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Global analysis of vessel motion patterns has become possible using satellite-based Automatic
Identification System (AIS). The concept of space-based AIS needs several satellites to
provide complete coverage and high detection probability. However, in early development
stages, often only one satellite is launched and due to its limitation of orbit and footprint,
received AIS messages are discontinuous. In this paper, we have analysed real AIS data
obtained by satellite to form a global maritime surveillance picture. Furthermore, we
propose to take advantage of the tensor CANDECOMP/PARAFAC (CP) decomposition
to analyse three mode characteristics of the data, which are location, vessel and time.
For incomplete data, we exploit the link prediction technique based on tensor factoris-
ation to recover vessel tracks in a specified area. A variant of temporal link prediction
based on CP is presented. We illustrate the usefulness of exploiting the three-mode structure
of AIS data by simulation, and demonstrate that the track recovery result has acceptable
precision.
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1. INTRODUCTION. The Automatic Identification System (AIS) is tra-
ditionally a ship and shore-based maritime safety and traffic system imposed by the
International Maritime Organisation (IMO). Since Wahl and Høye (2003) from the
Norwegian Defence Research Establishment, Forsvarets Forsknlnginstitutt (FFI),
presented the possibility of using space-based AIS receivers to help collect AIS messages,
significant progress has been made in developing satellite AIS. Simply put, vessels
equipped with AIS transponders transmit short omni-directional, line-of-sight mess-
ages that contain information about their identity, position, course and speed over
ground, gyro course, Universal Time Coordinated (UTC) time, etc. Conventionally,
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such information is received by shore stations and vessels in the vicinity to assist in
vessel traffic safety and monitoring applications. However, AIS satellites can collect
these data over a much broader area, hence providing a more comprehensive
surveillance and management capability.
Satellites orbiting the earth have a designed orbital period and sensor footprint,

so data can only be collected from vessels within the satellite footprint in one period.
To avoid losing signals due to weak transmission power on a higher orbit, Low Earth
Orbit (LEO) satellites are a preferred choice to collect as many messages as possible,
while the shorter periods of LEO satellites can bring more vessels within the footprint.
However, one satellite can only collect portions of the messages transmitted from
global marine traffic. Even within the footprint, if vessel traffic is dense, some signals
will be lost (Høye et al., 2008). A possible solution is to enhance the data collecting
capability by utilising a group of satellites, i.e. the concept of a “constellation”. It is
estimated that full deployment of an AIS satellite constellation is due in the period
2012–2015 (Carson-Jackson, 2012). In this paper, we do not consider the concept of a
constellation, but instead exploit real AIS data collected by one satellite, which, as
mentioned above, are incomplete.
The incompleteness of data manifests in two forms. On the one hand, messages

collected in a period are from only portions of the total vessels on the globe, mostly
within the satellite footprint, yet not all. On the other hand, for some days the receiver
on the satellite is powered down, thus the data obtained are not temporally con-
tinuous. The thrust of this work is that, if we can recover the temporally discontinuous
pictures of global vessel traffic by extracting the inherent associative motion patterns
of vessels from the spatial and temporal incomplete data, then we can schedule
receivers on the satellite in a planned program to coordinate with memory and
communication capability for multiple missions and improve the robustness of
the satellite AIS capability. Noting that the number of vessels detected is in the
thousands in a specific region and the data are temporal, we exploited the tensor
decomposition technique to extract patterns of vessel motion. CANDECOMP/
PARAFAC (CP) is adopted in this paper, which retains the natural data structure and
yields a highly interpretable factorisation. Also, the CP model is unique under
mild conditions (Kruskal, 1989), which will be convenient to our study. A gridding
step is carried out to locate the vessels detected by the receiver, and therefore help
establish the three way location-vessel-time array. An attempt to recover the data
on missing days is made by a modified link prediction method based on tensor
factorisation.
Our contributions can be summarised as follows:

. We utilise the received AIS data on a global range over a month to explicitly
reveal vessel distributions on the ocean, and by this method, some busy routes are
vividly detected.

. We focus on a specified region, which is a 20°× 20° (longitude× latitude) area to
the west of the Cape of Good Hope, establishing a three way tensor with a
gridding step to obtain the location information of vessels, and extract motion
patterns by performing a CP decomposition.

. We present a modified version of link prediction based on tensor decomposition
to make it suitable for temporal data recovery. By utilising it on real data, we
demonstrate that this method is valid and has good precision.
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The paper is organised as follows: In Section 2, we briefly discuss relevant literature.
In Section 3, we explain the process of decoding the AIS messages to the required
form, and the location information of vessels detected over one month are
demonstrated to present an appearance of the global traffic state. In Section 4, we
perform a CP decomposition of the temporal AIS data tensor in a specific region.
Firstly, we constructed the three-mode tensor in a location-vessel-time method, where
vessels detected are denoted by their Maritime Mobile Service Identity (MMSI). The
time mode has a span of more than one month with one day step size, and the location
mode is vectorised by grid partition in the selected region. Secondly, we computed its
CP model and obtained both overall and component level patterns. And thirdly, based
on results obtained, we explain the corresponding vessel motion patterns. In Section 5,
we present a modified version of link prediction based on CP decomposition, aiming
at making it suitable for recovery problems, which can be considered as a combination
of “forward” and “backward” predictions. Results are demonstrated to show the
usefulness of this method. And in Section 6, we summarise major findings and discuss
further possible work and extensions.

2. RELATED LITERATURE. Becky et al. (2012) have discussed the
possibility of combining an AIS satellite constellation, a Synthetic Aperture
Radar (SAR) satellite and an Electro-Optical (EO) satellite for routine and area
surveillance, as well as in support of Maritime Domain Awareness (MDA). AIS data
processing and fusion with other data sources have been studied for several years since
the emergence of the concept of space-based AIS. Ristic et al. (2008) presented a
statistical analysis of AIS data to find motion patterns and utilised the result to
perform anomaly detection and motion prediction. Their work is based on the kernel
density estimation technique, which provides an alternative way to study vessel
motion patterns. However, the performance measurement provided in their work has
to evaluate a probability numerically, which may not be very efficient. Høye (2004)
found an empirical expression to approximate vessel detection probability, which is
useful to determine the missing rate of AIS data and can be used further to improve
analysis results. Bomberger et al. (2006) and Rhodes et al. (2007) apply artificial
neural network methods to vessel motion pattern analysis, exploiting AIS data to train
the model. Tun et al. (2007) classify vessel motion paths into different regions, based
on their presented algorithm. This idea is somewhat similar to the location
vectorisation step for constructing the data tensor in our paper, yet the regions
obtained here are manually partitioned, making precision an issue. Several papers
have exploited different techniques to perform anomaly detection for motion patterns
of vessels or other mobile objects, including Laxhammar et al. (2009); Jemin et al.,
(2011); Laxhammar and Falkman (2010); Brax (2011); Lane et al. (2010) and Riveiro
and Falkman (2010). Much of the other work concerning the concept of space-based
AIS is focused on issues of vessel detection probability improvement (Eriksen et al.,
2006), satellite constellation study (Becky et al., 2012; Cervera et al., 2011), and space-
based AIS receiver design (Dahl, 2006). As Ristic et al. (2008) pointed out, the subject
of motion pattern analysis is not unique to AIS data analysis used for maritime
surveillance, actually originating in the field of computer vision. In this paper, we
propose to use the tensor decomposition method to extract vessel motion patterns and
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recover track lines, so we will next give a brief overview of some CP decomposition
and link prediction related literature.
Tensor decompositions have applications in various disciplines. CP decomposition

is a particular form that can be seen as a higher order version of matrix singular value
decomposition. The CP model became popular due to the contributions of Carroll
and Chang (1970) and Harshman (1970). For an introduction to many aspects of CP,
refer to Kolda and Badar (2008). What led us to select CP to extract motion
patterns is its uniqueness (under weak conditions) and interpretability. In recent years,
software tools have been developed to facilitate the computation of tensor
decomposition. The MATLAB Tensor Toolbox (Bader and Kolda, 2007) is adopted
in this paper to implement the CP decomposition. Link prediction problems mainly
focus on network analysis. However, in our work, by the location vectorisation
operation, we transform the track recovery problem to a similar problem to link
prediction. There are many strategies for link prediction problems. Node neighbour-
hood-based methods assume two nodes form a link if their respective neighbours have
a large overlap; related work can be found in Adamic and Adar (2003). Ensemble-of-
all-paths-based methods are alternative strategies; see Katz (1953). Other strategies
exist, yet our approach is most related to that proposed by Dunlavy et al. (2011),
where link data are temporal and the method is tensor-based. It is interesting to note
that although the AIS data used in this paper are incomplete on some specific days,
any vessel can only occupy one quadrilateral grid element or neighbouring elements at
most at a given time range, so the problem to investigate in our study is a temporal link
prediction problem, not a missing link prediction problem. One of the contributions
by Dunlavy et al. (2011) is that they extend the temporal problem to a periodic
temporal one, which means the time dimension has periodic patterns. For one
step prediction, they give both heuristic and forecasting-based methods after CP
decomposition. All the work indicates that as long as we can predict “forward”, why
not “backward”? And further, by a combination of “forward” and “backward”
predictions, we can recover missing temporal data by understanding motion patterns
extracted with CP. The fact that there are no hindering factors for performing a
backward analysis in the time dimension guarantees such a combination. In fact, we
will demonstrate in subsequent sections that this idea is valid.

3. AIS DECODING AND GLOBAL TRAFFIC REPRESENTATION. In
this section, we briefly introduce some technical characteristics of AIS codes that are
relevant in this paper and explain which types of information are used.

3.1. Issues With AIS Codes. AIS data, typically including vessel identification
(or MMSI), vessel type, speed, navigational status, draught, etc., are transmitted in the
form of messages. The messages are identified by different leading codes. Some pre-
and post- parts of the message codes are used for communication and auxiliary
purposes. Used here is the datum part, which usually begins with the Message ID.
Each piece of message is transformed to a string of 168-bit 0–1 codes. Only messages
with ID 1, 2, 3 are decoded here for simplicity, and from the codes we extract the
MMSI, position longitude and latitude, speed, course, and UTC time, which span
from 13 May to 18 June 2012; some days inbetween are absent. The speed and
course information are not directly used in data tensor construction, but for check and
auxiliary purposes.

86 CHANGQING LIU AND XIAOQIAN CHEN VOL. 67

https://doi.org/10.1017/S0373463313000398 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000398


For the track recovery problem discussed in this paper, we limited the concerned
region to a designated area, which is a 20°×20° (longitude× latitude) area to the
west of the Cape of Good Hope. This allows us to monitor an area of interest closely,
and by displacement and scalar operations, we can focus on any area on the ocean.
Correspondingly, vessels outside of the concerned region are filtered. In the process of
signal transmission, a small fraction of messages are truncated for abnormal reasons,
and they are filtered too. Finally, we gridded the focused region, dividing it into many
quadrilateral elements, and according to each vessel’s longitude and latitude infor-
mation, they are all distributed in the region. The magnitude of each element
determines precision. This issue is discussed in detail in Section 4.

3.2. Global Traffic Demonstration. With accumulation of AIS data over many
days, global voyage route patterns can be revealed. In Figure 1, we utilised a set of real
AIS data received by satellite to depict a global vessel traffic picture. From Figure 1
the contours of Africa, South America and Australia can be clearly seen, and some
busy voyage routes are also detected, for example the voyages across the Indian and
Atlantic Oceans. Over a longer time period, routes that may be obstructed, especially
the pole regions, may become apparent.
For a more local picture, however, it is necessary to investigate traffic patterns in

detail. Fishing boats and cargo ships, for example, have very different motion
patterns. Study of these patterns in a specified region may be helpful for management
and safety purposes. In this paper, we mainly discuss the evolution of data
characteristics in a region.

4. REGIONAL MOTION PATTERN EXTRACTION. In this section,
to exploit the CP decomposition to perform motion pattern analysis, the procedure of
constructing the tensor is illuminated first. Subsequently, we use theMATLAB Tensor
Toolbox by Bader and Kolda (2007) to compute the CP model; we then explain the
results. The work of this section is the basis of Section 5.

Figure 1. The global range vessel traffic state over a period of one month.
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4.1. Tensor Construction. A vessel’s position data over time are organised as a
tensor T of size I×J×T, where the three modes are location, vessel and time res-
pectively. The region selected for surveillance is a 20°×20° (longitude× latitude) area
to the west of the Cape of Good Hope. Instead of using longitude and latitude simu-
ltaneously to denote a vessel’s position, we divide this region by use of gridlines, see
Figure 2, referred to in this paper as location vectorisation.
The elements of tensor T are determined by

T(i, j, t) = 1 if in element i, there is vessel j on day t,

0 otherwise.
(1)

Noting the size of the elements can affect precision of analysis, we set it as 1°×1°
initially, taking speed and course of vessels into account, which can ensure that most
vessels sail through several adjacent elements in subsequent days. The 400 elements
are numbered as in Figure 2 and then arranged along the first mode of tensor T. A
total of 726 vessels obtained from decoding the AIS messages with ID 1, 2, 3 are
arranged along the second dimension according the number order of their MMSI. The
time span is from 13 May to 18 June 2012, with the data for 23–26 May and 5 June
missing.

4.2. CP Decomposition Results. We computed the CP model of tensor T, which
has 50 components, utilising an Alternating Least Squares (ALS) algorithm from the

Figure 2. Grid partition in a 20°×20° (longitude×latitude) region to the west of the Cape of
Good Hope.
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Tensor Toolbox by Bader and Kolda (2007), i.e.

T ≈
∑50

k

λkak W bk W ck (2)

where ○ denotes outer product computation, λ scales each component, and ak, bk, ck
are factors. In Figure 3, the results are separately plotted, overlying all the obtained 50
factors together for the three modes, location, vessel and time. On the top panel for the
location mode, we see that the result is in a discrete type as a whole, with some
adjacent elements clustered together. A possible interpretation will be given in the next
subsection. The middle mode for vessel is more complex than that for location. In
order to extract the inherent patterns from it, we take two examples out of the 50
components, see Figures 4 and 5. In the bottom mode in Figure 3, we can determine
the evolution of bustle pattern caused by all 726 detected vessels in this region of
interest, noting the data for 23–26May (day 11–14) and 5 June (day 24) are lost, which
leads to an interval and a point of zero on the pattern. Moreover, the pattern of the
first 5 days is also null which is actually due to the region of interest being outside of
the satellite footprint during this period. How to recover this lost part of the pattern is
our main focus in this paper, and we will deal with this in Section 5. Another point
that needs attention is that in the CP model implemented here, the non-negative
constraint is not imposed.

4.3. Pattern Interpretation. In the selected region of interest, vessels from or
to Europe and South America around the Cape of Good Hope form three main routes,

Figure 3. CP decomposition results of tensor T, with all 50 factors for each mode plotted overlying.
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Figure 4. The #42 component of the CP decomposition.

Figure 5. The #47 component of the CP decomposition.
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i.e. European direction, Amazon direction, and Rio de Janeiro direction from the
natural Cape, which can be clearly seen in Figure 1. Noting the elements are vectorised
along the column of the region, which has been partitioned into a set of 1°×1°
quadrilateral elements, adjacent elements composing this route may be discretized,
hence generating the pattern in the top panel of Figure 3. However, by the extracted
pattern, we can to some extent approximate the original route with a precision
determined by the size of element first designated. Figure 6 illustrates a coarse grained
representation of the motion pattern in this region, while in Figure 7 the real pattern is
shown for comparison. Note the dense dots to the right of the uppermost route denote
vessels along the coastline, which do not form a specific route, see Figure 1 for
reference. As an example, Figures 4 and 5 illustrate the 42nd and 47th components of
the CP model. In Figure 4, the vessel with MMSI “477013300” which is numbered 431
in the vessel list locates in the No. 79 element over the period from 2 to 16 June.
Although the missing 5 June data is obvious, the pattern extracted is only trivially
affected. The same interpretation is true for Figure 5, but attention should be paid to
the time mode, which spans the range of missing data, i.e. 23–26 May (day 11–14) and
5 June (day 24).
Combining with patterns extracted in other components, we conclude that it is

viable to recover the lost route information by applying some extension technique to
the incomplete data. Generally, the route information is contained in the first factors
of CP decomposition, while the second factors group vessels in neighbouring elements,
and the time factors reflect evolving characteristics of vessels. From the examples
above, it can be seen that the CP decomposition extracts AIS data patterns well.

Figure 6. Approximation of the original routes with extracted patterns by CP. Quadrilateral
element size is 1°×1°.
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5. TRACK RECOVERY FROM INCOMPLETE DATA. Based on the
CP decomposition of the AIS data tensor and potential viability of recovering lost
information from extracted patterns, we present a revised version of the link prediction
technique based on CP decomposition in this section to accomplish the task of track
recovery for vessels.

5.1 Revised Link Prediction Based on CP. Dunlavy et al. (2011) present heuristic
and forecasting-based prediction methods that utilise temporal information extracted
by CP; their tensor-based methods are applied to data with periodic patterns.
Enlightened by their work, we propose a revised link prediction method based on CP
decomposition to make it suitable for the track recovery application here. However,
data in our focus have no periodic patterns, but a multiple-step based “recovery”, i.e.
forward and backward predictions, is needed to account for missing data over several
days. Therefore, we present a merging sequential one step prediction approach to
handle this problem.
For multiple time steps missing data, motion patterns of vessels are affected more

by recent data in light of motion coherence; therefore we use the latest 3 days’ data to
predict a subsequent day. We construct an I×J×3 tensor TD

first which contains the
latest 3 days’ data, then compute the CP decomposition using Tensor Toolbox,
resulting

TD =
∑50

k

λDk a
D
k

W bDk W cDk (3)

Figure 7. Real motion pattern of the 726 vessels in the region of interest over the time span.
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Here, the superscript denotes the last index of the three days in the original
I×J×T tensor. And further, we give a one-step prediction score for day D+1 as
follows,

SD+1 =
∑50

k

γDk λ
D
k a

D
k b

DT
k (4)

where

γDk
1
3

∑3

t

cDk (t) (5)

Subsequently, as for day D+2, we construct a new I×J×3 tensor TD+1, using the
latest 2 days’ real data and obtained score on day D+1. The remaining mathematics
carry through as before, until we obtain predictions for all days. Note that as this
proceeds, data used to construct new tensors may be all from obtained scores, so long
as the missing period is temporally equal or greater than 4 days, such as 23–26 May
given in Section 4.
The procedure above can be seen as a “forward” prediction. However, the data

collected after the missing time span can also be used to accomplish a “backward”
prediction, taking full advantage of information on both sides. There is no essential
difference in the mathematics to perform such a process, only to inverse the direction

Figure 8. CP decomposition results of the full tensor F, with all 50 factors for each mode plotted
overlying. Location and vessel patterns are dense, compared with those in Figure 3, and missing
data in time mode are recovered by a combination of “forward” and “backward” predictions.
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of constructing I×J×3 tensors, i.e. for a missing period over day D+1 to D+L, we
compute scores S’D+L for day D+L by constructing the tensor using real data on day
D+L+3, D+L+2, D+L+1 first.
For the task of recovery, we merged the forward and backward predictions to

recover the data. Neither of the two forms has an advantage over the other, so we took
the mean of “forward” and “backward” score arrays to construct recovery tensorM of
size I×J×L, where

M(:, :, j) = 1
2
(Sj + S′j) j = D+ 1,D+ 2, ... ,D+ L (6)

in the MATLAB notation. Then the original data tensor with vacancies due to data
missing was filled with the above recovery tensor fragment to form a new “full” one, F
which is used to regenerate vessel tracks.

5.2. Simulation. Based on the revised link prediction method proposed above,
we illustrate the results in Figures 8 to 11. Figure 8 illustrates a full view of patterns
produced with the full tensor decomposition. Compared with that in Figure 3, it is
obvious that both the location and vessel patterns are denser than before, which
means that more elements are occupied and some vessels are recovered to show up in
elements during the missing days. The bottom subplot more clearly demonstrates this,
where a pattern of days that are originally absent in Figure 3 are present already. The
intense rise and fall in the time mode pattern is due to the fact that many more new
links have appeared in the result.

Figure 9. The #6 component of the CP decomposition of F, which specially illustrates a recovered
pattern in the missing period from day 11 to day 14.
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Figure 10. The #15 component of the CP decomposition of F, which specially illustrates a
recovered pattern in the missing period from day 1 to day 5.

Figure 11. Recovery of the original three routes with patterns extracted by CP of F.
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Furthermore, in order to discover the underlying mechanism of how the pattern is
recovered, we demonstrate two CP decomposition components of the full recovered
tensor F in Figures 9 and 10, where one reveals which vessels are located in which
quadrilateral elements from day 11 to day 14, i.e. 23–26 May, and the other reveals
which vessels are located in which elements during the first 5 days. With many other
components containing such analogous information composited together, a more
legible route pattern is given in Figure 11.

5.3. Discussion. When predicting links in a further time step using the method
proposed in this paper, new links will arise, especially as the sequential iteration
proceeds. This causes the fluctuation shown in the bottom of Figure 8. Table 1, for
example, illustrates the number of links in the successive days from 22–27 May,
predicted using the forward form of the proposed method, noting the four missing

Table 1. Links Predicted With a Forward Form of the Proposed Method.

Day # Location Vessel Possible links Real links Density (%)

10 35 52 1300 54 4·15
11 30 36 1080 107 9·91
12 36 33 1188 133 11·2
13 30 60 1800 452 25·11
14 33 60 1980 683 34·49
15 29 41 1189 42 3·53

Figure 12. Trend of the number of links in forward and backward forms separately during the
missing day periods.
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days therein. It can be seen that the proportion of predicted links increases in further
prediction steps, in the forward form. The backward form of prediction has an inverse
trend, see Figure 12. Thus, we take the mean of two forms to alleviate the effect of
monotony. For the other form of missing data, i.e. the first five days due to the region
being out of the footprint of satellite, we filter out those with scores less than two. The
merged result is shown in Figure 13.
In the bottom subplot of Figure 8, the extracted pattern reflects well that inherent in

the recovered tensor F, which are in accordance with Figure 13. If the missing data
recovered are added to real data, we see more vessels are detected to be active as shown
in the middle subplot of Figure 8, which will make a more explicit pattern of vessel
track routes. It can be seen that detected elements are denser in Figure 11 than in
Figure 6.
For the task of single vessel tracking, it is possible to determine which element they

are located in during the period when real data are absent. When analysing each
component obtained from the CP decomposition of tensor F, which vessels are in
which elements is clear, as demonstrated in Figures 9, 10. For example, in the 6th
component of the CP model illustrated in Figure 9, we know that on day 11, the vessel
numbered 261 (whose MMSI is 354623000, actually) is most likely in element 375.
Note an element of 1°×1° in the region of interest is an area of approximately
100 km × 100 km, which is the same magnitude of the least range a vessel will
manoeuvre in a day, after checking the speed data of all the vessels, so the results
obtained in this paper have an acceptable precision.

Figure 13. Number of links during missing days with forward and backward forms merged, while
the first five days only filtered.
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6. CONCLUSION. In this paper, we use the tensor decomposition tool to
analyse a set of AIS data. Traditionally, shore-based AIS data are used for short-range
maritime traffic service and safety applications. However, the new concept of space-
based AIS has extended this capability to a global range. We utilised the real data
received by satellites over a period of a month or so to depict a global vessel traffic
pattern to demonstrate its advantage over traditional techniques. Nevertheless,
satellite-based AIS has limitations. In the early stage of satellite AIS, with only one
satellite in orbit and the restriction due to its orbit and footprint may lead to
incomplete data. The analysis of these data is the main focus of this paper, and in
particular, we discuss the task of track recovery of missing data.
We constructed three-way tensors to represent location, vessel identity and time

information. Before that, we first proposed to vectorise the location information to a
set of gridded elements, making the first mode of the tensor one-dimensional. By
performing the CP decomposition, we primarily extracted motion patterns inherent in
the data. In the case of incomplete data, we proposed to take advantage of link
prediction techniques to first recover the full data tensor, and then solve the problem
of which vessels are in which elements during the missing days. A revised version of
link prediction based on CP is given, where we merge the forward and backward
prediction links to handle the problem of track recovery. Simulation results illustrate
the applicability of this method.
The concept and techniques of satellite-based AIS are promising, yet how to

effectively exploit the data received in the global range is challenging. In this paper, we
have innovatively applied the CP decomposition that is efficient in the field of data
mining to AIS data analysis.
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