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Abstract

The supertree construction problem is about combining several phylogenetic trees with

possibly conflicting information into a single tree that has all the leaves of the source trees

as its leaves and the relationships between the leaves are as consistent with the source trees

as possible. This leads to an optimization problem that is computationally challenging and

typically heuristic methods, such as matrix representation with parsimony (MRP), are used. In

this paper we consider the use of answer set programming to solve the supertree construction

problem in terms of two alternative encodings. The first is based on an existing encoding

of trees using substructures known as quartets, while the other novel encoding captures the

relationships present in trees through direct projections. We use these encodings to compute

a genus-level supertree for the family of cats (Felidae). Furthermore, we compare our results

to recent supertrees obtained by the MRP method.

KEYWORDS: answer set programming, phylogenetic supertree, quartets, projections, Felidae

1 Introduction

In the supertree construction problem, one is given a set of phylogenetic trees

(source trees) with overlapping sets of leaf nodes (representing taxa) and the goal

is to construct a single tree that respects the relationships in individual source

trees as much as possible (Bininda-Emonds 2004). The concept of respecting the

relationships in the source trees varies depending on the particular supertree method

at hand. If the source trees are compatible, i.e., there is no conflicting information

regarding the relationships of taxa in the source trees, then supertree construction

is easy (Aho et al. 1981). However, this is rarely the case. It is typical that source

trees obtained from different studies contain conflicting information, which makes
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supertree optimization a computationally challenging problem (Foulds and Graham

1982; Day et al. 1986; Byrka et al. 2010).

One of the most widely used supertree methods is matrix representation with

parsimony (MRP) (Baum 1992; Ragan 1992) in which source trees are encoded

into a binary matrix, and maximum parsimony analysis is then used to construct

a tree. Other popular methods include matrix representation with flipping (Chen

et al. 2003) and MinCut supertrees (Semple and Steel 2000). There is some criticism

towards the accuracy and performance of MRP, indicating input tree size and shape

biases and varying results depending on the chosen matrix representation (Purvis

1995; Wilkinson et al. 2005; Goloboff and Pol 2002). An alternative approach is

to directly consider the topologies induced by the source trees, for instance, using

quartets (Piaggio-Talice et al. 2004) or triplets (Bryant 1997), and try to maximize the

satisfaction of these topologies resulting in maximum quartet (resp. rooted triplet)

consistency problem. The quartet-based methods have received increasing interest

over the last few years (Snir and Rao 2012) and the quality of supertrees produced

have been shown to be on a par with MRP trees (Swenson et al. 2011).

There are a number of constraint-based approaches tailored for the phylogeny

reconstruction problem (Kavanagh et al. 2006; Brooks et al. 2007; Wu et al. 2007;

Sridhar et al. 2008; Morgado and Marques-Silva 2010). In phylogeny reconstruction,

one is given a set of sequences (for instance gene data) or topologies (for instance

quartets) as input and the task is to build a phylogenetic tree that represents the

evolutionary history of the species represented by the input. In (Brooks et al. 2007),

answer set programming (ASP) is used to find cladistics-based phylogenies, and

in (Kavanagh et al. 2006; Sridhar et al. 2008) maximum parsimony criteria are

applied, using ASP and mixed integer programming (MIP), respectively. The most

closely related approach to our work is the one in (Wu et al. 2007) where an

ASP encoding for solving the maximum quartet consistency problem for phylogeny

reconstruction is presented. The difference to supertree optimization is that in

phylogeny reconstruction, typically almost all possible quartets over all sets of four

taxa are available, with possibly some errors. In supertree optimization the overlap

of source trees is limited and the number of quartets obtained from source trees is

much smaller than the number of possible quartets for the supertree. For example,

the supertree shown in Figure 2 (right), with 34 leaf nodes, displays 46 038 different

quartets, while the source trees used to construct it only contributed 11 319 distinct

quartets, some of which were mutually incompatible. In (Morgado and Marques-

Silva 2010) a constraint programming solution is introduced for the maximum

quartet consistency problem. There are also related studies of supertree optimization

based on constraint reasoning. In (Chimani et al. 2010) a MIP solution for minimum

flip supertrees is presented, and in (Gent et al. 2003) constraint programming is used

to produce min-ultrametric trees using triplets. However, in both cases the underlying

problem is polynomially solvable. Furthermore, ASP has also been used to formalize

phylogeny-related queries in (Le et al. 2012).

In this paper we solve the supertree optimization problem in terms of two

alternative ASP encodings. The first encoding is based on quartets and is similar

to the one in (Wu et al. 2007), though instead of using an ultrametric matrix, we
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use a direct encoding to obtain the tree topology. However, the performance of

the quartet-based encoding does not scale up. Our second encoding uses a novel

approach capturing the relationships present in trees through projections, formalized

in terms of the maximum projection consistency problem. We use these encodings

to compute a genus-level supertree for the family of cats (Felidae) and compare our

results to recent supertrees obtained from the MRP method.

The rest of this paper is organized as follows. We present the supertree problem

in Section 2, and introduce our encodings for supertree optimization in Section 3.

In Section 4, we first compare the efficiency of the encodings, and then use the

projection-based encoding to compute a genus-level supertree for the family of cats

(Felidae). We compare our supertrees to recent supertrees obtained using the MRP

method. Finally, we present our conclusions in Section 5.

2 Supertree problem

A phylogenetic tree of n taxa has exactly n leaf nodes, each corresponding to one

taxon. The tree may be rooted or unrooted. In this work we consider rooted trees

and assume that the root has a special taxon called outgroup as its child. An inner

node is resolved if it has exactly two children, otherwise it is unresolved. If a tree

contains any unresolved nodes, it is unresolved; otherwise, it is resolved. Resolution

is the ratio of resolved inner nodes in a phylogenetic tree. A higher resolution is

preferred, as this means that more is known about the relationships of the taxa.

The problem of combining a set of phylogenetic trees with (partially) overlapping

sets of taxa into a single tree is known as the supertree construction problem. In

the special case where each source tree contains exactly the same set of species, it is

also called the consensus tree problem (Steel et al. 2000). In order to combine trees

with different taxa, one needs a way to split the source trees into smaller structures

which describe the relationships in the trees at the same time. There are several ways

to achieve this, for instance by using triplets (rooted substructures with three leaf

nodes) or quartets (unrooted substructures with four leaf nodes).

A quartet (topology) is an unrooted topological substructure of a tree. The quartet

((I , J ), (K ,L)) is in its canonical representation if I < J , I < K , and K < L, where

“<” refers to the alphabetical ordering of the names of the taxa. From now on, we

will consider canonical representations of quartets. We say that a tree T displays

a quartet ((I , J ), (K ,L)), if there is an edge in the tree T that separates T into

two subtrees so that one subtree contains the pair I and J as its leaves and the

other subtree contains the pair K and L as its leaves. For any set of four taxa

appearing in a resolved phylogenetic tree T , there is exactly one quartet displayed

by T . Furthermore, we say that two phylogenetic trees T and T ′ are not compatible,

if there is a set of four taxa for which T and T ′ display a different quartet.

Example 1

Consider the two phylogenetic trees in Figure 1. It is easy to see that these trees

are not compatible. For the taxa Felis, Lynx, Panthera, and Puma, the tree on the
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outgroup

Felis

Lynx

Panthera

Puma

outgroup
Leopardus
Panthera
Acinonyx
Lynx
Felis
Puma

Fig. 1. Phylogenetic trees from (Fulton and Strobeck 2006) on the left and from (Flynn

et al. 2005) on the right, abstracted to genus-level (for more details, see Section 4).

left displays the quartet ((Felis,Lynx),(Panthera,Puma)), while the tree on the right

displays the quartet ((Felis,Puma),(Lynx,Panthera)).

Let tx(T ) denote the set of taxa in the leaves of a tree T and qt(T ) the set of all

quartets that are displayed by T . For a collection S of phylogenetic trees, we define

qt(S ) as the multiset1
⋃

T∈S qt(T ) and tx(S ) =
⋃

T∈S tx(T ). Given any phylogenetic

tree T , the set qt(T ) uniquely determines it (Erdős et al. 1999).

The quartet compatibility problem is about finding out whether a set of quartet

topologies qt(S ) for a collection of phylogenetic trees S is compatible, i.e., if there is

a phylogeny T on the taxa in tx(S ) that displays all the quartet topologies in qt(S ).

The maximum quartet consistency problem for a supertree takes as input a set of

quartet topologies qt(S ) for a collection of phylogenetic trees S , and the goal is to

find a phylogeny T on the taxa tx(S ) that displays the maximum number of quartet

topologies in qt(S ) (Piaggio-Talice et al. 2004).

The topology of a tree T can be captured more directly using projections of T .

Given a set S ⊆ tx(T ), the projection of T with respect to S , denoted by TS , is

obtained from T by removing all structure related to the taxa in tx(T ) \ S . This

may imply that entire subtrees are removed and non-branching nodes are deleted.

We say that T displays another tree T ′ if tx(T ′) ⊆ tx(T ) and Ttx(T ′) = T ′.

Example 2

If the left tree in Figure 1 is projected with respect to {Puma,Lynx,Felis}, the

following tree results: ((Puma,Lynx),Felis). The right tree yields a different projection

((Puma,Felis),Lynx) illustrating the topological difference of the trees.

When comparing a phylogeny T with other phylogenies, an obvious question is

which projections should be used. Rather than using arbitrary sets S ⊆ tx(T ) for

projections TS , we suggest to use the subtrees of T . We denote this set by sub(T ).

It is clear that T displays T ′ for every T ′ ∈ sub(T ). Moreover, if T displays T ′′

for every T ′′ ∈ sub(T ′) and tx(T ) = tx(T ′), then T = T ′. More generally, the more

subtrees of T ′ are displayed by T , the more alike T and T ′ are as trees. This

observation suggests defining the maximum projection consistency problem for a

supertree in analogy to the maximum quartet consistency problem. The input for

this problem consists of the multiset sub(T1) ∪ . . . ∪ sub(Tn ) induced by a given

1 We use multisets in order to give more weight to structures appearing in several source trees.
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collection T1, . . . ,Tn of phylogenetic trees. The goal is to find a supertree T such

that tx(T ) = tx({T1, . . . ,Tn}) and T displays as many subtrees from the input as

possible—disregarding orientation. This objective is aligned with the quartet-based

approach: if T displays a particular subtree T ′, then it also displays qt(T ′).

Example 3

Consider again the trees in Figure 1. The non-trivial subtrees of the left tree are:

(outgroup,(Felis,(Lynx,(Panthera,Puma)))), (Felis,(Lynx,(Panthera,Puma))),

(Lynx,(Panthera,Puma)), (Panthera,Puma)

The right tree displays only the subtree (Panthera,Puma) as its projection.

3 Encodings for supertree optimization

We assume that the reader is familiar with basic ASP terminology and definitions,

and we refer the reader to (Baral 2003; Gebser et al. 2012) for details. Our encodings

are based on the input language of the gringo 3.0.4 grounder (Gebser et al. 2009)

used to instantiate logic programs. In this section, two alternative encodings for

the supertree construction problem are presented. Both encodings rely on the same

formalization of the underlying tree structure, but have different objective functions

as well as different representations for the input data. We begin by developing a

canonical representation for phylogenies based on ordered trees in Section 3.1. The

first encoding based on quartet information is then presented in Section 3.2. The

second one exploiting projections of trees is developed in Section 3.3.

3.1 Canonical phylogenies

Our encodings formalize phylogenies as ordered trees whose leaf nodes correspond

to taxa (species or genera) of interest. The simplest possible (atomic) tree consists

of a single node. Thus we call the leaves of the tree atoms and formalize them in

terms of the predicate atom/1. We assume that the number of atoms is available

through the predicate atomcnt/1, and furthermore that atoms have been ordered

alphabetically so that the first atom is accessible through the predicate fstatom/1,

while the predicate nxtatom/2 provides the successor of an atom. These predicates

can be straightforwardly expressed in the input language of gringo and we skip

their actual definitions. Full encodings are published with tools (see Section 4).

To formalize the structure of an ordered tree with N leaves, we index the leaf

nodes using numbers from 1 to N . Any subsequent numbers up to 2N − 1 will

be assigned to inner nodes as formalized by lines 2–4 of Listing 1. Depending on

the topology of the tree, the number of inner nodes can vary from 1 to N − 1.

In the former case, the tree has an edge from the root to every leaf but a full

binary tree results in the latter case. If viewed as phylogenies, the former leaves

all relationships unresolved whereas the latter gives a fully resolved phylogeny. The

predicate pair/2 defined in line 5 declares that the potential edges of the tree

always proceed in the descending order of node numbers. This scheme makes loops

impossible and prohibits edges starting from leaf nodes. The rule in line 8 chooses
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Listing 1. An ASP Encoding of Directed Trees/Forests

1 % Domains
2 node (1..2*N-1) :- atomcnt(N).
3 leaf(X) :- node(X), X<=N, atomcnt(N).
4 inner(X) :- node(X), X>N, atomcnt(N).
5 pair(X,Y) :- inner(X), node(Y), X>Y.
6
7 % Choose edges
8 { edge(X,Y): pair(X,Y) } 2*N-2 :- atomcnt(N).
9 :- edge(X,Z), edge(Y,Z), pair(X;Y,Z), X<Y.

10 :- edge(X,Y), pair(X,Y), inner(Y), not edge(Y,Z): pair(Y,Z).
11
12 % Assign atoms to leaves
13 asgn(1,A) :- node (1), fstatom(A).
14 asgn(N+1,B) :- node(N), asgn(N,A), nxtatom(A,B).

at most 2N − 2 edges for the tree up to 2N − 1 nodes. The constraint in line 9

ensures that a directed tree/forest rather than a directed acyclic graph is obtained.

The purpose of the constraint in line 10 is to deny branches ending at inner nodes.

The fixed assignment of atoms to leaf nodes 1 . . .N according to their alphabetical

order takes place in lines 13–14 using predicates fstatom/1 and nxtatom/2. This

is justified by a symmetry reduction, since N ! different assignments to leaf nodes

would be considered otherwise and no tree topology is essentially ruled out.

However, as regards tree topologies themselves, further symmetry reductions are

desirable because the number of optimal phylogenies can increase substantially

otherwise. Listing 2 provides conditions for a canonical ordering for the inner nodes.

The order/2 predicate defined in lines 2–3 captures pairs of inner nodes that must

be topologically ordered in a tree being constructed. The ireach/2 predicate defined

by rules in lines 4 and 5 gives the irreflexive reachability relation for nodes, i.e., a

node is not considered reachable from itself. The constraint in line 6 effectively states

that the numbering of inner nodes must follow the depth-first descending order, i.e.,

any inner nodes X below Y must have higher numbers than Z. The remaining degree

of freedom concerns the placement of leaves to subtrees. To address this, we need

to find out the minimum2 leaf (node) for each subtree. The min/2 predicate defined

in lines 9–10 captures the actual minimum leaf Y beneath an inner node X. The

orientation constraint in line 11 concerns inner nodes Y and Z subject to topological

ordering, identifies the minimum leaf W in the subtree rooted at Z, and ensures that

this leaf is smaller than any leaf V in the subtree rooted at Y. This also covers the

case that V is the respective minimum leaf under Y. The orientation constraint above

generalizes that of (Brooks et al. 2007) for non-binary trees and we expect that

canonical trees will have further applications beyond this work.

Finally, there are some further requirements specific to phylogenies. We assume

that certain subsidiary predicates have already been defined. The predicate root/1

is used to identify root nodes. Inner nodes that remain completely disconnected

are marked as unused by the predicate unused/1. Otherwise, the node is in use

2 Recall that the numbering of leaf nodes corresponds to the alphabetical ordering of the taxa.
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Listing 2. Encoding for Canonical Phylogenies

1 % Depth -first ordering on internal nodes
2 order(Y,Z) :- edge(X,Y), edge(X,Z), pair(X,Y;Z), inner(Y;Z),
3 Y>Z, not edge(X,W): Y>W: W>Z: pair(X,W).
4 ireach(X,Y) :- edge(X,Y), pair(X,Y).
5 ireach(X,Y) :- ireach(X,Z), edge(Z,Y), pair(Z,Y).
6 :- order(Y,Z), pair(Y,Z), ireach(Y,X), inner(X), X<Y.
7
8 % Determine the orientation of leaf nodes
9 min(X,Y) :- ireach(X,Y), inner(X), leaf(Y),

10 not ireach(X,Z): Z<Y: leaf(Z).
11 :- order(Y,Z), pair(Y,Z), ireach(Y,V), min(Z,W), leaf(V;W), V<W.
12
13 % Constraints for phylogenies
14 :- unused(X), used(Y), inner(X;Y), X<Y.
15 :- root(X), root(Y), inner(X;Y), X<Y.
16 :- not root(X): inner(X).
17 :- leaf(X), not edge(Y,X): pair(Y,X).
18 :- inner(X), root(X), not outgroup(X).
19 :- inner(X), not root(X), outgroup(X).
20 :- edge(X,Y), pair(X,Y), not edge(X,Z): pair(X,Z): Z!=Y.

as captured by used/1. Moreover, a node is an outgroup node, formalized by

outgroup/1, if it is assigned to the special outgroup taxon or one of its child

nodes is so assigned (cf. Figure 1). Lines 14–20 list the additional constraints for a

phylogeny. Only the highest numbers are allowed for unused nodes (line 14). The

root must be a unique inner node (lines 15 and 16). Every leaf must be connected

(line 17). The special outgroup leaf must be associated with the root node (lines

18 and 19). Every inner node that is actually used must have at least two children

(line 20): the denial of unary nodes is justified because they are not meaningful for

phylogenies.

3.2 Quartet-based approach

The first encoding is quartet-based. Each source tree is represented as the set of all

quartets that it displays. The predicate quartet/4 represents one input quartet in

canonical form. Listing 3 shows the objective function for the quartet encoding. For

each quartet appearing in the input, we check if it is satisfied by the current output

tree candidate. The auxiliary predicate reach/2 marks reachability from inner nodes

to atoms (species) assigned to leaves. The output tree is rooted, so given any inner

node X in the tree, there is a uniquely defined subtree rooted at X, and reach(X,A) is

true for any atom A corresponding to a leaf node of the subtree. A quartet consisting

of two pairs is satisfied by the output tree, if for one pair there exists at least one

inner node X such that the members of the pair are descendants of X, while the

members of the other pair do not appear in that subtree.

The predicate quartetwt/5 assigns a weight to each quartet structure. In the

unweighted case, this weight is equal to the number of source trees that display

the quartet. In the weighted case, source trees stemming from computational studies

based on molecular input data were weighted up by a factor of four. For example,
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Listing 3. Optimization function for the quartet encoding

1 reach(X,A) :- inner(X), ireach(X,Y), asgn(Y,A), atom(A).
2
3 % Maximize number of satisfied quartets
4 satisfied(A1 ,A2 ,A3 ,A4) :- quartet(A1 ,A2 ,A3 ,A4), inner(X),
5 reach(X,A1), reach(X,A2), not reach(X,A3), not reach(X,A4).
6 satisfied(A1 ,A2 ,A3 ,A4) :- quartet(A1 ,A2 ,A3 ,A4), inner(X),
7 reach(X,A3), reach(X,A4), not reach(X,A1), not reach(X,A2).
8
9 #maximize [ satisfied(A1 ,A2 ,A3 ,A4)=W: quartetwt(A1 ,A2 ,A3 ,A4 ,W) ].

if a particular quartet was present in three source trees, two of which were from

molecular studies while the third one was not, the total weight would be 4 + 4 + 1.

3.3 Projection-based approach

The second encoding is based on direct projections of trees and the idea is to

identify which inner nodes in the selected phylogeny correspond to subtrees present

in the input trees. Input trees are represented using a function symbol t as a tree

constructor. For instance, the leftmost tree in Figure 1 is represented by a term

t(outgroup,t(felis,t(lynx,t(panthera,puma))))· (1)

For simplicity, it is assumed here that t always takes two arguments although

in practice, some of the input trees are non-binary, and a more general list

representation is used instead. In the encoding, projections of interest are declared in

terms of the predicate proj/1. The predicate comp/1, defined in line 2 of Listing 4,

identifies compound trees as those having at least one instance of the constructor t.

The set of projections is made downward closed by the rule in line 3. For instance,

outgroup and t(felis,t(lynx,t(panthera,puma))) are projections derived from

(1) by a single application of this rule. In line 4, atoms are recognized as trivial tree

projections with no occurrences of t such as outgroup above.

The reach/2 predicate, defined in lines 7 and 8 of Listing 4, generalizes the

respective predicate from Listing 3 for arbitrary projections T and includes a new

base case for immediate assignments (line 7). A compound tree T is assigned to

an inner node X by default (line 11) and the predicate denied/2 is used to specify

exceptions in this respect. It is important to note that if edge(X,Y) is true, then

X is an inner node and used(X) is true, too. The first exception (line 12) is that T

is already assigned below X in the phylogeny. The second case (lines 13–14) avoids

mapping distinct subtrees of t(T1,T2) on the same subtree in the phylogeny.

Thirdly, if t(T1,T2) is to be assigned at inner node X, then T1 and T2 must have

been assigned beneath X in the phylogeny (lines 15–18). Finally, the constraint in

line 20 insists that each inner node is assigned at least one projection because

the node could be removed from the phylogeny otherwise. The net effect of the

constraints introduced so far is that if T1 and T2 have been assigned to nodes X and

Y, respectively, then t(T1,T2) is assigned to the least common ancestor of X and Y.
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Listing 4. Projection-Based Optimization of the Phylogeny

1 % Projections of the phylogeny
2 comp(t(T1 ,T2)) :- proj(t(T1 ,T2)).
3 proj(T1;T2) :- comp(t(T1 ,T2)).
4 atom(X) :- proj(X), not comp(X).
5
6 % Reachability from a node to a projection
7 reach(X,T) :- node(X), asgn(X,T), proj(T).
8 reach(X,T) :- ireach(X,Y), node(X;Y), reach(Y,T), proj(T).
9

10 % Assign compound trees to inner nodes
11 asgn(X,T) :- inner(X), used(X), not denied(X,T), comp(T).
12 denied(X,T) :- edge(X,Y), pair(X,Y), comp(T), reach(Y,T).
13 denied(X,t(T1 ,T2)) :- edge(X,Y), pair(X,Y), comp(t(T1 ,T2)),
14 T1 <T2 , reach(Y,T1), reach(Y,T2).
15 denied(X,t(T1 ,T2)) :- inner(X), used(X), comp(t(T1 ,T2)),
16 not reachvia(X,Z,T1): pair(X,Z).
17 denied(X,t(T1 ,T2)) :- inner(X), used(X), comp(t(T1 ,T2)),
18 not reachvia(X,Z,T2): pair(X,Z).
19 reachvia(X,Y,T) :- edge(X,Y), pair(X,Y), reach(Y,T), proj(T).
20 :- inner(X), used(X), not asgn(X,T): comp(T).
21
22 % Optimize the assignment of compound trees
23 unassigned(T) :- comp(T), not asgn(X,T): node(X).
24 next(X,T) :- edge(X,Y), pair(X,Y), asgn(Y,T), proj(T).
25 separated(t(T1 ,T2)) :- edge(X,Y), pair(X,Y), asgn(X,t(T1 ,T2)),
26 not next(X,T1).
27 separated(t(T1 ,T2)) :- edge(X,Y), pair(X,Y), asgn(X,t(T1 ,T2)),
28 not next(X,T2).
29 #minimize [ unassigned(T)=AC*W: acnt(T,AC): projwt(T,W): comp(T),
30 separated(T)=W: projwt(T,W): comp(T) ].

The rest of Listing 4 concerns the objective function we propose for phylogeny

optimization. The predicate unassigned/1 captures compound trees T which could

not be assigned to any inner node by the rules above. This is highly likely if

mutually inconsistent projections are provided as input. It is also possible that a

compound projection t(T1,T2) is assigned further away from the subtrees T1 and

T2, i.e., they are not placed next to t(T1,T2). The predicate separated/1 holds for

t(T1,T2) in this case (lines 24–28). The purpose of the objective function (line 30)

is to minimize penalties resulting from these aspects of assignments. For unassigned

compound trees T, this is calculated as the product of the number of atoms in T

and the weight3 of T. These numbers are accessible via auxiliary predicates acnt/2

and projwt/2 in the encoding. Separated compound trees are further penalized by

their weight (line 29). Since the rules in lines 2–3, 13–18, 25–28 only cover binary

trees they would have to be generalized for any fixed arity which is not feasible. To

avoid repeating the rules for different arities, we represent trees as lists (of lists) in

practice.

3 As before, the weight is 4 for projections originating from molecular studies and 1 otherwise.
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4 Experiments

Data. We use a collection of 38 phylogenetic trees from (Säilä et al. 2011; Säilä et al.

2012) covering 105 species of Felidae as our source trees.4 There are both resolved

and unresolved trees, all rooted with outgroup, in the collection and the number

of species varies from 4 to 52. The total number of species in the source trees

makes supertree analysis even with heuristic methods challenging, and computing

the full supertree for all species at once is not feasible with our encodings. Thus,

we consider the following simplifications of the data. In Section 4.1 we use genus-

specific projections of source trees to compare the efficiency of our two encodings.

In Section 4.2 we reduce the size of the instance by considering the genus-level

supertree as a first step towards solving the supertree problem for the Felidae data.

Experimental setting. We used two identical 2.7-GHz CPUs with 256 GB of RAM

to compute optimal answer sets for programs grounded by gringo 3.0.4. The state-

of-the-art solver5
clasp 3.1.2 (Gebser et al. 2011) was compared with a runner-up

solver wasp
6 (Alviano et al. 2015) as of 2015-06-28. Moreover, we studied the

performance of MAXSAT solvers as back-ends using translators lp2acyc 1.29 and

lp2sat 1.25 (Gebser et al. 2014), and a normalizer lp2normal 2.18 (Bomanson et al.

2014) from the asptools7 collection. As MAXSAT solvers, we tried clasp 3.1.2 in its

MAXSAT mode (clasp-s in Table 1), an openwbo-based extension8 (Martins et al.

2014) of acycglucose R739 (labeled acyc in Table 1) also available in the asptools

collection, and sat4j
9 (Le Berre and Parrain 2010) dated 2013-05-25.

4.1 Genus-specific supertrees

To produce genus-specific source trees for a genus G , we project all source trees

to the species in G (and the outgroup). Genera with fewer than five species are

excluded as too trivial. Thus, the instances of Felidae data have between 6 and 11

species each, and the number of source trees varies between 2 and 22. In order

to be able to compare the performance of different solvers for our encodings, we

compute one optimum here and use a timeout of one hour. In Table 1 we report the

run times for the best-performing configuration of each solver for both encodings.10

Moreover, the methods based on unsatisfiable cores turned out to be ineffective in

general. Hence, branch-and-bound style heuristics were used.

The performance of the projection encoding scales up better than that of the

quartet encoding when the complexity of the instance grows. Our understanding

is that in the quartet encoding the search space is more symmetric than in the

projection encoding: in principle any subset of the quartets could do and this has to

4 Source trees in Newick format are provided in the online appendix (Appendix D).
5 http://potassco.sourceforge.net
6 http://github.com/alviano/wasp.git
7 Subdirectories download/ and encodings/ at http://research.ics.aalto.fi/software/asp/
8 http://sat.inesc-id.pt/open-wbo/
9 http://www.sat4j.org/

10 We exclude sat4j, which had the longest run times, from comparison due to space limitations.
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Table 1. Time (s) to find one optimum for genus-specific data using different solvers using

quartet (qtet) and projection (proj) encoding (– marks timeout)

clasp
a

wasp
b

acyc
c

clasp-s
d

Genus Taxa Trees qtet proj qtet proj qtet proj qtet proj

Hyperailurictis 6 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lynx 7 8 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Leopardus 8 6 0.6 0.1 1.7 0.2 1.1 0.4 0.6 0.1

Dinofelis 9 2 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1

Homotherium 9 3 0.7 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Felis 11 12 39.6 21.9 290.8 120.6 122.7 59.6 27.7 20.8

Panthera 11 22 1395.8 45.6 – 456.3 – 174.6 944.2 67.1

a Options: --config=frumpy (proj) and --config=trendy (qtet).
b Options: --weakconstraints-algorithm=basic.
c Options: -algorithm=1 and -incremental=3.
d Options --config=frumpy (proj) and --config=tweety (qtet).

be excluded in the optimality proof. On the other hand, the mutual incompatibilities

of projections can help the solver to cut down the search space more effectively.

4.2 Genus-level abstraction

We generate 28 trees abstracted to the genus level from the 38 species-level trees.

The abstraction is done by placing each genus G under the node N furthest away

from the root such that all occurrences of the species of genus G are in the subtree

below N . Finally, redundant (unary) inner nodes are removed from the trees. The

trees that included fewer than four genera were excluded. Following (Säilä et al.

2011; Säilä et al. 2012), Puma pardoides was treated as its own genus Pardoides, and

Dinobastis was excluded as an invalid taxon. As further preprocessing, we removed

the occurrences of genera Pristifelis, Miomachairodus, and Pratifelis appearing in

only one source tree each. These so-called rogue taxa have unstable placements in

the supertree, due to little information about their placements in relation to the

rest of the taxa. The rogue taxa can be a posteriori placed in the supertree in the

position implied by their single source tree. After all the preprocessing steps, our

genus-level source trees have 34 genera in total and the size of the trees varies from

4 to 22 genera.

We consider the following schemes from (Säilä et al. 2011; Säilä et al. 2012):

All-FM-bb-wgt Analysis with a constraint tree separating the representatives of

Felinae and Machairodontinae into subfamilies, with weight 4 given to source

trees from molecular studies.

F-Mol Analysis using molecular studies only and extinct species pruned out (leaving

20 source trees and 15 genera, which are all representatives of Felinae).

Noticeably, the first setting allows us to split the search space and to compute the

supertree for Felinae and Machairodontinae separately. The best resolved tree in

(Säilä et al. 2011; Säilä et al. 2012) was obtained using the MRP supertree for F-Mol
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outgroup
Proailurus
Pseudaelurus
Hyperailurictis
Stenailurus
Metailurus
Dinofelis
Adelphailurus
Promegantereon
Paramachaerodus
Smilodon
Megantereon
Nimravides
Machairodus
Amphimachairodus
Xenosmilus
Homotherium
Styriofelis
Neofelis
Panthera
Pardoides
Catopuma
Pardofelis
Leptailurus
Profelis
Caracal
Leopardus
Lynx
Felis
Otocolobus
Prionailurus
Miracinonyx
Puma
Acinonyx

outgroup
Proailurus
Pseudaelurus
Hyperailurictis
Stenailurus
Metailurus
Dinofelis
Adelphailurus
Promegantereon
Paramachaerodus
Smilodon
Megantereon
Nimravides
Machairodus
Amphimachairodus
Xenosmilus
Homotherium
Styriofelis
Neofelis
Panthera
Pardoides
Catopuma
Pardofelis
Leptailurus
Profelis
Caracal
Leopardus
Lynx
Felis
Otocolobus
Prionailurus
Miracinonyx
Puma
Acinonyx

Fig. 2. Left: Best-resolution 50% majority consensus MRP genus-level supertree modified

from (Säilä et al. 2011; Säilä et al. 2012) using scheme All-F-Mol-bb-wgt; Right: The optimal

genus-level supertree using projection encoding and scheme All-FM-bb-wgt.

abstracted to the genus level as a constraint tree (scheme All-F-Mol-bb-wgt). We

include the best resolved tree by Säilä et al. to the comparison as well.

We use clasp for the computation of all optimal models. The considered schemes

turned out to be unfeasible for the quartet-based encoding (no optimum was reached

by a timeout of 48 hours), and only results from the projection encoding are included.

It turns out that there exists a unique optimum for the projection encoding for both

schemes. In the All-FM-bb-wgt scheme, the global optimum was identified in 4 hours

and 56 minutes, while it was located in 52 minutes for F-Mol using --config=trendy

which performed best on these instances. The respective run times are 1.5 hours and

20 minutes using parallel clasp 3.1.2 with 16 threads.

The MRP supertrees in (Säilä et al. 2011; Säilä et al. 2012) are computed using

the full species-level data with the Parsimony Ratchet method (Nixon 1999). For

the resulting shortest trees, 50% majority consensus trees were computed and the

best supported supertree according to (Wilkinson et al. 2005) out of different runs

(with various MRP settings) originates from scheme All-FM-bb-wgt, while the best

resolved tree was obtained using scheme All-F-Mol-bb-wgt. Finally, the species-level

supertree is collapsed to the genus level. The optimal supertree for the projection

encoding and the MRP supertrees from Säilä et al. described above (projected to

the set of genera considered in our experiments) are presented in Figure 2 and the

online appendix (Appendices A–C).

As the true supertree is not known for this real-life dataset, the goodness of the

output tree can only be measured based on how it reflects the source trees. To

assess the quality of the output trees and to compare them with the MRP trees,

we considered the number of satisfied quartets of source trees, the resolution of

the supertree, and support values (Wilkinson et al. 2005). Support varies between 1

and −1, indicating good and poor support, respectively, of the relationships in source

https://doi.org/10.1017/S1471068415000265 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000265


616 L. Koponen et al.

Table 2. Comparison between the optimal supertree for the projection encoding (proj) and

the best MRP supertrees

Scheme Method Resolution QSa %QSb Vc

All-FM-bb-wgt proj 0.90 14 076 0.84 0.43

All-FM-bb-wgt MRP 0.85 12 979 0.77 0.45

All-F-Mol-bb-wgt MRP 0.93 13 910 0.83 0.42

F-Mol proj 1.00 4 395 0.86 0.25

F-Mol MRP 1.00 4 389 0.86 0.27

a Number of satisfied quartets from source trees.
b Percentage of satisfied quartets from source trees.
c Support according to (Wilkinson et al. 2005).

trees. The results are given in Table 2, showing that the optimum of the projection

encoding satisfies more quartets of the input data than the MRP supertrees.

Finally, the differences of the objective functions of our two encodings can be

illustrated by computing the supertree of 5 highly conflicting source trees of 8 species

of hammerhead sharks from (Cavalcanti 2007). The optimum for the projection

encoding is exactly the same as source tree (b) in (Cavalcanti 2007), whereas the

optimum for quartet encoding is exactly the same as source tree (a). Thus, the two

objective functions are not equivalent in the case of conflicting source trees.

5 Conclusion

In this paper we propose two ASP encodings for phylogenetic supertree optimization.

The first, solving the maximum quartet consistency problem, is similar to the

encoding in (Wu et al. 2007) and does not perform too well in terms of run

time when the size of the input (source trees and number of taxa therein) grows. The

other novel encoding is based on projections of trees and the respective optimization

problem is formalized as the maximum projection consistency problem. We use real

data, namely a collection of phylogenetic trees for the family of cats (Felidae)

and first evaluate the performance of our encodings by computing genus-specific

supertrees. We then compute a genus-level supertree for the data and compare our

supertree against a recent supertree computed using MRP approach (Säilä et al.

2011; Säilä et al. 2012). The projection-based encoding performs better than the

quartet-based one and produces a unique optimum for the two cases we consider

(with rogue taxa removed). Obviously, this is not the case in general and in the case

of several optima, consensus and majority consensus supertrees can be computed.

Furthermore, our approach produces supertrees comparable to ones obtained using

MRP method. For the current projection-based encoding, the problem of optimizing

a species-level supertree using the Felidae data is not feasible as a single batch.

Further investigations how to tackle the larger species-level data are needed. Possible

directions are for instance using an incremental approach and/or parallel search.
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