
Probability in the Engineering and Informational Sciences, 31, 2017, 226–238.

doi:10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING
WITH IMPATIENCE

YANG CAO

Department of Industrial and Systems Engineering, University of Southern California, Los Angeles,
CA 90089, USA

E-mail: cao573@usc.edu

There are n customers that need to be served by m parallel servers (n ≥ m). Customer i
will only wait in queue for an exponentially distributed time with rate λi before departing
the system. The service time on server j is exponentially distributed with rate μj for all
customers, and upon completion of service of customer i a positive reward ri is earned.
The non-preemptive problem is to choose, after each service completion, which currently
in queue customer to serve next. The preemptive problem is to decide when to preempt
a service, and to choose, after each service completion or preemption, which currently in
queue customer to serve next. The objective of both problems is to maximize the expected
total return. We give conditions under which a list policy is optimal for both problems.

1. INTRODUCTION

Consider a queueing model in which there are n customers in the system that need to be
served by m parallel servers (n ≥ m). Customer i can only wait a random time, called its
impatience time, which is exponentially distributed with rate λi in queue before entering
service, and it will depart the queue if its impatience time expires. A customer cannot depart
the system while in service, and a departed customer cannot be served. The service time on
server j is exponentially distributed with rate μj for all customers, and upon completion
of service of customer i a positive reward ri is earned and i departs the system. In the
non-preemptive case, servers are not allowed to preempt customers in service. Each time a
service is completed, a decision must be made as to which job in queue should enter service
next. On the other hand, in the preemptive case, servers are allowed to preempt customers
in service and serve other customers which have not departed the system. The preempted
customers then rejoin the queue and their remaining impatience times are still exponentially
distributed. For example, it can be considered as a model for upgrading machines which will
fail in an exponentially distributed amount of time if the upgrade has not started by then.
Technicians may preempt current services and upgrade machines with higher emergency
level or higher reward. The remaining impatience times of the preempted machines start over
again because of the lack of memory property of exponential distributions, and the upgrades
of such machines should be restarted. Therefore, the preemptive problem is to decide when
to preempt a service, and to choose, after each service completion or preemption, which
currently in queue customer to serve next. However, since the impatience times and service

c© Cambridge University Press 2016 0269-9648/16 $25.00 226

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

file:cao573@usc.edu
https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 227

times of customers are exponentially distributed, we only need to consider policies that only
preempt when there is a service completion or a customer in queue departs the system. Let
R denote the total return of all customers. The objective of both problems is to maximize
the expected total return E[R].

For i1, . . . , in being a permutation of 1, . . . , n, we define the list policy (i1, . . . , in)
as the non-preemptive, non-idling policy that initially serves customer ij on server j, for
j = 1, . . . , m, and then after each service completion, elects to serve the remaining customer
ik if i1, . . . , ik−1 are not in queue. In Section 2, we provide a literature review on needed
results. In Section 3, we give a sufficient condition that results in the list policy (1, . . . , n)
being optimal (in the sense of maximizing expected total return) for the multiple server non-
preemptive problem. In Section 4, we further study the multiple server preemptive problem
and give a sufficient condition that results in the list policy (1, . . . , n) being optimal. Inter-
estingly, it turns out that in addition to maximizing the expected total return objective
function, the list policy (1, . . . , n) also has the property of stochastically minimizing the
makespan under certain conditions for both the non-preemptive (in Section 3) and the pre-
emptive problem (in Section 4). Although idling is not considered in this paper, it can be
shown by a sample path coupling argument that a policy that maximizes the expected total
return would not idle.

2. LITERATURE REVIEW

Many papers have studied stochastic scheduling, optimal control and performance measures
of queuing systems with impatient customers; see, for example, Ross [12], Glazebrook et al.
[3], Ward and Kumar [16], Movaghar [7,8], Zeltyn [17], Mandelbaum and Momcilovic [6],
and Argon, Ziya and Righter [1]. Among these papers, the most related study is con-
ducted by Ross [12]. In this section, we first review the work by Ross [12] with
adaptation to our model, and then provide a survey on the literature that has relevance to
our work.

Ross [12] studied the single server non-preemptive problem with service times hav-
ing general distributions. Results of [12] applying to the case where service times are
exponentially distributed gives the following Theorem 1 and Proposition 2.

Theorem 1: Suppose there is a single server with rate μ and preemptions are not allowed. If

λi ↑ i and
riλi

μ + λi
↓ i

then the list policy π = (1, 2, . . . , n) maximizes the expected total return E[R].

Let the makespan, call it T , be the time until all customers have departed the system.

Proposition 2: Suppose there is a single server with rate μ and preemptions are
not allowed. If λi ↑ i then the list policy π = (1, 2, . . . , n) stochastically minimizes the
makespan T .

There are several other papers in the literature that have some relevance to our work.
Pandelis and Teneketzis [9] studied the scheduling problem where tasks belonging to N
priority classes (higher priorities correspond to higher penalty costs when a loss occurs)
arrive to a single or multi server facility. They considered impatience times that are either
known to the scheduler or have known probability distributions, and determined properties

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

228 Y. Cao

of dynamic, non-idling, non-preemptive policies that minimize the infinite horizon expected
cost due to task losses. Both the groups, that is, Panwar, Towsley and Wolf [10], and
Zhao, Panwar and Towsley [18] assumed impatient jobs arrive randomly, and considered
scheduling problems with the objective of maximizing the rate of jobs being served within
their deadlines. Atar, Giat and Shimkin [2] assumed that customers can be partitioned into
classes where customers of each class have the same stochastic characteristics such as arrival
rate, impatience rate and service rate. With the objective of minimizing the overall long run
average holding cost, they presented and analyzed an asymptotically optimal scheduling
policy called the cμ/θ rule, where θ corresponds to λ and c is the holding cost. Salch,
Gayon and Lemaire [13] studied the class of static list policies for single server queuing
models. With the objective of minimizing the expected weighted number of late jobs, they
provided sufficient conditions for determining optimal policies among the class of static
policies.

There are also several articles in the general context of scheduling with stochastic pro-
cessing times or stochastic due dates. Pinedo [11] considered the scheduling problems of
minimizing the expected weighted sum of completion times and the expected weighted
number of late jobs. Towsley and Panwar [15] studied the G/M/c queue in which customers
have deadlines and only certain stochastic relationships between the deadlines of eligible
customers are known to the scheduler. Two cases were considered: The non-preemptive case
where deadlines are until the beginning of service, that is, servers are not allowed to preempt
and a customer’s deadline is missed if the customer has not entered service before the dead-
line; and the preemptive case where deadlines are until the end of service, that is, servers
are allowed to preempt customers in service (maybe a customer whose deadline is missed
while in service) and a customer’s deadline is missed if the customer has not completed
service before the deadline. They proved that in such two cases, the policy that stochasti-
cally minimizes the number of customers missing their deadlines by time t never schedules
a customer which is known to have a deadline that is stochastically larger than that of
another customer also in the queue. Seo, Klein and Jang [14] assumed that jobs have nor-
mally distributed processing times and a common deterministic due date, and presented a
non-linear integer programming model that generates near optimal solutions for minimizing
the expected number of tardy jobs. Both Jang and Klein [5] and Jang [4] assumed stochas-
tic processing times and deterministic due dates. They considered the effect of variance of
job processing time for determining optimal policies with the objective of minimizing the
expected number of tardy jobs.

Throughout this paper, suppose there are m servers (m ≤ n) and the service time
on server j is exponentially distributed with rate μj for all customers. In addition,
let μ =

∑m
j=1 μj and let Eπ[R] denote the expected total return under the list policy

π = (1, . . . , n).

3. MULTIPLE SERVER NON-PREEMPTIVE PROBLEM

We now extend results of the single server non-preemptive problem to the multiple server
non-preemptive problem. Preemptions are not allowed in this section. For {i1, . . . , ik} being
a subset of {1, . . . , n} (m ≤ k ≤ n), consider a non-preemptive system that begins with
customers i1, . . . , ik. Let π(i1, . . . , ik) be the list policy (i1, . . . , ik), and let R(i1, . . . , ik) =
Eπ(i1,...,ik)[R] be the expected total return under π(i1, . . . , ik).

We now show in the multiple server case, as an immediate corollary of Theorem 1, that
under the condition of that theorem the list policy π = (1, . . . , n) maximizes the expected
total return.

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 229

Corollary 3: If
riλi

μ + λi
↓ i and λi ↑ i

then the list policy π = (1, . . . , n) maximizes the expected total return E[R].

Proof: The times between service completions are independently and identically dis-
tributed exponential random variables with rate μ. Thus, after the initial m customers
enter service, the system is equivalent to a single server system with service rate μ and it
follows from Theorem 1 that the list policy π = (1, . . . , n) should then be applied. Now, to
show that it is optimal to initially serve customers 1, . . . , m, consider an arbitrary policy
that initially serves customers i1, . . . , im, where {i1, . . . im} �= {1, . . . , m} and then follows
policy π after the initial choice. Call this policy π′ and let Eπ′ [R] denote the expected total
return under π′. In addition, let k = argmaxj∈{1,...,m} ij and w = argminj∈{m+1,...,n} ij ,
so iw ≤ m < ik and iw = min{ik, im+1, . . . , iw, . . . , in}. Let π′′ denote the policy that ini-
tially serves customers i1, . . . , ik−1, ik+1, . . . im, iw and then follows policy π after the initial
choice, and let Eπ′′ [R] denote the expected total return under π′′. Then it follows from
Theorem 1 and iw = min{ik, im+1, . . . , iw, . . . , in} that Eπ′′ [R] ≥ Eπ′ [R]. In addition, if
{i1, . . . , ik−1, ik+1, . . . , im, iw} �= {1, . . . , m}, we can use the same argument to improve pol-
icy π′′. Therefore, by repeating the preceding argument we will finally obtain a policy that
initially serves customers 1, . . . , m and has expected total return greater than or equal to
Eπ′ [R]. The optimality of the list policy π then follows. �

Moreover, it can be shown with the same argument as in Corollary 3 and based on
Proposition 2, that the list policy π also has the property of stochastically minimizing the
makespan.

Corollary 4: If λi ↑ i then the list policy π = (1, 2, . . . , n) stochastically minimizes the
makespan T .

4. MULTIPLE SERVER PREEMPTIVE PROBLEM

Preemptions are allowed in this section. When a server completes service or a customer
in queue departs the system, servers can choose to either continue or preempt the current
service. The preempted customers will rejoin the queue.

There are cases where preemptions are useful. For example, suppose that m = 1, n = 3
and that for a small positive number ε,

r1λ1

μ + λ1
=

r2λ2

μ + λ2
− ε.

In addition, suppose λ1 < λ2 and λ3 is small so that customer 3 should be served last.
Since λ1 < λ2, the time it takes to serve customer 1 then customer 2 (if it has not departed
yet) is stochastically smaller than that of serving customer 2 then customer 1. Therefore,
when all customers are in the system, the optimal policy should serve customer 1 first
because customer 3 will then be more likely to be served. However, if customer 3 departs
the queue before the service completion of customer 1 and the departure from queue of
customer 2, the optimal policy should then preempt customer 1 and serve customer 2
because r1λ1/(μ + λ1) < r2λ2/(μ + λ2).

In the remainder of this section, we first present several needed lemmas, and then show
that when preemptions are allowed, the list policy π = (1, . . . , n) maximizes the expected

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

230 Y. Cao

total return and has the property of stochastically minimizing the makespan under certain
conditions.

The next two lemmas are immediate.

Lemma 5: For j1, . . . , jm being a permutation of i1, . . . , im,

R(i1, . . . , im, im+1, . . . , ik) = R(j1, . . . , jm, im+1, . . . , ik).

Lemma 6: rj + R(i1, i2, . . . , ik) = ri1 + R(j, i2, . . . , ik).

Lemma 7: If riλi/(μ + λi) ↓ i and λi ↑ i then R(1, . . . , n − 1) = max
j

R(1, . . . , j − 1, j +

1, . . . , n).

Proof: Consider an n − 1 customer non-preemptive problem that begins with customers
1, . . . , n − 1 in system. Based on Corollary 3, for any j = 1, . . . , n − 1, we have R(1, . . . , n −
1) ≥ R(1, . . . , j − 1, j + 1, . . . , n − 1, j). Moreover, since λj ≤ λn and rj ≥ rn, a standard
coupling argument gives R(1, . . . , j − 1, j + 1, . . . , n − 1, j) ≥ R(1, . . . , j − 1, j + 1, . . . , n −
1, n). Thus for any j = 1, . . . , n − 1, R(1, . . . , n − 1) ≥ R(1, . . . , j − 1, j + 1, . . . , n − 1, j) ≥
R(1, . . . , j − 1, j + 1, . . . , n − 1, n), which yields the result. �

Based on Lemma 7, we have

Lemma 8: If riλi/(μ + λi) ↓ i and λi ↑ i then for all j = 1, . . . , n,

r1 + R(2, . . . , n) − R(1, . . . , j − 1, j + 1, . . . , n) ≥ rm+1λm+1

μ + λm+1
.

Proof: For {i1, . . . , ik} being a subset of {1, . . . , n}, define P ik
i1,...,ik

as the probability that
customer ik is served under the non-preemptive list policy π(i1, . . . , ik) when the system
begins with customers i1, . . . , ik. Then

r1 + R(2, . . . , n) − R(1, . . . , j − 1, j + 1, . . . , n) ≥ r1 + R(2, . . . , n) − R(1, . . . , n − 1)

= r1 + r2 + · · · + rm+1 +
n∑

j=m+2

rjP
j
2,...,j

−
⎛
⎝r1 + r2 + · · · + rm + rm+1

μ

μ + λm+1
+

n−1∑
j=m+2

rjP
j
1,...,j

⎞
⎠

=
rm+1λm+1

μ + λm+1
+ rnPn

2,...,n +
n−1∑

j=m+2

rj(P
j
2,...,j − P j

1,...,j)

≥ rm+1λm+1

μ + λm+1
,

where the last inequality is because P j
2,...,j ≥ P j

1,...,j (can be easily proven with a coupling
argument). �

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 231

Using the preceding lemmas, we can find the optimal policy in a special case.

Theorem 9: If

λi ↑ i, min
1≤j≤m

μj ≥ max
1≤i≤n

λi, and
riλi

μ + λi
↓ i,

then the list policy π = (1, 2, . . . , n) maximizes the expected total return E[R].

Proof: The proof is by induction on n. When n = m + 1, we do not need to consider
preemptions because after a service completion or someone departs the queue, there are m
customers in system to be served by m servers. Thus, based on Corollary 3, the list policy
π = (1, 2, . . . , n) maximizes the expected total return E[R].

Assume it true whenever there are at most n − 1 customers whose parameters satisfy
the condition of the theorem, and now suppose there are n customers. First consider any
policy that initially serves customers 1, . . . , m. By the induction hypothesis, the best policy
of this type will switch to π (preempting customers in service if needed) after the first
service completion or when someone departs the queue. Thus, such policy is equivalent to
policy π, and the expected total return under such policy is the same as under π. Therefore,
to show the optimality of the list policy π, it suffices to show that for any arbitrary policy,
there exists a policy which has greater expected total return and initially serves customers
1, . . . , m.

Consider any policy that starts by serving customer ij on server j (j = 1, . . . , m) and
leaving customers im+1, . . . , in in queue, where i1, . . . , in is an arbitrary permutation of
1, . . . , n. Then, by the induction hypothesis, the best policy of this type will switch to π (pre-
empting customers in service if needed) after the first service completion or when someone
departs the queue. Call this policy π′ and let Eπ′ [R] denote the expected total return under
π′. If {i1, . . . , im} = {1, . . . , m}, then policy π′ is equivalent to policy π and Eπ′ [R] = Eπ[R].
If {i1, . . . , im} �= {1, . . . , m}, then let k = argmaxj∈{1,...,m} ij and w = argminj∈{m+1,...,n} ij
and it follows that iw ≤ m < ik. Let π′′ be the policy that starts by serving customer ij on
server j, for j = 1, . . . , k − 1, k + 1, . . . , m and customer iw on server k, and then switches to
π after the first service completion or when someone departs the queue. Let Eπ′′ [R] denote
the expected total return under π′′. We now show that Eπ′′ [R] ≥ Eπ′ [R].

Let μ(k) =
∑m

j=1
j �=k

μj and λ(w) =
∑n

j=m+1
j �=w

λij
. Condition on the first thing that happens:

Eπ′ [R] =
1

μ +
∑n

j=m+1 λij

{ m∑
j=1

μj [rij
+ R(1, . . . , ij − 1, ij + 1, . . . , n)]

+
n∑

j=m+1

λij
R(1, . . . , ij − 1, ij + 1, . . . , n)

}

=
1

μ + λ(w) + λiw

{ m∑
j=1
j �=k

μj [rij
+ R(1, . . . , ij − 1, ij + 1, . . . , n)]

+ μk[rik
+ R(1, . . . , ik − 1, ik + 1, . . . , n)]

+
n∑

j=m+1
j �=w

λij
R(1, . . . , ij − 1, ij + 1, . . . , n) + λiw

R(1, . . . , iw − 1, iw + 1, . . . , n)
}

.

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

232 Y. Cao

For fixed k,w, define

α′ =
μk + λiw

μ(k) + λ(w)
,

A = r1 + R(2, . . . , n),

B =

∑m
j=1
j �=k

μj [rij
+ R(1, . . . , ij − 1, ij + 1, . . . , n)]

+
∑n

j=m+1
j �=w

λij
R(1, . . . , ij − 1, ij + 1, . . . , n)

μ(k) + λ(w)
.

From Lemma 6, we have

Eπ′ [R] =
1

1 + α′

{
B +

μk

μ(k) + λ(w)
[A + R(ik, 2, . . . , ik − 1, ik + 1, . . . , n) − R(2, . . . , n)]

+
λiw

μ(k) + λ(w)
[A + R(iw, 2, . . . , iw − 1, iw + 1, . . . , n) − R(2, . . . , n) − riw

]
}

=
B + α′A
1 + α′ +

μk

μ + λ(w) + λiw

[R(ik, 2, . . . , ik − 1, ik + 1, . . . , n) − R(2, . . . , n)]

− λiw
riw

μ + λ(w) + λiw

,

where the last equality is from Lemma 5 and iw ≤ m.
Likewise,

Eπ′′ [R] =
1

μ + λ(w) + λik

{ m∑
j=1
j �=k

μj [rij
+ R(1, . . . , ij − 1, ij + 1, . . . , n)]

+ μk[riw
+ R(1, . . . , iw − 1, iw + 1, . . . , n)]+

n∑
j=m+1

j �=w

λij
R(1, . . . , ij − 1, ij + 1, . . . , n)

+ λik
R(1, . . . , ik − 1, ik + 1, . . . , n)

}
.

For fixed k,w, define

α′′ =
μk + λik

μ(k) + λ(w)
.

From Lemma 6, we have

Eπ′′ [R] =
1

1 + α′′

{
B +

μk

μ(k) + λ(w)
[A + R(iw, 2, . . . , iw − 1, iw + 1, . . . , n) − R(2, . . . , n)]

+
λik

μ(k) + λ(w)
[A + R(ik, 2, . . . , ik − 1, ik + 1, . . . , n) − R(2, . . . , n) − rik

]
}

=
B + α′′A
1 + α′′ +

λik

μ + λ(w) + λik

[R(ik, 2, . . . , ik − 1, ik + 1, . . . , n) − R(2, . . . , n)]

− λik
rik

μ + λ(w) + λik

,

where the last equality is from Lemma 5 and iw ≤ m.

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 233

Therefore

Eπ′′ [R] − Eπ′ [R] =
(α′′ − α′)(A − B)
(1 + α′′)(1 + α′)

+
λiw

riw

μ + λ(w) + λiw

− λik
rik

μ + λ(w) + λik

+
(

μk

μ + λ(w) + λiw

− λik

μ + λ(w) + λik

)
[R(2, . . . , n)

− R(ik, 2, . . . , ik − 1, ik + 1, . . . , n)].

By the induction hypothesis, R(2, . . . , n) − R(ik, 2, . . . , ik − 1, ik + 1, . . . , n) ≥ 0. Also
since μk/(μ + λ(w) + λiw

) ≥ λik
/(μ + λ(w) + λik

), we have

Eπ′′ [R] − Eπ′ [R] ≥ (α′′ − α′)(A − B)
(1 + α′′)(1 + α′)

+
λiw

riw

μ + λ(w) + λiw

− λik
rik

μ + λ(w) + λik

=
(λik

− λiw
)(A − B)

(1 + α′′)(1 + α′)(μ(k) + λ(w))
+

λ(w)(λiw
riw

− λik
rik

)
(μ + λ(w) + λiw

)(μ + λ(w) + λik
)

+
λiw

riw
(μ + λik

) − λik
rik

(μ + λiw
)

(μ + λ(w) + λiw
)(μ + λ(w) + λik

)

≥ λ(w)(λik
− λiw

)
(1 + α′′)(1 + α′)(μ(k) + λ(w))2

rm+1λm+1

μ + λm+1

+
λ(w)(λiw

riw
− λik

rik
)

(μ + λ(w) + λiw
)(μ + λ(w) + λik

)

+
λiw

riw
(μ + λik

) − λik
rik

(μ + λiw
)

(μ + λ(w) + λiw
)(μ + λ(w) + λik

)
,

where the last inequality is based on the following Lemma 10.
For fixed k,w, define

C = (μ + λ(w) + λiw
)(μ + λ(w) + λik

).

It follows that

Eπ′′ [R] − Eπ′ [R] ≥ λ(w)

C

[
(μ + λik

)
rm+1λm+1

μ + λm+1
− (μ + λiw

)
rm+1λm+1

μ + λm+1

]

+
λ(w)(λiw

riw
− λik

rik
)

C
+

1
C

(μ + λik
)(μ + λiw

)
(

λiw
riw

μ + λiw

− λik
rik

μ + λik

)

≥ λ(w)

C

[
(μ + λik

)
rm+1λm+1

μ + λm+1
− (μ + λiw

)
rm+1λm+1

μ + λm+1

]

+
λ(w)(λiw

riw
− λik

rik
)

C

=
λ(w)

C

[
(μ + λik

)
rm+1λm+1

μ + λm+1
− λik

rik
+ λiw

riw
− (μ + λiw

)
rm+1λm+1

μ + λm+1

]

≥ 0,

where the last two inequalities follow from riλi/(μ + λi) ↓ i and iw < m + 1 ≤ ik.
With the preceding argument, we have proven that π′′ (initially serving cus-

tomers i1, . . . , ik−1, iw, ik+1, . . . , im) is better than π′ (initially serving customers

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

234 Y. Cao

i1, . . . , im) in the sense of maximizing expected total return E[R]. In addition, if
{i1, . . . , ik−1, iw, ik+1, . . . , im} �= {1, . . . , m}, we can use the same argument to improve pol-
icy π′′. Therefore, by repeating the preceding argument we will finally obtain a policy that
initially serves customers 1, . . . , m, and has the same expected total return as π does. The
optimality of the list policy π = (1, . . . , n) then follows. �

Lemma 10: Under the condition of Theorem 9,

A − B ≥ λ(w)rm+1λm+1

(μ(k) + λ(w))(μ + λm+1)
.

Proof:

A − B =

∑m
j=1
j �=k

μj [A − rij
− R(1, . . . , ij − 1, ij + 1, . . . , n)]

+
∑n

j=m+1
j �=w

λij
[A − R(1, . . . , ij − 1, ij + 1, . . . , n)]

μ(k) + λ(w)
.

For j = 1, . . . , k − 1, k + 1, . . . , m, it follows from Lemma 6 and Corollary 3 that

A − rij
− R(1, . . . , ij − 1, ij + 1, . . . , n)

= r1 + R(2, . . . , n) − rij
− R(1, 2, . . . , ij − 1, ij + 1, . . . , n)

= r1 + R(2, . . . , n) − r1 − R(ij , 2, . . . , ij − 1, ij + 1, . . . , n)

= R(2, . . . , n) − R(ij , 2, . . . , ij − 1, ij + 1, . . . , n)

≥ 0.

For j = m + 1,m + 2, . . . , w − 1, w + 1, . . . , n, it follows from Lemma 8 that

A − R(1, . . . , ij − 1, ij + 1, . . . , n) = r1 + R(2, . . . , n) − R(1, . . . , ij − 1, ij + 1, . . . , n)

≥ rm+1λm+1

μ + λm+1
.

Therefore

A − B ≥ λ(w)rm+1λm+1

(μ(k) + λ(w))(μ + λm+1)
. �

Moreover, it turns out that the list policy (1, . . . , n) also has the property of
stochastically minimizing the makespan under the condition of λi ↑ i and min1≤j≤m μj ≥
max1≤i≤n λi which we show in the remainder of this section.

For {i1, . . . , ik} being a subset of {1, . . . , n} (0 ≤ k ≤ n − m), consider an m server non-
preemptive system that begins with all servers busy and customers i1, . . . , ik in queue. Note
that the makespan does not depend on which customers are initially served. Thus, for such
a system we let TB(i1, . . . , ik) denote the makespan under the non-preemptive policy that
after each service completion elects to serve the remaining customer il if i1, . . . , il−1 are no
longer in queue.

The following lemma can be easily proven with a standard coupling argument.

Lemma 11: If λi ↑ i, then for any {i1, . . . , in−m−1} ⊂ {1, . . . , n}, TB(i1, . . . , in−m−1) is
stochastically larger than TB(m + 2, . . . , n).

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 235

For i1, . . . , in being an arbitrary permutation of 1, . . . , n, consider two scenarios of an m
server preemptive problem that begins with customers 1, . . . , n: the first which follows the
list policy π = (1, . . . , n); the second which starts by serving customer ij on server j (j =
1, . . . , m) and leaving customers im+1, . . . , in in queue, and then switches to π (preempting
customers in service if needed) after the first event, where an event occurs either at a
service completion or a departure from the queue. Let D1 and D2 denote the respective
remaining makespans in scenario 1 and 2 after the first event. To derive the expressions of
D1 and D2, let X1 = {1, . . . , m}, Y1 = {m + 1, . . . , n}. In addition, for fixed i1, . . . , in, let
X2 = {i1, . . . , im}, Y2 = {im+1, . . . , in}, and

U = X1 ∩ X2, V = X1 ∩ Y2, W = Y1 ∩ Y2, Z = X2 ∩ Y1,

Q = {j : 1 ≤ j ≤ m, ij ∈ U}, R = {j : 1 ≤ j ≤ m, ij ∈ Z}.

With the preceding notation, we derive the expressions of D1 and D2 as follows:

D1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TB(m + 2, . . . , n) w.p. μ
μ+
∑

l∈Y1
λl

TB(m + 1, . . . , ij − 1, ij + 1, . . . , n) w.p.
λij

μ+
∑

l∈Y1
λl

, for each j ∈ R

TB(m + 1, . . . , i − 1, i + 1, . . . , n) w.p. λi

μ+
∑

l∈Y1
λl

, for each i ∈ W

and

D2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TB(m + 2, . . . , n) w.p.

∑
j∈Q μj+

∑
l∈V

λl

μ+
∑

l∈Y2
λl

TB(m + 1, . . . , ij − 1, ij + 1, . . . , n) w.p.
μj

μ+
∑

l∈Y2
λl

, for each j ∈ R

TB(m + 1, . . . , i − 1, i + 1, . . . , n) w.p. λi

μ+
∑

l∈Y2
λl

, for each i ∈ W

where the notation “w.p.” means “with probability”.

Lemma 12: If

λi ↑ i and min
1≤j≤m

μj ≥ max
1≤i≤n

λi

then D1 is stochastically smaller than D2.

Proof: For any t ≥ 0,

P{D1 > t} = P{TB(m + 2, . . . , n) > t} μ

μ +
∑

l∈Y1
λl

+
∑
j∈R

P{TB(m + 1, . . . , ij − 1, ij + 1, . . . , n) > t} λij

μ +
∑

l∈Y1
λl

+
∑
i∈W

P{TB(m + 1, . . . , i − 1, i + 1, . . . , n) > t} λi

μ +
∑

l∈Y1
λl

,

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

236 Y. Cao

and

P{D2 > t} = P{TB(m + 2, . . . , n) > t}
∑

j∈Q μj +
∑

l∈V λl

μ +
∑

l∈Y2
λl

+
∑
j∈R

P{TB(m + 1, . . . , ij − 1, ij + 1, . . . , n) > t} μj

μ +
∑

l∈Y2
λl

+
∑
i∈W

P{TB(m + 1, . . . , i − 1, i + 1, . . . , n) > t} λi

μ +
∑

l∈Y2
λl

.

From Lemma 11, for any t ≥ 0 and any {i1, . . . , in−m−1} ⊂ {1, . . . , n},
P{TB(m + 2, . . . , n) > t} ≤ P{TB(i1, . . . , in−m−1) > t}.

In addition, it follows from λi ↑ i and min1≤j≤m μj ≥ max1≤i≤n λi that

μ

μ +
∑

l∈Y1
λl

≥
∑

j∈Q μj +
∑

l∈V λl

μ +
∑

l∈Y2
λl

,

λij

μ +
∑

l∈Y1
λl

≤ μj

μ +
∑

l∈Y2
λl

, for all j ∈ R,

λi

μ +
∑

l∈Y1
λl

≤ λi

μ +
∑

l∈Y2
λl

, for all i ∈ W.

Therefore, from the following Lemma 13, for any t ≥ 0,

P{D1 > t} ≤ P{D2 > t},
and the result follows. �

The following is immediate.

Lemma 13: If a1, . . . , an, p1, . . . , pn, q1, . . . , qn are non-negative, a1 = mini ai,
∑

i pi =∑
i qi = 1, p1 ≥ q1, and pi ≤ qi, i = 2, . . . , n, then

∑
i piai ≤

∑
i qiai.

Using the preceding lemmas, we now show that the list policy (1, . . . , n) has the property
of stochastically minimizing the makespan under certain conditions.

Proposition 14: If
λi ↑ i and min

1≤j≤m
μj ≥ max

1≤i≤n
λi

then the list policy π = (1, . . . , n) stochastically minimizes the makespan T .

Proof: The proof is by induction on n. When n = m + 1, we do not need to consider
preemptions because after a service completion or someone departs the queue, there are m
customers in system to be served by m servers. Thus based on Corollary 4, the list policy
π = (1, . . . , n) stochastically minimizes the makespan T .

Assume it true whenever there are at most n − 1 customers whose parameters satisfy the
condition of the proposition, and now consider the n case. Consider a policy that starts by
serving customer ij on server j (j = 1, . . . , m) and leaving customers im+1, . . . , in in queue,
where i1, . . . , in is an arbitrary permutation of 1, . . . , n. Then, by the induction hypothesis,

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

MULTIPLE SERVER PREEMPTIVE SCHEDULING WITH IMPATIENCE 237

the best policy of this type will switch to π (preempting customers in service if needed) after
the first event, where an event occurs either at a service completion or a departure from
the queue. Call this policy π′ and let Tπ′ denote the makespan under π′. In addition, let Tπ

denote the makespan under π. We now show that Tπ is stochastically smaller than Tπ′ .
Define X ⊕ Y as the sum of two independent random variables X and Y . Condition on

the first event that happens:

Tπ =st Exp(μ +
∑
l∈Y1

λl) ⊕ D1,

Tπ′ =st Exp(μ +
∑
l∈Y2

λl) ⊕ D2,

where D1 and D2 are the respective remaining makespans after the first event under policy
π and π′. Then, it follows from Lemma 12 that D1 is stochastically smaller than D2.

In addition,

Exp

(
μ +

∑
l∈Y1

λl

)
≤st Exp

(
μ +

∑
l∈Y2

λl

)
.

Therefore,

Tπ =st Exp

(
μ +

∑
l∈Y1

λl

)
⊕ D1

≤st Exp

(
μ +

∑
l∈Y2

λl

)
⊕ D2

=st Tπ′ ,

which yields the result. �

Remark: Proposition 14 will not hold without the condition min1≤j≤m μj ≥ max1≤i≤n λi.
For example, when m = 1, n = 3, let T1 denote the makespan under the list policy
π = (1, 2, 3), and let T3 denote the makespan under a policy that first puts customer 3
in service, and then switches to π after the first event. The distributions of T1 and T3 can
be analytically derived. Suppose μ1 = 1, λ1 = 3, λ2 = 4 and λ3 = 10, then E[T1] = 1.2303 >
1.2295 = E[T3] and it follows that T1 is not stochastically smaller than T3. On the other
hand, however, we are not sure if the condition min1≤j≤m uj ≥ max1≤i≤n λi is necessary for
Theorem 9, although it is needed in the given proof. When m = 1, n = 3 or m = 1, n = 4,
Theorem 9 can be algebraically proven without such condition by comparing Eπ[R] with
Eπ′ [R].

Acknowledgments

This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the
U. S. Army Research Office under contract/grant number W911NF-14-1-0166.

References

1. Argon, N.T., Ziya, S., & Righter, R. (2008). Scheduling impatient jobs in a clearing system with insights
on patient triage in mass casualty incidents. Probability in the Engineering and Informational Sciences,
22: 301–332.

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000176

238 Y. Cao

2. Atar, R., Giat, C., & Shimkin, N. (2010). The cμ/θ rule for many-server queues with abandonment.

Operations Research, 58(5): 1427–1439.
3. Glazebrook, K.D., Ansell, P.S., Dunn, R.T., and Lumley, R.R. (2004). On the optimal allocation of

service to impatient tasks. Journal of Applied Probability, 41(1): 51–72.
4. Jang, W. (2002). Dynamic scheduling of stochastic jobs on a single machine. European Journal of

Operational Research, 138(3): 518–530.
5. Jang, W. & Klein, C.M. (2002). Minimizing the expected number of tardy jobs when processing times

are normally distributed. Operations Research Letters, 30(2): 100–106.
6. Mandelbaum, A. & Momcilovic, P. (2012). Queues with many servers and impatient customers.

Mathematics of Operations Research, 37(1): 41–65.

7. Movaghar, A. (1998). On queueing with customer impatience until the beginning of service. Queueing
Systems, 29(2–4): 337–350.

8. Movaghar, A. (2006). On queueing with customer impatience until the end of service. Stochastic Models,
22(1): 149–173.

9. Pandelis, D.G. & Teneketzis, D. (1993). Stochastic scheduling in priority queues with strict deadlines.
Probability in the Engineering and Informational Sciences, 7(02): 273–289.

10. Panwar, S.S., Towsley, D., & Wolf, J.K. (1988). Optimal scheduling policies for a class of queues with
customer deadlines to the beginning of service. Journal of the ACM (JACM), 35(4): 832–844.

11. Pinedo, M. (1983). Stochastic scheduling with release dates and due dates. Operations Research, 31(3):
559–572.

12. Ross, S.M. (2015). A sequential scheduling problem with impatient jobs. Naval Research Logistics
(NRL), 62(8): 659–663.

13. Salch, A., Gayon, J.-P., & Lemaire, P. (2013). Optimal static priority rules for stochastic scheduling
with impatience. Operations Research Letters, 41(1): 81–85.

14. Seo, D.K., Klein, C.M., & Jang, W. (2005). Single machine stochastic scheduling to minimize the
expected number of tardy jobs using mathematical programming models. Computers & Industrial
Engineering, 48(2): 153–161.

15. Towsley, D. & Panwar, S.S. (1991). Optimality of the stochastic earliest deadline policy for the g/m/c
queue serving customers with deadlines. Technical paper available at http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.34.3124&rep=re%p1&type=pdf.

16. Ward, A.R. & Kumar, S. (2008). Asymptotically optimal admission control of a queue with impatient
customers. Mathematics of Operations Research, 33(1): 167–202.

17. Zeltyn, S. (2005). Call centers with impatient customers: exact analysis and many-server asymptotics
of the M/M/n+ G queue. Ph.D. thesis, Technion-Israel Institute of Technology, Faculty of Industrial
and Management Engineering.

18. Zhao, Z.X., Panwar, S.S., & Towsley, D. (1991). 1991 Queueing performance with impatient cus-
tomers. In INFOCOM ’91. Proceedings. Tenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Networking in the 90s, IEEE, vol. 1, April, pp. 400–409.

https://doi.org/10.1017/S0269964816000176 Published online by Cambridge University Press

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.3124&rep=re%p1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.3124&rep=re%p1&type=pdf
https://doi.org/10.1017/S0269964816000176

	1 Introduction
	2 Literature Review
	3 Multiple Server Non-Preemptive Problem
	4 Multiple Server Preemptive Problem

