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Abstract

We study an N-player game where a pure action of each player is to select a nonneg-
ative function on a Polish space supporting a finite diffuse measure, subject to a finite
constraint on the integral of the function. This function is used to define the intensity
of a Poisson point process on the Polish space. The processes are independent over the
players, and the value to a player is the measure of the union of her open Voronoi cells
in the superposition point process. Under randomized strategies, the process of points of
a player is thus a Cox process, and the nature of competition between the players is akin
to that in Hotelling competition games. We characterize when such a game admits Nash
equilibria and prove that when a Nash equilibrium exists, it is unique and consists of
pure strategies that are proportional in the same proportions as the total intensities. We
give examples of such games where Nash equilibria do not exist. A better understanding
of the criterion for the existence of Nash equilibria remains an intriguing open problem.

Keywords: Constant-sum game; Cox process; game theory; Hotelling competition; Nash
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1. Introduction

1.1. Informal problem formulation

We study games of spatial competition of the Hotelling type, where N players compete for
space. Here space is modeled as a complete separable metric space (i.e., a Polish space) D
supporting a diffuse (i.e., non-atomic) finite positive measure η on its Borel σ -field, which
we denote by B. Throughout the paper we think of D as being endowed with a fixed metric d
generating its topology. The game in question is a one-shot game. Each player’s action consists
in selecting a nonnegative measure on D which is absolutely continuous with respect to η,
among the set of all measures with a fixed finite and positive total mass. Since we will always
consider D as being metrized by the metric d and endowed with its Borel σ -algebra B, we
will not mention d and B where these can be inferred from the context. Thus, for instance,
by a nonnegative measure on D what we actually mean is a nonnegative measure on (D,B).
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Cox process Hotelling games 571

Similarly, when we talk about the open Voronoi cell of a point in a configuration of points from
D, we implicitly mean that the Voronoi cells are based on the metric d. This mass constraint
depends on the player and represents the total available intensity that the player can deploy
over the space. The measure chosen by each player results in a Poisson process of points on D
with this measure as its intensity measure, these processes being independent. Thus, if a player
uses a randomized strategy, the point process on D generated by each player is a Cox point
process, namely a point process which is conditionally Poisson given its random intensity. The
payoff of each player is the total η-measure of the union of the open Voronoi cells of the points
of the point process of this player, where the open Voronoi cells are evaluated with respect to
the superposition of the point processes of all players (if there are no points, which can happen
with positive probability, each player gets zero value; further, we need to make a technical
assumption on the metric structure of D which ensures that the union of the open Voronoi
cells is of full measure, conditioned on there being at least one point in the superposition point
process). Our goal in this paper is to study the Nash equilibria of this game.

In the two-player case, one motivation for such a formulation comes from a model for
defense against threats. The underlying space may be thought of as a model for the set of
possible attack modalities, with the metric indicating how similar attacks are to each other.
The defender and the attacker are respectively interested in defending against or deploying
the different kinds of attacks, and the total η-measure of the union of the open Voronoi cells
of the points of each player indicates how well she is doing with regard to her individual
objective of getting the upper hand over the other. The stochastic nature of the placement of
the points of a player is meant to capture the idea that the deployment of effort only results
in success in a stochastic way. The finite total intensity that each player can deploy represents
individual budget constraints. The study of Nash equilibria is then motivated by the goal of
getting some insights into how the individual players (i.e. the attacker and defender) might
play when faced with such an environment. Apart from its possible intrinsic interest, it turns
out that it is no more difficult to study the N-player version of the game than the two-player
version, for reasons that we will soon see, so we have formulated the problem we study at this
apparently broader level of generality.

1.2. Literature survey

The origin of the study of spatial competition models is generally attributed to a paper
by Hotelling [17]. Hotelling’s model has some additional features, such as prices set by the
sellers, which will not play a role in our formulation. Building on the Cournot duopoly model
([7], [31, Section 27.5]), as refined by Bertrand ([2], [31, Section 27.9]) and Edgeworth [12],
the key innovation of [17] is to introduce spatial aspects to the modeling of the competition
between sellers for buyers. Specifically, Hotelling considers the problem faced by two sellers
as to where to position themselves along an interval of fixed length, which models a market
along which consumers are uniformly distributed, and how to individually set prices for the one
identical good that they sell so that each seller maximizes its profit, given the strategy of the
other seller. In the model of Hotelling, each consumer incurs a transportation cost proportional
to its distance from the seller from which it buys, which then determines which seller it prefers,
given the sellers’ locations.

Notice that for fixed locations of the two sellers, if price discrimination is not possible (i.e.
prices are identical at the two sellers), then consumers go to the closer seller, so the problem
of each seller becomes that of how to position itself, in reaction to position of the other seller,
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572 V. ANANTHARAM AND F. BACCELLI

FIGURE 1. Hotelling competition on the unit interval with three sellers, with locations indicated. The
individual open Voronoi cells are indicated in color. In the absence of price discrimination, consumers
residing at a location in the open Voronoi cell of a seller will go to that seller.

so as to maximize the length of its Voronoi cell in the Voronoi decomposition associated to
the locations of the two sellers. See [17, Figure 1, p. 45]. The problem considered in this
paper is of this purely Voronoi-cell-decomposition type. It is worth noting that the solution
concept in [17] or, for that matter, in [7] is already of the type that one would today call a
pure-strategy Nash equilibrium, though of course these works predate by several decades the
work of von Neumann and Morgenstern [32] and Nash [24, 25], which formalized the notion
of Nash equilibrium.

There is by now a vast literature on the Hotelling competition model, and many different
variants have been developed and studied. Rather than attempt to survey this work, particularly
since the precise problem formulation we consider does not appear in the prior literature in this
area, we refer the reader to the surveys in [16, 14, 13, 27], and to the papers in the recent edited
volume [22].

Another growing body of work that is related to the themes of this paper is that of Voronoi
games; see the seminal papers [1] and [6]. Here also the players are competing to capture
regions of space according to the Voronoi decomposition of the underlying space based on the
choice of the locations of their points, but, in contrast to the model we consider, the players
are assumed to have control over exactly where they can place their points, with the constraint,
in some of the literature on Voronoi games, that these locations should lie in a given finite
set of potential locations in the ambient space. Further, in contrast to the model we consider,
much of this literature assumes that the players place their points one at a time, alternating
between the players. There is also a particular interest in this literature in the study of Voronoi
games on graphs; see e.g. [30, 11]. Note that this is incompatible with the non-atomic nature
of the underlying measure η required for our formulation. Nevertheless, our formulation was
partly inspired by a recent work in this area, on so-called Voronoi choice games, by Boppana
et al. [4].

There are also some similarities between the game we analyze and the study of the so-called
Colonel Blotto games (see [28]), on variants of which also there is a rapidly growing literature.
In the game we study, the ability of a player to control exactly where to place her points, as
in the literature on Hotelling games or Voronoi games, can be thought of as being replaced
by a softer ability to control the intensity or, in effect, the local mean number of points, in
the same way as the formulation of the so-called General Lotto game (see [20]), softens the
ability of individual players to fix the number of soldiers to be placed on each battlefield of the
Colonel Blotto game. However, the reward structure of the players in a Colonel Blotto game is
completely different from that in the Hotelling games or Voronoi games.

1.3. Notational conventions

We let N denote the set of natural numbers, and R+ the set of nonnegative real numbers.
We use := and =: for equality by definition. The indicator of a set or an event E is written as
1E or 1(E).
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1.4. Structure of the paper

Section 2 sets up the structure of two-player Cox process Hotelling games. Section 3 intro-
duces the N-player Cox process Hotelling games and develops several general properties of
the value function in these games; these are used later to prove the main results. Section 4 is
focused on the case where the underlying Polish space on which the game is played is compact
and admits a transitive group of metric-preserving automorphisms, with the base measure of
the game being invariant under this group. Section 5 studies the general case of the N-player
game and determines the structure of the Nash equilibria when they exist. A necessary and suf-
ficient condition for the existence of Nash equilibria is provided, and also examples are given
where no Nash equilibrium exists. Although Nash equilibrium, when it exists, is unique and
consists of pure strategies, it is established that Cox process Hotelling games are not ordinal
potential games in general. A family of so-called restricted Cox process Hotelling games is
defined to provide a vehicle to better understand the meaning of the criterion for the existence
of Nash equilibria.

2. Cox process Hotelling games

2.1. Diffuse non-conflicting finite positive measures

Let D be a Polish space. We write B for the Borel σ -field of D. A finite positive measure
η on D is called diffuse if for every Borel set B ∈B with η(B)> 0 there is a Borel subset
C ⊂ B with 0<η(C)<η(B). One can define a Poisson process on D based on such a diffuse
positive measure η on D; see e.g. [8, Chapter 9]. A point process on D is a random counting
measure on D. The Poisson process on D with intensity measure η, where η is any finite positive
diffuse measure on D, is the point process obtained by first selecting the total number of points
according to the Poisson distribution on N with mean η(D), and then sampling independently
the location of the points, if any, according to the measure η(.)/η(D) on B.

Recall that d denotes the fixed metric on D generating its topology. The open Voronoi cells
of any point process � with respect to d can be defined in the usual way. Namely, for x in the
support of the point process �, the open Voronoi cell W�(x) consists of those z ∈ D such that
d(x, z)< d(x′, z) for all points x′ �= x in the support of �. For our purposes, we need to impose
on η the condition that the union of the open Voronoi cells of the Poisson process on D with
intensity measure η has full measure η(D) with probability 1, conditioned on there being at
least one point in this Poisson process. If η satisfies this condition, we call it non-conflicting.
A sufficient condition for this to hold is given in Appendix A.

The importance of imposing a non-conflicting condition can be understood by considering
the following example.

Example 1. Suppose D is the disjoint union of two intervals I and J, each of length 1. Assume
that every point in I is at distance 2 from every point in J, as depicted in Figure 2. It is straight-
forward to check that the resulting metric makes D a Polish space and that the measure η on the
Borel σ -field of D which corresponds to Lebesgue measure on the two unit intervals compris-
ing D is a finite positive diffuse measure. However, η is not non-conflicting. This is because,
for instance, on the event of positive probability that the Poisson process on D with intensity
measure η has two points in I and no points in J, each point of J will be at distance 2 from
each of the two points of the Poisson process in I, and so will not belong to the open Voronoi
cell of either point.
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FIGURE 2. A metric space comprising two intervals, each of length 1. Every point in the interval on the
left is at distance 2 from every point in the interval on the right. The metric on each interval is the usual
one.

Throughout the paper, η is a finite positive diffuse non-conflicting measure on D which
will be referred to as the base measure. It is straightforward to check that if ν is any finite
positive measure on D that is absolutely continuous with respect to η, then ν is also diffuse and
non-conflicting. We write M(D) for the set of nonnegative finite measures on D.

2.2. Radon–Nikodym derivatives

In the Cox process Hotelling games considered in this paper, we think of each individual
player as choosing a positive measure on D of fixed total mass that is absolutely continuous
with respect to the base measure η. The measure chosen by the player then serves as the inten-
sity measure for a Poisson process of points on D, which we think of as the points belonging
to that player. By the Radon–Nikodym theorem, we may identify the measure chosen by the
player with its likelihood function with respect to the base measure.

With this viewpoint in mind, for any ρ > 0, let

C(ρ) :=
{

f : D →R+ s.t.
∫

D
f (x)η(dx) = ρ

}
. (1)

The set C(ρ) can be thought of as a subset of L1(η), i.e. the Lebesgue space of B-measurable
functions on D that are absolutely integrable with respect to the base measure η, and also as a
set of measures on D by identifying f ∈ C(ρ) with the measure fη. With the latter viewpoint in
mind, we think of C(ρ) as endowed with the topology of weak convergence of measures [26],
which it inherits as a subset of M(D). Note that, for all ρ > 0 and all f ∈ C(ρ), the measure
fη is diffuse and non-conflicting. Also note that, for all ρ > 0, the set C(ρ) is a convex subset
of M(D). However, since we have endowed C(ρ) with the topology of weak convergence of
measures on D, this set is not closed.

For any ρ > 0, the subset of M(D) comprising measures of total mass ρ, with the topology
of weak convergence, can be metrized so as to make it a complete separable metric space
[26, Theorem 6.2 and Theorem 6.5]. As a metric space it is first-countable, so it suffices to
discuss convergence of sequences rather than of nets [19, Theorem 8]. To discuss randomized
strategies of the individual players we need to be able to discuss probability distributions on
subsets of the type C(ρ) of M(D). This is made possible by the following result.

Lemma 1. For each ρ > 0, the set C(ρ) is a Borel subset of M(D) when M(D) is endowed
with the topology of weak convergence.

Proof. See [21, Theorem 3.5]. �
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2.3. Two-player games

In the two-player version of the game, a pure action of Alice consists of choosing an inten-
sity measure which is absolutely continuous with respect to the measure η. Namely, Alice
chooses a nonnegative measurable function fA : D →R+ as the Radon–Nikodym derivative
with respect to η of the intensity measure of its Poisson point process. We denote the set of
functions from which this choice must be made by CA, i.e.,

CA := C(ρA) =
{

fA : D →R+ s.t.
∫

D
fA(x)η(dx) = ρA

}
. (2)

Thus ρA can be thought of as a constraint on the total intensity that Alice can deploy for her
point process.

Similarly, Bob chooses a nonnegative measurable function fB : D →R+ within the class of
functions CB, where

CB := C(ρB) =
{

fB : D →R+ s.t.
∫

D
fB(x)η(dx) = ρB

}
. (3)

Here ρA and ρB are fixed positive constants. Note that CA and CB are convex subsets of M(D),
but neither of them is closed in the topology of weak convergence on M(D).

We denote such a two-player Cox process Hotelling game by (D, η, ρA, ρB).
Assume that Alice plays fA and Bob plays fB. The resulting value for Alice, denoted by

VA
(

fA, fB
)
, is defined as follows. Let �A and �B be independent Poisson point processes on

D with intensity measures fAη and fBη, respectively. We think of the points of �A as Alice’s
points, since these result from the choice of fA by Alice. Similarly we think of the points of�B

as Bob’s points. Let � := �A +�B. For all x ∈�, let W�(x) denote the open Voronoi cell of
x with respect to �. Then

VA
(

fA, fB
)

:= E

⎡
⎣∑

x∈�A

η(W�(x))

⎤
⎦ ,

where the expectation is with respect to the joint law of �A and �B, which are assumed to be
independent. Here, by definition, a sum over an empty set is 0. The value for Bob resulting
from this pair of actions, denoted by VB

(
fA, fB

)
, is determined similarly; i.e., it is

VB
(

fA, fB
)

:= E

⎡
⎣∑

x∈�B

η(W�(x))

⎤
⎦ .

In words, the value of Alice is the mean value of the sum of the η-measures of the open
�-Voronoi cells centered at her points if she has points, and is 0 otherwise, and likewise for
the value of Bob. Intuitively, one thinks of the points of Alice and those of Bob as competing
to capture the ambient space, with a point in the ambient space D belonging to Alice if the
closest point to it is one of Alice, and to Bob otherwise. Under our non-conflicting condition
on the base measure η, there is no need to worry about how to break ties.

Note that
VA
(

fA, fB
)+ VB

(
fA, fB

)= η(D)
(
1 − e−ρ) (4)

for all
(

fA, fB
) ∈ CA × CB, where ρ := ρA + ρB. This is because, by virtue of our assumption

that η is non-conflicting, the sum of the values of Alice and Bob is η(D), except on the event
where neither�A nor�B has any points, which is an event of probability 1 − e−ρ . The formula
in Equation (4) is formally established in Lemma 2 below.
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2.4. Nash equilibrium in two-player games

In view of Lemma 1, any mixed-strategy pair in the two-player game (D, η, ρA, ρB) between
Alice and Bob can be written as ( fA(MA), fB(MB)), where MA ∈MA and MB ∈MB are inde-
pendent random variables representing the randomizations used by Alice and Bob respectively
in implementing randomized strategies, and fA(mA) ∈ CA (respectively, fB(mB) ∈ CB) is the
choice of Alice (respectively, Bob) in case the realization of her random variable MA is mA

(respectively, the realization of his random variable MB is mB). The value of Alice in such
a mixed strategy is E

[
VA
(

fA
(
MA
)
, fB
(
MB
))]

, while that of Bob is E
[
VB
(

fA
(
MA
)
, fB
(
MB
))]

,
the expectations being taken with respect to the joint distribution of MA and MB, which are
independent. As a direct consequence of Equation (4), we have

E
[
VA
(

fA
(
MA
)
, fB
(
MB
))]+E

[
VB
(

fA
(
MA
)
, fB
(
MB
))]= η(D)

(
1 − e−ρ), (5)

where ρ := ρA + ρB.

Definition 1. The pair of independently randomized strategies ( fA(MA), fB(MB)) ∈ CA × CB is
called a Nash equilibrium of the game between Alice and Bob if, for all gA ∈ CA and gB ∈ CB,
we have

E
[
VA
(

fA
(
MA
)
, fB
(
MB
))]≥E

[
VA
(
gA, fB

(
MB
))]

(6)

and
E
[
VB
(

fA
(
MA
)
, fB
(
MB
))]≥E

[
VB
(

fA
(
MA
)
, gB
)]

. (7)

In words, Alice sees no advantage in playing the strategy gA instead of her randomized strategy
fA(MA), given that Bob is playing his randomized strategy fB(MB), and similarly for Bob.

3. Supporting lemmas

3.1. A formula for the value

Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) between Alice and Bob,
and suppose that the players play the action pair ( fA, fB). Let �A and �B denote the Poisson
processes of points of Alice and Bob respectively on D. Recall that these are independent
point processes. Let Px

A

(
respectively, Px

B

)
denote the Palm probability [18, Chapter 6] with

respect to �A (respectively, �B) at x. By Slivnyak’s theorem [18, Lemma 6.14], under the
Palm probability with respect to �A at x, �A consists of a point at x and a Poisson process on
D of intensity fAη, and �B consists of an independent Poisson process on D of intensity fBη.
The Palm probability with respect to �B at x has a symmetrical description.

From Campbell’s formula [18, Section 6.1] we have

VA
(

fA, fB
)= ∫

D
fA(x)Ex

A

[
η(W�(x))

]
η(dx).

Here the expectation is with respect to the law of � under the Palm distribution P
x
A. From the

description of this Palm distribution, we have

E
x
A

[
η(W�(x))

]=E
x
A

[ ∫
y∈D

1{y∈W�(x)}η(dy)

]
(a)=
∫

y∈D
P

x
A

(
y ∈ W�(x)

)
η(dy)

(b)=
∫

y∈D
e− ∫B(y→x) ( fA(u)+fB(u))η(du)

η(dy),
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where
B(y → x) := {z ∈ D s.t. d(z, y) ≤ d(x, y)

}
.

The notation B(y → x) is supposed to bring to mind a closed ball centered at y having x at its
boundary.

In the chain of equations above, Step (a) comes from an application of Fubini’s theorem
and Step (b) from Slivnyak’s theorem. Hence

VA( fA, fB) =
∫

x∈D
fA(x)

∫
y∈D

e− ∫B(y→x) ( fA(u)+fB(u))η(du)
η(dy)η(dx). (8)

3.2. N-player games

The point process analysis above and the resulting formula in Equation (8) in the two-
player case also leads to a formula in an N-player Cox process Hotelling game for the value
Vi( f1, . . . , fN) seen by player i when the pure strategies deployed by the individual players are
f1, . . . , fN respectively. For this, let fj : D →R+ be a nonnegative measurable function on D
belonging to

Cj := C(ρj) =
{

fj : D →R+ s.t.
∫

D
fj(x)η(dx) = ρj

}
, (9)

where the ρj > 0 are fixed for 1 ≤ j ≤ N. Note that each Cj is a convex subset of M(D), but is
not closed in the topology of weak convergence. Assume that the individual players play fi ∈ Ci

for 1 ≤ i ≤ N. Let �i be a Poisson point process on D with intensity measure fiη, with these
processes being mutually independent for 1 ≤ i ≤ N, and let � := ∑N

i=1 �i. We think of the
points of �i as the points of player i, since these result from the choice of fi, which was made
by that player. Then the value of player i, denoted by Vi( f1, . . . , fN), is given by

Vi( f1, . . . , fN) := E

⎡
⎣∑

x∈�i

η(W�(x))

⎤
⎦ .

The expectation is with respect to the joint law of (�j, 1 ≤ j ≤ n), which are independent. Here,
by definition, a sum over an empty set is 0.

We denote such an N-player Cox process Hotelling game by (D, η, ρ1, . . . , ρN).
We can write a formula for Vi( f1, . . . , fN), based on Equation (8), by thinking of the points

of player i as competing for space in D with the union of the points of the other players. Thus
we have

Vi( f1, . . . , fN) =
∫

x∈D
fi(x)
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx), (10)

where f := ∑N
i=1 fi.

Note that we must have

N∑
i=1

Vi( f1, . . . , fN) = η(D)
(
1 − e−ρ), (11)

where ρ := ∑N
j=1 ρj. This is because we have

∫
x∈D f (x)η(dx) = ρ, so the law of the total

number of points is Poisson with mean ρ, and thus, by virtue of our assumption that η is
non-conflicting, the total value of all the players is η(D) except on the event that there are no
points in �, in which case the total value is 0. The formula in Equation (11) is established in
Lemma 2 below.
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3.3. Nash equilibrium in N-player games

In view of Lemma 1, any mixed-strategy pair in an N-player Cox process Hotelling game(
D, η, ρ1, . . . , ρN

)
can be written as

(
f1(M1), . . . , fN(MN)

)
, where

(
Mj ∈Mj, 1 ≤ j ≤ N

)
are

independent random variables representing the randomizations used by the individual players
in implementing their randomized strategies, and fj(mj) ∈ Cj is the choice of action of player j
in case the realization of her random variable Mj is mj. The value of player i in such a mixed
strategy is E

[
Vi
(

f1(M1), . . . , fN(MN)
)]

, the expectation being taken with respect to the joint
distribution of

(
Mj, 1 ≤ j ≤ N

)
, which are independent. As a direct consequence of Equation

(11), we have
N∑

i=1

E[Vi( f1(M1), . . . , fN(MN))] = η(D)|(1 − e−ρ), (12)

where ρ := ∑N
i=1 ρi.

Definition 2. The vector of independently randomized strategies

( f1(M1), . . . , fN(MN)) ∈ C1 × . . .× CN

is called a Nash equilibrium of the N-player game if, for all gj ∈ Cj, 1 ≤ j ≤ N, we have, for all
1 ≤ i ≤ N,

E
[
Vi( f1(M1), . . . , fN(MN))

]≥E
[
Vi
(
gi,
(

fj
(
Mj
)
, j �= i

))]
. (13)

In words, the player i perceives no advantage in playing the strategy gi instead of the ran-
domized strategy fi(Mi), given that the other players, i.e. the players j �= i, are playing the
individually randomized strategies

(
fj
(
Mj
)
, j �= i

)
.

3.4. A conservation law

To establish the conservation law in Equation (11) and the special case of it in Equation (4),
it suffices to demonstrate that for all ρ > 0 and all f ∈ C(ρ), we have Equation (14) below. This
is because we would then immediately obtain the desired conservation laws from Equation
(10) and the special case in Equation (8), respectively, by summing these formulas over the
individual players. We establish (14) formally in the following lemma.

Lemma 2. For any ρ > 0 and f ∈ C(ρ), we have∫
x∈D

f (x)
∫

y∈D
e− ∫B(y→x) f (u)η(du)

η(dy)η(dx) = η(D)
(
1 − e−ρ) . (14)

Proof. We give two proofs of this formula. The first one is probabilistic. Let � denote
a Poisson process on D with intensity measure fη. By Campbell’s formula and Slivnyak’s
theorem [18], the integral on the left-hand side of (14) is just

E

[∑
x∈�

η(W�(x))

]
,

where W�(x) denotes the open Voronoi cell of x ∈� with respect to the Poisson process �. If
�(D) = 0, which happens with probability e−ρ , the sum is 0. On the complementary event the
sum is ρ(D), since, by virtue of the assumption that η is non-conflicting, the collection of sets
(W�(x), x ∈�) form a partition of D up to a set of η-measure 0.
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The second proof is analytical. We have, for each y ∈ D,

∫
x∈D

f (x)e− ∫u∈B(y→x) f (u)η(du)
η(dx) = 1 − e−ρ,

since, when η is non-conflicting, the integral on the left-hand side of the preceding equation is
just the probability that a nonhomogeneous Poisson process with intensity function f (x) with
respect to η has at least one point in D (to see this, think of moving out from y by balls of
increasing radius till one covers all of D). Thus we have

∫
y∈D

∫
x∈D

f (x)e− ∫u∈B(y→x) f (u)η(du)
η(dy)η(dx) = η(D)

(
1 − e−ρ).

But the left-hand side of the preceding equation equals the left-hand side of Equation (14), by
an application of Fubini’s theorem. �

3.5. Constant strategies

Consider a two-player Cox process Hotelling game (D, η, ρA, ρB). Write ρ̄A for the strategy
of Alice where she chooses fA to be the constant ρA

η(D) , and similarly write ρ̄B for the strategy

of Bob where he chooses fB to be the constant ρB
η(D) . Note that ρ̄A ∈ CA and ρ̄B ∈ CB.

The following useful lemma gives an explicit formula for the value obtained by Alice and
that obtained by Bob in the two-player game (D, η, ρA, ρB) when the players play the constant
strategies ρ̄A and ρ̄B respectively. Note that, while the strategies are constant, the resulting
intensities are ρA

η(D)η and ρB
η(d)η for Alice and Bob respectively.

Lemma 3. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB). Then VA(ρ̄A,

ρ̄B) = ρA
ρ
η(D)(1 − e−ρ) and VB

(
ρ̄A, ρ̄B

)= ρB
ρ
η(D)(1 − e−ρ), where ρ := ρA + ρB.

Proof. We have

VA
(
ρ̄A, ρ̄B

) (a)=
∫

x∈D

ρA

η(D)

∫
y∈D

e− ρ
η(D) η(B(y→x))

η(dy)η(dx)

= ρA

ρ

∫
x∈D

∫
y∈D

ρ

η(D)
e− ρ

η(D) η(B(y→x))
η(dy)η(dx)

(b)= ρA

ρ

∫
y∈D

∫
x∈D

ρ

η(D)
e− ρ

η(D) η(B(y→x))
η(dx)η(dy)

(c)= ρA

ρ
η(D)(1 − e−ρ).

Here, Step (a) is from Equation (8), Step (b) is an application of Fubini’s theorem, and
Step (c) comes from Lemma 2. The formula for VB

(
ρ̄A, ρ̄B

)
results from interchanging the

roles of Alice and Bob in this calculation. �
In an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρM), write ρ̄i for the strategy of

player i, 1 ≤ i ≤ N, where she chooses fi to be the constant ρi
η(D) . We then have the following

analogue of Lemma 3.
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Lemma 4. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN). Then, for
all 1 ≤ i ≤ N, we have

Vi
(
ρ̄1, . . . , ρ̄N

)= ρi

ρ
η(D)(1 − e−ρ),

where ρ := ∑N
i=1 ρi.

Proof. The proof is similar to that of Lemma 3, when one starts with Equation (10) instead
of Equation (8) and makes the obvious modifications. �

3.6. Concavity of the value

To close this section, we record a convexity property that will play a key role in establishing
the main claims of this paper.

Lemma 5. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB). Fix fB ∈ CB and
x ∈ D. Then the mapping

fA 
→
∫

y∈D
e− ∫B(y→x) ( fA(u)+fB(u))η(du)

η(dy)

is strictly convex on CA, which, we recall, is a convex set.
As a consequence, fA 
→ VB( fA, fB), for fixed fB ∈ CB, is strictly convex on CA, and hence

fA 
→ VA( fA, fB), for fixed fB ∈ CB, is strictly concave on CA.

Proof. Let fA, f ′
A ∈ CA and θ ∈ [0, 1]. Then we have∫

y∈D
e− ∫B(y→x) (θ fA(u)+(1−θ)f ′

A(u)+fB(u))η(du)
η(dy)

≤ θ
∫

y∈D
e− ∫B(y→x) ( fA(u)+fB(u))η(du)

η(dy)

+ (1 − θ )
∫

y∈D
e− ∫B(y→x)

(
f ′
A(u)+fB(u)

)
η(du)

η(dy),

from the convexity of the exponential function, and this inequality is strict if θ /∈ {0, 1} and
fA �= f ′

A. This proves the first claim of the lemma.
From Equation (8), we have

VB( fA, fB) =
∫

x∈D
fB(x)

∫
y∈D

e− ∫B(y→x) ( fA(u)+fB(u))η(du)
η(dy)η(dx). (15)

Since, for fixed fB ∈ CB, the inner integral is strictly convex on CA for each x ∈ D, the overall
integral is also strictly convex on CA, which establishes the second claim of the lemma.

Finally, from the conservation rule in Equation (4), we have VA( fA, fB) = η(D)
(
1 − e−ρ)−

VB
(

fA, fB
)
, where ρ := ρA + ρB. From the second claim of the lemma, the third claim now

follows immediately. �
The main claim of Lemma 5 is the third one about the strict concavity of the value function.

This also holds for N-player Cox process Hotelling games. We state this claim formally in the
following lemma.

Lemma 6. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN). Recall that
the sets of pure actions Ci for player i, 1 ≤ i ≤ N, as defined in Equation (9), are convex subsets
of M(D).
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For each 1 ≤ i ≤ N, the map fi 
→ Vi( f1, . . . , fN), for fixed fj ∈ Cj, j �= i, is strictly concave
on Ci.

Proof. This is a direct consequence of the third claim of Lemma 5, once one observes that
the value of player i, when she plays fi in response to the actions fj of the players j �= i in the
N-player game, is that same as her value when she plays fi in response to the pure action

∑
j �=i fj

of the opposing player in a two-player game where the intensity constraint of the opposing
player is

∑
j �=i ρj. �

4. Invariance under a transitive group action

In this section, we consider the case where D is compact and admits a transitive group of
metric-preserving automorphisms, and where η is invariant under this group of automorphisms.
This scenario covers several interesting concrete cases, such as the metric tori derived from
lattice fundamental regions in R

d, with the metric of Rd and Lebesgue measure; spheres of a
fixed radius with the associated uniform measure, which is invariant under rigid rotations; etc.

4.1. Exploiting concavity of the value

The following lemma, which it suffices to state in the two-player case, is the key technical
result driving the game-theoretic results in this section.

Lemma 7. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) where D is com-
pact and admits a transitive group of metric-preserving automorphisms, and η is invariant
under this group of automorphisms. Then, for any strategy fA ∈ CA of Alice, we have

VA
(

fA, ρ̄B
)≤ VA

(
ρ̄A, ρ̄B

)= ρA

ρ
η(D)

(
1 − e−ρ),

where ρ := ρA + ρB. Further, we have the strict inequality

VA
(

fA, ρ̄B
)
< VA

(
ρ̄A, ρ̄B

)
,

except in the case fA = ρ̄A.

Proof. From Lemma 3, we have VA
(
ρ̄A, ρ̄B

)= ρA
ρ
η(D)(1 − e−ρ), which is one of the claims

of this lemma. From Lemma 5 for the choice fB = ρ̄B, we conclude that VA
(

fA, ρ̄B
)

is strictly
concave on CA. We now use this to conclude that VA

(
fA, ρ̄B

)
is uniquely maximized over CA

by the choice fA = ρ̄A. Indeed, if fA ∈ CA, fA �= ρ̄A, then we can find a translate f ′
A of fA such

that fA �= f ′
A. We have VA

(
fA, ρ̄B

)= VA
(

f ′
A, ρ̄B

)
, because fA and f ′

A are translates of each other.
However, since fA �= f ′

A, we have

VA

(
1

2

(
fA + f ′

A

)
, ρ̄B

)
>

1

2
VA
(

fA, ρ̄B
)+ 1

2
VA
(

f ′
A, ρ̄B

)= VA
(

fA, ρ̄B
)
.

Hence, fA cannot be the maximizer of VA
(

fA, ρ̄B
)

over CA unless it is translation-invariant, i.e.
unless it equals ρ̄A. This concludes the proof of the lemma. �

4.2. Nash equilibrium structure for two-player games

We are now in a position to determine the Nash equilibrium structure of two-player Cox
process Hotelling games (D, η, ρA, ρB) in the context of this section.
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Theorem 1. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) between two
players, Alice and Bob, where D is compact and admits a transitive group of metric-preserving
automorphisms, and η is invariant under this group of automorphisms. Then

(
ρ̄A, ρ̄B

)
is the

unique Nash equilibrium for the game.

Proof. We need to show that if ( fA(MA), fB(MB)) is a Nash equilibrium for the game, then
fA(MA) = ρ̄A and fB(MB) = ρ̄B with probability 1.

Suppose first that fB(MB) = ρ̄B with probability 1. If P
(

fA(MA) �= ρ̄A
)
> 0, then by Lemma 7

we have
E
[
VA
(

fA(MA), fB(MB)
)]=E

[
VA
(

fA(MA), ρ̄B
)]
< VA

(
ρ̄A, ρ̄B

)
.

On the other hand, since fA(MA) is a best response by Alice to the strategy fB(MB) of Bob, we
have

E
[
VA
(

fA(MA), fB(MB)
)]≥E

[
VA
(
ρ̄A, fB(MB)

)]= VA
(
ρ̄A, ρ̄B

)
.

This contradiction establishes that if fB(MB) = ρ̄B with probability 1, then we must have
fA(MA) = ρ̄A with probability 1. A similar argument works to show that if fA(MA) = ρ̄A with
probability 1 then we must have fB(MB) = ρ̄B with probability 1.

Thus, it remains to handle the case where we have both P
(

fA(MA) �= ρ̄A
)
> 0 and

P
(

fB(MB) �= ρ̄B
)
> 0. In this case, since fA(MA) is a best response by Alice to the strategy

fB(MB) of Bob, we have

E
[
VA
(

fA(MA), fB(MB)
)]≥E

[
VA
(
ρ̄A, fB(MB)

)]
, (16)

and, since fB(MB) is a best response by Bob to the strategy fA(MA) of Alice, we have

E
[
VB
(

fA(MA), fB(MB)
)]≥E

[
VB
(

fA(MA), ρ̄B
)]

. (17)

Now, since P
(

fB(MB) �= ρ̄B
)
> 0, by Lemma 7 we have

E
[
VB
(
ρ̄A, fB(MB)

)]
< VB

(
ρ̄A, ρ̄B

)
,

so that, by (5), we have
E
[
VA
(
ρ̄A, fB(MB)

)]
> VA

(
ρ̄A, ρ̄B

)
.

Combining this with (16), we get

E
[
VA
(

fA(MA), fB(MB)
)]
> VA

(
ρ̄A, ρ̄B

)
.

Similar reasoning, based on (17), gives

E
[
VB
(

fA(MA), fB(MB)
)]
> VB

(
ρ̄A, ρ̄B

)
.

However, putting these inequalities together contradicts the conservation law in (5). This
completes the proof of the theorem. �

4.3. Nash equilibrium structure for N-player games

Theorem 1 is actually a special case of a uniqueness theorem for Nash equilibria in the
general N-player case. The proof in the N-player case also depends on a peculiar feature of Cox
process Hotelling games, which is that a player faced with the strategies of the other players,
i.e., their individual choices of likelihood functions with respect to the underlying measure η
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which result in their individual intensities, receives the same value as she would in a two-player
game where she is faced with a single player playing a likelihood with respect to the underlying
measure η that results in an intensity equal to the sum of the intensities corresponding to the
strategies of the other players. With this in mind, we turn now to the N-player case.

Theorem 2. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN) where D is
compact and admits a transitive group of metric-preserving automorphisms, and η is invariant
under this group of automorphisms. Let ρ̄j ∈ Cj denote the constant function

ρj
η(D) , which results

in the constant intensity
ρj
η(D)η for player j.

Then
(
ρ̄1, . . . , ρ̄N

)
is the unique Nash equilibrium for this game.

Proof. We need to show that if ( f1(M1), . . . , fN(MN)) is a Nash equilibrium, then
P
(

fj
(
Mj
)= ρ̄j

)= 1 for all 1 ≤ j ≤ N. To do this, suppose first, after reindexing if needed, that
we have P

(
f1(M1) �= ρ̄1

)
> 0 and

P

⎛
⎝ N∑

j=2

fj
(
Mj
)= N∑

j=2

ρ̄j

⎞
⎠= 1.

Then, because f1(M1) is a best reaction of player 1 to the individually randomized strategies(
fj
(
Mj
)
, 2 ≤ j ≤ N

)
of the other players, we have

E
[
V1
(

f1(M1), f2(M2), . . . , fN(MN)
)]≥E

[
V1
(
ρ̄1, f2(M2), . . . , fN(MN)

)]
. (18)

On the other hand, by Lemma 7, we have

E
[
V1
(

f1(M1), f2(M2), . . . , fN(MN)
)]
<E
[
V1
(
ρ̄1, f2(M2), . . . , fN(MN)

)]
. (19)

To see this, observe that V1( f1(M1), f2(M2), . . . , fN(MN)) is the same as the value of player 1 in
the two-player game in which she plays the randomized strategy f1(M1) against a single oppo-
nent playing the strategy

∑N
j=2 fj

(
Mj
)
, which we have assumed equals the constant

∑N
j=2 ρ̄j

with probability 1, and also V1(ρ̄1, f2(M2), . . . , fN(MN)) is the same as the value of player 1
in the two-player game in which she plays the constant strategy ρ̄1 against a single oppo-
nent playing the strategy

∑N
j=2 fj

(
Mj
)
, which we have assumed equals the constant

∑N
j=2 ρ̄j

with probability 1, and so the scenario of Lemma 7 applies to allow us to compare these two
values. Note that the inequalities (18) and (19) contradict each other. Thus, we can conclude
that if ( f1(M1), . . . , fN(MN)) is a Nash equilibrium, then for every player 1 ≤ i ≤ N for which

P
(

fi(Mi) �= ρ̄i
)
> 0, we must also have P

(∑
j �=i fj
(
Mj
) �=∑j �=i ρ̄j

)
> 0.

Suppose now, after reindexing if necessary, that P
(

f1(M1) �= ρ̄1
)
> 0. We have established

that we must also have

P

⎛
⎝ N∑

j=2

fj
(
Mj
) �= N∑

j=2

ρ̄j

⎞
⎠> 0.

Since f1(M1) is a best reaction of player 1 to the individually randomized strategies(
fj
(
Mj
)
, 2 ≤ j ≤ N

)
of the other players, the inequality in (18) holds. Because P

(∑N
j=2 fj

(
Mj
) �=∑N

j=2 ρ̄j
)
> 0, from Lemma 7 we also have

N∑
j=2

E
[
Vj
(
ρ̄1, f2(M2), . . . , fN(MN)

)]
<

N∑
j=2

Vj
(
ρ̄1, ρ̄2, . . . , ρ̄N

)
. (20)
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To see this, note that the sum of the values of the other players 2 ≤ j ≤ N, when player 1
plays the constant strategy ρ̄1, is the same as the value of a single player playing the strategy∑N

j=2 fj
(
Mj
)

against player 1 playing the constant strategy ρ̄1 in a two-player game between
player 1 and this single player, where the overall intensity constraint of player 1 continues to be

ρ1 and that of this single player is
∑N

j=2 ρj. Since P

(∑N
j=2 fj

(
Mj
) �=∑N

j=2 ρ̄j

)
> 0, Lemma 7

allows us to conclude that this value is strictly less than the value this single player would get
by playing the constant strategy

∑N
j=2 ρ̄j against player 1, who is playing the constant strategy

ρ̄1. But this is equal to the sum of the values of the individual players 2 ≤ j ≤ N in the given
N-player game when they individually play the constant strategies

(
ρ̄j, 2 ≤ j ≤ N

)
respectively,

and player 1 is playing the constant strategy ρ̄1.
Now, in view of the conservation law in Equation (12), we can conclude from the inequality

(20) that

E
[
V1
(
ρ1, f2(M2), . . . , fN(MN)

)]
> V1

(
ρ̄1, ρ̄2, . . . , ρ̄N

)
.

Thus, so far, what we have concluded is that if ( f1(M1), . . . , fN(MN)) is a Nash equilibrium,
then, for every 1 ≤ i ≤ N such that P

(
fi(Mi) �= ρ̄i

)
> 0, we must have

E
[
Vi
(
ρ̄i,
(

fj
(
Mj
)
, j �= i

))]
> Vi
(
ρ̄1, ρ̄2, . . . , ρ̄N

)
. (21)

Finally, suppose that P( fi(Mi) = ρ̄i) = 1 for some 1 ≤ i ≤ N. Then we must have

E
[
Vi
(
ρ̄i,
(

fj
(
Mj
)
, j �= i

))]≥ Vi
(
ρ̄1, ρ̄2, . . . , ρ̄N

)
. (22)

To see this, note that the quantity
∑

k �=i E
[
Vk
(
ρ̄i,
(

fj
(
Mj
)
, j �= i

))]
is the same as the value

of a single player who plays the strategy
∑

j �=i fj
(
Mj
)

in the two-player game against player
i playing the constant strategy ρ̄i. By Lemma 7, this is no bigger that the value this single
player would get if she played the constant strategy

∑
j �=i ρ̄j, but this value is the same as∑

j �=i Vj
(
ρ̄1, ρ̄2, . . . , ρ̄N

)
. To deduce (22) from this logic, we apply the conservation rule in

Equation (12).
The inequalities in (21) and (22) together result in a contradiction of Equation (12) unless

we have P( fi(Mi) = ρ̄i) = 1 for all 1 ≤ i ≤ N. This concludes the proof of the theorem. �

5. General results

In this section we discuss the structure of Nash equilibria in a general N-player Cox process
Hotelling game (D, η, ρ1, . . . , ρN) without the group-theoretic assumptions of Section 4.

5.1. Structure of the Nash equilibria, assuming one exists

Leaving aside for the moment the question of existence of Nash equilibria, the strict con-
cavity of the value function of a player for fixed choices of the pure actions of the other players,
which was established in Lemmas 5 and 6, ensures that any Nash equilibrium that exists must
be pure. We discuss this first for the two-player case.

Theorem 3. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) between the
players Alice and Bob. Suppose

(
fA(MA), fB(MB)

) ∈ CA × CB is a Nash equilibrium of the
game, as defined in Definition 1. Then there exist gA ∈ CA and gB ∈ CB such that

P(( fA(MA), fB(MB) = (gA, gB)) = 1.
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Proof. We write

E
[
VA
(

fA(MA), fB(MB)
)]=E

[
E
[
VA( fA(MA), fB(MB))|MB

]]
(a)≤ E
[
E
[
VA
(
E
[
fA(MA)|MB

]
, fB(MB)

)|MB
]]

(b)= E
[
E
[
VA
(
E
[
fA(MA)

]
, fB(MB)

)|MB
]]

=E
[
VA
(
E
[
fA(MA)

]
, fB(MB)

]
.

Here, Step (a) comes from the concavity property of the value function established in Lemma 5,
and Step (b) comes from independence of MA and MB. Since ( fA(MA), fB(MB)) is a Nash
equilibrium pair, we see from Definition 1 that the inequality in the chain of equations above
must be an equality. But then, by the strict concavity property of the value function established
in Lemma 5, it follows that P

(
fA(MA) =E

[
fA(MA)

])= 1. A similar argument interchanging the
roles of Alice and Bob completes the proof, with gA being E

[
fA(MA)

]
and gB being E

[
fB(MB)

]
in the notation of the statement of the lemma. �

The analogue of Theorem 3 also holds in the N-player case.

Theorem 4. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN). Suppose
( f1(M1), . . . , fN(MN)) ∈ C1 × . . .× CN is a Nash equilibrium of the game, as defined in
Definition 2. Then there exist gi ∈ Ci, 1 ≤ i ≤ N, such that

P(( f1(M1), . . . , fN(MN) = (g1, . . . , gN)) = 1.

Proof. The proof is similar to that of Theorem 3, with the obvious modifications. The key
observation, if one wants to base the proof on Lemma 5, is that the value of player i when she
plays the randomized strategy fi(Mi) in response to the randomized strategies fj

(
Mj
)
, j �= i of

the other players in the N-player game is the same as her value when she plays the randomized
strategy fi(Mi) in response to the randomized strategy

∑
j �=i fj
(
Mj
)

of the opposing player in a
two-player game where the opposing player has the intensity constraint

∑
j �=i ρj. This observa-

tion then leads to the conclusion that P
(
fi(Mi) = E

[
fi(Mi)

])= 1, by following the lines of the
proof of Theorem 3, and since this holds for all 1 ≤ i ≤ N, this completes the proof.

Alternatively, one can write out the obvious analogue of the sequence of equations in the
proof of Theorem 3 by conditioning on

(
Mj, j �= i

)
, for each 1 ≤ i ≤ N, and base the proof on

the strict concavity property for the N-player game proved in Lemma 6. �
In fact, the strict concavity property of the value function of a player, as established in

Lemmas 5 and 6, together with the constant-sum nature of the game, ensures that if a Nash
equilibrium exists, then it is not only pure, but also unique. We state this first in the two-player
case.

Theorem 5. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) between the
players Alice and Bob. Suppose ( fA, fB) ∈ CA × CB and (gA, gB) ∈ CA × CB are pure Nash
equilibria of the game. Then fA = gA and fB = gB.

Proof. We will first show that

VA(gA, gB) = VA
(

fA, fB
)
. (23)

The procedure to do this is standard in the theory of constant-sum games, but is reproduced here
for convenience. To verify Equation (23), note that VA(gA, fB) ≤ VA( fA, fB), because ( fA, fB) is
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a Nash equilibrium; see (6). But then, by the constant-sum nature of the game (see (5)), we have
VB(gA, fB) ≥ VB

(
fA, fB

)
. However, since (gA, gB) is a Nash equilibrium, we have VB(gA, gB) ≥

VB(gA, fB), so we conclude that VB(gA, gB) ≥ VB
(

fA, fB
)
. Interchanging the roles of ( fA, fB)

and (gA, gB) then gives VB
(

fA, fB
)≥ VB(gA, gB), which establishes (23).

We next show that
VA(gA, fB) = VA( fA, fB). (24)

We have VB(gA, gB) ≥ VB(gA, fB) because (gA, gB) is a Nash equilibrium. Hence, by the
constant-sum nature of the game (see Equation (5)), we have VA(gA, gB) ≤ VA(gA, fB). In view
of Equation (23), this gives VA

(
fA, fB

)≤ VA(gA, fB), but since ( fA, fB) is a Nash equilibrium,
this can only hold with equality; i.e. Equation (24) holds.

Now, since ( fA, fB) is a Nash equilibrium, we know that fA is a best response of Alice to
the pure strategy fB of Bob. Thus, Equation (24) tells us that gA is also a best response of
Alice in response to fB. The strict concavity property of the value function of Alice, proved in
Lemma 5, shows that this is possible only if gA = fA. Interchanging the roles of Alice and Bob,
we conclude that we must also have gB = fB. This concludes the proof of the lemma. �

Assume Nash equilibria exist. Beyond there being a unique pure Nash equilibrium, the spe-
cial structure of the game allows us to say more about the form of this unique Nash equilibrium.
We state the result first in the two-player case.

Theorem 6. Consider a two-player Cox process Hotelling game (D, η, ρA, ρB) between the
players Alice and Bob. Suppose ( fA, fB) ∈ CA × CB is a pure Nash equilibrium of the game.
Then fA = ρA

ρ
f and fB = ρB

ρ
f , where f := fA + fB.

Proof. Suppose Alice reacts to fB by playing ρA
ρB

fB. Let ρ := ρA + ρB. We have

VA

(
ρA

ρB
fB, fB

)
(a)= ρA

ρB

∫
x∈D

fB(x)
∫

y∈D
e
− ∫B(y→x)

ρ
ρB

fB(u)η(du)
η(dy)η(dx)

= ρA

ρ

∫
x∈D

ρ

ρB
fB(x)

∫
y∈D

e
− ∫B(y→x)

ρ
ρB

fB(u)η(du)
η(dy)η(dx)

(b)= ρA

ρ
η(D)

(
1 − e−ρ),

where Step (a) is from Equation (8) and Step (b) is from Equation (14). Since ( fA, fB) is a Nash
equilibrium, it follows that

VA
(

fA, fB
)≥ ρA

ρ
η(D)

(
1 − e−ρ).

Interchanging the roles of Alice and Bob gives

VB
(

fA, fB
)≥ ρB

ρ
η(D)

(
1 − e−ρ).

In view of the constant-sum property in Equation (5), it then follows that we have equality in
both these inequalities, i.e.

VA
(

fA, fB
)= ρA

ρ
η(D)

(
1 − e−ρ),

and
VB
(

fA, fB
)= ρB

ρ
η(D)

(
1 − e−ρ).
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But then we have VA
(

fA, fB
)= VA

(
ρA
ρB

fB, fB
)
, so the strict concavity property of the value of

Alice proved in Lemma 5, together with the assumption that ( fA, fB) is a Nash equilibrium,
implies that fA = ρA

ρB
fB, which suffices to establish the claim. (One can also go through this

argument again interchanging the roles of Alice and Bob, but it is not necessary to do so.) �
The analogue of Theorem 5 and the stronger statement in Theorem 6 also hold in the

N-player case. We state these claims together.

Theorem 7. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN). Suppose
( f1, . . . , fN) ∈ C1 × . . .× CN and (g1, . . . , gN) ∈ C1 × . . .× CN are pure Nash equilibria of
the game. Then fi = gi for 1 ≤ i ≤ N. Indeed, if ( f1, . . . , fN) ∈ C1 × . . .× CN is a pure Nash
equilibrium of the game, then fi = ρif for 1 ≤ i ≤ N, where f := ∑N

i=1 fi.

Proof. We prove the stronger statement. The proof is similar to that of Theorem 6. Suppose
player i reacts to the strategy profile ( fj, j �= i) by playing

ρi∑
j �=i ρj

∑
j �=i

fj.

Let ρ := ∑N
i=1 ρi. We have

Vi

(
ρi∑
j �=i ρj

∑
j �=i

fj,
(

fj, j �= i
))

(a)= ρi∑
j �=i ρj

∫
x∈D

∑
j �=i

fj(x)
∫

y∈D
e
− ∫u∈B(y→x)

ρ∑
j �=i ρj

∑
j �=i fj(u)η(du)

η(dy)η(dx)

= ρi

ρ

∫
x∈D

ρ∑
j �=i ρj

∑
j �=i

fj(x)
∫

y∈D
e
− ∫u∈B(y→x)

ρ∑
j �=i ρj

∑
j �=i fj(u)η(du)

η(dy)η(dx)

(b)= ρi

ρ
η(D)

(
1 − e−ρ),

where Step (a) is from Equation (10) and Step (b) is from Equation (14). Since ( f1, . . . , fN) is
a Nash equilibrium, it follows that

Vi( f1, . . . , fN) ≥ ρi

ρ
η(D)

(
1 − e−ρ).

Since this holds for all 1 ≤ i ≤ N, it follows from Equation (11) that this inequality must hold
with equality for all 1 ≤ i ≤ N, i.e. that we have

Vi( f1, . . . , fN) = ρi

ρ
η(D)

(
1 − e−ρ)

for all 1 ≤ i ≤ N. But then, for each 1 ≤ i ≤ N we have

Vi

(
fi = ρi∑

j �=i ρj

∑
j �=i

fj, ( fj, j �= i)

)
= Vi( f1, . . . , fN),
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so from the strict concavity property of the value function of player i proved in Lemma 6 and
the fact that fi is a best response of player i to the strategy profile ( fj, j �= i) of the other players,
we must have

fi = ρi∑
j �=i ρj

∑
j �=i

fj,

which is the same as fi = ρi
ρ

f , where f := ∑N
i=1 fi. This completes the proof of the

theorem. �
The properties of Nash equilibria of Cox process Hotelling games established so far,

assuming a Nash equilibrium exists, can be gathered into the following statement.

Theorem 8. Consider an N-player Cox process Hotelling game (D, η, ρ1, . . . , ρN). Let ρ :=∑N
i=1 ρi. The game admits a Nash equilibrium if and only if there is a function f ∈ C(ρ) such

that ∫
x∈D

f (x)
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx)

≥
∫

x∈D
g(x)
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx) (25)

for all g ∈ C(ρ). If such a function exists, the game has a unique Nash equilibrium, given by
the pure strategy profile

(
ρ1
ρ

f , . . . , ρN
ρ

f
)
.

Proof. Suppose first that the game admits a Nash equilibrium. By Theorem 7, we know that
this Nash equilibrium is unique and is a pure Nash equilibrium of the form

(
ρ1
ρ

f , . . . , ρN
ρ

f
)
, for

some f ∈ C(ρ). Since ρi
ρ

f is a best response of player i to the strategy profile
(

fj = ρj
ρ

f , j �= i
)

of
the other players, by the definition of Nash equilibrium (see (13)), we must have∫

x∈D

ρi

ρ
f
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx)

≥
∫

x∈D
gi(x)

∫
y∈D

e− ∫u∈B(y→x) f (u)η(du)
η(dy)η(dx)

for all gi ∈ C(ρi), which is the same as the condition in (25).
Conversely, suppose the condition in (25) holds for some function f ∈ C(ρ). Then, by the

definition of Nash equilibrium in (13), we see that the strategy profile
(
ρ1
ρ

f , . . . , ρN
ρ

f
)

is a
Nash equilibrium of the game. The existence of such a Nash equilibrium then guarantees, by
Theorem 7, that it is the unique Nash equilibrium of the game. �

5.2. Relationship with ordinal potential games

Recall that an n-player game, with player i having action set Yi, is called an ordinal poten-
tial game [23] if there is a function P :

∏n
i=1 Yi →R such that, for all 1 ≤ i ≤ n, yi, zi ∈ Yi,

and
(
yj, j �= i

) ∈∏j �=i Yj, we have Vi
(
yi,
(
yj, j �= i

))
> Vi
(
zi,
(
yj, j �= i

))
if and only if P

(
yi,
(
yj,

j �= i
))
> P
(
zi,
(
yj, j �= i

))
.

We have established that when a Cox process Hotelling game admits a Nash equilibrium
it admits a unique pure Nash equilibrium. Since ordinal potential games are a well-known
class of games that admit pure-strategy Nash equilibria, this leads naturally to the question of
whether Cox process Hotelling games are ordinal potential games. However, it is possible to
argue that in general this is not true.
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To see this, consider the two-player Cox process Hotelling game between Alice and Bob
on D, taken to be a circle of radius 1 centered at the origin in R

2, the base measure η being
the Lebesgue measure on D. Thus η(D) = 2π . Suppose that ρA = ρB = ρ

2 , where ρ should be
thought of as being sufficiently large in a sense that we will make precise shortly. Let ε > 0 be
sufficiently small

(
to be precise, we require that ε < 2π

9

)
.

We consider four pure strategies, i.e. elements of C(ρ2 ), denoted by σR, βR, σ L, and βL

respectively, defined as follows:

• The strategy σR is constant over the arc of the circle of length ε centered at (1, 0) and is
zero elsewhere.

• Consider the arc of the circle of length ε
2 centered at

(√
3

2 ,
1
2

)
and the arc of the circle of

length ε
2 centered at

(√
3

2 ,− 1
2

)
. The strategy βR is constant over the union of these two

arcs and is zero elsewhere.

• The strategy σ L is constant over the arc of the circle of length ε centered at (−1, 0) and
is zero elsewhere. It can be considered to be the ‘left’ version of σR, which is the ‘right’
version of it.

• The strategy βL is the ‘left’ version of βR, which is the ‘right’ version of it. Namely, βL

is uniform over the union of the two arcs of the circle of length ε
2 centered at

(−√
3

2 , 1
2

)
and
(−√

3
2 ,− 1

2

)
respectively, and is zero elsewhere.

To be consistent with the convention in the rest of the document, we will use a subscript
to indicate the identity of the player playing the strategy. Thus, for instance, the strategy pair(
σ L

A , σ
R
B

)
indicates that Alice is playing the strategy σ L and Bob is playing the strategy σR.

It is straightforward to check that

lim
ρ→∞ VA

(
σR

A , β
R
B

)= π

6
+ ε

4

and

lim
ρ→∞ VA

(
σ L

A , β
R
B

)= 5π

6
+ ε

4
.

We will use these facts and their obvious consequences in the following argument.
Suppose there were an ordinal potential function P : C(ρ2 )× C(ρ2 )→R for this two-player

Cox process Hotelling game.
For sufficiently large ρ, we have VA

(
σR

A , β
R
B

)
< VA

(
σ L

A , β
R
B

)
, and so P

(
σR, βR

)
<

P
(
σ L, βR

)
.

For sufficiently large ρ we also have VB
(
σ L

A , β
R
B

)
< VB

(
σ L

A , β
L
B

)
, and so P

(
σ L, βR

)
<

P
(
σ L, βL

)
.

But for sufficiently large ρ we also have VA
(
σ L

A , β
L
B

)
< VA

(
σR

A , β
L
B

)
, and so P

(
σ L, βL

)
<

P
(
σR, βL

)
.

Finally, for sufficiently large ρ we also have VB
(
σR

A , β
L
B

)
< VB

(
σR

A , β
R
B

)
, and so

P
(
σR, βL

)
< P
(
σR, βR

)
.

Putting these together leads to a contradiction. Hence this two-player Cox process Hotelling
game is not an ordinal potential game.
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5.3. Nash equilibria may not exist

Consider a two-player Cox process Hotelling game (D, η, ρA, ρB). The results of Theorems
3, 5, and 6 are consistent with that of Theorem 1 in the case where D is compact and admits a
transitive group of metric-preserving automorphisms, and where η is an invariant measure
under the action of this group. This might lead one to expect that the constant intensity
pair

(
ρ̄A, ρ̄B

)
is a Nash equilibrium for a general two-player Cox process Hotelling game

(D, η, ρA, ρB). The following simple example shows that this is not the case.

Example 2. Let D be the interval
[− 1

2 ,
1
2

]
of the real line, with η being the Lebesgue measure

restricted to D. Then, for every two-player Cox process Hotelling game (D, η, ρA, ρB), the
constant intensity pair

(
ρ̄A, ρ̄B

)
is not a Nash equilibrium of the game.

To see this, first note that η(D) = 1, so ρ̄A = ρA and ρ̄B = ρB. Recall that ρ := ρA + ρB.

From Theorem 8, it suffices to find g ∈ C(ρ), i.e., g :
[− 1

2 ,
1
2

]→R+ with
∫ 1

2

u=− 1
2

g(u)du = ρ,

such that

∫ 1
2

x=− 1
2

g(x)
∫ 1

2

y=− 1
2

e−ρη(B(y→x))dydx>
∫ 1

2

x=− 1
2

ρ

∫ 1
2

y=− 1
2

e−ρη(B(y→x))dydx, (26)

where we have written dx and dy in the integrals, instead of η(dx) and η(dy), respectively,
because η is the Lebesgue measure. By Equation (14), the integral on the right-hand side of
(26) is 1 − e−ρ . For the integral on the left-hand side of (26), let us first replace g(x) dx by
ρδ0(dx), where δ0 is the measure on

[− 1
2 ,

1
2

]
giving mass 1 to the point at the origin; i.e. let us

consider the integral

ρ

∫
x
= −1

2

1
2
∫ 1

2

y=− 1
2

e−ρη(B(y→x))dyδ0(dx)

= ρ

∫ 1
2

− 1
2

e−ρη(B(y→0))dy

= 2ρ
∫ 1

4

0
e−2ρydy + 2ρ

∫ 1
2

1
4

e− ρ
2 dy

= 1 − e− ρ
2 + ρ

2
e− ρ

2 .

For all ρ > 0 this integral is strictly bigger than 1 − e−ρ . It follows that we can find g ∈ C(ρ)
to get the strict inequality in (26), as desired.

In the two-player game considered in Example 2, one can in fact conclude that there is no
Nash equilibrium when the sum of the intensities of the two players is sufficiently small. We
state this formally.

Theorem 9. Let D be the interval
[− 1

2 ,
1
2

]
of the real line, with η being the Lebesgue measure

restricted to D. Then the two-player Cox process Hotelling game (D, η, ρA, ρB) does not admit
a Nash equilibrium when ρ := ρA + ρB < loge 4.
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Proof. Theorem 8 tells us that, to prove that a Nash equilibrium does not exist for this
two-player game, it suffices to show that for every f ∈ C(ρ) there is some g ∈ C(ρ) such that

1
2∫

x=− 1
2

g(x)

1
2∫

y=− 1
2

e− ∫u∈B(y→x) f (u)dudydx>

1
2∫

x=− 1
2

f (x)

1
2∫

y=− 1
2

e− ∫u∈B(y→x) f (u)dudydx. (27)

Let f ∈ C(ρ). For x ∈ [− 1
2 ,

1
2

]
, define ψx :

[− 1
2 ,

1
2

]→R+ via

ψx(y) := e− ∫u∈B(y→x) f (u)du.

Suppose
∫ 1

2

y=− 1
2
ψx(y)dy is not constant in x. Let x∗ ∈ arg maxx

∫ 1
2

y=− 1
2
ψx(y)dy, which exists

because
∫ 1

2

y=− 1
2
ψx(y)dy is continuous in x over

[− 1
2 ,

1
2

]
. Since

∫ 1
2

y=− 1
2

ψx(y)dy

is not constant in x over x ∈ [− 1
2 ,

1
2

]
, and since

∫ 1
2

x=− 1
2

f (x)dx = ρ, this implies that

ρ

∫ 1
2

y=− 1
2

e− ∫u∈B(y→x∗) f (u)dudy>
∫ 1

2

x=− 1
2

f (x)
∫ 1

2

y=− 1
2

e− ∫u∈B(y→x) f (u)dudydx,

from which we can conclude the existence of g ∈ C(ρ) satisfying the strict inequality in (27).
From Theorem 8, we also know that if a Nash equilibrium exists it must be pure and of the

form
(
ρA
ρ

f , ρB
ρ

f
)

for some f ∈ C(ρ). We claim that it must further be the case that f (u) = f (−u)

for all u ∈ [− 1
2 ,

1
2

]
, i.e. that f is an even function. This is because, by symmetry, if

(
ρA
ρ

f , ρB
ρ

f
)

is a Nash equilibrium, then so is
(
ρA
ρ

f̃ , ρB
ρ

f̃
)

, where f̃ (u) := f (−u) (so we also have f̃ ∈ C(ρ)),

and then, because the Nash equilibrium is unique, it must be the case that f̃ = f .
Thus it suffices to show that when ρ < loge 4 it is impossible to find an even function f ∈

C(ρ) such that
∫ 1

2

y=− 1
2
ψx(y)dy is constant in x. We will do this by establishing that for every

even function f ∈ C(ρ) we have∫ 1
2

y=− 1
2

ψ− 1
2
(y)dy<

∫ 1
2

y=− 1
2

ψ0(y)dy. (28)

Observe that ψ0(y) is an even function of y ∈ [− 1
2 ,

1
2

]
. Further, we have ψ0(y) ≥ e− ρ

2 for all

y ∈ [− 1
2 ,

1
2

]
, and we have ψ0(y) = e− ρ

2 for − 1
2 ≤ y ≤ − 1

4 .
Observe also that ψ− 1

2
(y) is nonincreasing over y ∈ [− 1

2 ,
1
2 ], with ψ− 1

2

(− 1
2

)= 1,

ψ− 1
2

(− 1
4

)= e− ρ
2 , and ψ− 1

2
(y) = e−ρ for 0 ≤ y ≤ 1

2 .

From these two sets of observations, we have ψ− 1
2
(y) ≥ψ0(y) for y ∈ [− 1

2 ,− 1
4

]
and

ψ− 1
2
(y) ≤ψ0(y) for y ∈ [− 1

4 ,
1
2

]
. Further, we have

∫ − 1
4

y=− 1
2

(
ψ− 1

2
(y) −ψ0(y)

)
dy ≤ 1

4

(
1 − e− ρ

2

)
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and ∫ 1
2

y=0

(
ψ0(y) −ψ− 1

2
(y)
)

dy ≥ 1

2

(
e− ρ

2 − e−ρ),
while we also have ∫ 0

y=− 1
4

(
ψ0(y) −ψ− 1

2
(y)
)

dy ≥ 0.

From this we conclude that

∫ 1
2

y=− 1
2

(
ψ0(y) −ψ− 1

2
(y)
)

dy ≥ 1

2

(
e− ρ

2 − e−ρ)− 1

4

(
1 − e− ρ

2

)
> 0

if 0<ρ < loge 4, which establishes the strict inequality in (28) and completes the proof.
A more careful analysis will increase the range of ρ for which one can prove that the game
does not admit a Nash equilibrium. �

5.4. Restricted Cox process Hotelling games

A more insightful characterization than the one in Theorem 8 of when Nash equilibria exist
in Cox process Hotelling games remains an interesting open problem. The main technical
difficulty in proving the existence of Nash equilibria in such games is that the action spaces
of the individual players, which are of the form C(ρi), where ρi > 0 is the intensity budget of
player i, are not compact when endowed with the topology of weak convergence. Indeed, we
have seen in Section 5.3 that Nash equilibria may not exist in some cases.

To better understand the question of when Nash equilibria exist in such games, we therefore
propose to study a family of restricted Cox process Hotelling games, where the action space
of each individual player is now a compact set. The restrictions can be imposed in such a
way that a unique Nash equilibrium will be guaranteed to exist in each such restricted game,
it will be pure, and, if the restrictions imposed on the individual players are proportional in
a sense made precise below, this unique pure Nash equilibrium will be of proportional form.
Furthermore, by varying the restriction, we can vary the compact action space of each player
in such a way that the union over all such choices is the full space of allowed actions for that
player, namely C(ρi) for player i having a total intensity budget of ρi. If a Nash equilibrium
did exist for the original Cox process Hotelling game, then this guarantees that it would be
discovered as the Nash equilibrium for some profile of restrictions on the action spaces of the
individual players, i.e., in one of the restricted Cox process Hotelling games that we consider.
Pursuing this direction, which we leave as a topic for future research, may give more insight
into what the characterization in Theorem 8 is actually saying.

To carry out this program, we first exhibit, for each ρ > 0, a family of compact subsets of
C(ρ) whose union is C(ρ). Recall that C(ρ) is a subset of L1(η), where f ∈ C(ρ) is identified with
the measure fη on D, and C(ρ) endowed with the topology of weak convergence of measures
which it inherits as a subset of M(D). We will now consider L1(η) with its weak topology
defined by considering it to be a Banach space with Banach dual L∞(η); see [29] or [9, p. 44].
To avoid confusion, recall that the topology of weak convergence on C(ρ) is called the narrow
topology in the theory of Banach spaces (see e.g. [3, Vol. 1, p. 176]), and is weaker than the
weak topology.

From the theorem of Dunford and Pettis ([9, Theorem 3], [10]), the closure in the weak
topology of a subset of L1(η) is compact in the weak topology if and only if it is uniformly
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integrable. Here we recall (see e.g. [3, Vol. 1, Definition 4.5.1], [9, p. 41]) that a subset S ⊆
L1(η) is called uniformly integrable if

lim
c→∞ sup

f ∈S

∫
D

|f (x)|1(|f (x)| ≥ c)η(dx) = 0.

Furthermore, by the theorem of de la Vallée Poussin ([5], [9, Theorem 2]), for S ⊆ L1(η) to
be uniformly integrable it is necessary and sufficient that there be a nondecreasing convex
function  : R+ →R+, with (0) = 0 and limx→∞ (x)

x = ∞, such that

sup
f ∈S

∫
D
(|f (x)|)η(dx)<∞.

For ρ > 0,  : R+ →R+ a nondecreasing convex function with (0) = 0 and
limx→∞ (x)

x = ∞, and 0<K <∞, we propose to consider the subset of C(ρ) defined by

C(ρ, ,K) :=
{

f : D →R+ s.t.
∫

D
f (x)η(dx) = ρ,

∫
D
( f (x))η(dx) ≤ K

}
. (29)

It can be checked that C(ρ, ,K) is a closed subset of L1(η) in the weak topology. By the
theorem of de la Vallée Poussin, C(ρ, ,K) is uniformly integrable, so by the Dunford–Pettis
theorem it is a compact subset of L1(η) in the weak topology. Since the weak topology on
L1(η) is stronger than the topology of weak convergence (i.e., the narrow topology) on L1(η),
C(ρ, ,K) is compact in the topology of weak convergence on L1(η).

For every f ∈ L1(η) it can be checked that there is some nondecreasing convex function
 : R+ →R+, with (0) = 0 and limx→∞ (x)

x = ∞, such that
∫

D (|f (x)|)η(dx)<∞. It fol-
lows that the union of C(ρ, ,K) over all choices of  and K equals C(ρ). We thus have a
family of compact subsets of C(ρ) whose union is C(ρ).

From the convexity of  it is also straightforward to show that each C(ρ, ,K) is a convex
subset of L1(η). As a closed subset of M(D) in the topology of weak convergence, C(ρ, ,K)
is a Borel subset of M(D), so we are able discuss probability measures on C(ρ, ,K).

By an N-player restricted Cox process Hotelling game we mean a game with player i, for
1 ≤ i ≤ N, having the intensity budget ρi > 0 and the space of pure actions some C(ρi, i,Ki),
which, as we have seen, is a compact subset of C(ρi) in the topology of weak convergence.
Here, for each 1 ≤ i ≤ N, i : R+ →R+ is a nondecreasing convex function with i(0) = 0
and limx→∞ i(x)

x = ∞, and 0<Ki <∞. Suppose the individual players play the pure actions
fi ∈ C(ρi, i,Ki) for 1 ≤ i ≤ N. Let �i be a Poisson point process on D with intensity measure
fiη, with these processes being mutually independent for 1 ≤ i ≤ N, and let� := ∑N

i=1 �i. We
think of the points of�i as the points of player i, since these result from the choice of fi, which
was made by that player. Then, as before, the value of player i, denoted by Vi( f1, . . . , fN), is
given by

Vi( f1, . . . , fN) := E

⎡
⎣∑

x∈�i

η(W�(x))

⎤
⎦ .

The expectation is with respect to the joint law of (�j, 1 ≤ j ≤ n), which are independent. Here,
by definition, a sum over an empty set is 0.

Consider an N-player restricted Cox process Hotelling game where player i has the space
of actions C(ρi, i,Ki). Any mixed-strategy N-tuple in this game can be written as

( f1(M1), . . . , fN(MN)),
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where
(
Mi ∈Mj, 1 ≤ i ≤ N

)
are independent random variables representing the randomiza-

tions used by the individual players in implementing their randomized strategies, and fi(mi) ∈
C(ρi, i,Ki

)
is the choice of action of player i in case the realization of her random vari-

able Mi is mi. The value of player i in such a mixed strategy is E
[
Vi
(

f1(M1), . . . , fN(MN)
)]

,
the expectation being taken with respect to the joint distribution of

(
Mj, 1 ≤ j ≤ N

)
, which are

independent. The vector of independently randomized strategies

(
f1(M1), . . . , fN(MN)

) ∈ C(ρ1, 1,K1) × . . .× C(ρN, N,KN)

is called a Nash equilibrium of the game if, for all gj ∈ C(ρj, j,Kj
)
, 1 ≤ j ≤ N, we have, for

all 1 ≤ i ≤ N,

E
[
Vi
(

f1(M1), . . . , fN(MN)
)]≥E

[
Vi
(
gi,
(

fj
(
Mj
)
, j �= i

))]
. (30)

Since each C(ρi, i,Ki
)

is compact and each Vi :
∏N

j=1 C
(
ρj, j,Kj

)→R+ is continuous,
the existence of a mixed-strategy Nash equilibrium for every N-player restricted Cox process
Hotelling game is guaranteed [15].

We now formally state and prove that every restricted Cox process Hotelling game has
unique Nash equilibrium, and that this consists of pure strategies. The following theorem is a
combination of the analogue of Theorem 4 and the N-player version of Theorem 5 for restricted
Cox process Hotelling games.

Theorem 10. Consider an N-player restricted Cox process Hotelling game on the Polish space
D with base measure η where player i, for 1 ≤ i ≤ N, has the intensity budget ρi > 0 and the
space of pure actions C(ρi, i,Ki), where i : R+ →R+ is a nondecreasing convex function
with i(0) = 0 and limx→∞ i(x)

x = ∞, and 0<Ki <∞. Suppose ( f1(M1), . . . , fN(MN)) is a
Nash equilibrium of the game, which we know exists. Then there exist gi ∈ Ci, 1 ≤ i ≤ N, such
that

P
((

f1(M1), . . . , fN(MN) = (g1, . . . , gN)
)= 1;

i.e., the Nash equilibrium is a pure-strategy Nash equilibrium. Furthermore, if (g1, . . . , gN)
and (h1, . . . , hN) are two pure-strategy Nash equilibria for the game, then gi = hi for all 1 ≤
i ≤ N; i.e. the Nash equilibrium is unique.

Proof. The proof is similar to the proofs of the N-player versions of Theorem 3 and
Theorem 5, with the obvious modifications. All that is being used in those proofs is the
convexity of the set of allowed actions of each player and the strict concavity of the value
function of each player in her own action when the actions of her opponents are fixed. These
properties continue to hold in the restricted Cox process Hotelling games that we are now
considering. �

When the restrictions on the individual players in an N-player restricted Cox process
Hotelling game are proportional to their allowed intensities, we can characterize the Nash
equilibrium of the game, which we known by Theorem 10 is unique and consists of pure
strategies, in a manner analogous to what was done in Theorem 7. To define what we mean
by proportional restrictions, given α > 0 and a nondecreasing convex function  : R+ →R+
with (0) = 0 and limx→∞ (x)

x = ∞, we define the function (α) : R+ →R+ by

(α)(x) := 
( x

α

)
, x ∈R+.
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Note that (α) : R+ →R+ is a nondecreasing convex function with (α)(0) = 0 and

limx→∞ (α)(x)
x = ∞. We can then make the following simple observation.

Lemma 8. Given ρ > 0, a nondecreasing convex function  : R+ →R+ with (0) = 0 and
limx→∞ (x)

x = ∞, and 0<K <∞, we have f ∈ C(ρ, (ρ),K
)

if and only if f
ρ

∈ C(1, ,K).

Proof. To check whether f
ρ

∈ C(1, ,K), we need to check whether
∫

D
f (x)
ρ
η(dx) = 1

and
∫

D 
( f (x)
ρ

)
η(dx) ≤ K. Equivalently, we need to check whether

∫
D f (x)η(dx) = ρ and∫

D 
(ρ)( f (x))η(dx) ≤ K, i.e. whether f ∈ C(ρ, (ρ),K

)
. �

The following result characterizes the Nash equilibria of N-player restricted Cox process
Hotelling games when the restrictions on the individual players are in proportion to their
allowed intensities.

Theorem 11. Consider an N-player restricted Cox process Hotelling game on the Polish space
D with base measure η where player i, for 1 ≤ i ≤ N, has the intensity budget ρi > 0 and the
space of pure actions C(ρi, 

(ρi),K
)
, where : R+ →R+ is a nondecreasing convex function

with (0) = 0 and limx→∞ (x)
x = ∞, and 0<K <∞. Then the game has a unique Nash

equilibrium, which is of the form ( f1, . . . , fN), where fi = ρi
ρ

f for some f ∈ C(ρ, (ρ)
)
,K),

with ρ := ∑N
i=1 ρi.

Proof. The proof is similar to that of Theorem 7, with the obvious modifications. The only
thing that needs to be observed is that for any choice of fi ∈ C(ρi, 

(ρi),K
)

for 1 ≤ i ≤ N, we
also have the following:

(i)
ρi∑
j �=i ρj

∑
j �=i

fj ∈ C(ρi, 
(ρi),K

)
for all 1 ≤ i ≤ N;

(ii)
N∑

i=1

fi =: f ∈ C(ρ, (ρ),K
)
;

(iii)
ρi

ρ
f ∈ C(ρi, 

(ρi),K
)

for all 1 ≤ i ≤ N.

To prove (i), by Lemma 8, what we need to show, for all 1 ≤ i ≤ N, is that

1∑
j �=i ρj

∑
j �=i

fj ∈ C(1, ,K).

By Lemma 8 again, we have fj
ρj

∈ C(1, ,K) for all j �= i. The desired claim follows from the
convexity of C(1, ,K).

To prove (ii), by Lemma 8, what we need to show is that f
ρ

∈ C(1, ,K). By Lemma 8

we have fi
ρi

∈ C(1, ,K) for all 1 ≤ i ≤ N. The desired claim follows from the convexity of
C(1, ,K).

As for (iii), it is an immediate consequence of Lemma 8 since we have established the claim
in (ii). �
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Finally, with a view to using restricted Cox process Hotelling games as a vehicle for better
understanding the characterization in Theorem 8, we can prove the following analogue of that
result for restricted Cox process Hotelling games.

Theorem 12. Consider an N-player restricted Cox process Hotelling game on the Polish space
D with base measure η where player i, for 1 ≤ i ≤ N, has the intensity budget ρi > 0 and the
space of pure actions C(ρi, 

(ρi),K
)
, where : R+ →R+ is a nondecreasing convex function

with (0) = 0 and limx→∞ (x)
x = ∞, and 0<K <∞. The game admits a unique Nash equi-

librium, consisting of pure strategies, defined in terms of a function f ∈ C(ρ, (ρ),K
)
, where

ρ := ∑N
i=1 ρi, such that∫

x∈D
f (x)
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx)

≥
∫

x∈D
g(x)
∫

y∈D
e− ∫u∈B(y→x) f (u)η(du)

η(dy)η(dx) (31)

for all g ∈ C(ρ, (ρ),K
)
. The corresponding unique Nash equilibrium of the game is given by

the pure strategy profile
(
ρ1
ρ

f , . . . , ρN
ρ

f
)
.

Proof. The proof is similar to that of Theorem 7, with the obvious modifications. The key
point we need to observe is that, for all 1 ≤ i ≤ N, we have g ∈ C(ρ, (ρ),K

)
if and only if

ρi
ρ

g ∈ C(ρi, 
(ρi),K

)
. Also, as we have observed earlier, in view of the compactness of the

action spaces of the individual players and the continuity of the payoff of an individual player
in her action when the actions of her opponents are fixed, the existence of a mixed-strategy
Nash equilibrium is guaranteed [15]. �
Remark 1. For the N-player restricted Cox process Hotelling games with proportional restric-
tions of the kind considered in Theorem 12, that theorem tells us that for each choice of
ρi > 0 for 1 ≤ i ≤ N, nondecreasing convex function  : R+ →R+ satisfying (0) = 0 and
limx→∞ (x)

x = ∞, and 0<K <∞, there is a unique function f ∈ C(ρ, (ρ),K
)

which satis-

fies the inequality in (31) for all g ∈ C(ρ, (ρ),K
)
, where ρ := ∑N

i=1 ρi. We also know that if,
for the given choices of ρi > 0 for 1 ≤ i ≤ N, the original N-player Cox player Hotelling game
considered in Theorem 8 admits a Nash equilibrium, then there will be a function f ∈ C(ρ)
satisfying the inequality in (25) for all g ∈ C(ρ), and, most importantly, this f will be the one
satisfying (31) for some choices of nondecreasing convex function  : R+ →R+ such that
(0) = 0 and limx→∞ (x)

x = ∞, and of 0<K <∞. It is in this sense that the discussion of
N-player restricted Cox process Hotelling games gives a vehicle, in principle, for better under-
standing of the meaning of the criterion in (25) for the existence of Nash equilibria in N-player
Cox process Hotelling games.

Appendix A. A sufficient condition for f η to be non-conflicting

We give here a sufficient condition for the η-measure of the boundary of the Voronoi tessel-
lation of a Poisson point process� of density f with respect to η on D to be zero almost surely.
The setting is that of Subsection 2.1, with

∫
D f (x)η(dx) = ρ <∞, so that� has a finite number

of points almost surely.
A sufficient condition for the desired property to hold is that

η{z ∈ D s.t. ∃X �= Y ∈� with d(z, X) = d(z, Y)} = 0 almost surely,
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which holds if
E[η{z ∈ D s.t. ∃X �= Y ∈� with d(z, X) = d(z, Y)}] = 0.

The latter can be written as∑
n≥2

ρn

n! e−ρn(n − 1)
∫

z∈D

∫
x∈D

∫
y∈D

1d(z,x)=d(z,y)η(dz)f (x)η(dx)f (y)η(dy) = 0,

so that a sufficient condition for the desired property to hold is that∫
z∈D

∫
x∈D

∫
y∈D

1d(z,x)=d(z,y)η(dz)f (x)η(dx)f (y)η(dy) = 0. (32)
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