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The objective of the paper is to determine the stable mechanical equilibrium states of
an oblate capsule subjected to a simple shear flow, by positioning its revolution axis
initially off the shear plane. We consider an oblate capsule with a strain-hardening
membrane and investigate the influence of the initial orientation, capsule aspect ratio
a/b, viscosity ratio λ between the internal and external fluids and the capillary number
Ca which compares the viscous to the elastic forces. A numerical model coupling the
finite element and boundary integral methods is used to solve the three-dimensional
fluid–structure interaction problem. For any initial orientation, the capsule converges
towards the same mechanical equilibrium state, which is only a function of the
capillary number and viscosity ratio. For a/b = 0.5, only four regimes are stable
when λ = 1: tumbling and swinging in the low and medium Ca range (Ca . 1),
regimes for which the capsule revolution axis is contained within the shear plane;
then wobbling during which the capsule experiences precession around the vorticity
axis; and finally rolling along the vorticity axis at high capillary numbers. When λ
is increased, the tumbling-to-swinging transition occurs for higher Ca; the wobbling
regime takes place at lower Ca values and within a narrower Ca range. For λ& 3, the
swinging regime completely disappears, which indicates that the stable equilibrium
states are mainly the tumbling and rolling regimes at higher viscosity ratios. We
finally show that the Ca–λ phase diagram is qualitatively similar for higher aspect
ratio. Only the Ca-range over which wobbling is stable increases with a/b, restricting
the stability ranges of in- and out-of-plane motions, although this phenomenon is
mainly visible for viscosity ratios larger than 1.

Key words: biological fluid dynamics, capsule/cell dynamics

1. Introduction
Capsules, which consist of a thin deformable membrane around a liquid droplet,

play the joint role of transporting and protecting an inner fluid content. The principle
of microencapsulation is ubiquitous with many applications in industry. Besides its
classical use in inkjet printing, photography, cosmetic cream manufacturing, etc.,
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it is at the source of innovative applications, many of them appearing in the field
of biotechnologies (Ma & Su 2013). For instance, contrast-enhanced ultrasound has
become one of the most widespread imaging techniques thanks to the use of coated
air microbubbles or of microcapsules filled with perfluorinated gases for echogenicity
(Furlow 2009). In pharmaceutics, drug and cell encapsulation is rapidly developing
(Bhujbal, de Vos & Niclou 2014) and has led to new treatment techniques, such
as targeted drug therapy. Similarly, encapsulation is used for the development of
bioartificial organs (e.g. encapsulation of islets of Langerhans for diabetic patients
(Clayton, James & London 1993) or of haemoglobin to create artificial blood (Chang
2003)). Many instances of encapsulation may also be found in nature (e.g. seeds, eggs,
cells). Red blood cells (RBC) are an example of natural capsules: their two-layer
membrane is composed of a lipid bilayer (outer layer) and a cytoskeleton which
protects a solution of haemoglobin (Mohandas & Gallagher 2008).

The motion of spheroidal capsules in simple shear flow with shear rate γ̇ is quite
complicated. It depends on the axis ratio a/b, (where a and b are the half-diameters
along the revolution and azimuthal axes, respectively), on the viscosity ratio λ
between the internal and external liquids and on the relative flow strength measured
by the capillary number Ca=µγ̇ `/Gs, where µ is the suspending fluid viscosity, Gs
the surface shear elastic modulus of the capsule membrane and ` the length scale
defined as the radius of the sphere with the same volume as the capsule. Different
behaviours have been identified. When the capsule revolution axis is in the shear
plane, the particle can rotate like a quasi-solid particle (tumbling motion), or it can
take a deformed shape where the long axis oscillates around a mean orientation in
the shear plane, while the membrane rotates about the deformed shape (swinging or
tank-treading motion, depending on the oscillation amplitude). Another equilibrium
state is found when the particle revolution axis is perpendicular to the shear plane (i.e.
aligned with the vorticity axis): the capsule takes a rolling motion and rotates like a
(deformed) wheel under the flow vorticity. The rolling motion is also referred to as
the C = 0 orbit in reference to Jeffery (1922)’s work. The transition from in-plane
to rolling motion has received many names in the literature: wobbling, precessing,
kayaking, oscillating–swinging.

No experiment has ever been conducted on artificial ellipsoidal capsules with large
deviation from isotropy (i.e. with a/b<0.9 or a/b>1.1) due to the current absence of
robust techniques to fabricate them. The only slightly ellipsoidal capsules that exist are
imperfect spherical ones: their aspect ratio is thus typically close to 1. Experiments on
such capsules have shown that their dynamics are very different from those observed
for a rigid particle or even a spherical capsule. They have proven the existence of the
tumbling regime at low Ca and the transition towards swinging at larger Ca (Chang
& Olbricht 1993; Walter, Rehage & Leonhard 2001).

For obvious physiological reasons, there are many experimental observations of
the motion of RBCs, which can be considered as easily obtainable ‘ready-made’
(biconcave) oblate capsules. Note though, that the RBC membrane is very different
from the polymerized membrane of a typical artificial capsule. At low shear rate,
an RBC has a tumbling motion, which evolves into a swinging motion as the shear
rate increases (Abkarian, Faivre & Viallat 2007; Abkarian & Viallat 2008; Fischer &
Korzeniewski 2013), similarly to what has been found for artificial capsules. However,
it was shown that RBCs may also drift into a C = 0 orbit. Goldsmith & Marlow
(1972) were the first to show that an increasing number of cells tended to drift and
align their axis of symmetry with the vorticity axis, as the flow strength was increased.
This phenomenon was further studied by Bitbol (1986) and Dupire, Socol & Viallat
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(2012), and quantified by Yao et al. (2001). They have shown that the tumbling
motion becomes unstable so that the RBCs take a rolling motion, before switching
to tank-treading. Note that RBCs have complex properties: they are biconcave, have
a multi-component membrane with viscoelasticity and bending rigidity, as well as a
pre-stress within the membrane because of the cell reference shape. It is not quite
clear which of these properties influences the transition from one motion to the other.

It is then of interest to study whether similar transitions would exist for simpler
particles, such as oblate capsules with a hyperelastic membrane. The object of the
present manuscript is to conduct a numerical study of the three-dimensional motion
of oblate capsules in simple shear flow to provide an answer to this question.

A number of numerical studies have investigated the dynamics of a spheroidal
capsule placed in a simple shear flow. The first models considered the case where the
revolution axis of the capsule is placed in the shear plane (Ramanujan & Pozrikidis
1998; Kessler, Finken & Seifert 2008; Sui et al. 2008; Bagchi & Kalluri 2009; Le
& Tan 2010; Walter, Salsac & Barthès-Biesel 2011): it is then bound to remain
in it, as the flow is governed by Stokes’ equations. It was found that the capsule
has a tumbling motion at low Ca and a swinging motion at high Ca, and that the
capsule assumes a quasi-circular shape in the shear plane at the tumbling-to-swinging
transition (Walter et al. 2011). Walter et al. (2011) showed that the value of Ca at
the transition depends on the capsule aspect ratio, the transition occurring at higher
Ca for prolate capsules than for oblate capsules, and that increasing the internal
viscosity shifts the transition to higher values of Ca for a given capsule shape.

The off-plane motion of a prolate capsule has been recently studied in simple
shear flow in Stokes flow conditions by Dupont, Salsac & Barthès-Biesel (2013)
or under low flow inertia (Reynolds number Re = 0.2) by Cordasco & Bagchi
(2013) and Wang et al. (2013). Dupont et al. (2013) have considered flow strengths
0.1 6 Ca 6 2. They have found that the low Ca tumbling motion in the shear plane
is mechanically unstable: starting from any initial orientation, the capsule eventually
places its revolution axis along the vorticity axis and takes a stable rolling motion.
As Ca is increased, a prolate capsule tilts away from the vorticity axis and precesses
around it. At still higher values of Ca, a stable swinging regime is observed, where
the capsule longest axis tends towards the shear plane. Dupont et al. (2013) have
shown that these stable equilibrium states do not depend on the initial orientation
of the capsule, a result which is confirmed by Wang et al. (2013) for Ca > 0.03.
The fact that Cordasco & Bagchi (2013) find that the motion depends on the initial
capsule orientation may be due to too short computation times.

The question that arises is whether the results found for prolate capsules apply
to oblate spheroidal capsules. Cordasco & Bagchi (2013) studied oblate ellipsoidal
capsules for 0.05 6 Ca 6 0.6, different axis ratios and no viscosity contrast (λ = 1).
They conclude that an oblate spheroidal capsule always tends towards the shear plane
where it takes a tumbling or swinging motion with oscillations about the shear plane
(also called kayaking) depending on Ca. They only identified a tendency towards
rolling, when modelling RBCs with larger values of the internal viscosity. Their
conclusions are based on the trend of the evolution curves, as too short computational
times are used in the simulations to observe the converged regimes. Wang et al. (2013)
considered oblate capsules with an axis ratio of 2/3 for 0.003 6 Ca 6 0.3 and λ= 1.
They also found for Ca > 0.03 that the capsule tends towards the shear plane where
it takes a tumbling or oscillating–swinging motion, but all of their results depend on
the capsule initial orientation. The occurrence of a rolling regime at higher capillary
number has so far only been found for an oblate capsule by Omori et al. (2012).
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In their study, they examined capsules with a/b= 0.4 and 0.6 for 0.016Ca6 2. They
showed that the transitions from swinging to wobbling and from wobbling to rolling
strongly depend on the aspect ratio and constitutive law and that these occur for lower
values of the capillary number when the viscosity ratio is increased from 0.5 to 2.

Previous results thus indicate that the dynamics of prolate and oblate capsules
are very different. If the dynamics of prolate spheroidal capsules are rather well
understood, such is not the case for oblate ones, for which a comprehensive study
has still to be performed. A number of pending questions remain:

(i) Does the final motion of an oblate capsule depend on the initial orientation?
(ii) Is rolling the high flow strength motion when the capsule is oblate?

(iii) How are the capsule dynamics affected by the internal viscosity when the latter
is greater than 1?

(iv) How long does it take for a capsule to reach an equilibrium configuration?

The present work aims at finding the stable equilibrium configurations and studying
the influence of the capillary number, aspect ratio and viscosity ratio. Experimentally,
the external viscosity is indeed rarely matched with the viscosity of the internal fluid.
In particular, we will show that the final equilibrium motion of an oblate capsule does
not depend on its initial orientation, in contrast with previous conclusions. Another
important objective is to determine the time required for an oblate capsule initially
placed off the shear plane to reach its mechanical equilibrium state. Such information
is crucial when setting up experiments to observe the behaviour of oblate capsules.
Specifically, it is important to make sure that the observed motion is steady. Similarly,
this information should also be useful to choose adequately the proper computational
times of numerical models.

To solve the fluid–structure interaction problem, we use the numerical model
developed by Walter et al. (2010) and Foessel et al. (2011), based on the coupling
of a membrane finite element method for the capsule deformation with a boundary
integral method for the internal and external flows. We briefly outline the problem
and the numerical method in § 2. The equilibrium configurations of an oblate capsule
initially positioned off the shear plane are studied in § 3 as well as the influence
of the aspect ratio and viscosity ratio between the internal and external flow. The
characteristic times to reach equilibrium are evaluated in § 4 as a function of the
viscosity ratio, before discussing all the results in § 5.

2. Method
2.1. Problem statement and numerical method

We consider a capsule with a very thin membrane, modelled as an isotropic
hyperelastic surface St with surface shear modulus Gs, area dilatation modulus Ks
and negligible bending resistance. In the reference undeformed state, the capsule is
an oblate spheroid with aspect ratio a/b, where a denotes the half-diameter along the
revolution axis, and b the half-diameter along any orthogonal direction. The problem
length scale `= (ab2)1/3 is defined as the radius of the sphere with the same volume
as the capsule. Unless otherwise stated, we will consider a capsule with a/b = 1/2,
for which a/`= 0.63 and b/`= 1.26.

We define the reference frame F ′(O, e′x, e′y, e′z), where O is the capsule centre of
mass and e′x, e′y, e′z are the principal axes of the undeformed capsule. The revolution
axis is initially along e′z, so that the initial capsule profile is given by(

x′

b

)2

+
(

y′

b

)2

+
(

z′

a

)2

= 1, (2.1)
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(a) (b)

FIGURE 1. Reference (a) and deformed (b) configurations of an oblate capsule subjected
to a simple shear flow. The initial capsule orientation is defined by the angle ζ (0) between
the capsule revolution axis e′z and the flow vorticity axis ez. The points Mi(t) represent the
tip of the capsule principal axes and the points Ai(t) are the points initially located at the
tip of the capsule principal axes.

where the coordinates (x′, y′, z′) correspond to the position of a material point on the
membrane.

The capsule is suspended in an unbounded Newtonian incompressible fluid of
viscosity µ. The inner fluid is also Newtonian and incompressible with viscosity λµ,
where λ is the internal-to-external viscosity ratio. The density of the internal and
surrounding fluids are equal, thus excluding gravity effects. The Reynolds number
of the flow is assumed to be negligible, so that the internal and external flows are
governed by Stokes’ equations. The capsule is subjected to a simple shear flow with
shear rate γ̇ given by

v∞ = γ̇ yex (2.2)

in the laboratory reference frame F (O, ex, ey, ez).
At time γ̇ t=0, the capsule orientation in space is defined by the angles between the

basis vectors of the reference frames F ′ and F . The capsule revolution axis e′z makes
an angle ζ (0) with the vorticity axis, such that (e′z, ez)= (e′y, ey)= ζ (0) and (e′x, ex)= 0
(figure 1a). Thus ζ (0) = 0 or π/2 corresponds to a capsule with its revolution axis
parallel to the vorticity axis or to the shear plane, respectively.

The problem is solved numerically using the boundary integral–finite element
method (BI–FE) (Foessel et al. 2011). This method couples a boundary integral
technique to compute the fluid flows (inside and outside the capsule) to a finite
element method to compute the capsule membrane deformation. The method is
summarized in this section, but more details are available in Barthès-Biesel, Walter
& Salsac (2010), Walter et al. (2010) and Foessel et al. (2011).

The numerical procedure is based on a Lagrangian tracking of the position of the
membrane material points of St. The capsule deformation and in-plane principal stretch
ratios λ1 and λ2 may thus be computed from the position of the membrane points at
each time. The capsule wall is assumed to be strain hardening and to follow a Skalak
law (Skalak et al. 1973). The principal elastic tensions T1 and T2, which are forces
per unit length of deformed membrane, are then given by

T1 = Gs

λ1λ2
[λ2

1(λ
2
1 − 1)+C(λ1λ2)

2((λ1λ2)
2 − 1)], (2.3)
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with a corresponding expression for T2 obtained by permuting indices 1 and 2. The
surface shear and area dilatation moduli are then related by Ks = Gs(1+ 2C), where
C is a constant such that C>−1/2.

The finite element method is used to solve the equilibrium equation of the
membrane

∇s · T + q = 0 (2.4)

in its weak form and to find the load q(x, t) exerted by the fluids on the membrane
at time t. In (2.4), the symbol ∇s represents a surface gradient.

Knowing the viscous load q, the velocity v(x, t) of the membrane points is deduced
from a boundary integral formulation for the three-dimensional motion of the internal
and external fluids

v(x, t) = v∞(x)− 1
8πµ

∫
St

(
I

‖r‖ +
r ⊗ r
‖r‖3

)
· q(y, t) dS(y)

− 1− λ
8π

∫
St

(v(y, t)− v(x, t)) · r ⊗ r ⊗ r
‖r‖5

· n(y) dS(y), (2.5)

where v∞ is given by (2.2), I is the identity tensor, n is the unit vector normal to St

and r = x− y is the distance between the point x where the calculation is performed
and the point of integration y. The new position of the membrane points at the next
time step is found by using an explicit second-order Runge–Kutta method to solve the
kinematic condition, which relates the membrane velocity to the time derivative of the
Lagrangian position of the membrane points

v(x, t)= ∂x(X, t)
∂t

, x ∈ St, (2.6)

where X represents the position of a point in the reference configuration.
In general, the capsule motion and deformation are governed by:

(i) the capsule initial orientation ζ (0);
(ii) the capsule aspect ratio a/b;

(iii) the membrane constitutive law;
(iv) the ratio of the area dilatation and shear moduli Ks/Gs;
(v) the capillary number Ca=µγ̇ `/Gs, which measures the ratio between the viscous

and the elastic forces; and
(vi) the viscosity ratio λ.

We assume that the capsule membrane follows the Skalak law with C=1 (for which
Ks/Gs = 3) and study the influence of ζ (0), Ca, a/b and λ on the capsule dynamics.

2.2. Discretization, stability and convergence

One of the advantages of the BI–FE method is that all the problem unknowns
are to be determined on the capsule surface and not in the entire domain volume.
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The capsule surface is meshed by subdividing sequentially the 20 triangular faces of
an icosahedron inscribed in a sphere until the desired number of elements is reached.
Nodes are then added at the middle of all the element edges and projected onto the
sphere in order to generate second-order P2 elements. This mesh is deformed into an
ellipsoidal mesh with the desired axis ratio (Walter et al. 2011). All the results are
shown for a mesh with 2562 nodes and 1280 triangular curved elements.

The numerical method is stable when the time step satisfies the condition

γ̇ 4 t<O
(
1xCa
`

)
, (2.7)

where 1x is the typical mesh size (Walter et al. 2010). Here, 1x = 0.075. We use
γ̇ 4 t= 5× 10−3 for Ca> 0.5 and decrease the time step proportionally for lower Ca.

To reach the steady state of a capsule initially off the plane, computational times of
the order of γ̇ t = 102–103 are needed. In order to estimate the numerical error over
such long computational times, we compute the relative error εV = |V − V0|/V0 on
the capsule volume V , where V0 is the initial volume of the capsule. The error at
γ̇ t= 100 is

(i) O(10−2) for λ< 4 and Ca 6 0.6,
(ii) O(10−3) for λ< 4 and Ca> 0.6 and for all the values of Ca for λ> 4.

2.3. Result analysis
The capsule motion in space is complex. We characterise it by simultaneously
studying the overall shape evolution (Eulerian description) and the motion of the
membrane material points (Lagrangian tracking).

The global geometry of the capsule is evaluated by means of the ellipsoid of
inertia of the deformed shape, with principal axes denoted Li(t) (i= 1, 2, 3) such that
L1(t) > L2(t) > L3(t) at time t. The corresponding unit principal vectors in F are
ui(t) (u1(0) = e′x, u2(0) = e′y and u3(0) = e′z). The capsule position in space is then
determined from the angle ζ (t) = (u3(t), ez) between the capsule small axis and the
vorticity direction (figure 1b). We also follow the motion in time of the point M3(t),
which corresponds to the intersection between the small axis direction u3(t) and the
membrane.

The membrane rotation is deduced from the motion in time of the points Ai(t),
which were initially located on the intersections between the ui(0) directions and the
membrane (figure 1). We will for instance compare the motions of the points A3(t) and
M3(t) in order to analyse eventual membrane rotation. We denote ξ(t)= (O A3(t), ez)
the angle between the O A3(t) and the vorticity axis (figure 1b). At time γ̇ t= 0, the
points A3(0) and M3(0) are superimposed, so that ξ(0)= ζ (0).

3. Stable equilibrium configurations
3.1. Equilibrium configurations of a capsule with λ= 1

3.1.1. Obvious equilibrium positions
Two obvious equilibrium configurations exist for an oblate capsule placed in a shear

flow under Stokes flow conditions: when the capsule revolution axis is initially in the
shear plane or perpendicular to it.

When the capsule revolution axis is initially in the shear plane (ζ (0)= ξ(0)= 90◦,
A3(0) and M3(0) in the shear plane), we have seen in the introduction that the capsule
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14 16.5 19 20 22

17 20 22 24 26

(a)

(b)

0

23 25 29 31 33

(c)

FIGURE 2. Capsule shape evolution over one half-period at steady state when ξ(0)= 90◦
(λ = 1). The grey scale corresponds to the normal component of the load q · n on the
membrane, with maximum values depending on Ca. (a) Ca = 0.01: tumbling regime
(max(q · n/Gs)= 0.15); (b) Ca= 0.3: swinging regime (max(q · n/Gs)= 2); (c) Ca= 1.5:
quasi-steady tank-treading regime (max(q · n/Gs)= 6). The value of the non-dimensional
time γ̇ t is given below each shape. The points A1(t) (p) and A3(t) (u) are initially on
the long and short axes respectively in the shear plane. The point M3(t) (A) represents
the tip of the smallest capsule principal axis (see figure 1).

experiences tumbling at low Ca followed by a transition towards swinging for higher
values of Ca. Figure 2 illustrates the characteristic dynamics of the capsule during
half a period in both regimes (see Walter et al. (2011) for more details). In this case,
the points A3(t) and M3(t) remain in the shear plane for all the values of Ca and time
(ζ (t)= ξ(t)= 90◦).

When the capsule revolution axis is initially along the vorticity axis (ζ (0) =
ξ(0)= 0◦, A3(0) and M3(0) on the vorticity axis), the capsule cross-sections parallel
to the shear plane are initially circular. They are deformed by the shear flow and the
membrane rotates around the deformed shape. This capsule motion is called rolling,
since the membrane rotates around the cross-section like a deformed wheel. At low
Ca (figure 3a), the capsule cross-section is not much deformed so that the points
M3 and A3 remain on the vorticity axis (ζ (t) = ξ(t) = 0◦). As the capillary number
increases, the cross-section elongates in the straining direction (figure 3b): the capsule
small axis u3 and hence the point M3 may eventually become located in the shear
plane, while the point A3 remains on the vorticity axis. In this case, the asymptotic
values of the angles are ζ (t)= 90◦ and ξ(t)= 0◦.

Note that for large Ca, the oscillation amplitude of the swinging regime observed
when ζ (0)= 90◦ tends to zero so that the capsule experiences a quasi tank-treading
motion (figure 2c). This regime is visually the same as the rolling motion observed
when ζ (0)= 0◦ at large Ca (figure 3b). The only way to distinguish between the two
regimes is by monitoring the position of the point A3 and the angle ξ(t). This shows
that the best parameter to study the capsule motion is the angle ξ(t). Experimentally, it
can be achieved by attaching markers to the membrane, but this is difficult to perform.
Resorting to numerical simulations is thus useful to distinguish between those regimes.
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25 26 28 30 31

25 25.8 26.2 26.7 27

(a)

(b)

0

FIGURE 3. Capsule shape evolution over one half-period at steady state when ζ (0)= 0◦
(λ = 1): capsule in rolling regime. (a) Ca = 0.01 (max(q · n/Gs) = 0.1); (b) Ca = 1.5
(max(q · n/Gs) = 5). Same legend as in figure 2. The points A3(t) and M3(t) are
superimposed in (a), whereas A3(t) is on the vorticity axis and M3(t) is in the shear plane
in (b).

3.1.2. Stable equilibrium of an initially off-plane capsule
In Stokes flow, the mechanical stability of an equilibrium configuration can only be

tested by perturbing the capsule orientation, which corresponds here to positioning the
revolution axis with an initial orientation ξ(0)= ζ (0)∈ ] 0◦, 90◦[ . We then follow the
time evolution of the angles ζ (t) (to determine the overall capsule position) and ξ(t)
(to determine the type of capsule motion). Note that if ξ(t)→ 90◦, the capsule tends
towards the tumbling or the swinging regime (§ 3.1.1). On the other hand, if ξ(t)→0◦,
the capsule stable configuration is the rolling motion. If ξ(t) and ζ (t) tend towards any
other value in ] 0, 90◦[ , the capsule takes at equilibrium a wobbling motion, where it
precesses and oscillates about the vorticity axis.

We first investigate whether the initial orientation affects the final equilibrium
configuration. We start by considering a weak flow strength (Ca = 0.01) and three
different initial orientations (ζ (0)= ξ(0)= 5◦, 45◦, 75◦). As shown in figure 4(a), the
angles ζ (t) and ξ(t) both tend to 90◦ independently of the initial orientation. The only
effect of the initial position is the time it takes to reach equilibrium, which increases
the further the capsule is initially from its final equilibrium position. For Ca= 0.01,
the stable equilibrium regime is a quasi-solid tumbling motion (with no membrane
rotation), which explains why the curves of ζ (t) and ξ(t) are superimposed. For a
larger flow strength Ca= 0.3, the angles ζ (t) and ξ(t) both converge towards 90◦ but
do not follow the same time evolution during the transition phase (figure 4b). During
the transient phase, the capsule takes a global oscillating swinging motion (evidenced
by the oscillations of ζ (t)), during which the membrane rotates to bring the point A3
in the shear plane. This result is independent of the initial orientation as illustrated
in figure 4(c) for the angle ζ (t).

When the capsule tends to position its small axis OM3 and the point A3(t) in the
shear plane, the resulting motion is identical to the one shown in figure 2 when
the capsule revolution axis is initially in the shear plane (ζ (0) = ξ(0) = 90◦) (see
supplementary movies 1 and 2 available at http://dx.doi.org/10.1017/jfm.2015.759). In
conclusion, the tumbling and swinging motions are found to be the stable equilibrium
configurations of an oblate capsule for low and medium-range capillary numbers
up to Ca< 0.9.
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FIGURE 4. Transient evolution of the angles ζ (t) (dashed line) and ξ(t) (full line) for
different initial orientations (λ = 1). The grey zones represent the convergence criteria:
(a) tumbling motion; (b,c) swinging motion: (a) Ca = 0.01, ζ (0) = ξ(0) = 5◦, 45◦, 75◦,
(b) Ca= 0.3, ζ (0)= ξ(0)= 30◦ (c) Ca= 0.3, ζ (0)= ξ(0)= 30◦, 45◦, 75◦.

For Ca > 0.9, the principal short axis no longer remains within the shear plane:
it exhibits an oscillation about the shear plane, which is superimposed onto the
in-plane oscillation (see supplementary movie 3). The equilibrium state of the capsule
thus evolves from a swinging to a wobbling (or oscillating–swinging) motion: the
point M3(t) oscillates a little about the shear plane and the point A3(t) precesses
around the vorticity axis with a constant mean inclination, as indicated in figure 5.
As Ca increases, the mean angle ξ(t) = (OA3(t), ez) decreases until the capsule
changes drastically its motion and starts rolling. For Ca > 1.5, the capsule stable
equilibrium configuration is rolling (see supplementary movie 4). This is illustrated in
figure 6(a), which shows that, for Ca= 2, the angle ζ (t) tends towards 90◦ whereas
ξ(t) converges towards 0◦, the smallest axis being in the shear plane because of the
large profile elongation. It also shows that the capsule converges towards the rolling
state whatever its initial orientation. In order to verify that the capsule does have
a rolling motion, we have run the following test: once the capsule has reached its
equilibrium configuration, we set the far-stream velocity of the external flow at zero
and follow capsule reorientation during relaxation (see supplementary movie 5). The
second part of the graph of figure 6(b) (γ̇ t > 1500) shows that the angle ξ(t) remains
equal to 0◦, whereas ζ (t) decreases suddenly to 0◦ when the flow is stopped. The
capsule regains its oblate shape and has its revolution axis aligned with the vorticity
axis. This indicates that the capsule had previously assumed, at equilibrium, a rolling
motion that is identical to the one observed when the short axis is initially aligned
with the vorticity axis (ζ (0)= ξ(0)= 0◦), as shown in figure 3(b).
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FIGURE 5. Wobbling motion for three initial orientations ξ(0) = 30◦, 45◦ and 60◦ at
Ca = 0.9 (λ = 1). The small axis oscillates a little about the shear plane, while A3(t)
precesses and oscillates around the vorticity axis with an inclination which tends to
44◦ ± 12◦ for all three initial orientations.
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FIGURE 6. Time evolution of the angles ζ (t) and ξ(t) at Ca=2 (λ=1). (a) Time response
(γ̇ t ∈ [0, 600]) of the capsule for different initial orientations showing the convergence
towards a rolling motion; (b) Long-time response (for ξ(0)= 15◦) followed by a relaxation
phase (v∞ = 0 for γ̇ t > 1500), during which both ξ and ζ go to zero, thus showing that
the capsule revolution axis is aligned with the vorticity axis.

To summarize the cases for λ= 1 and a/b= 1/2, we have shown that, for Ca< 0.9,
the situation is identical to the one considered by Walter et al. (2011), where the
capsule revolution axis is initially positioned in the shear plane (ζ (0) = ξ(0) = 90◦).
Correspondingly, the capsule assumes a quasi-solid tumbling motion for Ca < 0.02
and a swinging motion for 0.05 < Ca < 0.9. The two regimes are separated by a
transition motion characterised by the transient occurrence of a quasi-circular profile
within the shear plane (Ca∈ [0.02,0.05]). For 0.96Ca61.5, the capsule goes through
a wobbling motion (also called oscillating precession), where its small axis oscillates
about the shear plane while the point A3(t) precesses about the vorticity axis and
gets nearer to it as Ca increases. Ultimately, for large values of Ca (Ca > 1.5), the
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FIGURE 7. Time evolution of the angles (a) ζ (t) and (b) ξ(t) for different viscosity ratios
λ (ζ (0)= 45◦ Ca= 0.2).

capsule has a rolling motion. All these equilibrium states are independent of the initial
orientation.

3.2. Influence of λ on the equilibrium configurations
We now study the influence of the viscosity ratio on the stable equilibrium
configurations of the oblate capsule (a/b= 1/2). We consider only viscosity contrasts
larger than unity, as it was shown for initially spherical capsules that λ < 1 had
little influence on the dynamics (Foessel et al. 2011). As the mechanical equilibrium
configuration is independent of the initial orientation when ζ (0) ∈ ] 0◦, 90◦[ , we
position the capsule with an initial angle ζ (0)= 45◦ and increase the viscosity of the
internal fluid. Figure 7 shows the temporal evolution of the angles ζ (t) and ξ(t) for
λ= 1, 2, 4 and 8.5 in the case of a capillary number Ca= 0.2. For λ= 1, the capsule
exhibits a swinging motion, as previously discussed. However, for λ = 2, the angle
ζ (t) converges towards a value close to 90◦ while ξ(t) oscillates about 77◦: this
indicates that a wobbling motion has been set-up. When the viscosity ratio is further
increased (λ = 4), a transition to rolling occurs: the angle ξ(t) tends to 0◦ while
the capsule short axis exhibits dampened oscillations about the shear plane. For still
higher values (λ = 8.5), the flow strength is not high enough to deform the capsule
much: the smallest semi-diameter is on the vorticity axis (ζ → 0◦) and the profile in
the shear plane is only slightly deformed. This shows that the viscosity ratio has a
strong influence on the capsule equilibrium state for medium-range capillary numbers.

The combined effect of the viscosity ratio and capillary number is summarized
in figure 8. For λ < 3, the mechanical equilibrium configurations correspond to the
ones observed for λ= 1. The viscosity ratio, however, influences the capillary number
at which the tumbling-to-swinging and swinging-to-rolling transitions occur. The
transition between tumbling and swinging takes place at higher Ca, since the increase
in internal viscosity reduces the capsule deformability. For example, the transition is
delayed from 0.02 6 Ca 6 0.05 when λ= 1 to 0.06 6 Ca 6 0.09 when λ= 2. On the
contrary, the transition between swinging and rolling rather tends to occur for lower
values of Ca, as λ increases. For example, at Ca= 0.5, the capsule converges towards
the swinging regime at λ= 1 and towards the rolling regime at λ= 2.

The direct consequence of these two observations on the regime transitions is the
disappearance of the swinging motion for λ ∼ 3. For λ & 3, the stable mechanical
equilibrium states are then only the tumbling and the rolling regimes. The capillary
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FIGURE 8. Sketch of the mechanical equilibrium configurations of an oblate capsule as a
function of the capillary number Ca and viscosity ratio λ. The grey zones represent the
tumbling-to-swinging and swinging-to-rolling transitions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(a) (b)0.3

0.2

0 0.1 0.2 0 0.1 0.2

0.5 1.0 1.5 2.0 2.5 3.0

Ca
0 0.5 1.0 1.5 2.0 2.5 3.0

Ca

0.6

0.8

1.0

1.2

1.4

1.6

1.1

1.2

FIGURE 9. (a) Shear plane deformation and (b) semi-axis length along the vorticity axis.
Open symbols: tumbling/swinging regime; full symbols: rolling regime.

number of transition between tumbling and rolling further decreases with λ: at high λ,
the rolling regime thus becomes the main mechanical equilibrium configuration that is
likely to be observed (figure 8).

It is of interest to compute the capsule deformation within the shear plane
Dxy = (L − B)/(L + B), where L and B are the longest and shortest semi-axes of
the ellipsoid of inertia in the shear plane, respectively. The deformation Dxy is a
quantity which is easily measured in the swinging or rolling regimes. We also
provide the capsule semi-axis length Lz along the vorticity axis, as it enables us to
completely specify the geometry of the converged capsule shape together with Dxy

and the constant volume constraint. Since both Dxy and Lz oscillate in the swinging
regime, we give values that are averaged over ten periods. For λ= 1, we recover the
results of Walter et al. (2011), which show a small decrease of Dxy and Lz during the
tumbling-to-swinging transition, followed by a steady increase of both quantities with
increasing Ca (figure 9). A very similar behaviour is found for λ= 2. For Ca > 0.2
and λ > 3, the rolling regime prevails, where Dxy steadily increases with Ca but
decreases with λ, as expected. It should be noted that the deformation in the rolling
regime is almost the same as the one which is found for a viscous spherical capsule
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FIGURE 10. Stable equilibrium configurations of an oblate capsule as a function of the
capillary number Ca for two values of the aspect ratio: a/b = 1/2 and 2/3. (a) λ = 1;
(b) λ= 5.

(Foessel et al. 2011). This seems to indicate that the shear plane deformed profile of
an elastic capsule depends only on Ca and the viscosity ratio and is independent of
the surface to volume ratio. Of course, this observation would need to be verified,
but this is outside the scope of the present paper.

3.3. Influence of a/b on the equilibrium configurations
We finally consider how the capsule dynamics is influenced by the aspect ratio.
Figure 10 shows how the stable configurations evolve when the aspect ratio of the
oblate capsule is increased from a/b= 1/2 to a/b= 2/3. An aspect ratio of a/b= 2/3
corresponds to a/`= 0.76 and b/`= 1.44. Aspect ratios lower than 1/2 are difficult
to simulate without taking into account bending effects, the capsule shape being
characterised by large intrinsic curvatures: no such cases are thus considered with
the present model as it is devoid of bending resistance. Increasing a/b from 1/2 to
2/3 in the case λ = 1 results in a lowering of the capillary number value at which
the swinging-to-wobbling transition occurs (figure 10a). The aspect ratio, however,
has a limited influence on the capillary number above which rolling takes place. The
swinging regime is thus stable for a smaller range of capillary numbers when a/b
increases. At λ = 5, the main effect of an increase of a/b is to shift the transition
to rolling to higher values of capillary number and to reduce the capillary number
range for the wobbling motion.

In conclusion, the capsule qualitatively behaves similarly at a/b= 1/2 and 2/3. The
aspect ratio has a small effect on some of the capillary numbers at which transitions
between regimes occur: it increases the Ca-range of stability of the wobbling regime,
but this phenomenon is mainly visible for viscosity ratios larger than 1. This justifies
having presently studied in detail the particular case of a/b= 1/2.

4. Time to reach the equilibrium configuration

All the previous results indicate that an oblate capsule placed off the shear plane
requires a very long time τ , of the order of γ̇ τ = 102–103, to reach its mechanical
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FIGURE 11. Convergence time for ζ (0)= ξ(0)= 45◦. (a) Effect of the capillary number
for λ= 1; (b) effect of the viscosity ratio for moderate Ca on the convergence time based
on ξ (open symbols: swinging regime, full symbols: rolling regime). The grey zone and
the vertical line represent the transition from in-plane to rolling motion.

equilibrium configuration. We have seen that the time τ depends on the initial
orientation ζ (0), the capillary number Ca and the viscosity ratio λ. In this section,
we study the convergence time of an oblate capsule (a/b= 1/2). Such information can
be useful to experimentalists for designing experimental protocols and to numericians
for choosing adequately the computational time.

As is clearly apparent from figures 4 and 6, the convergence time is difficult to
determine with precision. We define an estimate of τ as the time it takes ξ(t) or
ζ (t) to be equal to 10 % of the difference between its initial value and its value at
equilibrium state. For example, based upon the time evolution of ζ , the convergence
time τζ would be such that:

|ζ (τζ )− ζ∞| = 0.1|ζ (0)− ζ∞|, (4.1)

where ζ∞ is the equilibrium value of ζ . The same definition applies to the convergence
time τξ based on ξ . The corresponding convergence areas are shown as grey zones in
figures 4 and 6. Note that their width depends on the difference between the initial
and final orientations.

In the tumbling regime, the initial orientation influences significantly the conver-
gence time as is clearly apparent in figure 4(a). However, in the swinging regime, we
have checked that ζ (0) has little influence on either τζ or τξ . The same conclusion
holds true for the rolling regime for |ζ (0) − ζ∞| 6 60◦. We thus study an average
off-plane inclination |ζ (0) − ζ∞| = 45◦ and show the combined effects of Ca and λ.
In the wobbling regime, the time to reach equilibrium is fast for ζ , but very slow
for ξ and depends significantly on the initial orientation of the capsule (figure 5). We
therefore do not try to determine it.

The convergence time depends significantly on whether it is based on ζ (t) or on
ξ(t) as is apparent in figure 11(a), where γ̇ τ is shown as a function of Ca for λ= 1.
Indeed, in the swinging regime, the convergence time τξ is roughly twice τζ . We note
that the convergence time increases with Ca in the swinging regime and decreases in
the rolling regime. The effect of the viscosity ratio is that it significantly increases
τξ in the swinging regime as one could expect, since more energy is dissipated when
the viscosity ratio increases. In the rolling regime, the response time decreases when
the viscosity ratio increases because the capsule is less deformed and tends to behave
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like a rolling axisymmetric solid body. Note that experimentally, it is ζ (t) which is
readily measured: to obtain ξ(t), one would need to attach a marker to the membrane
and follow its motion over time. One must also be careful experimentally when an
apparent steady inclination is obtained for ζ : it can be misleading, since the membrane
will not be at equilibrium with the fluid until ξ has reached its final position.

5. Discussion and conclusion

The mechanical equilibrium configurations of an oblate capsule subjected to a
simple shear flow have been determined numerically by initially positioning the
capsule revolution axis off the shear plane and following the capsule dynamics. The
study has been conducted for a capsule with a strain-hardening behaviour of the
Skalak law type (Skalak et al. 1973) and different values of the viscosity contrast
λ. We have mainly considered the aspect ratio a/b = 1/2, but have compared the
results with a/b= 2/3 to look at the effect of changing the capsule shape. We have
been very careful to make sure that the equilibrium states were time converged. We
show that, to characterise the motion of the capsule unambiguously, it is necessary
to monitor two angles which measure the general orientation ζ (t) of the deformed
profile and the position ξ(t) of the capsule initial apex.

Contrary to previous results in the literature, we find that the equilibrium motion
of an oblate capsule is independent of the initial position. For example at λ = 1
(an extensively studied case), the tumbling and swinging regimes, obtained when the
capsule axis is in the shear plane, are mechanically stable equilibrium configurations
at low and moderate values of Ca (Ca < 0.9). When Ca increases, the capsule axis
migrates away from the shear plane: a wobbling precession about the vorticity axis
occurs for intermediate values of Ca until a stable rolling motion is reached, where
the capsule initial apex is located on the vorticity axis (Ca > 1.5). When the aspect
ratio is increased, we find that the swinging regime is stable over a smaller range of
capillary numbers: the capsule has an out-of-shear-plane motion from lower capillary
numbers onwards. It is interesting to note that for a prolate capsule with a/b = 2,
the stable equilibrium states at λ= 1 occur in reverse order as Ca increases: rolling,
wobbling and swinging (Dupont et al. 2013).

A question that arises at this point is whether those different equilibrium states
could be predicted from some simple physical considerations, such as minimisation
of the system energy. The results obtained on prolate capsules showed that the stable
equilibrium state does not necessarily correspond to the minimum viscous energy
dissipation, except for small capillary numbers, when the capsule is subjected to
small elastic deformation (Dupont et al. 2013): it then converges towards the rolling
regime like a solid ellipsoidal particle. But for Ca> 0.6, the membrane deformation
plays too large a role: the capsule converges towards configurations that no longer
correspond to minima in viscous energy dissipation, the equilibrium configuration
being dictated by the fluid–structure interactions. This shows that the minimum
energy criterion fails to determine the equilibrium state for a deformable capsule
subjected to an external flow, even under Stokes flow conditions. As a consequence,
it is not possible to test the equilibrium stability by adding an initial perturbation
to the energy and observing its convergence/divergence, as the dynamics depends on
nonlinear fluid–structure interactions. The only possibility is thus to simulate different
cases and deduce the state diagrams.

The present results agree in essence with those presented in Omori et al. (2012) for
oblate capsules in the case of low viscosity ratios: they had also found for λ6 2 that
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the capsule revolution axis exhibited a transition from an in-plane to an out-of-plane
motion and that the capsule converged towards rolling at higher capillary numbers. A
good agreement is found for the value of the capillary number at the wobbling-to-
rolling transition considering that the aspect ratios are not exactly the same in both
studies: at λ = 1, Omori et al. (2012) obtained Ca = 1.45 for a capsule following
Skalak law (unknown value of the parameter C) with a/b= 0.4, which compares well
with our value of Ca= 1.2 obtained for a/b= 0.5. Such is, however, not the case for
the swinging-to-wobbling transition (0.1 versus 0.9 in our case). Would the value of
the C-parameter in the Skalak law account for such a difference?

Cordasco & Bagchi (2013) also found that the capsule tends towards the shear plane
for Ca 6 0.6, but they observed a kayaking (i.e. an oscillation about the shear plane)
or a precession-to-kayaking motion, which depended on the initial orientation. This
conclusion is due to too short computational times (γ̇ t 6 100). Indeed, we also find
such a kayaking motion (see figure 4b), but it is transient and dies out with time.
As for Wang et al. (2013), they considered only moderate values of Ca and thus
missed the rolling motion. They find different regime modes which depend on the
initial orientation. This may be due to small inertial effects, as the Reynolds number
is small but finite in their study, whereas it is exactly zero in our case.

The new results provide detailed information on the influence of the internal-
to-external viscosity ratio on the mechanical equilibrium configurations of oblate
artificial capsules. We find that, for moderate value (λ < 4), the internal viscosity
limits the range of Ca for which a swinging motion is possible. This can be easily
understood, as high internal viscosity leads to high viscous energy dissipation during
membrane rotation. In fact for large enough viscosity (λ > 4), the only in-plane
motion is the quasi-solid tumbling motion. The other effect of large internal viscosity
is to shift to low Ca values the transition from in-plane to rolling motion. A large
internal viscosity leads to a significant tension jump across the interface and thus
to membrane buckling, as reported by Foessel et al. (2011) and Yazdani & Bagchi
(2013). The capsule deformability thus has a great influence on the mechanical
equilibrium configuration, which depends on the fluid–structure interactions. It was
finally found that, at higher viscosity ratio (λ> 4), the main effect of increasing the
aspect ratio is to shift the transition to rolling to a higher capillary number. The
wobbling motion occurs over a larger range of capillary numbers.

Although the particle geometry is not the same, it is still of interest to compare
the present results to experimental ones on RBCs. Goldsmith & Marlow (1972)
highlighted the influence of the membrane deformability on the stable equilibrium
configuration. They observed that when the RBC membrane is stiffened, the cell no
longer tends towards the rolling motion but instead towards the tumbling motion.
This is consistent with the present results, since stiffening the cell membrane
corresponds to increasing Gs and thus decreasing Ca. In his experimental study,
Bitbol (1986) varied the internal viscosity and the external shear rates. To estimate
the corresponding values of viscosity ratios and capillary numbers, one can use as
characteristic length for an RBC ` ∼ 2.8 µm, which corresponds to a cell volume
of order 100 µm3 (Klöppel 2012). The value of shear elastic modulus Gs depends
on the constitutive law. Hochmuth & Waught (1987) estimated Gs ' 4 µN m−1 for a
strain-hardening law, such as the Skalak law. Using these values, the results by Bitbol
(1986) for low values of the viscosity ratio are that the cell exhibits tumbling up to
Ca= 0.014, before drifting towards the vorticity axis in the range 0.014 6 Ca 6 0.7.
For Ca> 0.7, the cell then follows a C= 0 orbit (i.e. rolling). Those results are also
corroborated by Dupire et al. (2012), who have found that tumbling occurs up to
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approximately Ca= 0.05–0.075 at λ' 1. One must note that the concept of transition
is expressed in slightly different terms experimentally and numerically: concerning the
tumbling-to-wobbling transition, it is clearly explained in Bitbol (1986) and Yao et al.
(2001) that it is not as if all the cells would start precessing around the vorticity
axis at a given Ca. From the critical capillary number onwards, it is observed that
more and more cells start precessing while the others continue tumbling, the ratio
of the precessing cells over tumbling ones increasing when the capillary number is
increased. Numerically, we find that tumbling stops for Ca > 0.02 and that rolling
occurs for Ca > 1, in agreement with the experimental findings when all the cells
have the same motion.

Even though the experimental results on RBCs agree well with the present ones on
oblate capsules, one could still wonder about the potential effect of the particle shape.
The results of § 3.3 obtained by changing the aspect ratio, however, indicate that this
parameter has a limited influence on the dynamics of oblate deformable capsules.
An increase in aspect ratio provides the same qualitative capsule behaviour and only
modifies slightly some of the capillary number values at the transitions between
regimes. In the Ca–λ phase diagram, the main influence of a/b is to increase the
Ca-range over which wobbling is stable: this effect is mostly notable when the
viscosity ratio is quite larger than 1. It is thus surprising that Cordasco & Bagchi
(2013) indicated that, at Ca = 0.1 and λ = 1, oblate capsules tended towards an
in-plane motion, whereas RBCs exhibited a rolling motion. Since their simulations
were run for a finite Reynolds number, it is possible that, although small, inertia
affects the dynamics of deformable ellipsoidal particles. The differences in behaviour
are more likely to be accounted for by inertial effects than by membrane viscosity.
The wheel-like rolling motion was indeed simulated by MacMeccan et al. (2009) for
RBCs with λ = 5 using the lattice Boltzmann method. The simulations agree well
with the experimental results of Yao et al. (2001), the small differences being most
likely due to uncertainties in RBC material properties and in the RBC distance from
the wall in the experiments. Since the numerical models did not include membrane
viscosity, it can be expected that membrane viscosity does not play a central role in
the wheel-like rolling motion, but that it rather adds up to the viscosity of the inner
fluid (i.e. the RBC haemoglobin solution) giving rise to a global viscosity of the
particle.

We have finally shown that a capsule initially placed off the shear plane takes
a finite time to reach its stable equilibrium configuration depending on its initial
orientation, flow strength and viscosity ratio. For a medium displacement from the
shear plane (ζ (0) = 45◦), the non-dimensional convergence time when λ = 1 varies
between 50 and 400 for Ca 6 0.5 and is about 600 for Ca > 2. Long computational
times are thus required to study the equilibrium configurations of oblate microcapsules
or cells. For experiments, it is interesting to translate the non-dimensional times into
dimensional ones. If one considers the case of an RBC subjected to simple shear
flow, one finds that the stable tumbling equilibrium regime is reached after ∼50 s
(from figure 4a), stable swinging after ∼10 s (figure 4b,c) and stable rolling after
∼2 s (figure 6). Since the typical experimental window time for observation is of
the order of 1 minute, one must be careful to check that equilibrium conditions have
indeed been reached when the measurements are recorded.
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