0)

where g is the genus of X. Then, putting inequality (36) into inequality (35), we get

1 T _
[ tox (s o

for any («, B) € Cycqy- Then for d large enough, cone (32) is included in the set

2
T —
/Xlog (—d3/2 [ Wes ||>33X%> > E(d)\/E}.

The result then follows from Proposition 4.1 and Lemma 4.2. O

> %Z(d)\/ﬁ+ o),

{(a,ﬂ) eRH(X,F!®E)?,

Proof of Theorem 1.1. We fix a degree 1 real holomorphic line bundle F over
X, so that for any L € Picﬁ(X ) there exists an unique degree 0 real holomorphic line
bundle F € Pic]%(X ) such that L = F¢® E. The result then follows by integrating the
inequality appearing in Theorem 4.3 along the compact base Picﬂ%(X ) ~ Picﬁé(X ) (the
last isomorphism is given by the choice of the degree 1 real line bundle F'). O
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